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Charge fractionalization beyond the Luttinger liquid paradigm: An analytical consideration
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In this paper, we consider analytically the density evolution of a spinless Fermi liquid with a nonlinear
dispersion relation into which one particle is injected. The interaction is pointlike and the temperature is zero.
We obtain a formula for the evolution of the density and discuss the picture it gives as well as the physics behind
it. Compared to the case of a linear spectrum, we find further and more complex fractionalization of the initial
density hump: it splits into three humps instead of two; moreover, all three change their shapes in a complicated
manner. We analyze the mechanisms of these phenomena and calculate their main characteristics. We also show
that the fractionalization can be illustrated from a semiclassical point of view.
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I. INTRODUCTION

Over the last few years, there has been considerable
progress in the excitation and detection technology of single
quasiparticles in 1D systems that is of interest to basic re-
search as well as practical applications. A photon in an optical
waveguide is similar to a quasiparticle in a 1D channel, so
the latter systems might play the same role in terms of basic
research as quantum optical systems do [1,2]. The control of
quasiparticles also allows one to work with quantum informa-
tion [3].

There is a diverse variety of 1D systems: quantum wires,
the chiral edge states of quantum Hall bars, the edge states of a
two-dimensional topological insulator, carbon nanotubes. etc.
[5]. In most circumstances, these systems are well described
by the Tomonaga-Luttinger (TL) model [5,6] that is applicable
in the limit of low energies. This model is integrable and does
not require using a perturbation theory. What is more, the
naive perturbation approach leads to enormous mathematical
difficulties. The reason is that Luttinger quasiparticles are not
fermions with renormalized properties, so the Landau-Fermi
liquid theory cannot be used in one dimension [7].

Why the one-dimensional case is so exceptional can be
illustrated by the following. Inject one electron into an inter-
acting Luttinger liquid: the electron momentum distribution
function is presumed to be concentrated near the right Fermi
point; in real space x it is concentrated around the origin
forming a hump. The evolution of this density hump is quite
unusual: it splits into two opposite moving parts as it is
shown in Fig. 1. This effect is inherent in the one-dimensional
case, is called charge fractionalization [4,5,7,8], and has been
explained theoretically in the limit of a linear dispersion rela-
tion by using the TL model [4]. In addition, the model with
spin 1/2 demonstrates so-called spin-charge fractionalization
[9,10]. In real experiments, charge fractionalization is usually
disguised by the interaction with edge electrode contacts,
nevertheless, it can be detected by some indirect signs in non-
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DC experiments [11]. It has indeed been detected in quantum
Hall samples [12], quantum wires [8], and other systems.

The main TL model approximation is that the generic spec-
trum is replaced with a linear one. In the longest samples that
have been created so far, the time during which a quasiparticle
travels along the whole length is slight. So the nonlinearity
of the dispersion relation cannot manifest itself within this
time and, therefore, the TL model properly describes charge
fractionalization in the situation where t → 0. Nevertheless,
if it takes much longer for a quasiparticle to travel from one
end to another, the nonlinearity becomes crucial. At large
timescales, the simple behavior in Fig. 1 gets much more
complicated.

Excellent progress in the theory beyond the linear TL ap-
proximation has been achieved (see, for review, Ref. [13]),
and the theory of composite fermions should be particularly
highlighted [14,15]. In this paper, we apply these methods to
consider analytically the problem of charge fractionalization
unfolding over long timescales. Specifically, we will be calcu-
lating the density evolution of a system with a single injected
electron when the propagation time can be significantly larger
than usually considered. The nonlinearity of the spectrum that
has to be taken into account results in remarkable density
behavior.

This problem has been numerically studied for the discrete
t-J model [16]—further fractionalization was found and the
authors focused on spin-charge fractionalization. Here we
investigate a system of spinless fermions with a quadratic
dispersion relation, obtain analytical results, and describe the
fractions characteristics. We especially focus on the mecha-
nisms that are behind the complicated spreading the fractions
demonstrate. We too find further fractionalization of the initial
density hump: in the case of a nonlinear spectrum, it splits into
three humps instead of two. It is consistent with Ref. [16],
except for, naturally, there is no spin fraction here.

We also find that the shapes of the density humps change
dramatically as time goes by. It is a stark contrast with the
case of a linear spectrum, where the large-scaled density
humps simply shift without changing their shapes (Fig. 1).
The obvious phenomena that occurs is the simple spreading
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FIG. 1. The density behavior of the right-moving ρ+(x, t ) and
left-moving ρ−(x, t ) particles when the dispersion relation is linear
[4]. The total density ρ(x, t ) = ρ+(x, t ) + ρ−(x, t ) is at the bottom.
The dashed line shows the initial density distribution, the solid lines
are the density when time t is large enough for the opposite mov-
ing humps to split. The humps simply shift without changing their
shapes.

behavior a free-particle wave packet demonstrates (Fig. 2), so,
throughout the paper, we refer to this mechanism of spreading
as free. This familiar behavior is only pure in the absence
of interaction. Otherwise, unusual mechanisms of spreading
discussed below take place and, the stronger the interaction
becomes, the more significant these mechanisms are.

To make the picture bigger, we must mention another
problem that is also under active consideration. The general
problem is to examine what happens to classical hydrody-
namic effects, notably to the shockwave effect [15,17–20],
in the quantum world. The problem of a shockwave involves
analyzing density hump evolution, as ours does, and we would
like to emphasize the difference, which is significant. The
shockwave effect is closely associated with a gradient catas-
trophe regime: if denser parts of a liquid move faster (or
slower) than others, an initially smooth front develops large
gradients [19]. This requirement is fulfilled in many circum-
stances, however, it is irrelevant if the time of the gradient
catastrophe tgrad is much larger than the characteristic times
of the effects one is interested in. Since the initial density

FIG. 2. The density behavior of an injected particle in the
absence of interaction. The particle momentum distribution is con-
centrated around kF + qc. The dashed line shows the initial density
distribution, the solid lines show the distribution when the dispersion
relation is linear (the group velocity is vF ) and nonlinear (the group
velocity is vF + qc

m and the packet spreads out). The latter is the
well-known solution of a single quantum particle problem.

deviation from equilibrium is slight in our case, tgrad is, indeed,
large; we will give an estimate of it at the end of the paper.

The paper is organized as follows. In the next section,
Sec. II, the problem is formulated in detail, and the main
mathematical expression to be calculated is introduced. In
Sec. III, the problem is considered from a semiclassical point
of view, and it is shown that this simple approach, neverthe-
less, properly describes many features of the system. Even a
simpler semiclassical system that demonstrates the fraction-
alization effect is discussed in Appendix B 4. Our quantum
calculations are based on the theory of composite fermions,
which is briefly discussed in Sec. IV. In Sec. V, the methods
of the theory are applied to the case of a linear dispersion
relation, where the solution was obtained earlier by using
other methods. Section VI is the main one in the paper: There,
we derive formulas for the density deviation from equilibrium
in the case of a nonlinear spectrum; they are compared to
known ones in some particular cases; the main characteristics
of the density humps (amplitudes, velocities) are obtained
from these formulas. We especially focus on the complicated
mechanisms of changing the hump shapes.

II. PROBLEM STATEMENT

Let us consider a one-dimensional liquid at zero tem-
perature that has a short-ranged interaction of a radius a0.
We inject a particle into the liquid and observe the density
evolution. All deviations of the density are presumed to be
large-scaled, i.e., their characteristic size d is larger than both
the Fermi wavelength d � λF and the interaction radius d �
a0. That allows us to assume that the interaction is pointlike
[21] and a0 ≈ λF ≈ α, where α is the parameter of the effec-
tive bandwidth [10,22].

It should be emphasized again that the TL dispersion rela-
tion is linear, so the velocity of all the excitations is the same
(in the limit of a large-scaled density deviation). It means
that the density humps simply shift at the constant velocity
(Fig. 1). This approximation is sufficient for small times, but
as we are interested in what happens beyond that timeframe,
the nonlinearity has to be taken into account.

Denoting the ground state of the one-dimensional liquid by
|0〉, we model the state of the liquid with an injected particle
|e〉 by using the relation

|e〉 =
∫

dx φ(x) �+(x) |0〉 = 1√
L

∞∑
k=−∞

φk a+
k |0〉, (1)

where φk = ∫
dx φ(x)e−ixk and the operators �+(x) and a+

k
are the usual fermionic creation ones.

The function φk is generally not a real wave function of
the injected particle but resembles it, which will be explained
below. We presume that this wave function is concentrated
around kF + qc as shown in Fig. 3. Its width is determined by
the initial density hump characteristic size d in real space x.
The momentum distribution of the zero temperature ground
state Pq = 〈0|a+

kF +qakF +q|0〉 is shown explicitly because it and
its derivative will appear in the quantum calculations.

The goal of this paper is to examine in detail the density
evolution within a relatively long timeframe after an electron
injection. The evolution can be expressed in terms of the
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FIG. 3. The momentum distribution of the zero-temperature
ground state Pq = 〈0|a+

kF +qakF +q|0〉 and of the injected particle |φk |2.
We call the latter narrow when 1

d 	 qc. Apart from that, we always
presume 1

d 	 kF .

density operator ρ(x, t ) as

〈e|ρ(x, t )|e〉 = 〈ρ(x, t )〉e

=
∫∫

φ(x2)φ∗(x1)

×〈0|�(x1)ρ(x, t )�+(x2)|0〉dx1dx2. (2)

Hereinafter, the expected value 〈e|...|e〉 is denoted by 〈...〉e,
but 〈0|...|0〉 = 〈...〉. It can be seen that the problem mathemat-
ically comes down to calculating the average:

〈�(x1)ρ(x, t )�+(x2)〉. (3)

III. THE SEMICLASSICAL CONSIDERATION IN THE
CASE OF A NONLINEAR DISPERSION RELATION

Before proceeding to the quantum case, let us first con-
sider the problem in a semiclassical formulation. Because of
the exchange interaction, this semiclassical model cannot be
considered to be the classical limit of the rigorous quantum
model (more on that at the end of the section). However
crude, it illustrates the main features the quantum consider-
ation gives and helps tell which features are classical and
which are quantum. Note that this semiclassical model is
not the simplest one that demonstrates the fractionalization
effect. Further simplifications can be made as we show in
Appendix B 4.

Our semiclassical consideration is based on the classical
Vlasov equation with omitted collision integral

∂ f (x, p, t )

∂t
+ p

m

∂ f (x, p, t )

∂x
+ F (x, t )

∂ f (x, p, t )

∂ p
= 0, (4)

where f (x, p, t ) is a classical distribution function,∫
f (x, p, t ) d p

2π
dx = NT , and NT is the total number of

the particles in the system. As usual, units are chosen so
that h̄ = 1. Then F (x, t ) = − ∂

∂x

∫
dx′g(x − x′)ρ (cl)(x′, t ) is

the averaged force acting on the liquid from liquid’s density
inhomogeneity, where g(x) is an interaction and ρ (cl)(x, t ) is
the density deviation, where the superscript cl emphasizes
that the approach is classical and ρ (cl)(x, t ) is a function, not
an operator.

We presume that f (x, p, t ) = f0(p) + δ f (x, p, t ), where
δ f (x, p, t ) is a small deviation and f0(p)—the equilibrium
distribution function. The density deviation then can be
written as ρ (cl)(x, t ) = ∫ d p

2π
δ f (x, p, t ). For mathematical con-

venience’s sake, choose the initial state in the form

δ fq(p, 0) =
∫

δ f (x, p, 0)e−iqxdx

= 2π h̄σp

π
[
σ 2

p + (p − p0)2
] ρ (cl)

q (0), (5)

where ρ (cl)
q (0) is the initial density deviation that is assumed

known; p0 > mvF is the average momentum of the particle
injected into the system, and σp is its spread in the momentum,
which is presumed to be narrow for simplicity, σp 	 p0 − pF .
The characteristic size d of the initial density distribution in
real space ρ (cl)(x, 0) is assumed to be much larger than the
radius a0 of the interaction g(x), i.e., d � a0.

Choosing the proper function f0(p) is essential to gain
insight into what happens in the quantum case. From a mathe-
matical point of view, any uniform function f0(p) is a solution
of Eq. (4). That is because of omitting the collision integral
that is responsible for relaxation toward equilibrium. So one
could think that it has to be the function shown in Fig. 3. But
the problem is that the Eq. (4) does not discriminate between
equilibrium functions created by thermal processes at finite
temperature like the Fermi-Dirac distribution and the func-
tions created by interaction at zero temperature. The quantum
consideration below will show, however, that the difference is
significant. That is why, to avoid false predictions, we use the
simple Fermi-Dirac function at zero temperature:

f0(p) = θ (pF − |p|). (6)

We do not describe the method of finding the solution
here; it is demonstrated in detail in Ref. [23]. The first-order
approximation is

ρ (cl)
q (t ) =

(
g0vF

2π ṽF (̃vF − v0)

)
e−iq̃vF t ρ (cl)

q (0)

+
(

g0vF

2π ṽF (̃vF + v0)

)
e+iq̃vF t ρ (cl)

q (0)

+
(

v2
0 − v2

F

v2
0 − ṽ2

F

)
e−iqv0t−σp

|q|
m t ρ (cl)

q (0), (7)

where ṽF = vF
√

1 + g0/(πvF ).
Let us, for example, take the initial density devia-

tion in the form ρ (cl)(x, 0) = d/(x2 + d2); in this case,
ρ (cl)

q (0) = πe−|q|d and

ρ (cl)(x, t ) = 1

2π

∫
dq ρ (cl)

q (t )eiqx

=
(

g0vF

2π ṽF (̃vF − v0)

)
d

(x − ṽFt )2 + d2

+
(

g0vF

2π ṽF (̃vF + v0)

)
d

(x + ṽFt )2 + d2

+
(

v2
0 − v2

F

v2
0 − ṽ2

F

) (
d + σp

m t
)

(x − v0t )2 + (
d + σp

m t
)2 . (8)
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TABLE I. The hump characteristics obtained by an analysis of
the semiclassical solution Eq. (7).

Hump Velocity Spreading

Fast v0 Free spreadinga

Right-moving slow ṽF No spreadingb

Left-moving slow −ṽF No spreadingb

aThe simple spreading behavior a free-particle wave packet demon-
strates (Fig. 2). In classical mechanics, the momentum uncertainty
is due to the classical momentum spread σp, while in quantum me-
chanics it is determined by the Heisenberg uncertainty principle and
equals 1/d .
bThe slow humps do not spread if the temperature is zero and the
interaction is pointlike, otherwise they spread linearly in time.

Note that the solution Eq. (8) properties discussed below
do not depend on the initial hump shape ρ (cl)(x, 0) and can
be obtained directly from Eq. (7). In x space, for instance,
the first two terms in Eq. (8) are the initial humps moving at
±ṽF without changing their shapes. But it is a simple feature
of the Fourier transform that if a function ζq(t ) has the form
ζq(t ) = ζq(0)e−iq̃vF t , then

ζ (x, t ) = 1

2π

∫
dq ζq(0)eiq(x−ṽF t ) = ζ (x − ṽFt, 0). (9)

If one takes the limit m → ∞, then the spectrum becomes
linear and all the velocities become equal v0 → vF . The third
term in Eq. (8) vanishes and, surprisingly enough, the solu-
tion Eq. (8) exactly coincides with the well-known [4,5,7,8]
quantum solution of the TL model, i.e., there are two humps
moving at ±ṽF with the amplitudes (1 ± K )/2, where K =
1/

√
1 + g0/(πvF ) (see Fig. 1). Note that the quantumlike

distribution function is the only quantum feature needed to
describe charge fractionalization. So, one can see that for a
linear dispersion relation, classical mechanics is enough to
describe the effect.

Although in the case of a linear spectrum, the semiclassical
and the quantum considerations give the same result, when
the spectrum is nonlinear, the results differ but share some
common features. In the semiclassical case Eq. (8), when the
spectrum is nonlinear, the first thing to notice is the splitting
of the right-moving hump into two humps moving at ṽF and
v0. The latter corresponds to the injected particle (we call it a
fast hump) and the former to the plasmons of the liquid. The
left-moving hump does not split and propagates at −ṽF . It can
also be seen that the slow humps, again, do not change their
shapes. They would, however, spread linearly in time if the
temperature was not zero, but we consider the situation of zero
temperature only. The fast hump spreads as xfast(t ) ∼ σp

m t
when time t is large. It is the usual free spreading typical
in quantum mechanics (Fig. 2), except the momentum uncer-
tainty is due to the classical momentum spread σp. It should
be stressed again that this behavior does not depend on the
initial density distribution and can be inferred directly from
the general solution Eq. (7). Table I summarizes all the results.

Note that in the semiclassical solution, it is possible that
the fast hump velocity is lesser than the one of the slow hump
v0 < ṽF . iIn the quantum case it is not possible, so the name
fast is suitable.

The goal of this section was to illustrate the fractionaliza-
tion effect from a simple semiclassical point of view. As we
will see, the picture is fairly similar in the quantum case: there
will still be three humps and the free spreading mechanism
still take place but most of the hump characteristics such as
velocity will change, the amplitudes may even change their
sign, and new mechanisms of quantum spreading will occur.

That is why it should be emphasized that this crude model
is not the classical limit of the rigorous quantum model
considered below. We do not discuss the complicated [24]
classical limit problem here, but would like to stress the im-
portance of the exchange interaction for our system, which
does not allow one to take the classical limit at all [25]. Since
the temperature is zero, the exchange interaction may play a
significant role in macroscopic systems leading, for example,
to so-called degeneracy pressure [26]. It is known that in some
cases (in the mean-field regime), the exchange interaction can
be neglected and then the quantum dynamic equation can be
reduced to the Vlasov equation (4) by taking the classical
thermodynamic limit NT → ∞ [27,28]. In the general case,
systems in coherent states can be reduced to classical ones
by taking h̄ → 0 [29]. However, the evolution of a general
fermionic system in a general state cannot be described by
any classical equations because of the exchange interaction
[25]. This is the case for our process: the exchange interaction
does play a significant role and the quantum system equations
cannot be reduced to Eq. (4) or any classical ones. Interest-
ingly, the exchange interaction cannot manifest itself within a
small time interval and the semiclassical model can describe
the linear TL model as shown above.

Nevertheless, our semiclassical consideration can be fur-
ther refined by means of the Wigner equation without the
collision integral that takes the exchange interaction into ac-
count to some extent (see, for example, Ref. [30]). In this case,
the velocities become closer to that of the quantum case and
the amplitudes have the right sign.

IV. THE THEORY OF COMPOSITE FERMIONS

If the dispersion relation is nonlinear, it is rather difficult to
calculate Eq. (3), since ρ(x, t ) depends on time in a compli-
cated sort of way. To find this dependence, use the theory of
composite fermions [14,15,21].

As usual, it is presumed that �(x) = �+(x)eikF x +
�−(x)e−ikF x; �η(x) = 1√

L

∑
q1

cη,q1 eiq1x; the subscripts η =
±1 denote right or left directions, respectively, and cη,q1 =
aη·kF +q1 . The Hamiltonian of the nonlinear system up to the
first order of 1

m reads [15]

Ĥ =
∫

{πvF [ρ2
+(x) + ρ2

−(x)] + 2π2

3m
[ρ3

+(x) + ρ3
−(x)]}dx

+ 1

2

∫
g(x1 − x2)ρ(x1)ρ(x2)dx1dx2, (10)

where ρ(x) = ρ+(x) + ρ−(x).
Using the Bogolubov transformation

ρη,q = cosh (θq )̃ρη,q − sinh(θq )̃ρ−η,q, (11)

where tanh 2θq = gq

gq+2πvF
, then the Hamiltonian is recast

into bosonic representation with cubic terms of ρ̃η,q. This
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Hamiltonian, in turn, can be rewritten in terms of quasipar-
ticles called composite fermions [14]. The density of these
quasiparticles is ρ̃η,q and, using Eq. (11), the other particle
operators can be defined. Although the relation Eq. (11) be-
tween the densities is simple, the one between field operators
is much more complicated,

�η(x) = �̃η(x) F̃η(x), (12)

F̃+
η (x) = exp

[
− 2πη

L

∑
q =0

eiqx

q
(wqρ̃η,q + uqρ̃−η,q )

]
, (13)

where wq = cosh θq − 1; uq = sinh θq.
The refermionized Hamiltonian Eq. (10) has the form

Ĥ =
∑
η,q1

(
η̃vF q1 + q2

1

2m∗

)
c̃+
η,q1

c̃η,q1 + ..., (14)

where ṽF = vF
√

1 + g0/(πvF ), m∗ = m/(cosh3 θ0 −
sinh3 θ0), and the symbol ... means three terms that describe
an interaction between the quasiparticles: a term quadratic
in ρ̃η,q, a cubic one, and a term that describes a pointlike
interaction between quasiparticles on opposite branches
[13–15,21]. The main advantage of the Hamiltonian Eq. (14)
is that perturbation theory for the quasiparticles is regular
[14]. For our goals, however, it is enough to use the free part
only, so the terms denoted by the symbol ... are omitted. The
quadratic and cubic terms can be neglected if the interaction
is pointlike [15,21]; the pointlike interaction between the
opposite branches can be neglected since the characteristic
size of the density deviation is large d � λF [13]. In the end,
the Hamiltonian reduces to a free one:

Ĥ =
∑
η,q1

(
η̃vF q1 + q2

1

2m∗

)
c̃+
η,q1

c̃η,q1 . (15)

Now when the Hamiltonian of the composite fermions is
free, the time dependence of the composite fermion density
operator is easy to find:

ρ̃η,q(t ) =
∑

q1

c̃+
η,q1−q c̃η,q1 e−i(ηq ṽF − q2

2m∗ + q1 q
m∗ )t . (16)

There is a simple relation between the total densities for a
pointlike interaction (θq ≈ θ0), which follows from Eq. (11),

ρ+,q + ρ−,q = (cosh θ0 − sinh θ0)(̃ρ+,q + ρ̃−,q )

=
√

K (̃ρ+,q + ρ̃−,q ), (17)

where the parameter K is usually defined as

K = 1/

√
1 + g0

πvF

and

sinh (θ0)=1

2

(
1√
K

−
√

K

)
,

cosh (θ0) = 1

2

(
1√
K

+
√

K

)
.

V. THE QUANTUM CONSIDERATION IN THE CASE
OF A LINEAR DISPERSION RELATION

The theory described allows one to easily find the density
evolution when the dispersion relation is linear, i.e., within
TL approximations. This calculation is so straightforward
that an analysis of Eq. (3) is not needed. If m∗ → ∞, then
Eq. (16) takes the form ρ̃η,q(t ) = ∑

q1
c̃+
η,q1−q c̃η,q1 e−iη q ṽF t =

ρ̃η,qe−iη q ṽF t , so using Eq. (11) we obtain

ρ+,q(t ) = cosh2(θ0)ρ+,qe−iq ṽF t − sinh2(θ0)ρ+,qeiq ṽF t

+ (...), (18a)

ρ−,q(t ) = cosh(θ0) sinh(θ0)(−ρ+,qe−iq ṽF t + ρ+,qeiq ṽF t )

+ (...), (18b)

where the interaction is presumed to be pointlike, so θq = θ0,
and the brackets (...) denote the terms depending on ρ−,q only.
When averaged, these terms vanish. Make the transformation
to the coordinate representation and assume that the initial
densities are known: 〈ρ+(x, 0)〉e = ρ

(0)
+ (x) and 〈ρ−(x, 0)〉e =

0. The averaged density reads

〈ρ+(x, t )〉e = cosh2(θ0)ρ (0)
+ (x − ṽFt )

− sinh2(θ0)ρ (0)
+ (x + ṽFt ), (19a)

〈ρ−(x, t )〉e = cosh(θ0) sinh(θ0)(−ρ
(0)
+ (x − ṽFt )

+ ρ
(0)
+ (x + ṽFt )), (19b)

where 〈...〉e means averaging over a state with an arbitrary
initial density distribution ρ

(0)
+ (x).

We have again obtained the known [4,5,7,8] solution: two
density humps with the amplitudes (1 ± K )/2 that shift with-
out changing their shapes (Fig. 1).

What is most notable about this case is that the excitations
of right- and left-moving particles are always comoving, and
ones cannot exist without the others if there is any interaction.
To form a relatively stable packet, the sum of them is required.
That is the reason why the initial density hump involving only
the right-moving particles then splits. And that is why the
ratios of the amplitudes are the same:

cosh2(θ0)

cosh(θ0) sinh(θ0)
= cosh(θ0) sinh(θ0)

sinh2(θ0)
.

The second feature of the propagation is the absence of
spreading. As mentioned before, for a linear spectrum and a
large-scaled density deviation, all the excitation velocities are
equal to ±ṽF .

VI. THE QUANTUM CONSIDERATION IN THE CASE
OF A NONLINEAR DISPERSION RELATION

For a nonlinear dispersion relation as well as for a linear
one, the density humps of opposite chirality always comove.
However, the shape evolution turns out to be significantly
more complicated, as can be seen from the rough semiclas-
sical approximation Eq. (7). The quantum result is even more
profound. We will see that most of the hump’s characteristics
(velocity, amplitudes, etc.) are different from that in the semi-
classical case but, more importantly, both slow and fast humps
experience an additional spreading that has a quantum nature.
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A. The role of the exclusion principle

By injecting a particle into the liquid, it is not possible to
create an arbitrary initial density hump with an arbitrary local
velocity distribution. It is because of the exclusion principle,
and the relation Eq. (2) reflects this fact as we will see from
the quantum calculations below. But before doing the calcula-
tions, let us first discuss the physical meaning of it. As usual,
we assume that the particle is injected relatively close to the
right Fermi point.

Note that the exclusion principle was not so important in
the case of a linear spectrum, since the density behavior did
not depend on momentum distribution as we saw in Eqs. (19);
however, the reasoning below is applicable to the linear spec-
trum as well.

Consider the relation Eq. (2). If |0〉 is a state of no particles,
then the one particle in |e〉 has a wave function φ(x) with
the characteristic size d , in this case, the density is always
|φ(x)|2. In momentum space, the wave function is written as
φk = ∫

φ(x)e−ikxdx, its width is 1
d , the center of which (Fig. 3)

is denoted as kF + qc; in the case of no particles, however, kF

is just an arbitrary constant.
Next, if |0〉 is the ground state of the free Fermi gas that has

zero temperature, then an electron cannot be injected under
the Fermi level |k| < kF because of the exclusion principle.
So φk is generally cut, and, consequently, the density deviation
may differ from |φ(x)|2.

Finally, if |0〉 is a ground state of the interacting liquid,
the state with the momentum kF + q is unoccupied with a
probability of 1 − Pq, where Pq = 〈0|a+

kF +qakF +q|0〉 is the mo-
mentum distribution of the ground state. It means that an
electron can only be partially (with a certain probability) in-
jected into it. So the shape of the density deviation is different
from |φ(x)|2 as well. Nonetheless, if 1

d 	 qc (as shown in
Fig. 3), the variation of q around qc in Pq can be neglected
and 〈e|ρ(x, 0)|e〉 = (1 − Pqc ) |φ(x)|2.

B. The main approximations

Along the lines of the TL model, we neglect the fact that
the particles deep below the Fermi point can jump between
states. Next, it can be shown that the commutator [̃ρη,q, ρ̃η′,q′ ]
acts upon deep particles only (if |q|, |q′| 	 kF ). It permits
one to replace the real commutators of the densities with
their averages [6]. When the dispersion relation is linear, the
commutator depending on time [̃ρη,q(t ), ρ̃η′,q′ ] can also be
replaced with its average with the same great accuracy,

because the density time dependence is simple: ρ̃η,q(t ) =
ρ̃η,q e−iηq ṽF t . Here we make the assumption that this approxi-
mation is valid for a nonlinear dispersion

[̃ρη,q(t ), ρ̃η′,q′] ≈ 〈[̃ρη,q(t ), ρ̃η′,q′ ]〉, (20)

where the averaged commutator is easy to calculate by using
Eq. (16):

〈[̃ρη,q(t ), ρ̃η′,q′ ]〉 = L

2π
δη,η′δq,−q′ηqe−iηq̃vF t

×2m∗

q2t
sin

(
q2t

2m∗

)
. (21)

If m∗ → ∞, this relation, as it should, reduces to the well-
known [6] one of the case of a linear spectrum (up to the
discussed time factor).

The approximation Eq. (20) is not necessary to make, but
in this case, the calculations and the final formulas become
much more complicated, making the effects we discuss here
less clear. Anyway, it can be shown that the formulas coincide
with each other when d � λF , d � a0 and w0 	 1, so one
may consider these relations as the conditions of applicability
of Eq. (20). Physically, this approximation means that the
injected particle can create only a weak, slow varying field
and, thus, slightly change the state of the liquid.

C. The calculation of the density evolution 〈ρq(t )〉e in the
general quantum case

Let us now obtain the main relations all the following are
based on. By virtue of the relation Eq. (11), the calculation
of Eq. (3) comes down to the calculation of an object that
contains the composite fermions density ρ̃η,q(t ), where the
time dependence Eq. (16) is known:

〈�η(x1 )̃ρη′,q(t )�+
η (x2)〉 = 〈�̃η(x1) F̃η(x1 )̃ρη′,q(t )

×F̃+
η (x2) �̃+

η (x2)〉. (22)

Throughout the calculations, we will mainly follow the
method introduced in Ref. [14] by Rozhkov. The main idea is
that when q · η > 0, the operators ρ̃η,q act like annihilation op-
erators ρ̃η,q|0〉 = 0 and when q · η < 0 like creation operators
〈0|ρ̃η,q = 0. The normal ordering, thereby, simplifies the con-
struction Eq. (22). This calculation implies using the density
commutators, and that is where the approximation Eq. (20) is
used. The calculation details are given in Appendix A and the
result is

〈̃ρ+,q(t )〉e = i

2π

∫ (
α2

α2 + y2

)u2
0 ϕ∗

q1
ϕq1+qe−iq1y

2π
(
y − qt

m∗ + iα
)e−it (q̃vF + q2

2m∗ )dydq1 + w0

∫
(1 − Pq1 )

ϕ∗
q1

ϕq1+q

2π
e−it q̃vF

2m∗

q2t
sin

(
q2t

2m∗

)
dq1,

(23a)

〈̃ρ−,q(t )〉e = u0

∫
(1 − Pq1 )

ϕ∗
q1

ϕq1+q

2π
× eit q̃vF

2m∗

q2t
sin

(
q2t

2m∗

)
dq1 (23b)

for q > 0. The formula of q < 0 can be yielded by using 〈ρη,q(t )〉∗e = 〈ρη,−q(t )〉e. Here ϕq = φkF +q, which is more convenient.
A complicated factor in Eqs. (23) is denoted as 1 − Pq, where Pq is, in fact, the distribution function

Pq = 〈0|a+
kF +qakF +q|0〉 = 〈0|c+

q cq|0〉 = 1 − i

2π

∫ (
α2

α2 + y2

)u2
0 e−iqy

y + iα
dy, (24)
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which can be easily obtained from the well-known Green’s
function [6,31].

We will see below that the two terms in Eq. (23a) describe
the fast- and slow-moving humps, respectively, and after ap-
plying Eq. (11), one obtains three humps, which is consistent
with the numerical result in Ref. [16], except for, naturally,
there is no spin fraction.

D. The density evolution 〈ρq(t )〉e in known particular cases

Let us now show that the result Eqs. (23) includes the
formulas for different particular cases.

For t = 0, the relations Eqs. (23) and (17) give the total
initial density deviation of electrons,

〈ρq(0)〉e =
∫

(1 − Pq1 )
ϕ∗

q1
ϕq1+q

2π
dq1

≈ (1 − Pqc )ρ0
q , (25)

where the approximation qc � 1/d is made, so that Pq ≈ Pqc .
The physical meaning of Eq. (25) was discussed in Sec. VI B.

If t → 0 or m → ∞, the relations Eqs. (23) naturally
reduce to the ones of the linear spectrum. For simplicity, sup-
pose that qc � 1

d . In the end, one obtains the relation Eqs. (19)
up to the irrelevant factor 1 − Pqc .

Next, it is shown in Appendix B 3 that in the absence
of interaction u0 = 0; w0 = 0, the relation Eq. (23a) can be
reduced to the single free-particle solution. The only differ-
ence here is that the exclusion principle remains in effect
and the distribution function Pq (Fig. 3) transforms into a
step function. The density ρ(x, t ) dependence on x of a free
particle is shown in Fig. 2.

E. The density evolution 〈ρq(t )〉e for intermediate times

The result Eqs. (23) is quite general but in some cases it
will be more convenient for us to use its simplified version;
specifically, when time t is presumed to be much lesser than
the free spreading time t 	 md2, but still beyond that of the
TL theory. We also presume that the momentum distribution
is narrow, qc � 1

d (Fig. 3). The relations Eqs. (23), then,
immensely simplify to

〈̃ρ+,q(t )〉e = i

2π

∫ (
α2

α2 + y2

)u2
0 ρ0

q e−iqcy

y − qt
m∗ + iα

e−it q̃vF dy

+ (1 − Pqc )ρ0
q e−it q̃vF w0, (26a)

〈̃ρ−,q(t )〉e = (1 − Pqc )ρ0
q eit q̃vF u0, (26b)

where free initial density is defined as ρ0(x) = |φ(x)|2 (see
Sec. VI B), so

ρ0
q =

∫
ϕ∗

q1
ϕq1+q

2π
dq1. (27)

F. The slow humps

Let us now discuss different characteristics of the humps;
they can be analytically obtained from Eqs. (23), as shown
in Appendix B. The slow humps move at ±ṽF (Appendix
B 2) like they do in the semiclassical case Eq. (7). The time
factor 2m∗

q2t sin( q2t
2m∗ ) means that the slow humps demonstrate

a spreading ∝ √
t (Appendix B 3) although we saw in the

semiclassical case Eq. (7) that they do not spread at zero
temperature. This effect is, thereby, quantum. For small times,
when the humps have not spread yet, their amplitudes can
be defined (Appendix B 1). The one of the left-moving slow
hump remains the same [4,5,7,8] as in the case of a lin-
ear spectrum (1 − K )/2; for the right-moving slow hump, it
becomes (1 + K )/2 − √

K . Since the integral of the density
does not depend on time, the amplitudes of the humps are
proportional to 1/

√
t when time is large enough. All the

characteristic are summed up in Table II.
The slow humps differ in nature from the fast one, since

the former are plasmons of the liquid created at the beginning
by the injected particle field. Indeed, any nonuniform density
deviation creates an effective field that acts upon the liquid.
Next it is easy to show that these plasmons can as well be
excited by some external field U (x, t ) (see, for a semiclassical
example, Appendix B 4). The problem of the density evolution
in the case of external field comes down to calculating the
structure factor and has been solved earlier in a quite general
case [13]. To reduce the solution obtained there to our case,
one should take q → 0 and a0 → 0 that gives the same time
factor 2m∗

q2t sin( q2t
2m∗ ) as in Eqs. (23).

To better understand the physics of this quantum spreading,
let us discuss the scattering from the weak field the injected
particle creates. In the classical one-dimensional case, the
particles of the liquid just pass through this field and in the
end have the same momentum as they did before. In quantum
mechanics, the scattering from a weak barrier takes place and
it changes the dynamics considerably. Similarly, the field that
starts acting upon the liquid at some moment leads to different
further dynamics in classical and quantum cases.

One more thing to notice here is that if the temperature was
not zero, the slow humps would have an additional mechanism
of spreading that would be linear in time, which is consistent
with what we mentioned in the semiclassical consideration.

G. The fast hump

The fast hump moves at ṽ0 = ṽF + qc/m∗ (Appendix B 2),
unlike what it does in the semiclassical limit Eq. (7), where the
velocity is v0 = vF + qc/m. For small times, the amplitude of
the fast hump is

√
K . Note that when the dispersion relation

is linear or time is small enough, the right-moving slow hump
and the fast hump comove and add up to the usual hump with
the known [4,5,7,8] amplitude (1 + K )/2. As for the slow
humps, these characteristic are given in Table II.

There are, broadly speaking, two mechanisms of changing
the fast-hump shape. The first mechanism is the discussed
behavior a free-particle wave packet demonstrates (Fig. 2), the
fast-moving semiclassical hump Eq. (7) spreads in this way as
well. This free mechanism does not require any interaction,
but in the presence of interaction, another mechanism occurs
(Fig. 4) and, the stronger the interaction becomes, the more
significant this effect is. We call it the spreading due to inter-
action and it has a quantum nature, so it did not take place in
the semiclassical case, Eq. (7).

To consider the spreading due to interaction only, sup-
pose the momentum distribution narrow qc � 1

d , time t small
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TABLE II. The hump characteristics obtained by analysis of the quantum solution Eqs. (23). The amplitudes are yielded in the limit of
small time. As usual, they are scaled so that their sum always equals 1.

Hump Velocity Amplitude Spreading

Fast ṽF + qc/m∗ √
K Free spreadinga ∝ t and spreadingb due to int. ∝ t

Right-moving slow ṽF
1+K

2 − √
K Spreadingc ∝ √

t
Left-moving slow −ṽF

1−K
2 Spreadingc ∝ √

t

aThe simple spreading behavior a free-particle wave packet demonstrates (Fig. 2).
bThe quantum spreading due to interaction that relates to the mutual quantum scattering between the injected particle and the particles of the
liquid.
cThe spreading proportional to ∝ √

t associated with quantum scattering of the particles of the liquid from the field the injected particle
creates.

enough t 	 md2 and the interaction strong enough, then the
free spreading of the fast hump vanishes as well as the mech-
anism of spreading for the slow humps, since its characteristic
time is the same md2. The relations Eqs. (23) simplify to
Eqs. (26).

The density distribution in real x space is shown in Fig. 4
for a typical case. The most noticeable feature here is the long
tail of the fast hump. Its asymptotic behavior in real space x
can be obtained from Eqs. (26) and is

〈̃ρ+(x, t )〉e → 2πu2
0

x − ṽ0t
(28)

in the limit of large times t � md
qc

(but still t 	 md2) and d 	
x − ṽ0t 	 vFt .

The upper restriction x − ṽ0t 	 vFt demonstrates a lim-
itation of the theory. The tail Eq. (28) has, of course,
to be integrable and, formally, the theory gives the factor
exp(− 4π (x−ṽ0t )

vF t ) in Eq. (28). But it is just an adverse conse-
quence of introducing the effective bandwidth parameter α

[10,22] for a pointlike interaction. If the interaction radius is
finite, such issues do not occur [10].

The formula Eq. (28) shows that not only does the fast
hump widen, but may also change its shape completely. In the
general case, it demonstrates the free spreading xfree(t ) ∼

FIG. 4. The density distributions when the interaction is strong
enough; obtained by calculating Eqs. (26); time is not too large,
t 	 md2, and the single-particle momentum distribution is narrow
qc � 1

d .

1
md t . Additionally, the long tail Eq. (28) occurs because of
the spreading due to interaction. The amplitude of the tail
is proportional to the interaction strength square u2

0, and the
amplitude of the core part decreases with the interaction, so
the density integral is constant.

As for the physical meaning of the spreading due to inter-
action, we cannot provide any clear picture, just state that it
relates to the mutual quantum scattering between the injected
particle and the particles of the liquid, and that no detail
here can be dropped or simplified. Anyway, this mechanism
has a simple description in terms of the composite fermions,
since they are free Eq. (15) and, thus, spread only in the
free way. Injecting an electron is equivalent to excitation of
a complicated superposition of the composite fermions but
their density is proportional to the density of the electrons
Eq. (17), so all we need to do is analyze the nonequilibrium
momentum distribution of the composite fermions. It can be
shown that it is concentrated around q = 0 and q = qc, which
correspond to the slow and fast humps. In addition to the
initial momentum distribution of the injected electron, the part
concentrated around q = qc has long tails that are proportional
to the derivative of the equilibrium distribution function of
the electrons P′

qc−q (Appendix B 3). These tails result in the
addition spreading of the composite fermions density, which
is the spreading due to interaction.

H. The limits of applicability

We have completely neglected the interaction between the
composite fermions that may change the dynamics at large
time scales. Specifically, we considered neither cubic nor
quadratic terms in Eq. (14), however, for both of these terms,
the smaller the radius of the interaction is, the larger the time
of applicability of the free approximation can be. Also, we did
not consider the pointlike interaction between quasiparticles
on opposite branches but the time of applicability increases
with the characteristic size d of the density deviation.

The next restriction is that the mentioned gradient catas-
trophe time has to be much larger than the characteristic time
of spreading tgrad � md2. In our process, this time can be
estimated as tgrad =

√
md3/(g0N ) (Appendix B 5) and gives

a macroscopic time if the number of the injected particles
N = 1 and the other parameters are typical. This estimate
differs from that of the case in Ref. [18], where a system has
time to relax to a local equilibrium tgrad = md

ρ
, where ρ is

the amplitude of the density deviation.
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VII. CONCLUSIONS

We have analytically considered the density evolution of
a spinless Fermi liquid with a nonlinear dispersion relation
into which one particle is injected. The interaction is short-
ranged and the temperature is zero; the electron momentum
distribution function is concentrated near the right Fermi
point. In the case of a linear dispersion relation, this problem
was studied long ago by means of TL model [4]. However,
this linear model is valid only for small times and, to de-
scribe the fractionalization effect over longer timescales, it
is necessary to take the nonlinearity of the spectrum into
account.

The current state of the theory has allowed us to examine
the problem analytically in the case of a nonlinear spectrum.
It is known that for a linear spectrum, two opposite moving
humps of the density occur, and they simply move at ±ṽF

without changing their shapes. In the nonlinear liquid, there
are generally three humps of the density and they change their
shapes in a complicated manner.

Two of the humps are the plasmons of the liquid moving at
about +ṽF or −ṽF , we call them slow humps. They are excited
by the initial hump field at the beginning of the movement.
In the limit of small time, the amplitudes of the left- and

right-moving ones are (1 − K )/2 and (1 + K )/2 − √
K re-

spectively. The slow humps spread proportionally to
√

t . This
spreading has quantum nature and relates to the scattering
from a weak barrier.

Another hump is fast and moves at ṽF + qc/m∗ to the
right; it corresponds to the injected particle. Its amplitude is√

K for small times. Apart from the simple free mechanism,
the fast hump has a quantum mechanism of spreading due
to interaction, which is associated with the mutual quantum
scattering between the injected particle and the particles of
the liquid.

We also showed that the fractionalization into three humps
as well as the free mechanism of spreading can be illustrated
by the classical Vlasov equation, where the equilibrium dis-
tribution function is quantumlike. Moreover, in the case of
a linear dispersion relation, this solution is the same as the
well-known TL model solution.
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APPENDIX A: THE DETAILED DERIVATION OF THE DENSITY EVOLUTION 〈ρq(t )〉e

Normal ordering means shifting the density operators to the right or left part, correspondingly. It allows one to recast Eq. (22)
to the form depending on free operators only:

〈�+(x1 )̃ρ+,q(t )�+
+ (x2)〉 =

(
α2

α2 + (x1 − x2)2

)sinh2(θ0 )

〈�̃+(x1 )̃ρ+,q(t )�̃+
+ (x2)〉

+w0

(
α2

α2 + (x1 − x2)2

)sinh2(θ0 )

〈�̃+(x1)�̃+
+ (x2)〉e−iq̃vF t 2m∗

q2t
sin

(
q2t

2m∗

)
[θ (q)e−iqx2 + θ (−q)e−iqx1 ],

〈�+(x1 )̃ρ−,q(t )�+
+ (x2)〉 =

(
α2

α2 + (x1 − x2)2

)sinh2(θ0 )

〈�̃+(x1 )̃ρ−,q(t )�̃+
+ (x2)〉

+ u0

(
α2

α2 + (x1 − x2)2

)sinh2(θ0 )

〈�̃+(x1)�̃+
+ (x2)〉eiq̃vF t 2m∗

q2t
sin

(
q2t

2m∗

)
[θ (q)e−iqx2 + θ (−q)e−iqx1 ].

After using Wick’s theorem, one obtains∫
eiq2x2−iq1x1〈�+(x1 )̃ρ+,q(t )�+

+ (x2)〉dx1dx2

=
∫ (

α2

α2 + y2

)sinh2(θ0 )
δ(q2 − q1 − q)(

y − qt
m∗ + iα

) ie−iq̃vF t
(
θ (q)ei(−q1y− q2t

2m∗ ) + θ (−q)ei(−q2y+ q2t
2m∗ )

)
dy

+
∫ (

α2

α2 + y2

)sinh2(θ0 )
δ(q2 − q1 − q)

(y + iα)
iw0e−iq̃vF t 2m∗

q2t
sin

(
q2t

2m∗

)
[θ (q)e−iq1y + θ (−q)e−iq2y]dy∫

eiq2x2−iq1x1〈�+(x1 )̃ρ−,q(t )�+
+ (x2)〉dx1dx2

=
∫ (

α2

α2 + y2

)sinh2(θ0 )
δ(q2 − q1 − q)

(y + iα)
iu0eiq̃vF t 2m∗

q2t
sin

(
q2t

2m∗

)
[θ (q)e−iq1y + θ (−q)e−iq2y]dy,

where y = x1 − x2.
To yield the density behavior 〈ρη,q(t )〉e of a real particle that has the momentum distribution φq, the relation∫

eiq2x2−iq1x1〈�η(x1)ρη′,q(t )�+
η (x2)〉 should be multiplied by

φ∗
q1

φq2

(2π )2 and then integrated over q1 and q2, which leads to Eqs. (23).
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APPENDIX B: THE DERIVATION OF THE HUMP
CHARACTERISTICS

1. The amplitudes

Let us now obtain the amplitudes of the humps in the limit
of small time t →0, so we will use Eqs. (26). As one can see
from Eq. (26b), for the left-moving slow hump, its amplitude
in terms of composite fermions is u0, where the irrelevant fac-
tor 1 − Pqc is dropped. For the electrons, one can derive from
Eq. (17) that the density amplitude is u0

√
K = 1

2 (1/
√

K −√
K )

√
K = (1 − K )/2. Similarly, for the right-moving slow

hump, the composite fermions density amplitude is w0, and it
equals 1 for the fast one, which gives us the results shown in
Table II.

2. The velocities

One does not have to consider the spreading when deriving
the hump velocities, so it is easier to use Eqs. (26) for this
purpose. For the left-moving slow hump, the only factor that
depends on q (apart from ρ0

q ) is eit q̃vF , so, like in the case of
Eq. (9), one obtains

〈̃ρ(x, t )〉 = (1 − Pqc ) u0

∫
dq

2π
ρ0

q eiq(x+t ṽF )

= (1 − Pqc ) u0ρ̃
0(x + t ṽF ), (B1)

and the velocity is −ṽF . Similarly, for the right-moving slow
hump it is ṽF .

It is easy to find the fast hump velocity if the interaction
is zero, since the calculation of Eq. (26a) is reduced to an
integration around a small circle about the pole y = qt

m − iα;
the free velocity is qc/m + vF . In the presence of interaction,
in addition to the integration around the pole, one has to
calculate an integral along the boundary between the sheets of
the Riemann surface described by the factor of ( α2

α2+y2 )u2
0 ; how-

ever, if the interaction is weak and t is large enough(t � md
qc

,

but still t 	 md2), the latter integral can be neglected, and the
first term in Eq. (26a) approximately equals

〈̃
ρ

( f s)
+,q (t )

〉
e = i

2π

∫ (
α2

α2 + y2

)u2
0 ρ0

q e−iqcy

y − qt
m∗ + iα

e−it q̃vF dy

≈
(

α2

α2 + ( qt
m∗ − iα

)2

)u2
0

ρ0
q e−iqc ( qt

m∗ −iα)e−it q̃vF .

(B2)

Now the factor (...)u2
0 reflects the spreading due to interaction

and, as for the slow humps, it is easy to find the veloc-
ity, which is ṽF + qc/m∗. These results are summed up in
Table II.

3. The spreading

Let us start with the slow humps spreading, which can
be obtained from Eqs. (23). It is described by the factor
2m∗
q2t sin( q2t

2m∗ ) and when t is large enough (t � md2), the simple
estimate for the characteristic width q in momentum space
(q)2t

m∗ ≈ 1 gives the result x(t ) ∼ 1/q ≈ √
t/m∗.

Let us now show that the result Eq. (23a) includes the
free spreading mechanism; more specifically, that it is the
only mechanism in the absence of interaction u0 = 0 and
w0 = 0. To avoid the exclusion principle influence discussed
in Sec. VI B, assume that ϕ(q1) = 0 if q1 < 0; then, after
integration around the pole y = qt

m − iα and taking the inverse
Fourier transform, the relation Eq. (23a) reduces to

〈ρ (free)
+ (x, t )〉e = 1

(2π )2

∫
ϕ∗(q1)ϕ(q1 + q)e−iq1( qt

m∗ −iα)

× e−it (qvF + q2

2m∗ )+iqxdq1dq, (B3)

where we must assume that αq1 	 1. Next, the free-particle
wave function is

φ(x, t ) = 1

2π

∫
dq1ϕ(q1)ei[(q1+kF )x− t (q1+kF )2

2m∗ ],

and the density 〈ρ(x, t )〉e = φ(x, t )φ∗(x, t ) after variable re-
placement becomes Eq. (B3).

The last mechanism to consider is spreading due to interac-
tion. Let us show that it is equivalent to spreading that is linear
on time with an effective distribution that depends on the
derivative P′

q of the equilibrium distribution. The equilibrium
distribution function Pq is written in the form Eq. (24). Its
derivative is

P′
q = 1

2π

∫ (
α2

α2 + y2

)u2
0 ye−iqy

y + iα
dy

≈ 1

2π

∫ (
α2

α2 + y2

)u2
0

e−iqydy, (B4)

where we used qα 	 1, so only large y contributes to the in-
tegral. Rewrite the relation Eq. (26a) to see that it contains the
derivative Eq. (B4). Starting with the mentioned simplification
Eq. (B2), it can also be rewritten as

〈̃
ρ

( f s)
+,q (t )

〉
e ≈

(
α2

α2 + ( qt
m∗ − iα

)2

)u2
0

ρ0
q e−iqc ( qt

m∗ −iα)e−it q̃vF =
∫

dy

(
α2

α2 + y2

)u2
0

ρ0
q e−iqcy−it q̃vF δ

(
y − qt

m∗ + iα

)

=
∫

dy

(
α2

α2 + y2

)u2
0

ρ0
q e−iqcy−it q̃vF

∫
dw

2π
eiw(y− qt

m∗ +iα) =
∫

dw P′
qc−wρ0

q eiw(− qt
m∗ )−it q̃vF , (B5)

which shows the role of the ground-state momentum distribution function in the spreading due to interaction.
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FIG. 5. The semiclassical problem of an external field applied to
a free Fermi gas. In (a), it is shown the field that has just appeared
and is moving to the right, so ta 	 d/v f . The field causes shifting
of all particles to the left in momentum space. Effectively, just the
particles close to the Fermi points change their states. It is shown
in the embedded picture of momentum distribution at some point
x0. Ultimately, there is an excess of left-moving particles and a lack
of right-moving ones. They form the left- and right-moving slow
humps, respectively (b), when the time is large enough, and all three
humps split from each other tb > d/(v0 − v f ). There is also a density
deviation comoving with the field; it corresponds to the fast hump.
One can see that, for instance, the left-moving density deviation
consists of the particles with the velocity ≈ v f .

4. A simple example of fractionalization

To understand the fractionalization effect better, let us
consider the simplest system we managed to find that demon-
strates it. It is a classical system of free particles that has a step
momentum distribution:

f0(p) = θ (pF − |p|). (B6)

Instead of injecting a particle into the system, apply an
external field U (x, t ) that appears at t = 0 and moves to the
right at constant velocity v0, so

U (x, t ) = θ (t )U0(x − v0t ). (B7)

Note that the injected particle from the semiclassical consider-
ation (Sec. III) creates a similar field, so the systems are fairly
close. This model is classical, so the particles of the liquid
just pass through the field Eq. (B7) and in the end have the
same momentum as they did before the field started acting
upon them. However, this is not the case for the particles that
were within the field when it appeared—the field effect is
uncompensated for them, and these particles form the slow
humps eventually. The solution of Eq. (4) and explanations
are shown in Fig. 5.

The situation is more profound in the case of interacting
liquid and an injected particle; for instance, the right-moving

FIG. 6. It is shown the difference in averaged velocities of dif-
ferent areas of the right-moving slow density hump. The averaged
velocity v(xc, tb) of the top of the hump is slightly lower than its foot
v(xd , tb) → v f , which leads to the gradient catastrophe when time is
large enough t ≈ tgrad ≈ d/v, where v = |v(xc, tb) − v(xd , tb)|.

particles always comove with the left-moving ones (Fig. 1),
but the main reason for fractionalization is the same.

5. The critical time of the gradient catastrophe

Let us provide a simple lower estimate of the gradient
catastrophe time based on classical mechanics, since this ef-
fect is classical. Generally speaking, the gradient catastrophe
occurs if one region of a density deviation moves faster than
another, and an initially smooth front develops large gradients.
Consequently, if v is the maximum velocity deviation, then
the critical formation time can be estimated as tgrad ≈ d/v,
where d is the density deviation characteristic size.

To find v in our particular case, inject N particles into
a liquid—they create some moving field that acts upon the
particles of the liquid and causes both the velocity change
and the density deviation. For our estimate, we threat this
field as external and assume that it does not change its
shape and amplitude. This means neglecting the backward
action upon the injected particles as well as their mutual
repulse and spreading. We also neglect the interaction be-
tween the particles of the liquid. All these effects, however,
can only weaken the field, which makes v smaller and
tgrad larger, but we would just like to estimate the time from
below.

The problem, thus, comes down to the simple one consid-
ered in Appendix B 4: a classical system of free particles that
has step momentum distribution with external field Eq. (B7)
acting upon it. The solution is shown in Fig. 5 but some further
clarification has to be made. The averaged velocities (local
velocities) of different parts of the slow humps are not equal,
since the field has acted on the constituent particles unequally
(Fig. 6), the field affects the right-moving particles the most,
so we focus on them.

Let us move to the coordinate system, where the exter-
nal field is stationary. Once the field appears, some particles
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immediately come to be on a potential energy hump, it is they
that form the slow humps in the end (Appendix B 4). In this
coordinate system, the velocity of the right-moving particles is
v f − v0, which is presumed small. The particles increase their
velocities while leaving the potential hump and do not change
them afterward. Note that in laboratory coordinate system,
leaving the potential hump means that the slow humps and
the field split.

The particles at the foot of the hump slightly change
their initial velocity v f − v0. The particles at the top of the
hump, obviously, achieve the maximum velocity −vb, which
is negative in this coordinate system. It can be found from
the energy conservation law mv2

b/2 = U , where we ne-
glect v f − v0. The amplitude of the potential energy hump
is U ≈ g0N/d . So v = |v(xc, tb) − v(xd , tb)| ≈ vb and
tgrad ≈ d/v ≈

√
md3/(g0N ).
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