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We describe a controllable and unbiased strong-coupling diagrammatic Monte Carlo technique that is ap-
plicable to a wide range of fermionic systems and spin models. Unlike previous strong coupling methods that
generally rely on the Grassmannian Hubbard-Stratonovich transformation, our construction is based on Wick’s
theorem and a recursive procedure to group contractions into effective connected vertices that are nonperturbative
in all local physics and can be calculated exactly. The resulting expansion is described by simple diagrammatic
rules that make it suitable for systematic treatment via stochastic sampling. Benchmarks against numerical linked
cluster expansion display excellent agreement.
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I. INTRODUCTION

Strongly correlated electrons and frustrated spin models
are among the most challenging problems in condensed matter
theory due to a combination of the sign problem, lack of a
natural small parameter, and the computational complexity of
series expansions.

Coincidentally, this topic is at the same time absolutely
central to understanding the electronic structure of solids, and
a wide range of numerical techniques have accordingly been
devised to overcome these obstacles. A well-known exam-
ple of this is DMFT [1], with extensions based on diagram
techniques [2,3], cluster generalizations [4–6], and related
methods [7,8]. Other examples include DMRG [9], wave
function methods [10,11], and auxiliary-field quantum Monte
Carlo [12–15].

Several of the aforementioned techniques are capable of
producing states that seem highly relevant for cuprate su-
perconductivity, including antiferromagnetism, stripes, pseu-
dogap physics, and d-wave superconductivity. Nevertheless,
it has been known for some time that notable discrepan-
cies may appear both when comparing different techniques
and when altering details of the implementation (such as
discretization) of a given method [16]. This sensitivity that
correlated-fermion models display to numerical protocol ap-
pears to have a physical origin and be rooted in competition
between different states situated very closely in terms of free
energy [16,17].

More recently, systematic comparison of leading numerical
protocols, applied to the Hubbard model, has demonstrated
some of the very significant progress that has eventually been
made in this field [18]. In a substantial part of the parameter
space, key observables can now be obtained from completely
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different techniques with a high degree of consensus. The
region that remains the most problematic corresponds to small
but finite doping and intermediate to large on-site repulsion.
Incidentally, this is also a scenario that is highly relevant for
cuprate superconductors.

The sensitivity that correlated systems display to perturba-
tions suggests that a reliable solution to this problem requires
numerical methods that can provide extremely accurate results
in the strongly correlated regime, and this has proven to be a
significant challenge. The unbiased methods—that are free of
systematic errors beyond some form of truncation—are typi-
cally based on a series expansion of some form. However, for
strongly correlated systems, conventional perturbation theory
is not viable, as the interaction is far too strong. Instead, an
alternative expansion parameter has to be found.

The perhaps most well-known formalism aimed at the
correlated regime is strong-coupling expansion, where the
nonlocal processes are treated as a perturbation while the
unperturbed system corresponds to the atomic limit [19,20].
Thus far, however, most of these works include only modest
expansion orders, and they are primarily conducted at half-
filling, or for actual spin systems [21], while the case of
nonzero doping is technically far more challenging [22].

Numerical linked cluster expansion (NLCE) [23] has been
applied successfully to both spin models [24] and itinerant
fermionic theories like the t–J [25] and Hubbard models. For
the latter, results exist at infinite on-site repulsion [26], and
for finite interactions up to U/t = 16 [27], which is far into
the strongly correlated regime. This method is based on exact
diagonalization of small clusters and allows convergence to
macroscopic results to be observed with increasing cluster
size.

More recently, the extremely correlated fermi liquid theory
was developed specifically for Gutzwiller-projected models
[28]. This framework allows a form of diagram technique to
be employed on restricted Hilbert spaces [29], and currently
published benchmarks, while limited to low expansion orders,
appear encouraging [30].

Finally, a number of adaptions of diagrammatic Monte
Carlo methods [31] have been made to address the strongly
correlated regime. Universal fermionization [32] has opened
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a new analytical path where restrictions on the Hilbert space
are encoded via non-Hermitian terms in the Hamiltonian, thus
allowing Gutzwiller-projected systems to be treated within
the framework of Wick’s theorem. Via second fermionization,
doubly occupied sites can then be reintroduced in the form
of hardcore bosons, which are subsequently fermionized, thus
allowing generic correlated systems to be addressed within
this framework [32]. This technique suffered from poor con-
vergence properties at its inception except at large doping, but
this problem has since been overcome through spin-charge
transformation, which essentially results in a representation
involving fermionic carriers that propagate on a spin back-
ground [33]. Diagrammatically, these models can be treated
as a spin system using Popov-Fedotov fermionization [34],
where the spins are mapped onto fermions with an imaginary
chemical potential. Results from spin-charge transformation
diagrammatic Monte Carlo (SCT-DMC) indicate that the ex-
pansion converges quite rapidly, but that the complexity of the
resulting theory limits the expansion order, making it hard to
reach low temperatures [35].

Currently, several new analytical techniques are being
evaluated to overcome the inherent problem of a large expan-
sion parameter: By extracting the analytical structure of the
self-energy from weak-coupling data, it becomes possible to
reconstruct it in the nonperturbative regime [36]. Homotopic
action operates on the principle of altering the starting point
of the expansion, as well as the expansion parameter, such
that the point of interest falls within the convergence radius
[37]. Taking advantage of determinant sampling techniques
[38,39], these methods give access to fairly strong interac-
tions, up to U/t = 7 in the Hubbard model. While impressive,
this is still short of U/t ∼ 12, which is relevant for the high-
temperature superconductors.

Thus, despite the significant recent advances, much of the
parameter space remains challenging to unbiased techniques,
and it is the case of strong correlation that remains the most
elusive. In this paper, we will discuss how diagrammatic tech-
niques can be adapted to the strongly correlated regime by an
alternative series expansion that is based on a nonperturbative
treatment of all the interactions, and expansion only in the
nonlocal part of the Hamiltonian. This series expansion is
computationally economical, possesses simple diagrammatic
rules, and is free of any large expansion parameter, even for
arbitrarily strong interactions.

II. MODEL AND DIAGRAMMATIC EXPANSION

As a starting point for the derivation of the new diagram-
matic description, let us assume a Hamiltonian of a form that
encapsulates the processes generally found in models of two-
component lattice fermions and fermionized spin systems:

H0 = μ̂, H1 = Û + Ĵ + t̂ . (1)

Here, μ̂ is assumed to be local and bilinear, i.e., a chem-
ical potential. The term Û is a contact interaction that is
local and nonbilinear. The operator Ĵ describes a nonlocal
interaction that is mediated by a boson, like superexchange
or the nonlocal part of a Coulomb interaction term. Fi-

nally, t̂ is nonlocal and fermionic, generally corresponding to
hopping.

In principle, we can treat the model (1) through expansion
in H1,

〈ô〉 = Z−1
∑

n

(−1)n

n!

∫ β

0
dτiTr{e−βH0 T [H1(τ1)...H1(τn)ô]},

(2)

and due to bilinearity of H0, the contractions can be evaluated
using standard Matsubara formalism based on Wick’s theorem
[40]. Furthermore, we note that the unperturbed theory is also
local, so that all contractions of operators that are separated in
space vanish a priori, i.e.,

G0
αβ (i − j, τ ) = G0

αβ (τ )δi, j . (3)

At this stage, we aim to exploit the combination of bilinearity
and locality of the unperturbed theory. Thus, we first recall
that Wick’s theorem allows us to obtain an answer from the
series of connected diagrams by cancellation of disconnected
contributions and the partition function [40]. Secondly, we
notice, in accordance with (3), that all calculations are carried
out in the atomic limit, where the full expectation value of
an operator is generally trivial to obtain, and does not even
require the evaluation of diagrams. In particular, this allows
the evaluation of certain classes of terms up to infinite order,
thus paving the way for nonperturbative treatment of contact
interactions, for example.

When using these properties in conjunction, we do how-
ever face a fundamental problem in that the full contraction
of a set of operators contains a mix of connected and dis-
connected topologies, which runs very much contrary to the
concept of diagrammatic expansions. This complication is
further bolstered because connectivity of a set of contractions
is a nonlocal property. The principal solution to this problem
is to divide the set of contractions on a lattice site i into groups
according to their connectivity, which effectively gives rise to
a set of connected vertices that form the basis for an alternative
diagrammatic technique.

III. STRONG-COUPLING VERTICES

Let us start by dividing the second part of the Hamiltonian
(1) into local and intersite terms according to

H1 = Û + HI , Û =
∑

i

Ûi, (4)

where i refers to lattice sites. Then, we proceed to introduce
the following shorthand notation for the normalized time-
ordered integration, which appears in expansions of the form
(2):

�n = (−1)n

n!

∫ β

0
dτ1...dτnTτ , (5)

with the generalization

�n�m = (−1)n+m

n!m!

∫ β

0
dτ1...dτn+mTτ . (6)
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We can now write the expansion in H1 as∑
n

�nHn
1 =

∑
n,m

�n�mÛ nHm
I (7)

=
∑

m,n1,n2...

�m�n1 ...Û
n1
1 Û n2

2 ...Hm
I , (8)

where the subscript of U refers to lattice site and the string
of operators Hn

1 are assumed to depend on τ1...τn. Next, we
introduce Ōi to denote the set of operators on the site i that are
attributable to nonlocal terms in the Hamiltonian (i.e., HI ) or
the measured operator ô. Expressing the expansion (2) in this
new language, we find

∑
n

�n
∑

x̄

〈∏
i

∑
ni

e−βH0,i�niU ni
i Ōi

〉
c

. (9)

Here, n is the expansion order of the intersite terms HI ,
while x̄ denotes their spatial degrees of freedom, which are
summed over accordingly. The subscript c implies connected
topologies.

Since the bare Greens function is local (3), it follows
that all contractions in (9) may be carried out locally also.
However, the problem that remains is that we are interested in
topologies that are connected, and this very property is non-
local. To overcome this difficulty, we cannot simply compute
the local trace; instead, we have to sort all local contractions
according to their connectivity. To do so, we begin by break-
ing out the local terms on the site i that are not connected to
any of the operators Ōi:∑

n

〈
�nU n

i Ōi
〉
μ̂

=
∑
n,m

〈
�nU n

i Ōi
〉
μ̂,e

〈�mU m〉μ̂. (10)

Here, the subscript 〈〉μ,e denotes the subset of contractions
such that all diagrammatic elements are connected to at least
one external line (i.e., an operator that is attributable to a
nonlocal process). Discarding the disconnected topologies of
(10) we may write (9) as

∑
n

�n
∑

x̄

[∏
i

∑
ni

〈
�niU ni

i Ōi
〉
μ,e

]
c

, (11)

where subscript c once again implies the subset of these
topologies that are connected. However, this is a nonlocal
property that depends both on the contractions on a site and
the intersite processes that connect different sites. To make
further progress, we have to sort the local contractions accord-
ing to the connectivity of the set of operators Ōi.

Thus, we define the connected set of contractions denoted
by 〈...〉μ,c as the subset of 〈...〉μ,e for which all elements of Ōi

are connected by local contractions. As an example, we may
consider the case when Ō has only two elements:∑

n

〈
�nU n

i Ô1Ô2
〉
μ̂,e =

∑
n

〈
�nU n

i Ô1Ô2
〉
μ̂,c

+
∑
n,m

〈
�nU n

i Ô1
〉
μ̂,c

〈
�mU m

i Ô2
〉
μ̂,c. (12)

Thus, we have sorted the contractions into two parts: Those
where O1, O2 are connected, which defines the connected
vertex, and those where they are disconnected. In principle,

we can generalize this procedure to the case of an arbitrary
number of elements of Ō by constructing a recursion that is
reminiscent of determinant diagrammatic techniques [38,39]:
For a given set of operators Ō, we take as our starting point a
set of local contractions of the form∑

n

〈�nU nŌ〉μ̂,e. (13)

The set of connected topologies may be obtained by subtract-
ing those that are disconnected. To list these, we begin by
sorting them according to which of the operators Ō are con-
nected to O1, and denote this set by A. The set of contractions
for which the operators in A are connected to each other, but
not to the remaining operators (Ô \ A) is by definition given
by

ξŌ,A

∑
n,m

〈�nU nA〉μ̂,c〈�mU mŌ \ A〉μ̂,e, (14)

where ξŌ,A is a fermionic sign given by

ξŌ,A = (−1)c, (15)

where c is the number of fermionic commutations associated
with the reordering

Tτ Ō → Tτ A × Tτ (Ō \ A). (16)

In the next stage, we have to sum over all possible choices
of A. Here, we have two restrictions: Firstly, since A is the
set of operators connected to O1 it follows that A must con-
tain O1. Secondly, since we are only interested in the set
of disconnected topologies, it follows that Ō \ A must be a
nonempty set—otherwise, all operators are connected. Thus,
A is a proper subset of Ō. Summing over all choices of A, we
obtain ∑

A�Ō,Ô1∈A

ξŌ,A

∑
n,m

〈�nU nA〉μ̂,c〈�mU mŌ \ A〉μ̂,e. (17)

Using (17) we can then construct a recursive relation for the
connected vertex on the form

V [Ō] =
∑

n

〈
�nU n

i Ō
〉
μ̂,c

=
∑

n

〈
�nU n

i Ō
〉
μ̂,e

−
∑

A�Ō,Ô1∈A

ξŌ,A

×
∑
n,m

〈�nU nA〉μ̂,c〈�mU mŌ \ A〉μ̂,e, (18)

such that it can be directly computed from terms of the form
(13). We then recognize that (10) can be written∑

n

〈�nU nŌ〉μ̂ =
∑

n

〈�nU nŌ〉μ̂,eTre−β(μ̂+Û ), (19)

implying ∑
n

〈
�nU n

i Ō
〉
μ̂,e = 〈Ō〉μ̂+Û . (20)

Here it should be pointed out that the summation (20) has a fi-
nite convergence radius with respect to U due to poles situated
away from the real axis for the Hubbard model. A conse-
quence of this divergence is that the bold series possesses

195147-3



JOHAN CARLSTRÖM PHYSICAL REVIEW B 103, 195147 (2021)

multiple branches and may converge to unphysical results
[41,42]. Nonanalytic behavior of the series expansion persists
beyond the atomic limit and manifests in singularities in the
irreducible vertex functions at strong interactions [43,44]. The
divergence when summing over strong contact interactions,
as exemplified by (20), has been regarded as a major obsta-
cle to diagrammatic treatment of strongly correlated systems.
However, in the atomic limit, this divergence can be lifted
by a transformation known as second fermionization [32],
resulting in a convergent sum for all finite model parameters.
A proof of this is given in Appendix.

Noting that the summation (20) may be rendered conver-
gent and equated to an expectation value taken in the atomic
limit, it can be computed exactly, and so the construction
of the connected vertex (18) is an exactly solvable problem.
This allows the contact interactions to be treated completely
nonperturbatively.

We also note that any set of the form (13) may be decom-
posed into a sum of sets of connected vertices:∑

n

〈�nU nŌ〉μ̂,e = V [Ō] +
∑

Ō′
ξŌ,Ō′V [Ō′]V [Ō \ Ō′]... (21)

Inserting this into (11) we find that all topologies in the
expansion may be expressed in terms of connected vertices.
Likewise, any set of connected vertices may be expressed in
terms of contractions of the form (11). Therefore, we can
expand directly in connected topologies of connected vertices:

∑
N

[∑
α1

Vα1 (x1, τ̄1)...
∑
αN

VαN (xN , τ̄N )η(α1...αN )

]
c

, (22)

where η is the normalisation. In the next section, we will
establish rules for the expansion (22).

IV. DIAGRAMMATIC RULES

To obtain connected topologies, the connected vertices
defined by the recursion (18) have to be connected via ex-
ternal lines that originate in the nonlocal operators, i.e., t̂, Ĵ .
However, a complication that remains is determining the sign
of a contribution, which generally requires the construction
of diagrammatic rules that govern the expansion. Since this
derivation is essentially based on Wick’s theorem, we first
have to make contact with Feynman type diagrammatics in
order to derive the corresponding principles for the strong-
coupling expansion.

In standard literature, the expansion is typically conducted
in conventional two-body interactions, and the overall sign of
a diagram is generally expressed in terms of the number of
fermionic loops [40]. Proceeding to more general models that
for example include projected hopping, the resulting Feyn-
man rules must generally be obtained from Wick’s theorem.
A convenient way of doing this is to introduce a reference
contraction: Specifically, we understand that we can write a
fermionic theory on a form where creation and annihilation
operators form natural pairs, whose contraction corresponds
to an infinitesimally backward propagating fermion. Thus, for
an expression of the form

Uni↑ni↓ Jniσ niσ ′ tn j↑c†
j↓ck↓nk↑... niσ = c†

iσ ciσ , (23)

(a) (b)

Gαβ Jt U(c)

FIG. 1. Reference contractions. Given a set of operators, we can
define a reference contraction (a) where all operators are contracted
with its natural partner. While generally not a connected topology,
the fermionic sign of the reference is positive. Swapping a set of
operators being contracted gives rise to a fermionic sign, and so the
diagram (b) possesses a negative prefactor. This could in principle
also be achieved by changing the connectivity of the t lines, which is
thus an equivalent operation.

every operator is contracted with its natural partner to form
a diagrammatic element as shown in Fig. 1(a), for which
the fermionic sign is positive. Swapping the operators being
contracted [Fig. 1(b)] gives rise to a fermionic sign, and so all
diagram topologies can be characterized by whether they are
related to the reference by an even or an odd number of such
swaps.

Adapting this idea to the strong-coupling expansion, the
first natural stage is to define a reference contraction for the
connected vertex. While there are several equivalent ways
of doing this, the simplest choice is arguably to consider a
vertex where all external lines are temporally nonoverlapping,
nonintersecting, and in the case of fermionic lines, also for-
ward propagating in time [see Fig. 2(a)]. To confirm that this
diagram indeed carries a positive fermionic sign, we simply
note that from the underlying operators, we can form the
Feynman reference contractions of the type Fig. 1(a) without
commuting any of them. Thus, if we, for example, assume that
the external lines in Fig. 2(a) are fermionic, then we obtain an
operator product of the form

∼c†
αcαc†

βcβc†
γ cγ . (24)

Summing up all contractions of (24) in accordance with the
underlying Feynman series (including disconnected topolo-
gies), this is equivalent to the expectation value of the
operators, corresponding to a positive fermionic sign.

As illustrated in Fig. 2, we require two basic updates to
generate arbitrary diagrams from a set of reference contrac-
tions, namely swapping the connectivity of two external lines,
and commuting operators within a vertex. For fermionic lines
or operators, particle statistics suggest that these operations
are odd, and this is indeed what transpires from the un-
derlying Feynman type diagrammatics: Firstly, swapping the
connectivity of two fermionic lines is equivalent to changing
the connectivity of an odd number of fermionic propagators,
which according to Wick’s theorem, is an odd operation.
As an example, we may consider the operation (a → b) in
Fig. 1, which could alternatively be realized by a swap of
the fermionic operators or the t lines. Secondly, the process
(c → d) in Fig. 2 can be achieved with either a swap or a
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τ

τ

τ
(a)

(b)

(c)

(e) (f)

(d)

FIG. 2. Diagrammatic rules. The reference contraction of a con-
nected vertex (a) is obtained by taking the external lines to be
nonintersecting, have no time-overlap, and be forward-propagating
in the case of fermions. In our notation, the horizontal line corre-
sponds to imaginary time, and so forward propagation implies that
the external line is traveling from left to right. To generate arbitrary
diagram topologies from reference vertices, we require two basic
updates: Swapping the connectivity of two external lines, we can go
from (a) to (b), whilst commuting the operator order takes us from
(a) to (c). The diagrams (c) and (d) are related by alternatively a
swap or a commute operation. Swapping external lines also allows
us to connect different vertices, such as going from (e) to (f).

commute, implying that these operations have the same parity.
By the same logic, operations on bosonic external lines do not
give rise to a sign.

V. ANALYTIC STRUCTURE OF THE CONNECTED
VERTICES

Whilst the recursion (18) provides a principal definition of
the diagrammatic elements of the expansion, computing, and
also storing these objects in memory is only possible given an
efficient representation. In particular, for a vertex with N ex-
ternal lines, the naive description yields N − 1 imaginary-time
differences and equally many dimensions of the mathematical
object to be constructed and stored, so that the task quickly
becomes intractable.

The solution to this problem can be found by noting that
in the recursion (18), the vertex is expressed in expectation
values of the form (20), which are taken with respect to the
entire local part of the Hamiltonian, i.e., HL = μ̂ + Û . If
we express the nonlocal part HI in an operator basis which
possesses a trivial time-evolution with respect to HL, then the
time-dependence of the entire vertex becomes equally simple.
The specific representation, which allows this to be achieved,
and which notably also forms the starting point for derivation
of the t–J model [45], takes the form

c†
iσ = d†

iσ + hiσ̄ , d†
iσ = c†

iσ nσ̄ , hiσ̄ = c†
iσ (1 − niσ̄ ),

(25)
ciσ = diσ + h†

iσ̄ , diσ = ciσ nσ̄ , h†
iσ̄ = ciσ (1 − niσ̄ ),

where σ̄ = −σ , while the corresponding time-dependence
with respect to HL is given by

d†
iσ (τ ) = eτHL d†

iσ e−τHL = e(U−μ)τ d†
iσ

hiσ (τ ) = eτHL hiσ e−τHL = e−μτ hiσ

diσ (τ ) = eτHL diσ e−τHL = e−(U−μ)τ diσ

h†
iσ (τ ) = eτHL h†

iσ e−τHL = eμτ h†
iσ . (26)

Given a set of operators of the form (25) that are evalu-
ated with respect to HL, we can use (26) to divide it into
a scalar part, which consists of an analytic function, and an
operator part which only depends on the order of the terms,
according to

O1(τ1)...ON (τN ) = f ({τi})O1...ON . (27)

Since the recursion (18) implies that the connected vertex
can be expressed in terms of expectation values of the form
(20), it follows that we can break out the scalar part from this
expression, and thus obtain an object of the form

V [Ō({τi})] = f ({τi})V [O1O2...ON ], (28)

where f is an analytic function, while V [O1O2...ON ] is a
constant which only depends on the order of the operators,
and correspondingly may be stored as a single floating point.
Furthermore, we may note that using the basis (25) and ex-
ploiting the property (28), (20) essentially corresponds to
the expectation value of a projection operator, which can be
calculated exactly, and so the connected vertex is naturally
obtained to machine precision.

Finally, let us comment on the prelusive question about
the feasibility of storing the vertices in lookup tables: For the
Hubbard model, the basis (25) gives a total of 8 operators, im-
plying that the number of vertices scales as 8N where N is the
number of external lines or legs. At N = 10, this gives ∼109

vertices, which translates to approximately 8 GB at double
precision. For the Heisenberg model, which can be described
by only 4 operators, we can afford to store all vertices up
to N = 15 with the same resources. Generally, Gutzwiller-
projected systems will perform better than the Hubbard model
in this respect. Exploiting symmetries and the fact that most
vertices actually vanish due to particle and spin conservation,
it might be possible to store somewhat larger objects.

VI. OBSERVABLES

In diagrammatic Monte Carlo, the extraction of observ-
ables is typically achieved using a measuring line as illustrated
in Fig. 3 (see also [31]). One of the lines is then tagged and
treated as an entrance and exit of a particle from the system,
while the remains of the diagram are interpreted as a con-
tribution to the self energy or the polarization, depending on
the line type being considered. In the strong-coupling expan-
sion, the particle propagators are hidden inside the connected
vertices, and we only have access to the external lines that
originate in the nonlocal processes. Therefore, the Greens
function must be obtained from the polarization of the t line,

195147-5



JOHAN CARLSTRÖM PHYSICAL REVIEW B 103, 195147 (2021)

(a) (b)

FIG. 3. Extracting observables. The shaded line in (a) is tagged
as a measuring line. The resulting topology is then interpreted as if
this was an external line (b), and the remaining part of the diagram
gives a contribution to the polarization operator of the line type in
question.

as opposed to via Dysons equation:

G(ω, k) = �(ω, k) + �(ω, k)t (k)�(ω, k) + ...

⇒ G(ω, k) = 1

�−1(ω, k) − t (k)
, (29)

where � is the polarization operator of the t line. In spin
models, two-point correlations can be computed from the po-
larization of the J line, while access to further observables that
do not correspond to any specific external line can in principle,
be obtained by constructing appropriate operators solely for
the purpose of measuring. Using multiple measuring lines,
many-point correlators can be obtained.

VII. BENCHMARKS FOR THE HUBBARD MODEL

To evaluate the strong-coupling method outlined above,
we compare it to results obtained with two other state of
the art numerical protocols. For the Hubbard model, NLCE
can produce unbiased results in the strong-coupling regime,
including U = ∞ [26]. This technique is exact in the limit
of infinite cluster size, and correspondingly it is also con-
trollable, as convergence of the result with respect to cluster
size can be readily checked. A second method that is also
applicable in this case is SCT-DMC [35], which is based
on spin-charge transformation and a skeleton expansion in
the hopping integral t . This also has an additional benefit:
Since strong-coupling theory and SCT-DMC share the same
expansion parameter and rely on identical skeleton schemes,
they are comparable on an order by order basis.

When calculating the strong-coupling expansion, there are
two principal computational efforts: Firstly, the connected
vertices have to be obtained from the recursion (18). In prac-
tice, this set has to be truncated at some given vertex size. We
were able to obtain all vertices possessing up to 16 operators
attributable to nonlocal processes, which translates to as many
external lines or legs. Since the nonlocal terms ∼ti jc

†
i c j each

posses two operators, the largest vertex that can be constructed
from Nt nonlocal terms has 2Nt legs (see also Fig. 4). Sec-
ondly, the observables have to be extracted from an expansion
in t using the connected vertices. Here, truncation of the total
number of nonlocal terms Nt is also necessary. We used a
standard worm protocol [31] that is very similar to that of [35]
and were able to reach an order of up to Nt = 9. At this order,

FIG. 4. Strong-coupling diagrams. The set of topologies ob-
tained for the Hubbard model up to order Nt = 4 when boldifying
the t lines. Each dashed line represents a dressed hopping integral.
At an expansion order Nt , the largest vertex that can be constructed
has 2Nt external lines or legs. Using fermionization techniques and
conventional diagrammatics, the number of topologies at the same
expansion order can be estimated to ∼106.

it is in principle possible to create a connected vertex with as
many as 18 legs, and the fact that we had to truncate the vertex
size thus affects the last term. Summation was conducted for a
chemical potential of μ/t = 2 and an infinite on-site repulsion
U = ∞ in a temperature range 1/4 � T/t � 1.

A summary of the result is given in Fig. 5. This figure also
includes data from SCT-DMC, and we see that the results
obtained from these two methods are in good agreement (at
the same expansion order) in all cases where results can be
obtained to sufficiently high accuracy. What also transpires
from this comparison is the disparity in efficiency of the two
methods. We are now able to reach Nt = 9, while the SCT-
DMC results are limited Nt = 4 or less. This improvement is
very significant considering that the computational complex-
ity scales factorially with expansion order.

To examine the impact of truncating the vertex size, we
also compute the equation of state at an order of Nt = 7, and
vary the maximal vertex size in the span 6 � Nlegs � 14. At
T/t = 1 [Fig. 5(e)], the simulation data has an error bar of
3 × 10−5, and the correction when varying the vertex size
in the span Nlegs ∈ [10, 14] falls within this error bar. This
suggests that the truncation of vertex size gives an error that
does not exceed 3 × 10−5. At T/t = 1/4, we estimate that
truncation at 10 legs gives an error that does not exceed 10−3.
This implies that the truncation error present at Nt = 9 in
the results presented here is small compared to the statistical
noise. It also indicates that the current results are limited by
the expansion order rather than achievable vertex size.

Extracting estimates for the equation of state from strong-
coupling theory, we can compare these to NLCE (see Fig. 6).
For temperatures T/t � 1/2, we observe excellent agreement
that is within moderate error bars. At the lowest temperature,
the uncertainty increases, and the NLCE data begins to di-
verge, but the results still agree within error bars.

Further improvement to this method can be made by tai-
loring new sampling protocols specifically to this expansion.
Very significant gains can also be made by altering the struc-
ture of the series itself. Shifted action [46] or generalizations
thereof [37] can be employed to improve the rate of conver-
gence of the series, both with respect to overall expansion
order as well as vertex size.

VIII. SUMMARY AND OUTLOOK

In conclusion, we have derived a diagrammatic technique
based on connected strong-coupling vertices applicable to
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Series expansion for the carrier density. In (a)–(d), the filling factor is given as a function of expansion order, in the temperature
range 1/4 � T/t � 1 for μ/t = 2 and U/t = ∞. The blue bars correspond to strong-coupling theory (this paper), while the red bars were
obtained from conventional diagrammatic treatment of the spin-charge transformed Hubbard model [35]. Since both these methods rely on
a bold expansion in t we expect them to provide identical results, and this holds true within or almost within error bars. The shaded region
gives an estimate of the density at N = ∞, though a precise extrapolation to infinity is not possible at this stage. The vertex size is truncated
at 16 legs, which affects the last term when N = 9. In (e)–(f), we examine the effect of truncating the vertex size at T/t = 1 and T/t = 1/4,
respectively. We thus set the expansion order in t to N = 7, and observe how the predicted carrier density varies with the maximal number
of vertex legs. At T/t = 1, the corrections beyond 8 legs vanish within the error bars, which are of the order ∼3 × 10−5. At T/t = 1/4, the
corrections beyond 10 legs falls within the error bar of ∼10−3. Hence, at N = 9, the error due to truncation of the vertex size can be expected
to be vanishingly small compared to statistical noise.

lattice fermions and quantum spin models. This method al-
lows large, or even infinite, contact interactions to be treated
nonperturbatively, thus overcoming a longstanding obstacle
for diagrammatic methods in the strongly correlated regime.
For the Hubbard model, we can obtain self-consistent solu-
tions up to an expansion order of Nt = 9, displaying good
agreement with results from NLCE.

FIG. 6. Comparison to NLCE. The black bars give estimates
of the filling factor obtained from strong-coupling treatment for
μ/t = 2, U/t = ∞ (see also Fig. 5). The red dashed lines show
NLCE data at orders 10 and 11 respectively, which converge down
to T/t ≈ 1/

√
2 [26]. Beyond this point, comparison has to be made

with Wynn resummed NLCE (dashed blue and solid brown lines).
The results are in good agreement.

Experimental progress with strongly correlated systems—
using ultracold atomic gases—is now rapid. With quantum gas
microscopy [47,48], key features of the doped Mott insulator
can be observed at the single particle level, and at temper-
atures where spin-correlations become significant [49–53].
Strong coupling Diagrammatic Monte Carlo can extract virtu-
ally exact correlators at low temperatures that can be directly
compared to these experiments.
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APPENDIX: SUMMATION OVER CONTACT
INTERACTIONS

The summation over all contractions on the site i such
that all diagrammatic elements are connected to at least one
external line, is given by Eq. (20), i.e.,

∑
n

〈
�nU n

i Ō
〉
μ̂,e = 〈Ō〉μ̂+Û . (A1)
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We begin by noting that the set of operators Ō may be ex-
pressed in the operator basis (25) as follows:

Ō =
∑

α

Ōα, 〈Ō〉μ̂+Û =
∑

α

〈Ōα〉μ̂+Û , (A2)

where Ōα is a set of operators of the form (25). For a finite set
Ō, we furthermore note that the range of α is also finite. Using
(26) we obtain

〈Ōα〉μ̂+Û = Tre−(Û+μ̂)Oα,1(τ1)...Oα,N (τN )

= f ({τi})Tre−(Û+μ̂)Oα,1...Oα,N , (A3)

where f ({τi}) gives the time dependence in accordance with
(28), and H is expressed in units of temperature. For the
Hubbard model, (A3) is analytic on the real axis, but not in
the entire complex plane due to zeros of the partition function
that occur for complex values of U , and so the convergence
radius is finite when expanding in contact interactions.

To solve this problem, we use second fermionization to
construct a dual representation, which is free of a large ex-
pansion parameter, and thus possesses a convergent series
regardless of model parameters. A detailed discussion of
fermionization techniques is given in [32], but we will here
recapitulate the central ideas of this approach: Essentially,
the goal is to remove the doublons from the trace, and then
reintroduce them as hard core bosons that are subsequently
fermionized. The end results of this procedure is that the con-
tact interaction becomes a bilinear term in the Hamiltonian.

First, we thus remove the doublons entirely by introducing
a projection operator pG and an auxiliary fermionic field with
the number operator nA:

H = −μ(ne
↑ + ne

↓) + pG, pG = ne
↑ne

↓iπnA, (A4)

where ne
σ are electron number operators. When we trace over

nA = 0, 1, the configurations for which ne
↑ne

↓ = 1 obtain an
imaginary energy shift of 0 or iπ respectively, which in turn
give them opposite sign in the trace, such that the contribution
vanishes.

We then proceed to reintroduce the doublon in the form of
a hard core boson, with an energy U − 2μ. The boson can
in turn be fermionized, and thus gives rise to two fermionic
components with number operators given by nd

0 , nd
1 . The state

space correspondence is given by

|nboson=0〉 → ∣∣nd
0 = 1, nd

1 = 0
〉
,

|nboson=1〉 → ∣∣nd
0 = 0, nd

1 = 1
〉
. (A5)

The remaining states in the construction (A5) which corre-
spond to nd

↑ + nd
↓ �= 1 has no physical counterpart, and are

thus removed from the trace by the introduction of a Popov-
Fedotov projection term [33] of the form

pD = (nd
↑ + nd

↓ − 1)
iπ

2
, (A6)

such that the contribution from nd = 0, 2, obtain a complex
phase in the in the trace and cancel. Finally, we are required to
project out configurations where ne

↑ + ne
↓ = 1, nd

1 = 1, as this
has no correspondence in the original state space. This can be

achieved by

pH = (ne
↑ − ne

↓)

(
nd

↑ − nd
↓

2
+ 1

2

)
iπnA. (A7)

Including also the energy scale of the doublon, we thus arrive
at a dual description of the local Hamiltonian according to

H = −μne +
(

nd
↑ − nd

↓
2

+ 1

2

)
ED + pG + pD + pH , (A8)

where ED = U − 2μ is the doublon energy. The partition
function of (A8) is given by

Z = 2 + 2e−ED + 4eμ, (A9)

which is indeed the partition function of the Hubbard model in
the atomic limit, except for a trivial factor 2 which we obtain
when tracing over the auxiliary field. In (A8), the contract
interaction is described by a bilinear term, and expansion is
instead conducted in the projection operators pG, pH .

To examine the analyticity of the density matrix as a func-
tion of the expansion parameter, we parametrize the expansion
terms pG, pH → ξ pG, ξ pH such that ξ = 1 corresponds to
the fully projected system. For convergence of the series, we
then require analyticity within the unit circle |ξ | � 1, regard-
less of model parameters. Next, we recall that the density
matrix takes the form

ρ = Wi

Z
, Wi = e−Ei , Z =

∑
i

eEi . (A10)

For finite model parameters, Wi and Z are analytic, imply-
ing that the density matrix is also analytic for nonvanishing
Z . Correspondingly, demonstrating convergence of the series
translates to ruling out zeros of Z (ξ ) within the unit circle
|ξ | � 1, which we will now do.

We begin by expressing the partition function in terms of ξ

Z (ξ ) = a + be−iπξ + ceiπξ (A11)

with

a = 2eμ−ED + e2μ−ED + 2e−ED + 4eμ + e2μ + 2, (A12)

b = eμ−ED + e2μ−ED + e2μ, c = eμ−ED , (A13)

where in particular we note that

a > b + c. (A14)

Then we observe that

Z (ξ ∈ I) > 0, (A15)

since the exponents in (A11) are real on the imaginary axis.
Furthermore we note that on the real axis, the exponentials
in (A11) only provide a phase, which together with (A14)
implies

|Z (ξ ∈ R)| > 0 (A16)

and so there are no poles on the real axis either.
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Away from the axes, the partition function is generally
complex. For the imaginary part to vanish, we require

beπξI sin(πξR) = ce−πξI sin(πξR), ξ = ξR + iξI . (A17)

This equation has two types of solutions: Firstly, we have ξR =
0, ξR = ±1, but these lie on the axes since |ξ | � 1. Secondly,
we have a solution corresponding to

beπξI = ce−πξI ⇒ eπξI = 1√
1 + eμ + eEd +μ

. (A18)

Inserting (A18) into (A11) we obtain

Z = a + 2eμ−ED
√

1 + eμ + eED+μ cos πξR > 0 (A19)

for all real parameter values. Thus, we conclude that the
density matrix is analytic within the unit circle |ξ | � 1, and
that (A8) is described by a convergent series. Expressing the
operators (25) in the basis n↓, n↑, d0, d1 we obtain a conver-
gent summation in Eq. (20).
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