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Green’s function as a defect state in a boundary value problem
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A perspective of the Green’s function in a boundary value problem as the only eigenstate in an auxiliary
formulation is introduced. In this treatment, the Green’s function can be perceived as a defect state in the presence
of a δ-function potential, the height of which depends on the Green’s function itself. This approach is illustrated
in one-dimensional and two-dimensional Helmholtz equation problems, with an emphasis on systems that are
open and have a non-Hermitian potential. We then draw an analogy between the Green’s function obtained
this way and a chiral edge state circumventing a defect in a topological lattice, which shines light on the local
minimum of the Green’s function at the source position.
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I. INTRODUCTION

The Green’s function is an effective tool to solve linear
differential equations [1,2], both theoretically and numeri-
cally. More importantly, it provides a fundamental connection
between the source and its field [3], as already recognized in
its original form in the three-dimensional Laplace equation [4]
and preceding Dirac’s introduction of the δ function by more
than a century. When extended to address dynamical equa-
tions and their spectral representations, the Green’s function
becomes the propagator that is essential to field theories [5].
As such, the Green’s function is a powerful and indispens-
able utility in a variety of transport and scattering problems,
ranging from condensed-matter physics [6,7], optics and pho-
tonics [8–10], to high-energy physics [11].

In this article we introduce a difference perspective of the
Green’s function, i.e., treating it as the single eigenstate in
an auxiliary boundary value problem. In addition to further
enrichment and shaping of our physical intuition through the
Green’s function, we find exceptional parallels between the
Green’s function and defect states due to a local potential,
including a chiral edge state circumventing a defect on its path
in a topological lattice.

Below we introduce formally the Green’s function problem
and lay out the fundamentals of our approach. The Green’s
function of an operator L in a variety of physics problems can
be defined by

[z − L(r)]G(r, r′; z) = δ(r − r′), (1)

with a proper boundary condition. Here z is a parameter (e.g.,
the energy) and r, r′ are the coordinates of the field and the
source, respectively. A different perspective of the Green’s
function can be obtained using the following auxiliary eigen-
value problem:

[z − L(r)]ψm(r, r′) = λm(r′)V (r, r′)ψm(r, r′). (2)

As we will show, this auxiliary problem has a single eigen-
value λ0(r′) and eigenstate ψ0(r, r′) for a given source

position r′, when V (r, r′) is chosen to be δ(r − r′). The
Green’s function is then uniquely determined by

G(r, r′) = ψ0(r, r′)
λ0ψ0(r′, r′)

, (3)

and λ−1
0 gives the value of the Green’s function at the source

r = r′. As a bonus, we obtain directly the local density of
states (LDOS) that is proportional to the imaginary part of
G(r, r; z) [7], i.e., Im[λ−1

0 ]. The reciprocity of the Green’s
function, though implicit in Eq. (3), can be easily verified
in the absence of an effective magnetic field, as shown in
Appendix A. Note that we have suppressed the r′ dependence
of λ0 in Eq. (3) for conciseness. Below we will do the same
for the r dependence of L and the dependence of ψm on its
second argument, i.e., the position of the source.

Before we apply this approach to various Hermitian and
non-Hermitian problems, we first prove Eq. (3) and discuss
the general properties of ψm(r). With the choice of V (r, r′)
mentioned above, the right-hand side of Eq. (2) for ψ0(r) is
simply

λ0δ(r − r′)ψ0(r) = λ0δ(r − r′)ψ0(r′), (4)

from which Eq. (3) follows directly by comparing with
Eq. (1), with the requirement ψ0(r′) �= 0. If there were another
eigenstate ψm �=0(r), then by repeating the same procedure
we would find that the Green’s function is proportional to
ψm �=0(r) as well, which contradicts the uniqueness of the
Green’s function with a properly imposed boundary condi-
tion. When implemented numerically, there do exist spurious
eigenvectors ψm �=0(r), which, however, can be easily dis-
carded due to their ill-behaved λm’s, as we will discuss in
Sec. II A.

The auxiliary eigenvalue approach equips us with a con-
ceptually different way to treat the Green’s function, i.e., as a
defect state [12] emerging due to the δ-function potential:

[L + λ0δ(r − r′)]ψ0(x) = zψ0(x). (5)
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As we will show, this point of view is particularly inter-
esting and helpful in a topological system with chiral edge
states [13–17]. For example, if a point source is placed at
the edge of a two-dimensional (2D) topological insulator,
the auxiliary eigenvalue approach indicates that an analogy
exists between the Green’s function and a chiral edge state
circumventing a defect at the same location. This interpreta-
tion provides an intuitive understanding of the local minimum
of the Green’s function at the source position, which we will
illustrate using a 2D square lattice with a π/2 Landau gauge.

The rest of the paper is organized into two main parts,
where we validate our method and discuss the insight it pro-
vides, respectively. In Sec. II, we first validate our method in
a one-dimensional (1D) Hermitian (closed) system where the
analytical form of the Green’s function is available. We then
extend the validation to two 1D non-Hermitian systems with
parity-time (PT ) symmetry [18,19], focusing on the Green’s
function at an exceptional point (EP). An EP is a unique
degeneracy found only in non-Hermitian systems, where two
or more eigenstates of the system coalesce. It has led to a
plethora of intriguing phenomena, and in particular, it was
shown recently that the Green’s function can be fully de-
coupled from the coalesced eigenstate in a photonic system,
which is instead given by the Jordan vector or the “miss-
ing dimension” of the Hilbert space [20]. We show that our
method based on Eq. (2) captures this extraordinary behav-
ior nicely in a ring cavity, besides describing correctly the
Green’s function in a PT -symmetric photonic molecule. We
further validate our method in quasi-1D waveguides, which
are frequently employed to study disordered mesoscopic and
optical systems [21–23]. In Sec. III, we first discuss how the
defect state corresponding to the Green’s function is concep-
tually different from previous studies of defect states, i.e.,
the corresponding defect strength is not an arbitrary param-
eter but uniquely determined by the Green’s function itself.
We then show that our approach based on Eq. (5) offers a
systematic approach to construct a real eigenvalue for an arbi-
trary non-Hermitian system, without relying on the presence
of PT symmetry or pseudo-Hermiticity [24]. This discussion
also extends to a general V (r, r′) in Eq. (2), which replaces
the δ function as a local or nonlocal potential. Finally, we
highlight the intriguing manifestation of the linkage between
the Green’s function and a defect state in the aforementioned
2D topological lattice.

II. VALIDATION

A. 1D Hermitian case

We start with an example where the analytical form of the
Green’s function is available. Consider the scalar Helmholtz
equation in 1D with a uniform refractive index n ∈ R:

L = − 1

n2
∂2

x , z = k2. (6)

Here k is the real-valued wave vector in free space. Below
we take the speed of light in vacuum to be 1 and do not
distinguish k from the (circular) frequency. We impose the
Dirichlet boundary conditions G(x, x′) = 0, ψm(x) = 0, at
x = 0, L, which renders the system Hermitian. Consequently,
it can be shown that the Green’s function at the source position
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FIG. 1. The Green’s function (a) and DOS (b) in a 1D dielectric
cavity with perfect mirrors. The green dashed lines are obtained
using the analytical expression (8), while the black solid lines are
from our auxiliary eigenvalue approach (3). n = 3, k = 30/L, and
x′ = 0.45L (marked by the arrow) are used in (a), and 2000 grid
points are used for the finite-difference implementation of Eq. (2).

(i.e., λ−1
0 ) is real:

λ0 = k

n

[
1

tan[nk(x′ − L)]
− 1

tan(nkx′)

]
. (7)

When solved using a finite-difference scheme [25], the nu-
merical value of λ0 given by Eq. (3) shows a good agreement
with the analytical result given by Eq. (7). The corresponding
Green’s function, which we shown in Fig. 1(a), also agrees
nicely with its analytical expression

G(x, x′) =
{ sin[nk(x−L)]

λ0 sin[nk(x′−L)] (x > x′),
sin(nkx)

λ0 sin(nkx′ ) (x � x′).
(8)

The numerical implementation of the δ function is usually
taken to be the limit of a sharp analytical distribution, such
as a Gaussian with the standard deviation σ → 0. At the
same time, another small quantity that requires attention in the
finite-difference implementation of Eq. (2) is the lattice spac-
ing �x. If we choose σ > �x, we find spurious eigenstates
ψm �=0(x) with almost identical spatial dependence away from
the source position (not shown), but they have structures that
reside in the finite extension of the approximated δ function
(e.g., fast oscillations). This problem is remedied by letting
σ < �x, which practically leads to an approximation of the
δ function that has a single non zero element at the position
of the source, the value of which is given by 1/�x. This
choice warrants that the integration of the δ function is 1
over any range enclosing the source and 0 otherwise. With
this choice, we find that all spurious eigenvalues of Eq. (2)
approach infinity (e.g., |λm �=0L| > 1017 in the case shown in
Fig. 1), and the sole, physical one λ0 is easily obtained by
setting the numerical routine to search for the eigenvalue with
the smallest modulus.
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As mentioned in the Introduction, our auxiliary eigenvalue
approach also produces the LDOS directly. For a Hermitian
system, a limiting procedure is needed to regulate the singu-
larity at real-valued resonant frequencies:

LDOS(x; k) = lim
s→0+

−2k

π
Im[G(x, x; k + is)], (9)

i.e., a small positive imaginary part is added to the frequency
here, constructing in this way the retarded Green’s function
[see Appendix A]. Equation (9) also applies to non-Hermitian
cases, as long as the complex resonant frequencies are on
or below the real axis. The integration of LDOS(x; k) over
the whole system then gives the density of states (DOS) as a
function of the frequency.

To calculate DOS using our approach based on Eq. (2), we
choose a small s = 0.03/L and calculate − 2k

π
Im[λ−1

0 ] numer-
ically. The result agrees well with the analytical result [see
Fig. 1(b)], where λ0 given by Eq. (7) is used. The latter leads
to

DOS(k) =
∑

m

δ
(

k − mπ

nL

)
, (10)

as expected once s → 0, where km = mπ/nL (m = 1, 2 . . .)
are the real-valued resonant frequencies.

B. 1D non-Hermitian cases

For our next validation, we study the Green’s function at an
EP in a photonic molecule [26]. Such a case presents a serious
challenge to the standard approach based on the eigenvalues
of L, i.e., the bilinear expansion

G(r, r′; z) =
∑

m

φm(r)φm(r′)
(z − zm)(m, m)

, (11)

Lφm(r) = zmφm(r). (12)

Depending on the symmetry of L, the partner function φm(r)
may or may not be the same as φ∗

m(r), where “∗” denotes
the complex conjugation as usual. Here (m, n) is the resulting
inner product of φm(r) and φn(r). At an EP, the inner product
(m, m) becomes zero due to the coalescence of two or more
eigenstates of the system [19,27,28]. Although this divergence
can be eliminated using a non-Hermitian perturbation the-
ory [10,20], it requires a priori knowledge of the EPs and the
Jordan chain, which adds to the complexity of the problem.
Our auxiliary eigenvalue formulation, on the other hand, does
not suffer from this drawback.

Below we exemplify our method and compare it to the
result of a perturbation theory different from that mentioned
above, which does not require the Jordan chain that com-
pletes the Hilbert space at the EP. Our photonic molecule
is composed of two half-wavelength cavities coupled by a
distributed Bragg reflector (DBR) placed in air [see Fig. 2(a),
inset]. If different amounts of loss are introduced in the two
half-wavelength cavities, an emerging effective PT symmetry
governs the system [29].

Here we consider the outgoing boundary condition at a
real-valued frequency, which corresponds to the laser and
is different from quasibound states or resonances with a
complex frequency throughout the entire space [30]. The re-
sulting complex eigenvalues of L given in Eq. (6) are found
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FIG. 2. Green’s function of a PT photonic molecule at an EP.
The source is placed at the center of the right cavity in (a) and
in between the two cavities in (b). Inset in (a): Schematic of the
photonic molecule and the imposed boundary condition, and labels
denoting the refractive indices of each component of the heterostruc-
ture. Green dashed lines correspond to the perturbative expression in
Eq. (16), and black solid lines correspond to our auxiliary eigenvalue
approach. The locations of the sources are marked with arrows.
(c) Difference between the bilinear expansion with the perturbative
correction and the auxiliary method in (b) at the source position.

in the lower half of the complex frequency plane as a re-
sult of the non-Hermiticity caused by the cavity openness.
These complex eigenvalues are known as continuous flux (CF)
states [25,30], which have also been used to study nuclear
decays [31,32]. We note that the EPs of CF states have not
been studied before, unlike their counterparts of quasibound
states or resonances.

In the vicinity of an EP of frequency k0, the CF states in
our system can be expressed in terms of waves confined in the
left and right cavity, i.e., ψ (x) ≈ alψl (x) + arψr (x), where
the amplitudes al,r are determined by the Helmholtz equa-
tion. Without the PT -symmetric perturbation, our photonic
molecule is symmetric and hence al = ±ar in the symmetric
and antisymmetric modes, with CF frequencies k̃S, k̃A. The
introduction of a weak PT -symmetric perturbation in the di-
electric function couples the amplitudes al and ar , determined
by their spatial overlap C with the non-Hermitian perturba-
tion, which represents the strength of gain and loss.
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The eigenfrequencies of the perturbed system are then
found to be q2

± = k2
0 (1 ± �ς ). Here k0 is the CF frequency of

a single half-wavelength cavity sandwiched by two DBRs, and
� is a dimensionless detuning defined by (k̃2

S − k̃2
A)/2k2

0 . We
have also defined ς ≡

√
1 − β2, where β = C/�. One EP is

reached when ς = 0, resulting in q2
± = q2

0. The corresponding
eigenstates ψ±(x) are given by

ψ±(x) = ψl (x) + β±ψr (x), (13)

where β± ≡ iβ ± ς . The inner product of the eigenstates is
defined as

(i, j) ≡
∫

ε0(x)ψi(x)ψ j (x)dx, (i, j = ±), (14)

where ε0(x) is the dielectric function before the PT -
symmetric perturbation is introduced. In other words, the
partner functions in Eq. (11) are chosen as ψ±(x) =
ε0(x)ψ±(x). This definition of the inner product warrants the
biorthogonality (+,−) = (−,+) = 0, and we find (+,+) =
2β+ς → 0, (−,−) = −2β−ς → 0 as the system approaches
the EP.

As seen from Eq. (11), the vanishing inner products
(+,+), (−,−) here at the EP cause a catastrophe in the
calculation of the Green’s function, because the two corre-
sponding terms diverge independent of the frequency:

G(x, x′; k) ≈ ψ+(x′)ψ+(x)

(q2 − q2+)(+,+)
+ ψ−(x′)ψ−(x)

(q2 − q2−)(−,−)
. (15)

However, it can be shown that the diverging behaviors in the
two terms cancel each other precisely [10,20], leading to

G(x, x′; k) ≈ ε0(x′)
ψl (x′)ψl (x) + ψr (x′)ψr (x)

k2 − k2
0

− i�k2
0ε0(x′)

ψEP(x′)ψEP(x)(
k2 − k2

0

)2 , (16)

to the leading order of the small perturbation parameter ς .
Here ψEP = ψ±|β=1 is the coalesced eigenstate at the EP. As
expected [9,33], a second-order pole appears in the second
term due to this coalescence. Details on the perturbative anal-
ysis can be found in Appendix B.

To verify the robustness of our method based on Eq. (3)
in the vicinity of the EP, we choose the heterostructure of
length L shown in Fig. 2. It consists of DBRs of refractive
indexes n1 = 2 + 0.001i and n2 = 3 + 0.001i, and each layer
accommodates a quarter of their respective wavelengths at
ka = 1.570, where a is the lattice constant. The two half-
wavelength cavities with loss are fine-tuned to achieve an
EP at kEPa = 1.570 − 0.006913i using nl = 2 + 0.001i, nr =
1.9999 + 0.0029i, and k = Re[kEP].

Figure 2 shows the Green’s function of this system when
the source is placed at different locations. First we place the
source at the center of the right cavity, where we expect the
approximation (16) using just ψ±(x) [and ψl,r (x)] to hold.
As Fig. 2(a) shows, it is nearly identical to the result of
our auxiliary eigenvalue approach (3), and the inclusion of
more CF states away from the EP barely changes the Green’s
function (not shown). If instead we place the source at the
center of the heterostructure, Eq. (16) alone is insufficient to
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FIG. 3. Chirality-reversal Green’s function in a PT -symmetric
ring cavity. (a) Phase of the Green’s function (solid line) and the
coalesced eigenstate (dotted line). Dashed lines point to the phase
of the Green’s function at the source (marked by the arrow). Shaded
regions show the half periods with higher loss. (b) False color plots
showing the constant amplitudes of the coalesced eigenstate (top)
and the Green’s function (bottom) along the ring. A finite width
is imposed on the ring for visual clarity. Here n0 = 3, δn = 0.003,
l = 1, kEPL = 2.0944 − 0.0021i, kL = 2.0944, and x′ = L/8.

capture the features of the Green’s function [see Fig. 2(b)].
However, once a large set of additional eigenfunctions of L are
also included, a good agreement to our auxiliary eigenvalue
approach is again observed [see Fig. 2(c)]. These results show
that Eq. (3) provides a reliable and convenient method to
calculate the Green’s function, even in the presence of EPs.

A similar but more striking behavior of the Green’s
function at an EP was recently reported in an effective PT -
symmetric ring cavity with refractive index [20]

n(θ ) = (n0 + iδn) + δn(cos 2lθ + i sin 2lθ ). (17)

Here θ is the azimuthal angle, and below we will use the arc
length x = Rθ ∈ [0, L] as the coordinate, where R is the radius
of the ring and L = 2πR is the circumference. n0 and δn are
the real and imaginary parts of the background index, and
the latter is positive to include both absorption and radiation
losses. l is a positive integer, and the complex index grating,
proportional to e2ilθ , scatters the clockwise (CW) wave of
angular momentum −l to the counterclockwise (CCW) wave
of angular momentum l but not vice versa. Note that the
chirality and the sign of Im[n] here are defined with respect
to the temporal dependence e−iωt .

Consequently, an EP appears at kEPR = l/(n0 + iδn) with
the coalesced CCW eigenstate ψ (x) = eilθ [34]. The Green’s
function, on the other hand, can be fully decoupled from
this mode even on resonance, if the source is placed at θ =
(m + 1/4)π/l where m is a non-negative integer [20], i.e.,
at one of the most lossy spots in the passive ring cavity.
The Green’s function is given by the corresponding Jordan
vector J (x) ∝ e−ilθ instead, i.e., the “missing dimension” of
the Hilbert space at the EP in the CW direction.

This extraordinary behavior is captured nicely using our
auxiliary eigenvalue approach (see Fig. 3). In addition, a
perturbative approach shows that the Green’s function at the
source is given by [20]

G(x′, x′; k) ≈ 1

2(k − kEP)kEPL
, (18)
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which is almost imaginary on resonance (i.e., k = Re[kEP])
for a high-Q resonance with |Im[kEP]| 
 Re[kEP]. In the case
shown in Fig. 3, this value is (−113.99i + 0.228)R and nearly
identical to that given by our auxiliary eigenvalue approach,
i.e., (−113.99i + 0.224)R.

C. Quasi-1D waveguides

Quasi-1D waveguides are frequently used in the study of
disordered mesoscopic and optical systems [21–23], and the
Green’s function plays a crucial role to construct the scattering
and transfer matrices [35,36]. Here again we consider the
scalar Helmholtz equation in a waveguide with background
refractive index n(r):

L = − 1

n2(r)

(
∂2

x + ∂2
y

)
, z = k2. (19)

A finite width Ly in the transverse direction and the Dirichlet
boundary conditions at y = 0, Ly lead to a set of trans-
verse modes (“channels”) fm(y) = sin[nk(y)

m y], where nk(y)
m =

mπ/Ly is the transverse wave number and m is a positive inte-
ger. At a given frequency k, the longitudinal wave number in
the mth channel is given by nk(x)

m = n{k2 − [k(y)
m ]2}1/2, and this

channel is propagating (evanescent) if k(x)
m is real (imaginary).

To validate our auxiliary eigenvalue approach in quasi-1D
waveguides, we first consider a uniform waveguide with the
outgoing boundary condition. In this case an analytical ex-
pression exists for the Green’s function, which can be written
as the following infinite sum using the channel functions:

G(r, r′; k) =
∑

m

n
sin

[
nk(y)

m y′] sin
[
nk(y)

m y
]

ik(x)
m Ly

e±ink(x)
m x. (20)

Here the source point r′ = (x′, y′) is placed at x′ = 0, y′ �= 0,

Ly, and the “+ (−)” sign in the exponent applies to a positive
(negative) x. Clearly, only the propagating channels of a finite
number affect the far-field behavior of the Green’s function,
while the logarithmic divergence of the Green’s function at
the source, a generic property in 2D (including quasi-1D),
is reflected by the infinite number of evanescent channels
in the summation. Numerically, this divergence is truncated
either by the inclusion of only a finite number of evanescent
channels or the finite resolution of the spatial discretization.
We also note that the Green’s function is dimensionless in
quasi-1D.

Figure 4 shows one example where our auxiliary eigen-
value approach, implemented using the finite-difference
method [25,37] (solid line), is compared with the analytical
result given by Eq. (20). With just the three propagating
channels available in this case (dotted line), Eq. (20) describes
the Green’s function well far from the source (>2 μm); with
more channels included (e.g., 100, dashed line), a good agree-
ment between Eq. (20) and our auxiliary eigenvalue approach
is observed, where the grid spacings �x = 1/30 μm, �y =
3/130 μm used in the finite-difference method are compa-
rable to the shortest evanescent tail in the summation (i.e.,
1/k(x)

m=100 ≈ 0.01 μm.)
For structured or disordered quasi-1D waveguides con-

nected to two semi-infinite regions (“leads”), the Helmholtz
equation is no longer separable in x and y, and an analytical
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FIG. 4. Green’s function in a uniform waveguide with Ly =
2 μm and n = 1.5 everywhere. (a) and (b) show the slices along x
and y at the source position x′ = 0, y′ = 3/13 μm. The free-space
wavelength is 1550 nm.

expression for the Green’s function in the form of Eq. (20)
does not exist. Nevertheless, one can still compare to the
bilinear expansion (11) as we show in Figs. 5(a) and 5(b) for a
PT -symmetric waveguide, despite its slow convergence [see
Fig. 5(c)].

Here we also briefly review a standard technique used to
calculate the Green’s function in quasi-1D waveguides, i.e.,
the recursive Green’s function method [38,39]. The com-
parison of the Green’s functions obtained in our proposed
approach and by the recursive Green’s function method will
be present in Sec. III.

The heart of the recursive Green’s function method lies in
the celebrated Dyson’s equation:

G = G0 + G0V G. (21)

G is the Green’s matrix expressed in the spatial basis here,
i.e., its element Gi, j gives the value of the Green’s function
at point i when the source is placed at point j. In a quasi-1D
system with N segments, V represents the couplings between
the (N − 1)th and N th segments due to L, and G0 is the value
of G when V is taken to be zero. In other words, G0 contains
the Green’s matrices of two separate systems, one for the first
N − 1 segments on the left as a whole and one for the last
segment on the right. This recursive procedure then starts with
a single segment on the left and proceeds with more segments
added from the right, one at a time.

When implemented using the finite-difference method that
is equivalent to a tight-binding lattice [39], the recursive
Green’s function gives the identical result as our auxiliary
eigenvalue approach, because they solve exactly the same
discretized equation. Each segment of the system is simply a
single column along y. We note, however, these two methods
serve different purposes. The auxiliary eigenvalue approach
gives the values of the Green’s function inside the entire
waveguide for a given position of the source, which can be
both in the interior of the waveguide or on its boundaries. The
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FIG. 5. (a, b) Same as Fig. 4 but for the Green’s function in
a PT -symmetric waveguide. Here Lx = 9 μm, Ly = 3 μm, and the
source is at x′ = −1/60 μm, y′ = 1.5 μm. Inset in (a): Schematic of
the waveguide. Im[n(x)] = ±0.05 for x ∈ [−3, 0] μm and [0, 3] μm,
respectively, where Re[n(x)] = 2 in the central half of the width.
Re[n(x)] = 1.2 elsewhere inside the waveguide and 1 outside.
(c) Convergence of the bilinear expansion at the source (upper) and
at x = 4.5 μm, y = 1.5 μm (lower).

recursive Green’s function method, on the other hand, is par-
ticularly suitable for solving the Green’s function connecting
the two boundary layers, with the source placed in either one
of them [see Appendix C]. Extra steps are needed to solve the
Green’s function inside the waveguide, which is more intense
numerically.

III. NEW INSIGHT

Having validated the proposed auxiliary eigenvalue ap-
proach to calculate the Green’s function in various systems,
we now turn to the insight this method provides, i.e., viewing
the Green’s function as a defect state as manifested by Eq. (5).
Below we will discuss three essential aspects of this insight.

A. The Green’s function determines its own defect strength

Unlike previous studies of defect states, the Green’s func-
tion in our formalism corresponds to a unique and only
eigenstate, instead of an (infinite) set of perturbed eigenstates
of the original system described by L in Eq. (1). This dif-
ference is a manifestation of a more fundamental distinction
between these two seemingly similar problems: the strength
of the defect potential is a quantity that can be freely chosen
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FIG. 6. (a) Eigenvalues of the Schrödinger equation (22) as a
function of λ0 for n = 3 and x′ = 0.45L. Only four of them are
shown near z = 900/L2. (b) Schematics showing the potential as a
function of the position. Shaded areas indicate the Dirichlet boundary
condition and the δ-function potential with λ0 = 38.6/L. Two un-
normalized wave functions |ψ (x)|2 are also shown.

in previous studies, while it is determined by the Green’s
function itself in our formalism.

To elucidate this point, we revisit the 1D Hermitian system
described by the scalar Helmholtz equation in Fig. 1. The
eigenstate ψ0(x) in our auxiliary eigenvalue equation (2) (and
the Green’s function) for a given energy z = k2 then corre-
sponds to the wave function of the following Schrödinger-like
equation inside a closed box with a δ-function potential:[

− 1

n2
∂2

x + λ0δ(x − x′)
]
ψ0(x) = zψ0(x). (22)

Previous studies of defect states would set the defect strength
λ0 as a free parameter and find all possible eigenvalues {zi}
[see Fig. 6(a)]. This set, infinite in number in this case, corre-
sponds to an infinite set of defect states, i.e., wave functions
perturbed by the δ function [40].

When treating the Green’s function as a defect state in our
formalism, however, the defect strength λ0 is not an arbitrary
number. It is given by the inverse of the Green’s function at
the source position, as mentioned in the Introduction, i.e.,
it is unknown before the Green’s function is solved. Such a
problem has not emerged in previous studies of defect states,
which has prevented a rigorous association of the Green’s
function as a defect state in the past.

Therefore, the fact that the Green’s function determines
its own defect strength is one important aspect of the insight
that our formalism brings. Only after this defect strength is
found via the Green’s function itself can we relate previous
studies of defect states to our result: the former seeks the
one-to-infinite mapping between a given λ0 and {zi}, while
the Green’s function in our formalism is represented by a
one-to-one mapping between z and λ0. These two different
mappings can be seen in Fig. 6(a), and it is important to note
that the “bandwidths” of the eigenstates (gray shaded areas)
do not overlap even when the range of λ0 is extended from
−∞ to ∞. This feature is determined by the uniqueness of the
Green’s function: for a given energy z and source position x′,
the Green’s function is uniquely determined by the boundary
condition, and so is its inverse height at x′ [i.e., λ0; see Eq. (3)
and its discussion]. Each of the “band gaps” in Fig. 6(a) (white
areas) shrinks to a single point in this limit, and it corresponds
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to one energy eigenvalue of either subsystem separated by the
δ potential. Finally, we note that although the defect strength
is unknown before the Green’s function is solved, they can
be found simultaneously in our approach as the generalized
eigenvalue and eigenvector in Eq. (2).

B. Complex potential in non-Hermitian systems
with real energy eigenvalues

In non-Hermitian systems, the energy eigenvalues {zi} are
generally complex. However, there is a systematical way
to construct real eigenvalues in non-Hermitian system, i.e.,
by involving PT symmetry [18], or equivalently, pseudo-
Hermiticity [24]. In this approach, the energy eigenvalues
appear either on the real axis or as complex conjugates.

The perspective we present here indicates another system-
atic way of finding real energy eigenvalue(s) in the presence
of a complex potential. This observation is most obvious by
inspecting Eq. (5) [and Eq. (22) in Sec. III A] with the un-
derstanding that the defect strength λ0 is complex in general
(see Sec. II B). Compared with the symmetry-based approach
mentioned above, here we have a greater freedom to tailor
such an energy eigenvalue, as we elucidate below.

As an example, let us consider the following 1D tight-
binding lattice of a finite length N :

Hψ (n) = (−1)n−1iγψ (n) + t[ψ (n + 1) + ψ (n − 1)]. (23)

Here we have used the integer inside the parentheses to indi-
cate the lattice site where the wave function ψ is evaluated.
H can describe, for example, an array of optical cavities or
waveguides with alternate on-site gain and loss. t in Eq. (23)
is the nearest-neighbor coupling, and we have chosen the
on-site energy z0 of a single-cavity mode to be the reference
energy and set it to be zero. With no detuning in the real
part of the on-site energies and a real-valued t , this non-
Hermitian system has non-Hermitian particle-hole (NHPH)
symmetry [41–44]. The latter warrants a non-Hermitian flat-
band [12] with Re[zi] = 0 when the strength of gain and loss
γ is above 2t .

The Green’s function of such a system is defined as

(z − H )G = δn′ , (24)

i.e., it is a column vector parametrized by the energy z and
the source position n′. δn′ is an empty column except for
the element 1 at the position n′. The corresponding auxiliary
eigenvalue problem can be rewritten as

(H + λ0�n′ )ψ0 = zψ0, G = ψ0

λ0ψ0(n′)
, (25)

where ψ0 is the only eigenstate in the form of a column vector,
and ψ0(n′) is its value at the source position n′. Note that in a
discrete system the column vector δn′ becomes the matrix �n′

in Eq. (25), which has a single nonzero element in row n′ and
column n′.

If we now treat H ′ ≡ H + λ0�n′ as our target non-
Hermitian Hamiltonian and seek one real eigenvalue of it by
varying λ0, we can simply assign any real number z to this tar-
get eigenvalue by solving λ0 and ψ0 simultaneously through
Eq. (2) for this z. Figure 7(a) shows the required complex
defect strength λ0 when this real eigenvalue of H ′ is shifted
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[

0/
t]
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(a) (b)
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Re[z /t]
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0

2
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[z

 /t
]

-0.05            0             0.05

-1.05

-1.03

-1.01

i

i

FIG. 7. (a) Trajectory of the complex defect strength λ0 when z
increases from −t/10 to t/10. The lattice has 60 sites with n′ = 1 and
γ = 2t . (b) Trajectories of all 60 eigenvalues of H ′ when λ0 follows
the trajectory in (a). Black dots show their values when z = −t/10.
Only one of them is real, i.e., the one shifting from −t/10 to t/10 as
designed.

from −t/10 to t/10. In this process, all other eigenvalues of
H ′ remain complex, as shown by Fig. 7.

Importantly, this approach to realizing a real and tunable
eigenvalue in non-Hermitian systems is not limited to the
case with a (single) δ-function defect. We can replace the δ

function [i.e., the matrix �′
n in Eq. (25)] by an arbitrary matrix

V :

H ′ψi = (H + λ0V )ψi = ziψi. (26)

Here V represents a local (nonlocal) potential when it is di-
agonal (nondiagonal). To warrant a real eigenvalue z among
the set of eigenvalues {zi} with a properly chosen λ0, we solve
the following generalized eigenvalue problem with the target
z ∈ R:

(z − H )ψm = λmV ψm. (27)

This is exactly the discrete form of Eq. (2). We note that
there is more than one pair of generalized eigenvalue λm and
eigenstate ψm in Eq. (27), unless V represents a δ function [in
which case the only pair {λ0, ψ0} gives the Green’s function
via Eq. (25)]. This is a point we have made in the Introduction
using the continuous operator L.

Because there is now more than one generalized eigenvalue
λm, any one of them can be chosen as the required potential
strength λ0 in Eq. (26). To illustrate this point, we revisit
the 1D non-Hermitian system studied above and replace the
δ function by a step function, whose value is 1 only in the
left third of the lattice. Two possible trajectories of λ0 (out of
many) are shown in Fig. 8(a) using the procedure described
above, each leading to the assigned real eigenvalue that is
tuned from −t/10 to t/10 [Figs. 8(b) and 8(c)].
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FIG. 8. (a) Same as Fig. 7(a) but with a different V mentioned in
the text. Two possible trajectories of λ0 are shown when the target
real eigenvalue of H ′ in Eq. (26) is varied from −t/10 to t/10. All
the trajectories of {zi} in this process are shown in (b) and (c), for
each of the two curves in (a) respectively.

C. The Green’s function as a topological edge state
with a boundary defect

Finally, we reveal the most intriguing connection between
the Green’s function and a defect state, i.e., in a 2D topological
lattice with a chiral edge state. While the zero eigenvalues of a
spinor Green’s function have been identified as a topological
indicator [45], an intuitive understanding for the observation
that the Green’s function can behave as a chiral edge state
circumventing the source position has been missing. Below
we first briefly review the properties of such a system and lay
out why this connection is striking.

This system breaks Lorentz reciprocity [46,47], which can
be achieved in an electronic system by imposing a magnetic
field. An analogy can be introduced to photonic systems by
imposing an artificial gauge field, achieved experimentally by
asymmetric couplings between two neighboring lattice sites
on a tight-binding lattice [13–16]; while the couplings in
both the x and y directions still have the same amplitude,
their phases are now different. Here we consider a square
lattice (Fig. 9) with uniform vertical coupling and horizontal
asymmetric couplings of the same amplitude g, realizing a
Landau gauge with a π/2 flux through the smallest plaque-
tte [13,14]. Its bottom-right corner is pierced by the opposite
flux, and an on-site potential shift of −2g is also introduced
to decouple it from the rest of the system. Due to its sublat-
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FIG. 9. Analogy between the Green’s function and a chiral edge
state circumventing a defect in a topological square lattice. (a) The
Green’s function calculated with z = 1.85g and the source at x = a,

y = 10a. (b), (c) Slices of the Green’s function in (a) along y at
x = 40a and a, respectively. Solid, dashed, and dotted lines show the
results of our auxiliary eigenvalue approach, the recursive Green’s
function, and the bilinear expansion with 20 chiral edge states in this
band gap, respectively.

tice symmetry [48], the energy spectrum of the main region
is symmetric about z = 0, set at the value of the identical
on-site potential. It has an edge band with CCW chiral edge
states in z/g ∈ [1.08, 2.61], with their CW counterparts in
z/g ∈ [−2.61,−1.08].

When one places a source at the edge of the system which
also has the frequency in one of the bulk band gaps, naively
one would expect this source to couple to the chiral edge states
in this bulk gap (as the bilinear expansion method indicates)
and move smoothly around the edges of the two-dimensional
defect-free system. This is indeed what we find on resonance,
i.e., when z is almost the same as the energy of a chiral edge
state of the unperturbed system (not shown). In this case, the
Green’s function is given essentially by this single chiral edge
mode as the bilinear expansion suggests, and it goes through
the defect created by the δ-function potential with little scat-
tering. However, when the source is not on resonance with
a chiral edge state, the resulting Green’s function is smooth
only away from the source position [see Fig. 9(a)], and an
unexpected local minimum is found at the source position,
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e.g., x = a, y = 10a in Figs. 9(a) and 9(c), where a = 1 is the
lattice constant.

Our approach offers an insight for this behavior: even
though the system itself [represented by the operator L in
Eq. (2)] does not have a defect, the Green’s function is not
trivially related to one of its eigenstates off resonance; instead,
it is given by the eigenstate of a different system, with the
introduction of a δ-function defect potential to the original,
defect-free system. Even though the strength of this δ-function
potential is unknown before the eigenvalue problem is solved,
it is known that chiral edge states still exist in the presence
of a boundary defect and circumvent the latter. This behavior
is precisely what we find for the Green’s function here as
Fig. 9(a) shows, and its local minimum is hence the conse-
quence of the topological protection of chiral edge states.

In this case, the δ-function defect creates a local pertur-
bation so strong that it can only be captured by including a
large number of unperturbed eigenstates of L in the bilinear
expansion, including even chiral edge states in the opposite
direction that are very different in energy (not shown). The
far field, on the other hand, is only minutely affected by this
local perturbation, and the bilinear expansion works well with
a small number of unperturbed eigenstates of L in the same
bulk gap [see Fig. 9(b)].

IV. DISCUSSION AND CONCLUSIONS

In summary, we have introduced in this work a perspective
of the time-independent Green’s function as a single eigen-
state of an auxiliary eigenvalue formulation that embodies a
defect state created by the δ-function potential. The height
of the δ-function potential is determined by the inverse value
of the Green’s function at the source position, which is given
directly in the form of a generalized eigenvalue problem given
by Eq. (2). It is the only well-behaved and finite eigenvalue,
easy to identify numerically. Therefore our approach differs
both conceptually and computationally from previous inves-
tigations of eigenstates of a δ-function potential, which were
not related to the Green’s function.

The uniqueness of the eigenstate that gives the Green’s
function in our approach should be distinguished from the sin-
gle bound state in an attractive 1D δ-function potential [49]. In
our case the δ-function potential can be repulsive or attractive
in a Hermitian system, depending on the sign of λ0 [see
Fig. 6(a) and Eq. (7)], and it becomes complex in general
in non-Hermitian systems. Furthermore, the eigenstate in our
approach does not depend on the original potential included in
the operator L, while the aforementioned bound state assumes
a vacuum background. Finally, our eigenstate exists in higher
dimensions as well, with clearly different boundary conditions
and spatial profiles from a bound state [see Fig. 9(a), for
example].

We have also verified the Green’s function obtained in our
method by comparing both to analytical results when avail-
able and to two frequently used numerical methods, i.e., the
recursive Green’s function method and the bilinear expansion
in the basis of the system’s eigenstates. At an EP, where a
perturbative treatment of the bilinear expansion becomes nec-
essary, our method is still robust, as seen from the examples
in two PT systems. Our method also gives identical results to

the recursive Green’s function method, implemented by finite
difference on the same tight-binding lattice.

Our defect-state approach can also be applied to more
numerically demanding cases, e.g., in the study of diffusive
transport and wave localization [21,22]. We have investigated
disordered quasi-1D waveguides over 100 wavelengths long
and with over 60 transverse channels (not shown). In these
cases, the memory storage for the recursive Green’s function
may become an issue, when the values of the Green’s func-
tion in the interior of the waveguides are also computed for
light-matter interaction or laser emissions. This is because the
Green’s matrix obtained from the recursive procedure mingles
the values of the Green’s function generated by sources placed
across the entire system. The defect-state approach excels in
this regard, because each source is treated independently. We
should also mention that this advantage becomes less notice-
able or even a disadvantage if the Green’s function needs to
be evaluated with the source at many different locations.

More importantly, our approach offers a previously un-
explored physical insight that both the recursive Green’s
function method and the bilinear expansion lack, i.e., the
linkage between the Green’s function and a defect state. We
have exemplified an intriguing manifestation of this linkage
using a topological chiral edge state, where the local minimum
of the Green’s function is analogous to a chiral edge state
circumventing a boundary defect. Therefore, even though our
discussions have focused on the Helmholtz equation for scalar
optical waves, we expect this perspective and the physical
insight it offers to have important applications in other related
fields as well, including condensed-matter systems, acoustics,
electronic circuits, and so on.
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APPENDIX A: RECIPROCITY IN THE AUXILIARY
EIGENVALUE APPROACH

We derive some relations between the Green’s functions
G(r, r′) and G(r′, r), based on the symmetries of L. We start
from a matrix description in which the Green’s function oper-
ator G(z) is defined from G(r, r′; z) = 〈r|G(z)|r′〉. We use the
same symbol L for the matrix representation of the system.
The Green’s function satisfies the following equation:

[z1 − L]G(z) = 1, G(z)[z1 − L] = 1, (A1)

where 1 is the identity matrix. Here, we identify the Green’s
function as being both the right and left matrix inverses of
[z1 − L]. Considering that in non-Hermitian physics there is
a distinction between left and right sets of eigenvectors [50],
one may attempt to distinguish between the left and right
Green’s functions. However, it can be shown that they are
identical, since [z1 − L] is a matrix of full rank. It is possible
to obtain relations between G(z) and [G(z)]T , or [G(z)]†,
when performing matrix transposition or Hermitian conjuga-
tion on Eq. (A1).

195142-9



JOSE D. H. RIVERO AND LI GE PHYSICAL REVIEW B 103, 195142 (2021)

We start by analyzing the case LT = L: matrix transposi-
tion of Eq. (A1) leads to the relation G(z)T = G(z), or more
explicitly, G(r′, r; z) = G(r, r′; z), which is the usual Lorentz
reciprocity condition. This relation holds when L is a sym-
metric matrix, describing a system with symmetric couplings
and hence without an effective magnetic field. It is valid for
non-Hermitian systems with this property as well, such as the
case with a non-Hermitian flatband discussed in Fig. 7 of the
main text.

In a general Hermitian system, L† = L, and uniqueness
of the matrix inverse demands that [G(z)]T = [G(z∗)]∗, or
G(r′, r; z) = [G(r, r′; z∗)]∗. It is customary to state this rela-
tion in terms of Green’s functions G(±) with outgoing and
incoming boundary conditions, respectively. This nomencla-
ture is especially useful if z = k + iη, with η > 0 small
compared to k:

G(±)(r, r′; k) ≡ lim
η→0+

G(r, r′; k ± iη). (A2)

Therefore we can write the reciprocity condition as
G(±)(r′, r; k) = [G(∓)(r, r′; k)]∗. The solutions G(±) are of-
tentimes referred to as the retarded and advanced Green’s
functions, inspired from the association to sources generating
outgoing or incoming waves. Systems that are non-Hermitian
and do not have symmetric couplings lead to more compli-
cated reciprocity relations, involving the Green’s functions of
two different systems. This is expected, since the scattering
properties derived from the Green’s functions of systems re-
lated by a time-reversal transformation are nontrivial and yet
to be understood. Reference [51] provides interesting scatter-
ing relations between two “time-reversal partners” in 1D and
quasi-1D systems.

Our Green’s function approach for time-reversal or non-
Hermitian symmetric systems leads to a relation between the
single eigenstates:

ψ0(r, r′)
λ0(r′)ψ0(r′, r′)

= ψ0(r′, r)

λ0(r)ψ0(r, r)
, (A3)

or

ψ0(r′, r) = ψ0(r, r′)
[

λ0(r)ψ0(r, r)

λ0(r′)ψ0(r′, r′)

]
, (A4)

whereas for the general non-Hermitian problem, we find

ψ̄0(r′, r) = [ψ0(r, r′)]∗
[

λ̄0(r)ψ̄0(r, r)

λ0(r′)ψ0(r′, r′)

]
, (A5)

where we used the notation ψ̄0(r, r′, z) ≡ ψ0(r, r′, z∗). The
same result is obtained if we identify ψ̄0 with the advanced
solution and ψ0 with the retarded solution, or vice versa.

APPENDIX B: PERTURBATION THEORY AT AN EP

Below we review a generic procedure to approach effective
PT -symmetric systems with the outgoing boundary condition
based on the coupled-mode theory. In particular, we describe
a photonic molecule that consists of identical components L
and R that support localized states ψl (x) and ψr (x) in each
component. The system can be, for instance, two identical
whispering gallery resonators that are brought to proximity
such that their modes overlap and produce a pair of bonding

and antibonding states. Alternatively, one can think of a pair
of half-wavelength cavities coupled by a DBR, which is the
system discussed in Sec. II B of the main text. Note that
due to the outgoing boundary condition, such systems are not
truly PT symmetric, because time reversal changes the outgo-
ing boundary condition to the incoming boundary condition.
However, if the states are highly localized, as in our discussion
below, the minute flux in or out of the system can be omitted
in the discussion of the coupled-mode theory.

The left component satisfies the Helmholtz equation:[
∂2

x + εl (x)k2
0

]
ψl (x) = 0 (x ∈ L), (B1)[

∂2
x + k2

]
ψl (x) = 0 (x ∈ elsewhere). (B2)

Here k is the real-valued external frequency at which the
Green’s function is going to be evaluated, and k0 ∼ k is one
complex-valued CF frequency. The right component is de-
fined similarly, and the localized states are normalized by∫

x∈L,R εl,rψ
2
l,rdx = 1, respectively. The composite system is

defined by ε0(x) = εl (x) + εr (x) and satisfies[
∂2

x + ε0(x)k̃2
]
ψ̃ (x) = 0 (x ∈ L ∪ R), (B3)[

∂2
x + k2

]
ψ̃ (x) = 0 (x ∈ elsewhere), (B4)

where k̃ is the CF frequency of a “supermode”

ψ̃ (x) = alψl (x) + arψr (x), (B5)

to be determined. We note that ψ̃ (x) automatically satisfies the
outgoing boundary condition at the two ends of the composite
system due to the same property of both ψl,r (x).

We make the following assumption about the system: the
spatial overlapping of the localized states in one cavity is
very weak, i.e.,

∫
x∈L,R εl,rψlψrdx ≡ g (|g| 
 1). In addition,

we note that the frequency shift due to | ∫x∈R εrψ
2
l dx| =

| ∫x∈L εlψ
2
r dx| is even smaller, which is then neglected in our

analysis below.
To derive the coupled-mode theory, we first insert

Eq. (B5) into Eqs. (B3), (B4) and simplify the result using
Eqs. (B1), (B2) for ψl (x) and their counterparts for ψr (x).
Then we multiply the resulting equation by either ψl (x) or
ψr (x) and perform an integration in the left and right com-
ponent of the system, respectively, obtaining in this way two
independent equations:[

k̃2 − k2
0 gk̃2 − tk2

gk̃2 − tk2 k̃2 − k2
0

][
al

ar

]
= 0. (B6)

It is a system of equations for the unknown amplitudes al,r and
frequency k̃, where t is defined by

∫
x∈L ψ2

r dx = ∫
x∈R ψ2

l dx.
Since the matrix operator is symmetric and has identical di-
agonal elements, a zero-determinant condition implies that
ar = ±al , giving rise to the symmetric and antisymmetric
modes ψ̃S (x) and ψ̃A(x) respectively, with frequencies

k̃2
S,A = k2

0 ± tk2

1 ± g
. (B7)

With the aforementioned approximations |g| 
 1 and k0 ∼ k,
these frequencies reduce to

k̃2
S ≈ (1 + t − g)k2

0 , k̃2
A ≈ (1 − t + g)k2

0 , (B8)
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and their splitting is equal to k̃2
S − k̃2

A = 2(t − g)k2
0 ≡ 2�k2

0 .
Now we introduce a PT -symmetric perturbation iε1(x),

which is an odd function of x. The effective PT -symmetric
system satisfies[

∂2
x + (ε0(x) + iε1(x))q2

]
ψ (x) = 0, (B9)

where q is the perturbed CF frequency to be determined to-
gether with the amplitudes A and S in the expansion of the
perturbed eigenstate ψ (x) = Aψ̃A(x) + Sψ̃S (x). Following an
analogous procedure to that described above, we obtain again
a system of equations that can be represented by the following
matrix equation for A, S:[

q2 − k̃2
S iCq2

iCq2 q2 − k̃2
A

][
S

A

]
= 0, (B10)

where C ≡ ∫
ε1(x)ψ̃A(x)ψ̃S (x)dx is integrated over the whole

system. We note that this equation and the following perturba-
tive results apply when ε0(x) is complex, i.e., the system does
not need to have balanced gain and loss to be effectively PT
symmetric [52].

To rewrite it in a more familiar form, we note that since
the PT -symmetric perturbation is assumed to be weak, we

approximate Cq2 by Ck2
0 , which leads to

H̃

[
S

A

]
≡

[
k2

S −iCk2
0

−iCk2
0 k2

A

][
S

A

]
= q2

[
S

A

]
. (B11)

The perturbed frequency q is then found to be

q2
± ≈ k2

0 (1 ±
√

�2 − C2), (B12)

where we have used the forms of k̃2
S,A from Eq. (B8). The EP

then emerges when C2 = �2, where q± ≡ kEP ≈ k0. In the
main text we have introduced ς ≡

√
1 − β2 and β ≡ C/�.

This system of equations can be transformed to the basis of
left and right components, in terms of the amplitudes al , ar :

H

[
al

ar

]
≡ k2

0

[
1 − iC �

� 1 + iC

][
al

ar

]
= q2

[
al

ar

]
. (B13)

It has the most familiar form of a PT -symmetric Hamiltonian.
This is the model that we have used to describe the photonic
molecule in Sec. II B.

The perturbative result of the Green’s function given by Eq.
(16) in the main text is derived from the following expression:

G(x, x′; k) = ε0(x′)(
k2 − k2

0

)2 − �2ς2

{(
k2 − k2

0

)
[ψl (x

′)ψl (x) + ψr (x′)ψr (x)]

− �k2
0[ iβ[ψl (x

′)ψl (x) − ψr (x′)ψr (x)] − [ψl (x
′)ψr (x) + ψr (x′)ψl (x)] ]

}
, (B14)

by dropping terms proportional to ς2, including that in β =√
1 − ς2 ≈ 1. We note that Eq. (B14) includes terms to all

orders of ς . Here it is unnecessary to invoke the Jordan vector
J (x) that completes the Hilbert space at the EP [20], but to
compare with the result given in Ref. [10], we note that it can
be chosen as

J (x) = iψl (x) + ψr (x)

2
√

�k0

e−iπ/4, (B15)

which satisfies [
H − k2

EP1
]
J (x) = ψEP(x) (B16)

with the coalesced eigenstate

ψEP(x) = 2
√

�k0e−iπ/4[ψl (x) + iψr (x)] (B17)

at the EP. Here 1 is the identity matrix, and ψEP(x) is nor-
malized differently from the main text to satisfy (ψEP, J ) = 1
[see the definition of the inner product given by Eq. (14)
in the main text]. We further note that the PT -symmetric
Hamiltonian given by Eq. (B13) above is symmetric, and
hence it is unnecessary to distinguish left and right eigenstates
(and Jordan vectors) because they are identical. Using J (x)
and ψEP(x) specified above, we find that the Green’s function
derived in Ref. [10] at the EP agrees with our result given
by Eq. (16) in the main text, once the additional factor ε0(x′)
is accounted for that originates from rewriting the Helmholtz
equation as Eq. (6) in the main text.

APPENDIX C: THE RECURSIVE GREEN’S FUNCTION

Below we briefly review the recursive Green’s function
method and our implementation of it using finite difference.
Assuming that the Green’s function defined by Eq. (1) has
been obtained at every grid point for a quasi-1D waveguide
with N − 1 columns and Ny rows, we can write down a
Green’s matrix G(N−1) that satisfies

[z1(N−1) − L(N−1)]G(N−1) = 1(N−1). (C1)

Its individual element G(N−1)
i, j gives the value of the Green’s

function at point i when the source is placed at point j. We
reserve the notation G(N−1)

i, j without the underscore below
the subscripts for the Ny × Ny block of the Green’s matrix
evaluated in the ith column with the source in the jth column,
and we apply the same notation to other matrices as well.
The (N − 1)Ny grid points are labeled from the first to the
last point in the first column, continued in the same way
onto the second and remaining columns. 1(N−1) is the identity
matrix with (N − 1)Ny rows and columns, and L(N−1) is the
finite-difference implementation of the operator L in Eq. (1),
again with (N − 1)Ny rows and columns.

To calculate the Green’s matrix with an additional column
added from the right, we separate L(N ) into L0 + V and con-
struct an ancillary matrix G0, where

L0 ≡
(

L(N−1)

L(N )
N,N

)
, G0 ≡

(
G(N−1)

G0
N,N

)
.
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V only contains the couplings between the (N − 1)th and N th
columns in L(N ), and[

z1(1) − L(N )
N,N

]
G0

N,N = 1(1) (C2)

defines the Green’s matrix G0
N,N of the isolated N th column.

It is straightforward to show that

[z1(N ) − L0]G0 = 1(N ), (C3)

and we derive the well-known Dyson’s equation

G(N ) = G0 + G(N )V G0, (C4)

where G(N ) is defined by

[z1(N ) − L(N )]G(N ) = 1(N ), (C5)

similar to Eq. (C1). Equation (C4) can be verified directly by
multiplying [z1(N ) − L(N )] from the left.

Below we drop the superscript of G(N ). Equation (C4) dif-
fers from its more familiar form in mesoscopic physics [39],
i.e.,

G̃ = G̃
0 + G̃

0
V G̃, (C6)

because there the Green’s matrix is defined by G̃[z1(N ) −
L(N )] = 1(N ) instead. We have already proven the equivalence
between the left and right matrix inverses of [z1 − L] in Ap-
pendix A, thus G̃ and G are identical.

Using Eq. (C4), the recursive relations between the blocks
of the Green’s matrices Gi, j connecting the two boundary
layers (i.e., the 1st and N th columns) can be derived:

GNN = A−1, (C7)

G1N = G0
1,N−1V N−1,N A−1, (C8)

GN1 = G0
N,NV N,N−1G0

N−1,1, (C9)

G11 = G0
1,1 + G1,NV N,N−1G0

N−1,1. (C10)

A single matrix inversion for

A = z1(1) − L(N )
N,N − VN,N−1G0

N−1,N−1VN−1,N (C11)

is needed when adding one layer from the right, and its last
term is often referred to as the self-energy [38]. Note that
besides the operator L(N ), all the pieces of information needed
for this recursive scheme are the same four matrix for the
system with (N − 1) layers. As a result, the recursive Green’s
function method is highly efficient to treat transport problems,
which does not require the knowledge of the Green’s function
inside the system. If we need the full Green’s matrix to in-
vestigate, for example, light-matter interaction in the bulk of
the system, more steps are required in the recursive Green’s
function, which scale as N2 and are more intense numerically.
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