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The study of topological band structures have sparked prominent research interest the past decade, culminating
in the recent formulation of rather prolific classification schemes that encapsulate a large fraction of phases and
features. Within this context we recently reported on a class of unexplored topological structures that thrive on
the concept of subdimensional topology. Although such phases have trivial indicators and band representations
when evaluated over the complete Brillouin zone, they have stable or fragile topologies within subdimensional
spaces, such as planes or lines. This perspective does not just refine classification pursuits, but can result in
observable features in the full dimensional sense. In three spatial dimensions (3D), for example, subdimensional
topologies can be characterized by nontrivial planes, having general topological invariants that coexist with Weyl
nodes away from these planes. As a result, such phases have 3D stable characteristics such as Weyl nodes, Fermi
arcs and edge states that can be systematically predicted by subdimensional analysis. Within this work we further
elaborate on these concepts. We present refined representation counting schemes and address distinctive bulk-
boundary effects, that include momentum depended (higher order) edge states that have a signature dependence
on the perpendicular momentum. As such, we hope that these insights might spur on new activities to further
deepen the understanding of these unexplored phases.
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I. INTRODUCTION

Topological effects in band structures has received signif-
icant attention in recent years [1,2], leading to a myriad of
topological phases and effects [3–17]. Of particular interest
in this regard however is recent progress on mapping out a
considerable fraction of topological materials. Namely, using
constraints on band representations between high symmetry
point in the Brillouin zone (BZ) that can reproduce the full K-
theory in certain cases [18], elaborate schemes have emerged
that upon comparing these condition in momentum space to
real space provide for direct indicators of topological nontriv-
iality [19–24]. This is usually phrased in terms of so-called
symmetry indicators [19] or elementary band representations
[20]. While the former is roughly obtained by considering the
constraints in momentum space as a vector space, which de-
livers indicators upon dividing out Fourier transformed trivial
atomic limit configurations, the rational behind considering
elementary band representations (EBR) is that a split EBR
must lead to a nontrivial behavior [20]. That is, a topological
configuration can by definition not be represented in terms of
Wannier functions (of the localized kind) that also respect all
symmetries.
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This progress in itself has already sparked the discovery
of new kinds of topologies. It was for example found that mis-
matches between stable symmetry indicators and split EBRs
can be understood by the existence of fragile topological
phases [25]. Such fragile phases formally amount to a differ-
ence of trivial phases and can consequently be trivialized by
the addition of trivial bands, rather than bands having opposite
topological invariants [26–28]. This concept of fragile topol-
ogy in fact not only applies to symmetry indicated phases (i.e.,
those that can be deduced from the irreducible representation
content at high symmetry points) but can be generalized by
taking into account multi-gap conditions [29]. Such phases
can physically be understood as arising by braiding non-
Abelian frame charges [30–32], leading to novel types of
invariants and physical effects [33].

In recent work [23], we elucidated the idea of fragile
topology in a magnetic context [15,22,34–40] and outlined
its connection to the concept of subdimensional topology.
The essential idea articulates around the fact that while EBRs
may be globally connected, thus appearing trivial in previous
schemes, they can still be splittable on subdimensional spaces
such as planes in the 3D Brillouin zone with a topology that is
independent of the topological charges of the nodal structure.
These subdimensional spaces can effectively be diagnosed in
terms of symmetry indicators and EBR content. This is not
merely an esoteric observation but results in real (in the 3D
sense) consequences. Indeed, there are new phases that are
characterized by the coexistence of the manifestations of 3D
nodal topology (such as Fermi arcs) together with the manifes-
tations of nontrivial subdimensional topologies (such as edge
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and corner states). Whilst we presented an exhaustive table of
all space groups in which the simplest form of this mechanism
occurs [23], it was conjectured that this new view can play a
role in other settings as well. Subdimensional topology can
therefore uniquely identify topological features in symmetry
groups where symmetry indicators are trivial [21].

In this work, we further develop the idea of fragile mag-
netic topology and subdimensional topology by investigating
the bulk-corner, bulk-hinge, and bulk-edge correspondence
and the twisted boundary conditions for these phases. This
elucidates the connection between fragile magnetic topology,
subdimensional topology and other well-studied phases such
as higher order topological insulators (HOTI). In particu-
lar, we explore the physical consequences of subdimensional
topology by looking at the hinge and edge state spectra of a
subdimensional phase, and by examining its bulk-edge cor-
respondence. Interestingly, we find that the subdimensional
perspective can manifest itself by affecting the edge/hinge
spectrum as function of the momentum along the hinge or
direction perpendicular to the plane hosting the nontrivial sub-
dimensional topology. We thus find as a main result that this
refined perspective can results in specific consequences at the
edge, momentum dependent hinge spectra, thereby providing
for new physical signatures.

We focus on two specific magnetic space groups (MSGs)
where this effect plays a crucial role: PC4 (No. 75.5 in the
BNS conventions [41]) and PI 42 (No. 77.18 in the BNS
convention). As explored in Ref. [23], MSG75.5 can host
a split EBR on all planes in the kz direction whilst having
trivial symmetry indicator, leading to magnetic fragile topol-
ogy. MSG77.18, on the other hand, hosts split EBRs on the
planes kz = 0 and kz = π , but the compatibility relations in
momentum space necessarily connect these planes by nodal
points along the kz axis. Thus by contrasting these space
groups, we can illustrate how subdimensional topology can
affect connected band structures. We note that these specific
case studies are described in general elementary band repre-
sentation evaluations, ensuring that these insights transfer also
to other systems, as shown in Ref. [23].

This paper is organized as follows. In Sec. II, we introduce
the magnetic space-groups (MSG) and representation content
which we will be considering. In Sec. III, we present the
spectra in various finite-dimensional geometries and comment
on their connection to corner/edge charges and to HOTI. In
Sec. IV, we further corroborate our findings by connecting
them to the recently introduced idea of real-space invariants
and twisted boundary conditions [27,42]. In Sec. V, we finally
connect our discussion to Wilson loops and a bulk-edge cor-
respondence. We conclude in Sec. VI.

II. SETUP AND TOPOLOGY FOR MSG75.5 AND MSG77.18

A. Setup and topology for MSG75.5

The magnetic space-group (MSG) PC4 (No. 75.5) is gen-
erated from the tetragonal (nonmagnetic) space group 75 (P4,
generated by C4 rotation) by including the antiunitary symme-
try (E |τ )′, with E the identity, τ = a1/2 + a2/2, (·)′ denoting
time-reversal and ai the primitive vectors of a (primitive)
tetragonal Bravais lattice. Thus MSG75.5 is a Shubnikov type

FIG. 1. Illustration of the unit cell (panel a) and two possible
lattice cuts that respect C4 symmetry [(b) and (c)] for MSG75.5.
(a) The unit cell, with (m)WPs labeled, using both the conven-
tion of MSG75.5 (2a, 2a′, 2b, 2b′) and of wallpaper group 10/p4
(1a, 1b, 2c, 2c′). We place one spin up and one spin down orbital at
2b and 2b′, respectively. (b) An integer number of units cells violates
C4 symmetry. This can be restored by considering a half-integer
number of unit cells, which is achieved by ignoring the sites circled
in green. (c) To have C4 symmetric sectors with no orbitals on the
boundary, we can perform the cut shown in the green square, with
the boundary between the sectors indicated.

IV MSG hosting antiferromagnetic ordering [41]. We showed
in Ref. [23] that starting from magnetic Wyckoff position
(mWP) 2b, with sites rA = a1/2 and rB = a2/2, the real-space
symmetries necessitate a minimum of four states to be present
in the unit cell. Our choice of unit cell is shown in Fig. 1(a).
We presented a spinful model for this MSG with two sites
per unit cell, each hosting two orbitals, in Ref. [23] (sum-
marized in Appendix A 1). This model can be split into two
disconnected two-band subspaces over the entire BZ whilst
respecting all symmetries of MSG75.5, and thus realizes a
split magnetic elementary band representation (MEBR) [22].
All symmetry indicators are trivial in our model, and therefore
one of these subspaces necessarily realizes fragile topology,
i.e., it can be trivialized by coupling to trivial bands. The other
two-band subspace realizes an atomically obstructed limit,
where the electrons localize at a mWP distinct from the mWP
of the atomic orbitals [20]. We note, however, that both sub-
spaces display nontrivial Wilson loop winding as discussed in
Sec. V. Thus whilst the obstructed atomic insulator label is
useful pictorially, a more careful rigorous analysis based on
the Wilson loop is needed in general, which we carry out in
Sec. V. The split in our model can be written explicitly as

MEBR2b
75.5 → (MEBR2b

75.5 � MEBR2a
75.5)︸ ︷︷ ︸

Lower subspace

⊕ MEBR2a
75.5︸ ︷︷ ︸

Upper subspace

,

where � denotes formal subtraction of MEBRs. In terms of
the spinful site-symmetry co-IRREPs (using notation from the
Bilbao Crystallographic Server [43–45]) this can be written as

[(1E
2
E )2b ↑ G � (1E1)2a ↑ G︸ ︷︷ ︸

Lower subspace

] ⊕ (1E1)2a ↑ G︸ ︷︷ ︸
Upper subspace

, (1)

where we denote by (A)b ↑ G the space-group IRREP which
arises by placing orbitals A at mWP b and inducing to
the full space group G. This decomposition can be deter-
mined directly from the momentum space IRREPs, using
the formalism of (magnetic) topological quantum chemistry
[20,22]. For MSG75.5, the unitary symmetries do not dictate
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any kz dependence. It is therefore legitimate to consider
the planes containing the time-reversal invariant momentum
points (TRIMPs) in the BZ separately, which results in an
effective 2D model. We choose to focus on the plane kz = 0.

To explore the physical consequences of magnetic fragile
topology in this system, we analyze its edge/corner spectrum
and also consider its evolution under twisted boundary con-
ditions (TBC). We therefore build a finite 2D lattice version
of our model which respects C4 symmetry. We consider two
different ways of building this lattice, illustrated in Figs. 1(b)
and 1(c). As can be seen in Fig. 1(b), including an integer
number of unit cells necessarily violates C4 symmetry for a
cut along the crystallographic axis. This happens because our
atomic sites are not located at the center or corner of the unit
cell. We therefore consider a half-integer number of unit cells
in both direction for such a cut. We also investigate how these
spectra depend on the real-space termination, which leads us
to also consider the cut in Fig. 1(c). This cut is also useful with
regard to the TBC, which we discuss in Sec. IV, as there are
no orbitals on the boundaries between regions related by C4

symmetry. We refer to this as the diagonal cut.
Note that our finite model necessarily breaks the non-

symmorphic antiunitary symmetry (E |τ )′. This effectively
reduces the symmetry to the spinful ferro/ferrimagnetic phase
75.1 (Shubnikov type I), which in the 2D case reduces to wall-
paper group 10 (p4) with strong spin-orbit coupling (SOC)
and without time-reversal symmetry (TRS). This group has
been well-studied in, e.g., Refs. [42,46]. We reproduce some
of their results to make the connection to the novel subdimen-
sional topology in MSG77.18 more transparent.

Wallpaper group 10 (p4) has three (nonmagnetic) WPs: 1a
and 1b with point-group (PG) symmetry C4 and 2c with PG
symmetry C2. This labeling is also shown in Fig. 1(a). This is
similar to the model considered in Ref. [42], however, there
the fragile phase originates from TRS. In our case, the fragile
phase results from magnetic symmetries which manifest in
the gluing of IRREPs in momentum space. In terms of the
site-symmetry IRREPs of MSG75.1, our model realizes the
decomposition in Eq. (2),

[(1E )2c(2E )2c � (1E1)1a(2E1)1b]︸ ︷︷ ︸
Lower subspace

⊕ (1E1)1a(2E1)1b︸ ︷︷ ︸
Upper subspace

. (2)

As suggested by Eqs. (1) and (2), in the following, we
refer to the unoccupied band subspace as the obstructed phase
because it is formally compatible with an obstructed atomic
limit in terms of its IRREPs content, and we refer to the
occupied band subspace as the fragile phase because it can
only be written as a subtraction of two atomic limits.

B. Setup and topology for MSG77.18

As there are no symmetry constraints in the kz direction
for MSG75.5, we can freely consider topologies on the planes
kz = 0 and kz = π independently. This is not the case in
MSG77.18, as was discussed in Ref. [23]. This MSG is sim-
ilar to MSG75.5, except that all C4 rotations are replaced
by screw rotations C42 = (C4|00 1

2 ), and the nonsymmorphic
time-reversal is replaced by (E |τd )′ with τd = a1/2 + a2/2 +
a3/2. The nonsymmorphic screw symmetry imposes connec-
tivity constraints along the kz direction which prevent us from

globally gapping the band structure in the 3D BZ. However,
we can still gap the band structure on the planes kz = 0 and
kz = π . We constructed a model in Ref. [23], summarized
in Appendix A 2, which realizes a gapped band structures on
these planes. Our model is based on mWP 2a in MSG77.18,
with sites rA = a1/2 + za3, rB = a2/2 + (z + 1/2)a3, where
we specialize to z = 0. This model agrees with the model for
MSG75.5 on the plane kz = 0, and therefore everything we
find for MSG75.5 holds on the plane kz = 0 of MSG77.18 as
well.

To satisfy the symmetry constraints, we must necessarily
have nodal points along the �Z and the MA line, resulting
in a semimetallic phase as studied by, e.g., Refs. [17,47–56].
These nodal points arise from the compatibility relations im-
posed by the screw symmetry: the nonsymmorphic C42 sym-
metry acts in k space as 〈ϕ,C4k|(C4|00 1

2 )|ϕ, k〉 = e−ik3/2Û (C4),
where Û (C4) is the orbital action of the symmetry. The lines
�Z and MA are invariant under C4. As we move along these
lines, the phase factor e−ik3/2, arising from the nonsymmor-
phic symmetry, will force an exchange of C4 eigenvalues.
Thus the gap between the two-band subspaces must close
along these lines, leading to a symmetry-enforced nodal
phase, as studied by Refs. [17,57,58]. We have derived in
Ref. [23] that such Weyl points protected by a screw symmetry
42 must have a doubled chirality of χ = 2 mod 4, see also
Refs. [59,60] for alternative approaches. These nodes manifest
as Fermi arcs in the surface spectrum, and as gapless states in
the hinge spectrum as we show in Fig. 5. Each vertical line
(Z ′�Z or A′MA) hosts a pair of Weyl points related by C2T .
Therefore each such pair must have equal chirality. These
Weyl points coexist with the subdimensional topology, forcing
the connectivity of the band structure and the triviality (in the
symmetry-indicator sense) of the full 3D phase. However, we
can still define the in-plane topology at kz = 0 and kz = π

which can be analyzed using the Wilson loop. This topology
is missed by standard indicator schemes, because the full 3D
phase is gapless. Importantly however, as we will show, this
topology can have physical consequences.

III. CORNER CHARGES

To elucidate the physical consequences of magnetic fragile
phases in subdimensional topologies, we begin by consider-
ing the corner charges present in the system. Corner charges
were studied in detail, for 2D nonmagnetic systems, in
Refs. [46,61,62]. They were also studied in the context of
electric multipole moments in Ref. [63]. For an obstructed
atomic or fragile insulator it can happen that the space-group
symmetries are incompatible with charge neutrality. Symme-
try then necessitates an imbalance of ionic and electronic
degrees of freedom, which gives rise to a filling anomaly χ ,
defined as

χ = (#Electronic sites − #Ionic sites) mod n. (3)

Symmetry-allowed perturbations of the edges and corners can
change this number in general, but it is always well-defined
modulo some n related to the order of the symmetry. For the
corner charges in MSG75.5 and MSG77.18, n = 4 due to the
fourfold rotation symmetry.
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FIG. 2. Same cuts for the kz = 0 plane of MSG75.5/MSG77.18
as in Figs. 1(b) and 1(c), but including the WPs where the electrons
localize. The electrons localize on the smaller (black/green) sites, but
the ions sit on the larger (red/blue) sites.

If the edges are insulating, then the excess charge must
localize at the corners of the system. If χ is incompatible with
the order of the symmetry, then there will be fractional charges
at the corners. This charge on the corner is only well-defined
in the absence of an edge state, as edge states generically
allow charge to flow away from the corner. Corner charges are
therefore closely linked to higher order topological insulators
(HOTIs), as explored in Refs. [54,55,61,62,64–68]. We find
that this allows for a counting procedure to determine the
excess charge in MSG75.5. We only consider half-filling, so
that every ionic and electronic site contributes a single charge.

A. Corner charges in MSG75.5

As MEBR2b
75.5 corresponds to a trivial insulator, with the

electrons (center of band charges) localized at the ionic sites,
its total filling anomaly must be zero. From Eq. (1), it then
follows that the filling anomalies of the occupied and unoc-
cupied band subspaces of the split EBR in MSG75.5 must
sum to zero (modulo 4). We can therefore determine the filling
anomaly of the fragile phase (i.e., the occupied subspace) at
half-filling by studying the atomic obstructed phase (i.e., the
unoccupied subspace) and counting the ionic and electronic
sites in the system (this only works because there is no stable
topology in the bulk, so that the bulk polarization vanishes,
see Ref. [46]). For this purpose, we redraw Fig. 1 with the
sites of the magnetic WP2a included. This corresponds to the
nonmagnetic WPs 1a and 1b and is shown in Fig. 2. Counting
the total number of electronic and ionic sites gives for the
cut in Fig. 2(a) a filling anomaly of χ = 41 − 40 = 1. Note,
however, that whether or not we include the electronic sites on
the boundary is a matter of convention, as they only represent
the localization centers of the electrons (they are not real sites
in our model). We can therefore discount charges on the edge,
but must do so in a C4 symmetric fashion, as discussed above.
We thus expect the obstructed phase to have an excess charge
of 1 mod 4 electrons, and the fragile phase must then have a
compensating excess charge of 3 mod 4 electrons. The same
counting gives for the diagonal cut in Fig. 2(b) an anomaly of
χ = 25 − 16 = 9, which gives the same χ of 1 mod 4 in the
obstructed phase.

FIG. 3. Counting of charges on the edge for MSG75.5. The ar-
rows indicate which directions are considered to be periodic. The
greyed out orbitals stem from adjacent unit cells and the black dotted
lines indicate a possible choice of cell for the diagonal case. This
is shown for the straight cut in (a) and (b) and the diagonal cut in
(c) and (d), with associated edge band structures. The edge bands
were calculated using the PYTHTB package [69], with 150 unit cells
perpendicular to the edge.

To determine whether or not this filling anomaly gives
rise to corner states, we must determine whether there is any
excess charge localized on the edge of the system, which
could result in a conducting edge. We show the counting of
charges on the edge in Fig. 3, together with the edge spectra
for the relevant cuts. To count the orbitals, we must take care
not to overcount sites which are periodic images of each other
(indicated by greyed out orbitals in Fig. 3). This gives a filling
anomaly of χ = 7 − 7 = 0 for Fig. 3(a), and 14 − 12 = 2 for
Fig. 3(b). Note, however, that we can remove charges from
the edge without violating the symmetries, as long as we
remove them symmetrically from both edges, e.g. the edge
charges are quantized mod 2. We therefore do not expect any
fractional charges on the edge for either cut, and therefore
expect quantized corner charges. We noted in Ref. [23], that
we have a quantized Berry phase of π in the fragile subspace.
This does not give rise to a topological edge state because the
ionic sites are shifted from the origin by the same amount as
the electronic sites, as discussed in Sec. V. If this relation is
violated, we expect an edge state to arise. We show the effect
of removing various orbitals on the edge on the edge spectrum
in Fig. 9 in Appendix C 1. This confirms that we can get in-gap
states by removing edge orbitals.

We note that this counting can also be used to predict the
split of states into the occupied/unoccupied space in this case.
If there are N total states in the system, we expect N/2 − 1
states below the gap, 4 corner states in the gap and N/2 − 3
states above the gap. Whilst the corner charges can in general
be moved into the bulk by symmetry-preserving perturbations,
the relative split between the occupied and unoccupied space
is protected [36]. Note, however, as shown in Figs. 3(c) and
3(d), that there are residual, model-specific, edge branches
in the system which slightly extend into the gap but are not
genuine topological in-gap states. These likely come from a
nearby symmetry which our model only breaks weakly. We
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FIG. 4. Corner charges and spectrum for the straight cut [(a) and
(b)] and diagonal cut [(c) and (d)] respectively for MSG75.5. On
the top, we show the charge distribution, with Fermi level set at the
top of the gap, above the corner states. Red indicates excess charge
(relative to the center), blue a deficit of charge where we sum over
all occupied states. We confirm numerically that the excess electronic
charge in a boundary region is 3 for both cuts. In the lower panels, we
show the spectrum, including the absolute value squared of a typical
corner state. In both cuts, there are N/2 − 1 occupied states, 4 corner
states and N/2 − 3 unoccupied states, where N is the total number of
states. All calculations were done using the PYTHTB package [69].

therefore expect some residual charge on the edges, but this
charge is not topologically protected. To compute the corner
charges, we therefore sum over the charge from the occupied
bands contained in a boundary region with finite thickness
including the edge. We show the total charge for both cuts in
Fig. 4, together with the associated spectra and typical corner
states. To confirm that these are indeed corner charges, we
also plot the same system with a single spin removed on the
boundary in Fig. 11 in Appendix C 2. This violates the integer
quantization of charges (since we are removing one orbital
whilst remaining at half-filling) and naturally leads to the
appearance of an edge state with edge charges. In Fig. 11, we
clearly see that the edge states dominate the corner charges,
illustrating that, in contrast, Fig. 4 displays corner charges. We
also confirm numerically that the excess charge in a region
including the boundary is 3 when fixing the Fermi energy
above the corner states but below the upper (conduction)
subspace. The planar kz = 0 topology in MSG75.5 thus hosts
corner charges. As the unitary symmetries do not dictate the
kz dependence for MSG75.5, we expect that these C4 symme-
try protected corner charges are present for all values of kz,
leading to hinge states. This follows because the 3D model
for MSG75.5 can be constructed by a simple stacking of our
2D planes, as there are no compatibility relations in the kz

direction.

B. Corner charges in MSG77.18

The translational symmetry in the z direction for MSG75.5
allows for the existence of hinge states that can be traced to

FIG. 5. Hinge [(a) and (c)] spectrum and edge [(b) and (d)]
spectrum in the kz = π plane for a slab calculation of MSG77.18.
(a) and (b) correspond to straight cuts. (c) and (d) present data for the
diagonal cut. All calculations were done using the PYTHTB package
[69].

the corner states of the fragile topology at kz = 0 and kz = π .
The screw symmetry in MSG77.18 breaks this translational
symmetry, and connects the planes at kz = 0 and kz = π .
Our model for MSG77.18 was introduced in Ref. [23], and
is discussed in Appendix A 2. It agrees with the model for
MSG75.5 on the plane kz = 0, and we therefore expect corner
charges on this plane. As we move along the kz direction,
the screw symmetry necessitates the existence of Weyl nodes
along �Z and MA, as discussed in Sec. II B, which leads
to Fermi arcs in the surface spectrum. We denote the kz >

0 coordinates of these Weyl nodes as k�Z and kMA. In the
hinge spectrum, we then expect a gap closing for all kz ∈
[min(k�Z , kMA), max(k�Z , kMA)]. We plot the hinge spectrum
for the straight and diagonal cuts in Fig. 5. We note that
the symmetry kz → −kz is not maintained for edge/corner
states, as the nonsymmorphic C2T symmetry (relating kz to
−kz) is broken at the hinge. We also note that we get clear
in-gap states for the hinge spectrum in the diagonal cut. We
show the equivalent of Fig. 4 for the kz = π plane of 77.18
in Fig. 6. We note that the diagonal cut actually hosts edge
modes on this plane, and that the corner charge differs from
that on the kz = 0 plane. This illustrates that the counting
approach, which we adopted for MSG75.5 (or equivalently
the kz = 0 plane of MSG77.18), breaks down on the plane
kz = π . Thus care must be taken when extending counting
schemes in 2D such as those discussed in Refs. [46,61,62]
to full 3D models. This difference between the planes can be
understood by considering more carefully where the electrons
localize on the plane kz = π of MSG77.18, as we describe
in Sec. V. The counting for the kz = 0 plane of MSG77.18
only works because we have a direct map to an explicit 2D
model, where the obstructed limits are known. Note further
that the symmetry algebra on the kz = π plane behaves subtly
different from that at the kz = 0 plane, owing to the presence
of the nonsymmorphic phase factor.
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FIG. 6. Corner charges for the straight cut [(a) and (b)] and diag-
onal cut [(c) and (d)] respectively for the kz = π plane of MSG77.18.
On the top, we show the charge distribution, with Fermi level fixed to
the same value as for MSG75.5, shown in Fig. 4. Red indicates excess
charge (relative to the center), blue a deficit of charge. We confirm
numerically that the excess electronic charge in a region away from
the center is 1 for the straight cut. In the lower panels, we show the
spectrum, including the absolute value squared of a typical corner
state. In the straight cut, there are N/2 − 3 occupied states, 4 corner
states, and N/2 − 1 empty states, with N the total number of states.
All calculations were done using the PYTHTB package [69].

IV. REAL SPACE INVARIANTS AND TWISTED
BOUNDARY CONDITIONS

Having explored the corner and edge spectrum, we will
turn to relating the bulk and boundary features from a Wilson
flow perspective in the next section. However, before we move
to this main topic, we shortly comment on the connection with
the recently introduced concepts of twisted boundary condi-
tions (TBC) [27,42] and real-space invariants. In particular,
we note that on a single plane (e.g. kz = 0) of MSG75.5,
everything we have discussed is exclusively protected by C4

symmetry. As a result, we can directly relate to the results
discussed in Ref. [42], providing an alternative perspective
on fragile phases. This also serves to connect our work to
other recent works, and can be relevant in an experimental
setting [27]. This formalism is most transparent when the
phase being considered is gapless and when there are no
orbitals on the boundary between regions related by C4 sym-
metry. We therefore focus exclusively on the kz = 0 plane
of MSG75.5/MSG77.18, using the diagonal cut illustrated in
Fig. 1(c), as MSG77.18 hosts a gapless phase on the kz = π

plane for this cut.
This plane hosts wallpaper group p4 with SOC but with-

out TRS. Using the expressions for the real-space invariants
(RSIs) found in Ref. [42], we find that both the occupied
and the unoccupied subspace have nonzero RSIs, the expres-
sions of which can be found in Appendix D. This implies
a nontrivial spectral flow under twisted boundary conditions
(TBC), where the coupling between the C4 symmetric sectors

FIG. 7. Twisted boundary conditions for a finite model of the
kz = 0 plane of MSG75.5. The hoppings between adjacent regions
(orange arrows) in the clockwise/counterclockwise direction are
multiplied by λ = e±iθ . The hoppings between diagonal regions (pur-
ple arrows) are multiplied by Re(λ2).

is twisted by a factor λ = eiθ . The spectrum under this twisting
is shown in Fig. 7, and we check that it agrees with the flow
predicted from the RSIs. Note also the presence of the corner
states which, as they are not cut by the TBCs, do not flow. The
RSIs can also be used to predict whether or not a set of bands
are fragile. We find, as anticipated from the above discussion,
that the lower band subspace is fragile, whereas the upper
subspace is not. We discuss further details in Appendix D.

V. BULK-EDGE CORRESPONDENCE

The Wilson loop spectrum provides a powerful tool for
the bulk-edge correspondence, which we here consider for the
different edge terminations and at the different kz planes. We
recall that upon integrating the Wilson loop over the occupied
band subspace along the momentum direction (k⊥) perpendic-
ular to the edge direction (x‖), the Wilson phases give the x⊥
component of the center of charge of the occupied band states.
The Wilson phases therefore relate to a specific WP, which
can then be used to predict an atomic obstruction (i.e., the
displacement of band charges to a WP distinct from the WP of
the atomic orbitals) [70] and, subsequently, an edge-specific
charge anomaly [71]. Importantly, this argument is conclu-
sive only when the Wilson loop spectrum is quantized as an
effect of symmetries, since different WPs only then relate
to topologically distinct phases (as the quantization prohibits
the adiabatic transfer of charges from one WP to an other).
In the following, we make use of the {0, π} Berry phases
(given as the sum of all Wilson loop phases) protected by C2T
symmetry [26] and the Z2 polarization protected by TRS and
C2 symmetry [72] associated with Kramers degeneracies of
the Wilson loop spectrum. We show explicitly how T and C2T
quantize the Wilson loop spectra in Appendix B.

We start by introducing the two Z2 topological invariants
(Z2 Berry phase and Z2 polarization). We then discuss the
effect of the symmetries of MSG75.5 and MSG77.18 on
the Wilson loops in relation to (i) the subdimensional bulk
topologies (kz = 0, π ), and (ii) the two possible choices of
geometries [straight versus diagonal, see Figs. 1(c) and 8(b)].
This allows us to determine which topological invariant is
associated with an edge geometry, as well as its actual value
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FIG. 8. (a) Unit cell choices for the straight and diagonal geome-
try in real space. (b) Planes of the Brillouin zone at kz = 0 (�, X, M,
X’) and kz = π (Z, R, A, R’), along straight directions {b1, b2}, and
diagonal directions {b1 + b2, −b1/2 + b2/2}. [(b)–(e)] Wilson loop
spectrum for MSG77.18 integrated [(b) and (d)] along the straight
direction b1 (while varying ky), and [(c,e)] along the diagonal direc-
tion b1 + b2 (while varying k2), for the plane [(b) and (c)] kz = 0 and
[(d) and (e)] kz = π . The respective paths of Wilson loop integration
for the straight geometry is lky = [(0, ky ) + b1 ← (0, ky )] (dashed
orange), and for the diagonal geometry is lk2 = [(0, k2) + b1 + b2 ←
(0, k2)] (full blue), shown as double arrows in (a).

indicated by symmetry. We then motivate the bulk-edge cor-
respondence for each case.

A. Introducing the Z2 Berry phase and Z2 polarization

There are two distinct Z2 invariants which can be employed
to investigate the bulk-edge correspondence in our system (i)
the Z2 polarization and (ii) the Z2 Berry phase. Taken together,
these two exhaustively predict the observed Wilson loop spec-
tra (see Fig. 8) and the difference between Figs. 4 and 6, as we
show later. Here, we introduce these two invariants. Below we
write as W[lk] the Wilson loop with the spectrum (phases)
{ϕ1(k), ϕ2(k)} evaluated over the noncontractible base path lk
that is parametrized by k = ky in the straight geometry, and by
k = k2 in the diagonal geometry [Fig. 8(b)]. The associated
Berry phase is γB = ϕ1(k) + ϕ2(k).

1. Z2 Berry phase

The Z2 Berry phase [26] in this MSG is protected by C2T
symmetry squaring to +1. This is the case at the kz = 0 plane

for either geometries. This can be seen from the way the
symmetries act. In particular, if k̂ = (kx, ky, 0), then (C2z|τd )′
acts on the Bloch eigenstates of our model as

〈ϕ, k̂|(C2z|τd )′ |ϕ, k̂〉 = eik̂C2zτd 〈ϕ, k̂|ϕ, IC2zk̂〉(σx ⊗ iσx )K

= eik̂C2zτd 〈ϕ, k̂|ϕ, k̂〉(σx ⊗ iσx )K

= eik̂C2zτd (σx ⊗ iσx )K, (4)

where K denotes complex conjugation and I inversion. Thus
[C2zT ]2 = +1 on the plane kz = 0. On the other hand, for
k̄ = (kx, ky, π ):

〈ϕ, k̄|(C2z|τd )′ |ϕ, k̄〉 = eik̄C2zτd 〈ϕ, k̄|ϕ, IC2zk̄〉(σx ⊗ iσx )K

= eik̄C2zτd 〈ϕ, k̄|ϕ, k̄ − b3〉(σx ⊗ iσx )K

= eik̄C2zτd T̂ (−b3)(σx ⊗ iσx )K, (5)

where T̂ (−b3) = diag(eirA·K, eirA·K, eirB·K, eirB·K )K=−b3 =
diag(1, 1,−1,−1) (see Sec. II B). Thus [C2zT ]2 = −1 on
the kz = π plane. The case that [C2T ]2 = +1 can effectively
be represented as complex conjugation. This implies that the
Wilson loop eigenvalues {eiϕ1 , eiϕ2} must come in complex
conjugate pairs {eiϕ1 , e−iϕ1}. This further implies that the total
Berry phase γB = ϕ1 + ϕ2 is quantized to γB ∈ {0, π} for all
k where [C2zT ]2 = +1, which gives rise to an effective Z2

quantization of the Berry phase on the entire kz = 0 plane for
both cuts.

2. Z2 polarization

The Z2 polarization [72] on the other hand, arises due to
Kramers theorem combined with a unitary symmetry. Specif-
ically, for the Z2 polarization to be well defined for a Wilson
loop, the following conditions should be satisfied along the
entire loop. (1) There exists an antiunitary operator T (e.g.,
spinful TRS) taking k → −k and satisfying T 2 = −1. (2)
There exists a unitary operator C2 taking k → −k satisfying
(C2)2 = −1. (3) [C2, T ] = 0.

Because T 2 = −e−i(kx+ky+kz ) these conditions are only met
in the diagonal geometry. Specifically, on the kz = 0 plane
these conditions are met along the line kx + ky = 0 mod 2π ,
which corresponds to the diagonal �M. On the kx = π plane,
these conditions are met along the line kx + ky = π mod 2π

corresponding to the diagonal RR′, see Fig. 8(b). We define
the time-reversal invariant momentum points (TRIMPs) to be
the points left invariant by T with T 2 = −1. The TRIMPs on
the plane kz = 0 are {�, M}, whereas the TRIMPs at kz = π

are {R, R′}. If the Wilson loop connects TRIMPs and satisfies
the above conditions for every point on the loop, the Wilson
loop eigenvalues are necessarily degenerate at either (0,0) or
(π, π ). This allows for the definition of a Z2 invariant, which
is defined to be trivial if (ϕ1, ϕ2) = (0, 0) and nontrivial if
(ϕ1, ϕ2) = (π, π ) [72].

B. Topological insights from the Wilson loop

We show in Fig. 8 the Wilson loop spectrum for MSG77.18
(or equivalently MSG75.5, see below) corresponding to a
straight geometry at the plane c) kz = 0 and e) kz = π , and
corresponding to the 45◦-rotated (diagonal) geometry at the

195145-7



LANGE, BOUHON, AND SLAGER PHYSICAL REVIEW B 103, 195145 (2021)

plane (d) kz = 0 and (f) kz = π . In Fig. 8(a), we show the
choice of unit cell in the straight (a1, a2) and diagonal (a⊥, a‖)
geometry. We choose a slightly different convention from that
in Fig. 5, for ease of interpretation (see Sec. V C). Figure 8(b)
shows the directions of integration in the momentum space
with a full-line double arrow (blue) for the straight geometry
and a dashed double arrow (orange) for the diagonal geometry.
The Wilson loop spectrum for MSG75.5 is qualitatively the
same as in Fig. 8(c) for the straight geometry and Fig. 8(d)
for the diagonal geometry, both for the planes kz = 0 and
kz = π . Indeed, for MSG75.5, the subdimensional topologies
at kz = 0 and kz = π are the same.

1. Subdimensional topologies: kz = 0 vs kz = π

Let us now explain the differences between the Wilson
loops in terms of the subdimensional topologies, i.e., kz = 0
versus kz = π , for MSG77.18. The subdimensional topology
of the kz = 0 plane for MSG77.18 is identical to the sub-
dimensional topology of MSG75.5, with the high-symmetry
points {�, M} as TRIMPs. On this plane, [C2zT ]2 = +1 pro-
tects the complete winding of two-band Wilson loop, thus
indicating a nontrivial Euler class (fragile) topology [23,26].
The winding of Wilson loop does not depend on the geom-
etry (straight or diagonal) and we accordingly find complete
Wilson loop windings in Figs. 8(c) and 8(d). At kz = π , the
subdimensional topology for MSG77.18 is characterized by
the TRIMPs {R, R’} (which differ from the TRIMPs {Z, A}
for MSG75.5) and [C2zT ]2 = −1 implies the Kramers’ degen-
eracy of the energy bands over the whole momentum plane
and discards Euler class topology [23]. Accordingly, we find
that there is no complete winding of the Wilson loops in
Figs. 8(e) and 8(f).

2. Symmetries and quantizations of Wilson loop:
straight versus diagonal geometry

We now turn to a detailed account of the quantizations and
symmetries of Wilson loop spectra protected by symmetries
for the two geometries, i.e., straight versus diagonal. Our aim
is to determine which topological invariant (Z2 Berry phase
and Z2 polarization) can be associated with an edge geometry
and when it is symmetry indicated (i.e. with a definite value).
These results combine the effects of C2 symmetry, and the
nonsymmorphic antiunitary symmetries TRS and C2T . The
derivation of the constraints on the Wilson loop due to the
nonsymmorphic antiunitary symmetries (TRS and C2T ) is
given in Appendix B.

In the straight geometry, the Wilson loop phases at ky = 0
and ky = π are quantized to (ϕ1, ϕ2) = (0, π ) by the C2 sym-
metry, i.e., it follows from the C2 eigenvalues of the band
eigenstates at the high-symmetry points � and M [17,26,73],
that the Berry phase must be γB[lky=0,π ] = ϕ1 + ϕ2 mod 2π =
π mod 2π . This is true on both planes kz = 0, π . Then on
the kz = 0 plane, by the Z2 quantization of the Berry phase
protected by C2T ([C2T ]2 = +1), we conclude that the Berry
phase must be π for all ky. On the kz = π plane, we have
[C2T ]2 = −1 and there is the question of the quantization
of the Berry phase. We have shown in Appendix B that the
nonsymmorphic C2T imposes ϕ2(ky) = −ϕ1(ky) + π mod
2π on the spectrum of the Wilson loop. We thus get γB(ky) =

ϕ1(ky) + ϕ2(ky) = π mod 2π for all ky. We note that the non-
symmorphic TRS furthermore requires ϕ2(−ky) = ϕ1(ky) +
π mod 2π (see Appendix B) which explains the global struc-
ture of the Wilson loops in 8 c) and e). Also, since there is
no path lky for which TRS squares to −1 for all kx, no Z2

polarization can be defined in the straight geometry.
In the diagonal geometry, the Wilson loop is quantized

by C2 at k2 = ±π/
√

2 to (ϕ1, ϕ2) = (0, 0), for kz = 0 and
kz = π (this follows from the fact that the C2 eigenvalues of
the occupied-band eigenstates at X and at R are all equal to
i or −i), such that the Berry phase is zero. (At k2 = 0, and
kz = 0 or kz = π , on the contrary, there is no quantization of
the Wilson loop from C2.) At kz = 0, the Z2 quantization of
the Berry phase (protected by C2T with [C2T ]2 = +1) implies
it must be zero for all k2, in agreement with Fig. 8(d). At
kz = π , the nonsymmorphic C2T symmetry requires ϕ2(k2) =
−ϕ1(k2) (see Appendix B), hence again the Berry phase must
be zero for all k2, in agreement with Fig. 8(f). We now address
the effect of nonsymmorphic TRS which requires ϕ2(k2) =
ϕ1(−k2) for kz = 0 and kz = π (see Appendix B), which ex-
plains the global structure of the Wilson loops in Figs. 8(d)
and 8(f). Furthermore (as discussed above), from the square
of TRS, T 2 = −e−i(kx+ky+kz ), we predict one diagonal per
kz-plane along which T 2 = −1. We find T 2 = −1 for kx =
ky mod 2π at kz = 0, i.e., on the diagonal �M (connecting the
TRIMPs � and M), and T 2 = −1 for kx = ky + π mod 2π at
kz = π , i.e., on the diagonal RR’ (connecting the TRIMPs R
and R’). This results in the presence of Kramers degeneracies
of the Wilson loop spectrum at k2 = 0 for kz = 0, namely
(ϕ1, ϕ2) = (π, π ), and at k2 = ±π/

√
2 for kz = π , namely

(ϕ1, ϕ2) = (0, 0). The combination of C2 and TRS then leads
to the definition of a ν[l] ∈ Z2 polarization on these diagonals,
as described above, which is directly indicated by the Wilson
phases at the Kramers degeneracies, i.e.,

ν (kz=0)[lk2=0] = 1,

and ν (kz=π )[lk2=π/
√

2] = 0. (6)

We show below that these have important consequences for
the bulk-edge correspondence.

C. Subdimensional charge anomalies and edge states

Let us first summarize the findings of the previous section.
The Berry phase is π in the straight geometry on both planes
kz = 0 and kz = π . The Berry phase is 0 in the diagonal
geometry on both planes kz = 0 and kz = π . There is no Z2

polarization in the straight geometry. In the diagonal geome-
try, there is a nontrivial Z2 polarization on l (kz=0)

k2=0 = �M, and

a trivial one on l (kz=π )
k2=0 = RR′.

1. Straight geometry

We consider here the bulk-edge correspondence at kz = 0
for which the phases for MSG75.5 and MSG77.18 are the
same. We use MSG75.5 to give a detailed account of the
bulk-edge correspondence in that momentum plane.

Let us start with a discussion of the straight edge geometry.
Let us argue explicitly for MSG75.5 that the π -Berry phase
does not indicate a charge anomaly. Indeed, the Wyckoff
position 2b of the atomic orbitals and the Wyckoff positions
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2a of the obstructed band charges both have, componentwise,
one site centered in the unit cell and one site shifted to the
unit cell boundary. That is, defining the (unordered) sets of
componentwise positions relative to the unit cell center

{
r(2b)

A,i , r(2b)
B,i

} = {0, a/2} mod a,

and
{
r(2a)

C,i , r(2a)
D,i

} = {0, a/2} mod a, (7)

for i = x, y, there is no difference. This can be seen explic-
itly in Fig. 8(a) by projecting the red/blue larger orbitals
(corresponding to WP 2b) and the grey/green orbitals (cor-
responding to WP 2a) onto the a1 or a2 axis. Therefore, even
in the case of an obstruction (from WP 2b to WP 2a) there
is no charge anomaly, i.e., no mismatch between the number
of charges localized at the distinct WPs, in a ribbon system
with straight edge cuts and assuming that a slide of the ribbon
contains an integer number of unit cells (see Appendix C 1
with the results for a fractional number of unit cells). This
can also be readily checked through direct counting. We thus
conclude that there is no topological edge branch along the
straight edges. We can readily transpose this conclusion to
MSG77.18 at kz = 0, and to MSG75.5 at kz = π .

Since the Berry phase is also π at kz = π for MSG77.18,
we find similarly to kz = 0 that there is no edge state in the
straight geometry (assuming an integer number of unit cells
per slice of the ribbon). We conclude that in the straight
geometry there no effect of the subdimensional topology (i.e.,
comparing k0 = π and kz = π ) on the bulk-edge correspon-
dence for MSG77.18.

2. Diagonal geometry

To fix ideas, we assume that x1 = x⊥ is the direction per-
pendicular to the edge, and x2 = x‖ the direction parallel to it.
Then, we define the diagonal unit cell through a⊥ = a1/2 +
a2/2 = a/

√
2ê1 and a‖ = −a1 + a2 = √

2aê2, such that in-
variance under a translation by a‖ is satisfied [see Fig. 8(a)].
Note that this unit cell is different from the edge unit cell in
Fig. 5. Writing the atomic positions in the diagonal axes, i.e.,
r = (x1, x2), the perpendicular component (x1) of the Wyckoff
positions in the diagonal geometry are

(
r(2b)

A,1 , r(2b)
B,1

) = a

2
√

2
(1, 1) mod

a√
2
,

and
(
r(2a)

C,1 , r(2a)
D,1

) = (0, 0) mod
a√
2
. (8)

Which, as above, can be checked directly from Fig. 8(a). The
zero Berry phase obtained for the diagonal geometry thus
indicates that there must be an even number of charges at WP
2b and at WP 2a. Assuming an obstruction of the charges from
WP 2b to WP 2a, the diagonal edge cut leads to a total charge
anomaly of ±2e for the ribbon if we assume that a slide of the
ribbon contains an integer number of diagonal unit cells (see
Appendix C 1 with the results for a fractional number of unit
cells). This means that we have a charge anomaly of ±e per
diagonal edge.

Let us now make use of the ν ∈ Z2 polarization, which
we have seen is well defined in the diagonal geometry. At
kz = 0, we have found νk2=0 = 1 which corresponds to the
Kramers degenerate Wilson loop phases (ϕ1, ϕ2) = (π, π ).

This implies that the band charges are not obstructed, i.e., they
can be located at WP 2b. There is thus no charge anomaly
and following there is no edge state. This conclusion holds for
MSG75.5 at kz = 0 and kz = π , and for MSG77.18 at kz = 0
only.

Considering now MSG77.18 at kz = π , we have found
νk2=π/

√
2 = 0 which corresponds to the Kramers degenerate

Wilson loop phases (ϕ1, ϕ2) = (0, 0). This implies an obstruc-
tion of the band charges, i.e. shifted from the atomic mWP
2a to 4b of MSG77.18. We have argued above that with an
obstruction there is a charge anomaly of ±e per diagonal edge
(assuming an integer number of diagonal unit cells in one
slice of the ribbon). We also know that the Z2 polarization
predicts the presence of an odd number integer-valued elec-
tronic charge at a single edge [72], which by virtue of the
Kramers degeneracy means a half-integer-valued charge per
spin. The topological (helical) edge states take the form of
an odd number of edge Kramers pairs per edge. This is fully
consistent with the numerical results shown in Fig. 5 where
we find one Kramers pair of edge states per edge.

We finally conclude that there is a nontrivial effect of the
subdimensional topology on the bulk-edge correspondence
that is observable in the diagonal geometry.

VI. CONCLUSION

In this work, we have further explored the concept of subdi-
mensional topology. While these topologies have a connected
EBRs and thus appear trivial, they feature split EBRs on
subdimensional spaces, such as planes, in the Brillouin zone.
These in-plane topologies coexist with Weyl nodes and have
full dimensional nontrivial features. We in particular find that
these concepts can be related to more refined counting and
symmetry indicator arguments. Most notably, however, is the
connection of these insights to consequences on the edge. We
find that the subdimensional topology results in distinctive
bulk-boundary signatures. These include hinge spectra and
edge states that have a distinct dependence on the perpendicu-
lar momentum, underpinning the physical significance of this
new topological concept. We therefore hope that our results
will result in the further exploration of these features.
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APPENDIX A: SUMMARY OF THE MODELS

Here we reproduce the models used for MSG75.5 and
MSG77.18. These models were originally introduced in
Ref. [23] and are written in the Bloch basis:

|ϕα,σ , k〉 =
∑

R∈T

eik·(R+rα )|wα,σ , R + rα〉, (A1)

where α ∈ {A, B} labels the sites in the unit cell, and
σ ∈ {↑,↓} labels spin components. We choose to order our
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basis as ϕ = (ϕA,↑, ϕA,↓, ϕB,↑, ϕB,↓). A more thorough anal-
ysis of these models in momentum space, including band
structures, can be found in Ref. [23].

1. The model for MSG75.5

Our model for MSG75.5 is defined as

H (k) = t1 f1(k)σz ⊗ σz

+ t2 f2(k)σy ⊗ 1 + t3 f3(k)σx ⊗ 1

+ λ1g1(k)1 ⊗ σ+ + λ∗
1g∗

1(k)1 ⊗ σ−
+ λ2g2(k)σx ⊗ σ+ + λ∗

2g∗
2(k)σx ⊗ σ−, (A2)

with σ± = (σx ± iσy)/2 and lattice form factors

f1 = cos a1k − cos a2k, g1 = sin a1k − i sin a2k,

f2 = cos δ1k − cos δ2k, g2 = sin δ1k − i sin δ2k,

f3 = cos δ1k + cos δ2k,

(A3)

These are defined in terms of the bond vectors δ
(
1
2)

=

(a1(
−
+)a2)/2. We have assumed that {t1, t2, t3} are real, while

{λ1, λ2} can be complex. We fix t1, t2, t3 = 1 and λ1, λ2 =
(1/2)eiπ/5.

2. The model for MSG77.18

Our model for MSG77.18 is defined by adding an extra
term H ′ to the above model for MSG75.5:

H ′(k) = H[ f1, f ′
2, f ′

3, g1, g′
2](k)

+ ρ1h1(k)σx ⊗ σz + ρ2h2(k)σy ⊗ σz, (A4)

where H (k) is given in Eq. (A2), and the lattice form factors
have been extended to 3D momentum space,

f ′
2(k) = (cos δ′

1k − cos δ′
2k + cos δ′

3k − cos δ′
4k)/2,

f ′
3(k) = (cos δ′

1k + cos δ′
2k + cos δ′

3k + cos δ′
4k)/2,

g′
2(k) = (sin δ′

1k − i sin δ′
2k − sin δ′

3k + i sin δ′
4k)/2,

h1(k) = (sin δ′
1k + sin δ′

2k + sin δ′
3k + sin δ′

4k)/2,

h2(k) = (sin δ′
1k − sin δ′

2k + sin δ′
3k − sin δ′

4k)/2,

(A5)

with δ′
1,2 = δ1,2 + a3/2, and δ′

3,4 = −δ1,2 + a3/2, and with
new real parameters ρ1, ρ2 ∈ R. We fix ρ1 = −1 and ρ2 =
−2/5.

APPENDIX B: SYMMETRIES OF THE WILSON LOOP
DUE TO NONSYMMORPHIC TRS AND C2T SYMMETRY

We here derive the effect of nonsymmorphic TRS
and C2T symmetry on the Wilson loop for the different
geometries, i.e. straight versus diagonal shown in
Fig. 8(b). We do it explicitly for MSG77.18 but the
final results apply to MSG75.5 as well. Let us write
W[lk0 ] = 〈u, k0 + K| ∏k0+K←k0

k Pk|u, k0〉 for the Wilson
loop over the occupied Bloch eigenvectors {|un, k0〉}n=1,2

integrated over the base loop lk0 = [k0 + K ← k0] that
crosses the Brillouin zone with K defined as the smallest
reciprocal lattice vector in that direction. We define the
antiunitary representation of the nonsymmorphic TRS for

MSG77.18, (E |τd )′, where τd = (a1 + a2 + a3)/2, in the
basis of the occupied Bloch eigenstates through T (k) =
〈ψ, −k|(E |τd )′ |ψ, k〉 = eik · τd 〈u, −k|(σx ⊗ −iσy)K|u, k〉 =
eik·τd 〈u,−k|(σx ⊗ −iσy)|u∗, k〉K = UK where K is the com-
plex conjugation and U is unitary [23]. It is then convenient
to write the unitary representation with the phase factor of
the nonsymmorphicity removed, i.e., U (k) = e−ik·τdU (k)
(this will correspond below to taking the “periodic gauge”
[17,47,57] in the Wilson loop over a noncontractible path of
the torus Brillouin zone). Similarly to the symmorphic case
[73], the constraint imposed by (E |τd )′ on the Wilson loop is
found to be U ∗(k0 + K )−1WT [l−k0−K]U ∗(k0) = W[lk0 ] with
l−k0−K = [−k0 ← −k0 − K], which we rewrite as

e−iK·τdU∗(k0 + K )−1WT [l−k0−K]U∗(k0) = W[lk0 ]. (B1)

We thus conclude that in the straight geometry, i.e., taking
k0 = (0, ky) and K = b1, the Wilson loop spectrum satisfies
the following symmetry:

{ϕn[l(0,−ky )]}n=1,2
= {ϕn[l(0,ky )] + π mod 2π}

n=1,2
, (B2)

while in the diagonal geometry, i.e., taking k0 = (0, k2) and
K = b1 + b2, the symmetry reads

{ϕn[l(0,−k2 )]}n=1,2 = {ϕn[l(0,k2 )]}n=1,2. (B3)

We now consider the effect of the nonsymmorphic C2T
symmetry of MSG77.18, (C2|τd )′, on the Wilson loop
spectrum. Its antiunitary representation in the occupied
Bloch eigenstates reads A(k) = 〈ψ,−C2k|(C2|τd )′ |ψ, k〉 =
eiC2k·τd 〈u,−C2k|(σx ⊗ iσx )|u∗, k〉K = RK where R is uni-
tary. Defining R(k) = e−iC2k·τdR(k), we then find, similarly
to the case of TRS above, R∗(k0 + K )−1W∗[lk0 ]R∗(k0) =
W[lk0 ], which we rewrite as

e−iC2K·τdR∗(k0 + K )−1W∗[lk0 ]R∗(k0) = W[lk0 ]. (B4)

We therefore conclude that in the straight geometry [k0 =
(0, ky), K = b1], the Wilson loop spectrum satisfies the fol-
lowing symmetry:

{ϕn[l(0,ky )]}n=1,2
= {−ϕn[l(0,ky )] + π mod 2π}

n=1,2
, (B5)

while in the diagonal geometry (k0 = (0, k2), K = b1 + b2)
the symmetry reads

{ϕn[l(0,k2 )]}n=1,2 = {−ϕn[l(0,k2 )]}n=1,2. (B6)

We emphasize that these Wilson loop symmetries hold
similarly at kz = 0 and at kz = π since K has no kz compo-
nent. This is also the reason why these results also apply to
MSG75.5. We conclude by noting that these results are fully
consistent with the computed Wilson loops in Fig. 8.

APPENDIX C: ADDITIONAL FIGURES

In this Appendix, we present additional figures to further
detail the findings presented in the main text. In particular,
we present the edge spectrum, which results from removing
various orbitals on the edges in Appendix C 1, and we present
the charge distribution when removing a single spin on the
entire edge in Appendix C 2.
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FIG. 9. Edge spectra for a selection of removed edge orbitals in
the straight cut [(a–(d)] and diagonal cut [(e)–(h)] for MSG75.5/the
kz = 0 plane of MSG77.18. A full circle indicates the presence of
both spin components, a single arrow indicates that the other spin
has been removed and the lack of a site indicates that both spin
components on this site have been removed. (a) Removing a down
spin from the top edge. (b) Removing an up spin from the bottom
edge. (c) Removing a down spin from both edges. (d) Removing a
down spin from the top edge and an up spin from the bottom edge. (e)
Removing a down spin from the A site on the top edge. (f) Removing
both spin components from the A site on the top edge. (g) Removing
a down spin from the A site on the top edge and an up spin from the
A site at the bottom edge. (h) Removing all spins from the A and B
site at the top edge. All in-gap states are singly degenerate. The states
extending slightly into the gap in (h) are doubly degenerate.

1. Alternative edge termination

We noted in Sec. III of the main text that removing a single
orbital at the edge of the system can induce edge states. In
Fig. 9, we show a selection of ways this can be done for
MSG75.5 (equivalently the kz = 0 plane of MSG77.18). In
Fig. 10, we show the corresponding plot for the kz = π plane
of MSG77.18.

2. Removing a single spin

We show the effect of removing a single spin on the bound-
ary in Fig. 11.

FIG. 10. Edge spectra for a selection of removed edge orbitals
in the straight cut [(a–(d)] and diagonal cut [(e)–(h)] for the kz = π

plane of MSG77.18. A full circle indicates the presence of both spin
components, a single arrow indicates that the other spin has been
removed and the lack of a site indicates that both spin components on
this site have been removed. (a) Removing a down spin from the top
edge. (b) Removing an up spin from the bottom edge. (c) Removing
a down spin from both edges. (d) Removing a down spin from the top
edge and an up spin from the bottom edge. (e) Removing a down spin
from the A site on the top edge. (f) Removing both spin components
from the A site on the top edge. (g) Removing a down spin from the
A site on the top edge and an up spin from the A site at the bottom
edge. (h) Removing all spins from the A and B site at the top edge.
The in-gap bands in (d), (g), and (h) are doubly degenerate.

APPENDIX D: REAL-SPACE INVARIANTS AND TWISTED
BOUNDARY CONDITIONS FOR MSG75.5

In this Appendix, we provide further detail on the RSIs
and TBCs discussed in Sec. IV. Our notation follows that of
Ref. [42] closely, and we use their tables throughout.

1. Real space invariants

Real-space invariants are defined at every WP as quan-
tities which do not change as we move orbitals in a
symmetry-preserving fashion from a high-symmetry WP to
a lower-symmetry WP or vice versa. In the finite model of
the kz = 0 plane of MSG75.5, where the symmetries are

195145-11



LANGE, BOUHON, AND SLAGER PHYSICAL REVIEW B 103, 195145 (2021)

FIG. 11. Corner charges for the straight cut [(a) and (b)] and
diagonal cut [(c) and (d)] respectively for MSG75.5/the kz = 0 plane
of MSG77.18. On the top, we show the charge distribution, with
Fermi level fixed to the same value as for MSG75.5, shown in Fig. 4.
Red indicates excess charge (relative to the center), blue a deficit of
charge, where we sum over all occupied bands. On the bottom we
show the spectrum, together with a state just below the Fermi level.
All calculations were done using the PYTHTB package [69].

broken down to wallpaper group p4, the relevant (nonmag-
netic) WPs are 1a, 1b, and 2c, as shown in Fig. 1(a). Removing
an orbital from WP 1a or 1b (with site-symmetry C4) requires
a minimum of four orbitals to come together, as this is the
only way to consistently subduce to the trivial position. Thus,
the imbalance between the four site-symmetry orbitals at WP
1a or 1b is protected, but not the total number of orbitals. This
allows for the definition of three independent invariants (the
real-space invariants) for each of these WP. For (nonmagnetic)
WP 2c, with site-symmetry group C2, pairs of orbitals must
come together, so there is a single RSI. A full enumeration of
the RSIs for wallpaper groups can be found in Ref. [42]. For
our model, we find the RSIs for the lower/upper subspace as

δ1a = ±1,

δ2a = ±1,

δ3a = ±1,

δ1b = ∓1,

δ2b = 0,

δ3b = 0,

δ1c = 0,

where δiw denotes RSI i for the WP with label w. These RSIs
can be used to directly confirm the fragility of our occupied
manifold. In particular, for our symmetry setting (spinful C4

without TRS), the criterion for fragility is that it be impossible

to find numbers Na, Nb, Nc summing to Nbands = 2 while sat-
isfying the constraints tabulated in Ref. [42] and reproduced
here for convenience:

Na/b = δ1a/1b + δ2a/2b + δ3a/3b mod 4,

Na/b � −3δ1a/1b + δ2a/2b + δ3a/3b,

Na/b � δ1a/1b − 3δ2a/2b + δ3a/3b,

Na/b � δ1a/1b + δ2a/2b − 3δ3a/3b,

Na/b � δ1a/1b + δ2a/2b + δ3a/3b,

Nc = δ1c mod 2,

Nc � −δ1c,

Nc � δ1c.

In the occupied subspace, Na and Nb have to equal 3 mod 4,
whereas Nc has to equal 0 mod 2. However, this is not possible
to satisfy if Na + Nb + Nc = 2 Thus the occupied subspace
is indeed fragile. The RSIs in the unoccupied subspace, on
the other hand, require Na and Nb to equal 1 mod 4, while Nc

still equals 0 mod 2. This can be satisfied with Na = Nb = 1
and Nc = 0. As can be easily checked, this also satisfies all
other conditions implying that the unoccupied subspace is not
fragile as expected.

2. Twisted boundary conditions

The twisted boundary conditions (TBC) are designed as
perturbations to the Hamiltonian which leave the RSIs invari-
ant but exchange the C4 eigenvalues of bands [42]. As the
RSIs are defined in terms of the C4 eigenvalues, if the rel-
ative balance of states with differing C4 eigenvalues changes
between the occupied and the unoccupied subspace, then there
is necessarily a gap closing under this perturbation to ensure
that the RSIs are invariant.

More concretely, as our system has C4 symmetry, we
can divide it into four regions which are related by symme-
try, shown in Fig. 7(a). As we choose the cut illustrated in
Fig. 1(c), there are no sites on the boundary between regions
so each site is uniquely assigned to a region. Multiplying
the hopping between the regions by some well-chosen pa-
rameter λ (as described [42]) amounts to a gauge change
in the C4 symmetry operator, permuting the site-symmetry
representation. These are the TBC for this system. Using the
RSIs, which are invariant under such transformations, we can
predict which orbitals are exchanged. If chosen correctly, we
can force an exchange between the occupied and the unoccu-
pied spaces. The result of implementing the TBC by tuning
λ : 1 → i is shown in Fig. 7. Note that the corner states (lo-
calized in the gap) are not cut by the boundary conditions and
therefore do not flow. Checking the IRREPs of the states that
exchange under TBC confirms that this pattern corresponds to
our expected fragile phases, as explained in Ref. [42]. This is
thus another physical signature of the fragile magnetic topol-
ogy in MSG75.5, which in this case is equivalent to fragility in
the p4 wallpaper group. A similar pattern holds on the kz = 0
plane of MSG77.18.

195145-12



SUBDIMENSIONAL TOPOLOGIES, INDICATORS, AND … PHYSICAL REVIEW B 103, 195145 (2021)

[1] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[2] M. Z. Hasan and C. L. Kane, Colloquium, Rev. Mod. Phys. 82,
3045 (2010).

[3] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, The space
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