
PHYSICAL REVIEW B 103, 195141 (2021)

Postquench entropy growth in a chiral clock model

Naveen Nishad, M. Santhosh, and G. J. Sreejith
Indian Institute of Science Education and Research, Pune 411008, India

(Received 7 January 2021; revised 9 May 2021; accepted 10 May 2021; published 18 May 2021)

We numerically study quenches from a fully ordered state to the ferromagnetic regime of the chiral Z3 clock
model, where the physics can be understood in terms of sparse domain walls of six flavors. As in the previously
studied models, the ballistic spread of entangled domain wall pairs generated by the quench leads to a linear
growth of entropy with time, up to a time �/2vg in size-� subsystems in the bulk, where vg is the maximal group
velocity of domain walls. In small subsystems located in the bulk, the entropy continues to grow, approaching
ln 3, as domain walls traverse the subsystem and increment the population of the two oppositely ordered states,
restoring the Z3 symmetry. The latter growth in entropy is seen also in small subsystems near an open boundary
in a nonchiral clock model. In contrast to this, in the case of the chiral model, the entropy of small subsystems
near an open boundary saturates. We rationalize the difference in behavior in terms of qualitatively different
scattering properties of domain walls at the open boundary in the chiral model. We also present empirical results
for entropy growth, correlation spread, and energies of longitudinal-field-induced bound states of domain wall
pairs in the chiral model.
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I. INTRODUCTION

Quantum many-body dynamics in isolated systems has
been an active area of contemporary research due in large
part to realizations of tunable, almost isolated systems of long
enough coherence times in cold atom experiments [1–9]. A
key notion in this context is the entanglement between the
subsystem and environment. Though not as easily measurable
in experiments [10,11] as local observables and correlation
functions, entanglement in the eigenstates and its dynamics
in general states give conceptual insights into broad questions
of relaxation dynamics, dephasing, quantum measurements,
thermalization, etc. [12–17]. Entanglement is also relevant
to practical considerations in quantum engineering and in
designs of algorithms for quantum many-body dynamics [18].

A quench, in which an initial state with uncorrelated local
observables undergoes a global change of the Hamiltonian,
is a paradigmatic scenario that has been used to understand
entanglement dynamics [19]. Under the new Hamiltonian, the
initial state generically has a finite energy density above the
ground state. The initial state, which in general is not an eigen-
state of the new Hamiltonian, evolves with time. A large body
of work on quenches in specific one-dimensional systems has
provided a semiclassical picture of the mechanism [20] for
the entanglement growth during this time evolution [21–31].
Immediately after a quench, entangled quasiparticle pairs gen-
erated within short distances propagate away from each other.
When these pairs are separated across the boundary between
the subsystem and the environment, the subsystem effectively
becomes entangled with its environment. The spreading of
quasiparticles leads to decay of order parameters and induces
correlations between initially uncorrelated local quantities in
different parts of the system [32–34]. Thus the quasiparticle

dynamics is closely connected to the growth of entanglement
and correlations. The entanglement growth in a subsystem of
length � is encoded in the following expression [20]:

S(t ) ∼ 2t
∫

v(k)< �
2t

dkv(k) f (k) + �

∫
v(k)> �

2t

dk f (k), (1)

where v(k) represents the velocity of the quasiparticle indexed
by quantum number k and f (k) is a function that depends on
the amount of such quasiparticles produced at the time of the
quench. If the dominant contribution to the integrals comes
from a narrow range of k (with a velocity vm), the first term
produces a linear-in-time growth in entanglement till a time
�/2vm. At large times the second term dominates, and as the
slowest quasiparticles cross the subsystem boundary, this term
saturates to a constant proportional to �.

Studies on the one-dimensional (1D) quantum transverse
field Ising model (TFIM) and perturbations to this model have
been crucial to guiding our intuition about postquench dy-
namics and relaxation in quantum chains [32–35]. Reference
[35] considered the nonequilibrium dynamics of a ferromag-
netically ordered initial state, under a TFIM Hamiltonian
with a longitudinal field perturbation aligned with the Ising
order. Even a weak longitudinal field perturbation led to a
strong suppression of the entanglement growth. The qualita-
tive change in the entanglement dynamics could be attributed
to the longitudinal field creating bound states of two different
domain-wall-like quasiparticles of the Ising chain, preventing
the original quasiparticles from spreading away from each
other.

The TFIM is a Z2-symmetric member of a broad
class of Zn-symmetric models with nearest-neighbor
interactions [36]. Simplest among these beyond the TFIM is
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the Z3-symmetric clock model. The Z3 model shares several
features with the TFIM, such as a phase diagram with an
ordered and paramagnetic phase and a continuous transition
between them. The model can be transformed into a quadratic
Hamiltonian of Z3 parafermions reminiscent of the quadratic
Majorana Hamiltonian obtained following a Jordan-Wigner
transformation of the TFIM. The model generically has a
chirality and has a richer set of domain wall flavors than the
TFIM.

In this paper, we numerically explore the dynamics after
a weak quench in a Z3-symmetric chiral clock model with
the goal of understanding the manner in which aspects of
quench dynamics learned from TFIM extend to the Z3 chiral
clock model, which has multiple domain wall flavors and
chirality. Being nonintegrable, we expect the clock model to
thermalize [37–39]. However, we will not focus on questions
of long-time behavior and thermalization and instead explore
the effect of chirality on entanglement growth at short times
that can be reliably studied using numerical tools. We will
work with weak quenches of a fully ordered state to a final
Hamiltonian that is in a ferromagnetic regime of the model,
where the low-energy quasiparticles are long-lived domain
walls. We will also explore the effect of the longitudinal field
perturbations motivated by observations made in Ref. [35].
This being a numerical study, we focus on attributes easily
accessible in the computational basis. The generation of en-
tangled quasiparticle pairs can be pictured in the expansions in
the computational basis as the generation of finite amplitudes,
after quench, for states with flipped spin domains of various
sizes centered around all points of the system. Domain walls
flank these flipped spin domains. Dispersion of these domain
walls and their scattering properties at the boundary will be
used to understand the dynamics of the subsystem entropy.

The clock model is parametrized by a parameter θ that
determines the chirality of the model, with θ = 0 repre-
senting the nonchiral model. After a quench, domain walls
in the model, for any θ , are produced in opposite-chirality
pairs (such as · · · AAABBB · · · and · · · BBBAAA · · · ); there-
fore opposite-chirality domain walls are equally abundant. As
we show, the domain walls propagate with a velocity indepen-
dent of θ or the chirality of the domain walls. As a result, we
find that qualitative features of the entanglement growth in the
bulk of the system are the same for the nonchiral and the chiral
model. Chirality, however, influences the scattering properties
of domain walls at the open boundaries and hinders symmetry
restoration in subsystems located close to the boundaries, pre-
venting regions near the boundaries from thermalizing. The
magnetization decays with time in the bulk of the system after
a quench from the fully ordered state, indicating restoration
of the Z3 symmetry in the final steady state. However, the
magnetization at the boundary retains the initial value even
in the steady state. This can be related to a qualitatively
different entanglement growth in small subsystems located in
the bulk and at the boundary. Entanglement entropy of small
subsystems in the bulk continues to grow for times beyond
the expected saturation time of �/2vg (vg being the maximal
group velocity of the domain walls), whereas at the boundary,
the entanglement entropy saturates after a time scale �/vg. The
robustness of magnetization near the boundary can also be
interpreted in terms of long coherence times near the boundary

in systems with strong zero modes [40,41]. Our work gives a
complementary microscopic perspective for the same physics.

We describe the Z3 chiral clock model in Sec. II. For weak
transverse fields, dynamics at low energies can be described
in terms of far-separated domain walls. Scattering properties
of the domain walls at an open boundary are described in
this limit. We will use this description to explain the con-
trasting behaviors of entropy growth in the small subsystems
located near an open boundary of the system. Section III
briefly describes the numerical time evolution calculations.
Results of the numerical simulations in the nonchiral and the
chiral models are presented following this in Secs. IV and V,
respectively. We conclude with a summary of the results in
Sec. VI.

II. MODEL

This study explores the growth of entanglement after a
fully ordered initial state (all spins in the same direction)
undergoes a weak quench to a Hamiltonian with finite trans-
verse field and small nonzero chirality (as described further
below). Domain wall pairs are nucleated from every part of
the chain after the quench. These domain walls propagate
under the dynamics induced by the transverse field and lead
to correlations between local properties of different parts of
the chain. Introducing chirality in the model modifies the dy-
namics by creating a difference between energies of different
domain wall flavors and modifies the scattering properties of
domain walls at an open boundary. We aim to explore how
chirality affects the entropy growth, correlation spread, and
magnetization.

Here, we begin by describing the model. The Z3 chiral
clock model in one dimension [36,42–44] has the following
Hamiltonian:

H = −Jeıθ
∑

i

σiσ
†
i+1 − f eıφ

∑
i

τi + H.c., (2)

where operators σi and τi located at the ith site are

σ =
⎛
⎝1 0 0

0 ω 0
0 0 ω̄

⎞
⎠, τ =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (3)

Here, ω = exp(2π ı/3), and ω̄ = exp(−2π ı/3). The algebra
satisfied by the above operators, σ 3

i = τ 3
i = 1 and σiτ j =

δi jω̄τ jσi, presents a Z3 analog of the algebra of Pauli matrices
σz and σx; the Hamiltonian forms a Z3-symmetric analog of
the Z2-symmetric spin- 1

2 transverse field Ising model [45].
The Hamiltonian commutes with the Z3 generalization of the
parity operator, namely, P = ∏

τi, which allows labeling of
energy eigenstates with parity eigenvalues 1, ω, or ω̄. For
simplicity we will work with systems with φ = 0 and will use
units where h̄ = 1. The chirality of the model is determined by
θ and can be assumed to take values in the range [0, 2π/3],
as the physics at θ can be related to θ + 2π/3 through a local
unitary transformation by

∏
i τ

i
i .

In the absence of a transverse field ( f = 0), energy eigen-
states are direct products of σi eigenstates at each site with
energies −2J

∑
i cos(θ + αi,i+1), where αi,i+1 ∈ {0,±2π/3}

is arg(〈σi〉/〈σi+1〉). For θ in [0, π/3], the ground state is
described by α = 0, corresponding to all spins pointing in
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the same direction (1, ω, or ω̄). The simplest excitations are
localized domain walls. In the nonchiral model the opposite-
chirality domain walls (· · · AABB · · · and · · · BBAA · · · ) as
well as domain walls at different locations are degenerate.
The ground state is ferromagnetic in the entire range [0, π/3],
but finite θ causes an energy difference 2J

√
3 sin θ between

domain walls of opposite chirality. The ground states in the
regime θ > π/3 have a twisted ordering with adjacent spins
〈σi〉 differing by a factor of ω. These domain walls disperse
if the transverse field is nonzero, lifting the degeneracy of
different domain wall states.

We will consider quenches to Hamiltonians with finite f
and a nonzero θ ∈ (0, π/6], i.e., in the regime where the
classical ground state is still ferromagnetic but θ influences
the dynamics by inducing a chirality to the domain walls. We
find that quenches to larger θ result in more complex domain
wall dynamics due to the possibility of a domain wall splitting
into two as discussed later in this section.

The nonchiral model (θ = 0) is ferromagnetic for f < J
and exhibits a continuous phase transition to a paramagnetic
phase ( f > J) [36,46]. The ground state in the ferromagnetic
phase is threefold degenerate (forming a parity multiplet),
with a splitting that decays exponentially with system size; but
the excited states (for f �= 0) have parity multiplets that show
a power-law decay of the splitting with system size [36,47].
The chiral model with finite θ also shows a transition from
a Z3-symmetry-broken phase to the paramagnetic phase at
some fc � J [48–50]. Unlike the nonchiral case, the excited
states in the broken-Z3-symmetry phase have multiplets with
a splitting that exponentially decays with system size. For
weak transverse fields (2 f < J

√
3 sin θ ), this degeneracy can

be attributed to a weak zero-energy parafermion mode local-
ized at the boundary in the Jordan-Wigner-transformed dual
model [36].

The power-law decay with system size of the splitting in
the nonchiral model can be understood as arising from the
scattering properties at the boundary [47]. We present a sim-
plified form of this model here and will use this as a basis to
rationalize the entropy growth in subsystems near the bound-
ary. In the limit of low-energy densities, the states in the model
can be understood in terms of a dilute set of domain walls,
and interaction between domain walls may be neglected. For
the discussions below, we will assume that transitions to the
zero-domain-wall and two-domain-wall states are suppressed
by an energy gap.

Now we focus on the dynamics of a single domain wall
in the vicinity of a boundary. We denote by |AB, i〉 a direct
product state representing a domain wall on the bond i sepa-
rating regions of 〈σ 〉 = A to the left and 〈σ 〉 = B to the right.
There are six possible domain wall types, but an incoming
domain wall, say, of type 1ω (with 〈σ 〉 = 1 to the left of i
all the way to −∞) that approaches a boundary on the right,
can be reflected only as a 1ω or 1ω̄ domain wall type at the
boundary. Transition to any of the other domain walls such as
ω1 will require global changes in the spin states.

The Hamiltonian projected into the space of these states
can be written as

PHP = H1ω + H1ω̄ + Hboundary. (4)

Here, the Hamiltonian for each flavor of the domain wall is
given by

H1ω = μ+
∑

i

|1ω, i〉〈1ω, i|− f
∑

i

|1ω, i〉〈1ω, i+ 1|+ H.c.,

H1ω̄ = μ−
∑

i

|1ω̄, i〉〈1ω̄, i|− f
∑

i

|1ω̄, i〉〈1ω̄, i + 1|+ H.c.,

where

μ± = 2J[cos θ − cos(θ ∓ 2π/3)]. (5)

Away from the boundaries, and away from each other, the
Hamiltonian imparts a dispersion of ε±

k = μ± − 2 f cos(k) to
the domain walls. The boundary scatters between the two
relevant domain wall types:

Hboundary = − f |1ω, L − 1〉〈1ω̄, L − 1| + H.c.

The Hamiltonian is a tridiagonal matrix, shown in Fig. 1(a).
Relabeling the basis states as ‖x = i〉 = |1ω, i〉 and
||x = 2L − i − 1〉 = |1ω̄, i〉, this represents the Hamiltonian
of a particle with kinetic energy −2 f cos(k) traveling across a
potential jump � = |μ+ − μ−| = 2

√
3J sin θ at the position

L. In the relabeled form, states propagating away on the right
of L represent, physically, a 1ω̄ domain wall reflecting back
towards the left from the boundary. For θ = 0, gap � is zero,
and the particle tunnels across with unit probability; that is,
there is a complete reflection of the 1ω domain wall to a 1ω̄

domain wall [51]. For larger θ such that the bandwidth is
smaller than the gap, i.e., 2

√
3J sin θ > 4 f , the domain wall

bounces back without any change in its flavor.
Boundary-mediated tunneling from one domain wall flavor

to another results in an increased energy splitting in excited
states of the nonchiral model [47]. The nature of the zero
mode and the analysis of the energy splitting are not directly
related to this paper, but we will use the above effective model
to make sense of the numerical results.

As θ approaches π/6, Eq. (5) suggests that μ+ ∼ μ−/2;
so the energy of a domain wall of the form 1ω̄ is the same
as that of a pair of domain walls of opposite chirality, 1ω and
ωω̄. Thus the 1ω̄ domain wall can evolve into a domain wall
pair of the form 1ωω̄. We restrict ourselves to a discussion of
the regime where the domain wall is stable. In the rest of this
paper, we describe the results from numerical simulations of
the quenches in the limit of small f , θ < π/6, and the φ = 0
regime of the clock model.

III. NUMERICAL SIMULATION
OF THE TIME EVOLUTION

States and operators are represented as matrix product
states and matrix product operators [18], respectively, with
a maximum bond dimension of 300. Time evolutions of the
states were implemented by using fourth-order Suzuki-Trotter
approximant [52] to represent exp(−ıHδt ) with time steps
δt = 10−3. This approximant decomposes the unitary oper-
ator as a sequence of two site gates acting on adjacent sites.
Further details of the numerical implementation for the ap-
proximant are similar to those used in Ref. [53] and have
been summarized in Appendix. We use J = 1 in all numerical
calculations.
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FIG. 1. (a) The Hamiltonian matrix in the one-domain-wall
space after relabeling the 1ω̄ domain wall at bond number i < L as
x = 2L − i − 1 and the 1ω domain wall at bond number i < L as
x = i. (b) and (c) Effective dispersions of opposite-chirality (the two
colors represent the bands for the two different chiralities) domain
walls shown schematically for the case of small θ (b) and large θ (c).
(d) and (f) The fate of a domain wall wave packet that bounces off a
boundary in a system with small θ , shown schematically: (d) shows
the incoming packet, and (f) shows the fate after collision with the
boundary. The incoming domain wall has one chirality (indicated in
orange), whereas the reflected domain wall is primarily of opposite
(blue) chirality. (e) and (g) Similar to (d) and (f), but for a case where
θ is larger. Here, the domain wall bounces back without change in
the flavor.

IV. NUMERICAL RESULTS: QUENCH INTO THE
NONCHIRAL MODEL

In this section, we describe the dynamics after an initial
state ψ0, in which all sites are in the 〈σ 〉 = 1 direction, is
quenched to the nonchiral Hamiltonian at finite transverse
field. After the quench, the system evolves into a linear
combination of the initial state and (with small amplitudes)
domain wall pair states of the form 1ω1 and 1ω̄1. The flipped
spin domains are nucleated from every part of the chain,
and domain walls on the opposite sides of the flipped spin
domain propagate in opposite directions with a characteristic
velocity corresponding to the maximal group velocity vg = 2 f
(Sec. II) of the domain walls, thereby expanding the flipped
spin domains. This is schematically represented in Fig. 2.

+ + + +...

+ ++ +...

+ + +

+ ++

+...

+...

subsystem 
A

FIG. 2. Schematic representation of the state of the system after a
weak quench. The state after the quench is, to a good approximation,
a linear combination of the ordered state and 1ω1- and 1ω̄1-type
two-domain-wall states. The vertical direction represents the time
evolution of domains in each term. Flipped spin domains are nu-
cleated from all parts of the chain forming different terms of the
linear combination in the computational basis. The domains expand
as the domain walls propagate. In a system with nonlinear dispersion,
the domain walls of different momenta propagate at different group
velocities. Dashed vertical lines demarcate a subsystem. For each
cone, spins flipped to ω and ω̄ inside the subsystem are shown in blue
and orange colors. The flipped spins outside the system are colored
gray irrespective of direction of the spins inside them.

Figure 3(a) presents the total probability weight (over all
positions) of two-domain-wall states of different types, show-
ing that among these, the 1ω1 and 1ω̄1 are equally populated.

FIG. 3. (a) The total probability of domain wall pair states that
occur with nonzero probabilities after the quench from a fully or-
dered state to a final Hamiltonian with f = 0.1 and θ = 0. The
system size is L = 40. (b) The probabilities but in a system with
an additional longitudinal field h = 0.02 in the final Hamiltonian. In
(a) and (b), domain wall types 1ω1 and 1ω̄1 have equal probabilities,
and the corresponding lines (orange and blue) completely overlie one
another. Similarly, lines corresponding to domain wall configurations
1ωω̄, ω̄ω1, 1ω̄ω, and ωω̄1 also overlie each other. (c) and (d) The
corresponding results for the three-domain-wall states of the form
ABCA.
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Small domains of size 1 (where domain walls are separated by
a distance of 1 lattice unit) show rapid oscillations and have
been omitted. As time progresses, the domain wall pair states
of the form 1ω1 (1ω̄1) formed in the vicinity of the left-hand-
side boundary reflect off the boundary as ω̄ω1 (ωω̄1) domain
wall pair states (as described in Sec. II). On the right-hand-
side boundary, the domain walls scatter from the 1ω1 (1ω̄1)
state into 1ωω̄ (1ω̄ω) state. Since the domain walls reach the
boundary with a characteristic rate vg, there is a linear rate of
decrease of the population of the 1ω1 and 1ω̄1 states as shown
in Fig. 3(a). Correspondingly, the population of the states of
the types 1ωω̄, 1ω̄ω, and ωω̄1, ω̄ω1 linearly increases with
time.

In the presence of an additional longitudinal field in the
final Hamiltonian,

Hlongitudinal = −h(σ + σ †), (6)

the energy of the flipped spin domains has a (positive) energy
contribution that grows linearly with the domain size. The
domain wall pairs now appear to attract with an energy lin-
ear in the distance between them [35]. With this constrained
domain wall dynamics, scattering processes at the boundary
are suppressed as indicated by a constant probability on an
average of the 1ω1 and 1ω̄1 states in Fig. 3(b) (as opposed to
a linear decay in the absence of h).

A. Magnetization

Here, we present the results regarding local magnetization
in the bulk of the system. Magnetization 〈M〉 = 〈σ + σ †〉/2
is 1 in the initial state. After a time t from the quench,
domain walls that originate within a neighborhood of radius
∼vgt around a site i cross this site at time t thereby reducing
the local population of state 1 at the site and increasing the
population of ω or ω̄; this decreases the local magnetization
at i linearly with time as shown in Fig. 4(a).

The instantaneous magnetization can be expressed in the
eigenbasis of the Hamiltonian as

〈M〉 = 〈ψ (t )|M|ψ (t )〉 =
∑
i, j

c̄ic je
ıt (Ei−Ej )Mi j . (7)

Here, ci are the coefficients in the expansion of the initial
state in the eigenbasis of the Hamiltonian, and Mi j is the
matrix element of a local magnetization in the eigenbasis of
the Hamiltonian. This indicates that the power spectrum of the
time-dependent oscillations of the magnetization carries the
information of the gaps between finitely populated energy
eigenstates. Peaks in this power spectrum occur at frequencies
equal to the gaps between parts of the energy spectrum with
a large energy density of states (such as the bottom of the
domain wall dispersion) or eigenstates with a large population
(such as the ground state). Consistent with this, we find that
the oscillatory part of the magnetization has a frequency peak
equal to the gap between the ground state and the minimal
kinetic energy of domain wall pairs:

m2(θ = 0) = ε+
k=0 + ε−

k=0 = 6J − 4 f . (8)

In the presence of a longitudinal field, confinement of domain
wall pairs prevents decrease in magnetization as shown in
Fig. 4(a). The attractive interaction results in bound states

FIG. 4. (a) Magnetization as a function of time for quenches to
different final Hamiltonians. (b) The power spectrum of magnetiza-
tion for a specific example where the final nonchiral Hamiltonian
has f = 0.1, h = 0.1. The peaks correspond to the masses mi of
the domain wall bound states or the differences between the masses
mi j = |mi − mj |. (c) Variation of the first three masses with longitu-
dinal field h. The system size used is L = 40.

of domain wall pairs. The energy minima of the dispersion
of bound domain wall pairs (or, equivalently, the masses of
bound domain wall pairs) can be extracted from the spec-
tral peaks in the oscillatory part of the magnetization. The
power spectrum of the magnetization oscillations at a finite
longitudinal field is shown in Fig. 4(b). The peaks depend
on h. A set of peaks split off from the one at m2(θ = 0) as
h is increased from 0 to finite values; these frequencies are
labeled m1, m2, m3, . . . and can be associated with the masses
of different domain wall bound pairs. The frequencies of the
peaks located at the lower end of the power spectrum match
with the differences between these masses. Figure 4(c) shows
the variation of the bound pair energies as a function of the
longitudinal field h.

B. Two-point correlations

We now consider the connected, equal-time, correla-
tions between local operators at spatially separated pair of
points in the bulk. In particular, we focus on C(r, t ) =
〈ψ (t )|σ0σ

†
r |ψ (t )〉c. We expect qualitative features of spread

of correlations between other generic local operators to be the
same; we focus on this as its imaginary component shows
a nonzero (zero) value in a quench to the chiral (nonchiral)
Hamiltonian.

The correlation C is zero everywhere in the initial state.
The correlation C expanded in the computational basis shows
that C(r, t ) is nonzero if there are flipped spin domains that
extend from 0 to r. The first among such domains appear
when the domain wall pairs nucleated from r/2 at time 0 reach
positions 0 and r at time t = r/2vg. As a result the correlations
C(r, t ) spread with a velocity 2vg ∼ 4 f . Correlation functions
plotted in Fig. 5(a) show the linearly expanding region with
finite correlations. As expected from confinement of domain
wall pairs, the presence of the longitudinal field suppresses the
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FIG. 5. (a) The absolute value of the connected correlations as a
function of position and time in the case of a quench to the nonchiral
clock model. The lines show constant height contours and have a
slope of 1.0/0.38 consistent with the expected correlation spread
rate of 2vg = 4 f ∼ 0.4. (b) The same quantity in the case where the
final Hamiltonian has an additional longitudinal field constraining
the spread of domains. The system size used is L = 40.

spread of correlations [Fig. 5(b)]. In all cases we find that the
imaginary part of the correlation is zero (this is guaranteed by
translation symmetry of the initial state and final Hamiltonian
in the bulk, and spatial parity symmetry).

C. Entanglement entropy

In this section, we present the numerical results for entan-
glement entropy growth in small subsystems after the system
initially in the fully ordered state (| · · · 1111 · · · 〉) is quenched
to a nonchiral Hamiltonian at finite f . The subsystems are ini-
tially unentangled. Shortly after the quench, the time-evolved
state is a linear combination of the fully ordered initial state

and, with small amplitudes, states with flipped spin domains
of typical size ∼2vgt that were nucleated from every part of
the chain at time t = 0 (Fig. 2).

In order to evaluate the reduced density matrix of a
contiguous segment A of size �, the complementary re-
gion is traced out. Initially, the subsystem is in a pure
state with only the fully ordered state | · · · 111 · · · 〉A pop-
ulated. The entanglement entropy increases with time as
progressively more flipped spin domains nucleated near the
boundary of A (on either side of the boundary) cross the
boundary. As time progresses, more states of the form
|ωω · · ·ω11 · · · 1〉A, |ω̄ω̄ · · · ω̄11 · · · 1〉A, |1 · · · 11ωω · · ·ω〉A,
and |1 · · · 11ω̄ω̄ · · · ω̄〉A are populated. The number of such
states that are populated grows linearly with time initially.
This results in a growth of entropy that is linear in time.
Figure 6(a) shows entropy as a function of time in a small
subsystem in the bulk. A rough estimate of the entangle-
ment growth rate can be obtained from the data presented
in Fig. 3(a). The probability p associated with domain walls
nucleated from each point in space can be estimated to be 1/L
times the total domain wall probabilities. As domain walls
propagate into the subsystem, the previously unpopulated
state of the subsystem is populated with a probability weight
p. This adds an entropy of s = −p ln p. Counting two kinds
of domains (1ω1 and 1ω̄1) crossing the two boundaries in
either direction at a typical rate ∼vg, the entropy growth rate is
λ = 8vgs. From Fig. 3, p ≈ 0.009/40, resulting in λ = 0.003,
which is close to the numerically obtained value in Fig. 6(a).
This estimate ignores that the group velocity is not the same
for all domain wall momenta and that there are off-diagonal
entries in the density matrix.

FIG. 6. (a) Entanglement growth in a subsystem in the bulk after a quench to the nonchiral Hamiltonian from a fully ordered initial state.
(d) The results for a subsystem at the boundary of the system. (b) and (e) The corresponding results for the case of a quench to a Hamiltonian
with an additional longitudinal field, demonstrating the suppression of entanglement growth. (c) and (f) The entropy growth in the bulk and
near the boundary in a scenario where the initial state is the parity eigenstate |11 · · · 1〉 + |ωω · · · ω〉 + |ω̄ω̄ · · · ω̄〉. The system size simulated
is L = 40.
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FIG. 7. Illustration of an � = 4 site subsystem located at the
boundary (left) and one located in the bulk of the system (right).
The entanglement entropies of these subsystems with the rest of the
system are labeled as Sboundary

� and Sbulk
� .

At time t = �/2vg, the domain wall pairs that originated
in the vicinity of the center of A exit the subsystem. For
t > �/2vg, this equals the number of new domain walls that
enter the system, resulting in a saturation of this mechanism of
entanglement growth at an entropy value that is proportional
to �.

In a system that is initially prepared in the fully ordered
· · · 1111 · · · state, the exit of domain wall pairs that com-
mence at t = �/2vg results in conversion of a fraction of the
initial state | · · · 1111 · · · 〉A into the oppositely ordered states
| · · · ωωω · · · 〉A or | · · · ω̄ω̄ω̄ · · · 〉A. Populations of these two
oppositely ordered states increase with time as more and more
domain walls exit the subsystem. This results in a further
increase in the entropy after the expected saturation time of
�/2vg. We expect that the entropy of the small subsystem
grows into that of a mixed state of all three ordered states
with an entropy of ∼ ln 3. For large systems and for larger
f , where the saturation entanglement is much larger than ln 3,
the latter growth will only provide a subleading contribution
to total entanglement.

The saturation of the initial mechanism of entanglement
growth at a time �/2vg (where the maximal group velocity vg

is ∼2 f ) as well as further growth of entanglement can be seen
in Fig. 6(a). Approach to ln 3 is, unfortunately, not verifiable
within the time scales of the simulations. As expected, entan-
glement growth is strongly suppressed even in the presence of
a small longitudinal field [Fig. 6(b)].

In contrast, entropy after a quench from an initial system
prepared in one of the three fully ordered parity eigenstates
starts from ln 3 and increases with time linearly until the
entropy saturates at the time t = �/2vg. The above-mentioned
process which converts the population of | · · · 11111 · · · 〉A

into the oppositely ordered state in A is compensated by the
reverse process resulting in no growth of entanglement after
a time t = �/2vg. This can be seen in simulations of the en-
tropy growth after quench from the initial state | · · · 11 · · · 〉 +
| · · · ωω · · · 〉 + | · · · ω̄ω̄ω̄ · · · 〉, presented in Fig. 6(c).

For a subsystem located in the bulk, the entanglement
growth occurs due to all domain walls that cross either one
of the two boundaries of the subsystem. A subsystem located
at the boundary of a system (Fig. 7), on the other hand, shows
entanglement growth at half the rate as domain walls cross
only one boundary. The saturation of this entropy growth
occurs at a time when a domain wall pair nucleated at the
boundary of the system exits the subsystem. This happens
at the time t = �/vg when the domain wall pairs nucleated
at the edge of the system at t ∼ 0 reach the inner boundary
of the subsystem. Figure 6(d) shows the entropy growth in
a subsystem near the boundary for the same quench as in
Fig. 6(a). As expected, the entanglement growth rate at the

FIG. 8. (a) The total probability (over all positions) of two-
domain-wall states corresponding to the ones in Fig. 3(a) after a
quench to a Hamiltonian with θ = π/8 and f = 0.1. Unlike the
nonchiral case, the domain walls do not scatter into other forms at
the boundary resulting in a steady probability. (b) The same as (a),
but with a final Hamiltonian that has an additional longitudinal field
h. (c) and (d) The probability weight of three-domain-wall states of
type ABCA. Unlike the nonchiral case, the probabilities of 1ωω̄1 and
1ω̄ω1 states occur with different probabilities. Note that in (a) and
(b), lines corresponding to 1ω̄ω, 1ωω̄, ω̄ω1, and ωω̄1 overlap on
each other. The same is true of 1ω1 and 1ω̄1 lines. In (c) and (d),
lines corresponding to ωω̄1ω, ω̄ω1ω, ω1ω̄ω, and ω1ωω̄ overlap with
each other. The system size is L = 50.

boundary [Fig. 6(d)] is half of that in the bulk [Fig. 6(a)] and
saturates in twice the time. Similar results hold in the case of
parity eigenstate [Fig. 6(f)].

V. NUMERICAL RESULTS:
QUENCH INTO THE CHIRAL HAMILTONIAN

Now we focus on dynamics in the system after a quench
from the initial, fully ordered state, into the chiral Hamiltonian
with finite f and θ . As mentioned in Sec. II, we focus on θ <

π/6, where the classical ground state (i.e., the Hamiltonian
ignoring the transverse field) is ferromagnetic and the domain
walls are well defined. The main effect of chirality then is
to induce different energies to the domain walls of opposite
chirality.

We will begin with a discussion of the probabilities of the
domain wall flavors generated after the quench. Figure 8(a)
presents the total probabilities of two-domain-wall states sim-
ilar to Fig. 3(a). Only the 1ω1 and 1ω̄1 domain walls are
generated, and these two occur with equal probabilities. The
locality of the Hamiltonian does not allow for the formation
of ABC domain wall pairs in the bulk. The postquench Hamil-
tonian considered here has θ = π/8 and f = 0.1. Using the
results at the end of Sec. II, we see that the gap between the
domain wall bands (between the bottom of the upper domain
wall band and the top of the lower domain wall band) is
2
√

3J sin θ − 4 f > 0 and therefore the domain walls bounce
back from the boundary without change in their flavor. As a
result the total probability of the 1ω1 and 1ω̄1 domain walls
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FIG. 9. Energy of bound domain wall pairs extracted from the
power spectrum of magnetization in the same manner as in Fig. 4.
Left: The masses as a function of the longitudinal field for a fixed
θ . Right: The dependence of the masses on θ for fixed h. Spectra
are calculated from magnetization time series up to time t = 90 in
a system of size L = 40. The scatter in the data is primarily caused
by the finite frequency resolution in a Fourier transformation of data
over a finite range of time.

remains steady as seen in Fig. 8(a). This is unlike the nonchiral
model discussed previously [Fig. 3(a)].

Figure 8(c) shows the probabilities of ABCA-type three-
domain-wall states. The 1ωω̄1 states are generated with
higher probability than the opposite-chirality 1ω̄ω1-type do-
main walls, which have a higher energy. As discussed in
Sec. II, as θ approaches π/6, the energy of the 1ω̄ domain
wall becomes close to that of a pair of domain walls 1ωω̄. As
a result, two domain walls can evolve into three-domain-wall
states. Numerics show that the three domain walls proliferate
as θ → π/6. We will leave the analysis of this regime for later
studies.

A. Magnetization

As in the case of the nonchiral model, magnetization de-
cays linearly with time at short times [Fig. 4(a)] with a small
oscillatory component of (angular) frequency given by the to-
tal mass of a pair of opposite-chirality domain walls, namely,

m2(θ ) = ε−
k=0 + ε+

k=0 = 6J cos θ − 4 f . (9)

Upon adding a longitudinal field, bound domain wall pairs are
formed whose masses can be inferred from the magnetization
oscillations as described in the Sec. III. Figure 9 summarizes
the dependence of the masses on θ and h; masses appear to
increase linearly with h and decrease monotonically with θ in
the ranges considered.

B. Two-point correlations

The connected two-point correlations at equal times
C(r, t ) = 〈ψ (t )|σ0σ

†
r |ψ (t )〉 are shown in Fig. 10. Since the

domain wall velocities are independent of θ (vg ∼ 2 f ),
the rate of spread of correlations (2vg) remains the same as
in the nonchiral model [Fig. 10(c)].

Spatial parity is not a symmetry of the dynamics; there-
fore the imaginary part of the correlations is not necessarily
zero. An expansion of ψ (t ) in the computational basis (i.e.,
eigenbasis of σ ) together with the results in Fig. 8 indicates
that the complex part of the correlations [Fig. 10(b)] arises
due to an excess occurrence of three-domain-wall states of

FIG. 10. (a) and (b) The real and imaginary parts of the correlator
C(i, t ) after the fully ordered state is quenched to a final Hamiltonian
with f = 0.1, θ = π/8. Straight lines overlaid in the figure showing
the rate of spread of correlations are obtained by fitting to constant
C contours. The slope of the line is consistent with the expected
rate of spread of correlations 2vg = 4 f . (c) The rate of spread as
a function of f for different θ values. The dashed line shows the
expected dependence 4 f . (d) Im〈σ0σ

†
i 〉c(t ) as a function of position

for different θ values and a fixed time slice t [corresponding to the
time slice indicated by the horizontal line in (b)]. The system size
used for the calculation is L = 40.

one chirality over the other. Since the three-domain-wall states
have low abundance, the imaginary part of the correlations is
much smaller than the real part [Figs. 10(a) and 10(b)]. The
difference between probabilities of opposite-chirality three-
domain-wall states increases with θ . This manifests in the
increase with θ of the imaginary part of the correlations
[Fig. 10(d)].

C. Entanglement entropy

Now we describe the results for entanglement entropy
growth after a quench into the chiral Hamiltonian. The entropy
of small subsystems in the bulk [Fig. 11(a)] grows linearly
with time until t ∼ �/2vg (where vg ∼ 2 f ). This regime is, as
explained in Sec. V, described by the population of new states
with flipped spin domains. Following the saturation of this
mechanism, the two oppositely ordered states are populated as
the domain walls exit the system, resulting in further growth
of the entropy. As in the case of the nonchiral model, when
the initial state is a parity eigenstate, the entropy grows lin-
early from ln 3 (entropy of subsystems of a parity eigenstate)
and saturates at a time t ∼ �/2vg [Fig. 11(f)]. The growth
is strongly suppressed in the presence of a longitudinal field
[Fig. 11(b)].

The entanglement entropy of small subsystems located at
the boundary of the system grows linearly with time till �/vg

at a rate half that of the subsystems in the bulk. This is shown
in Fig. 11(d). In the case of the quench to the nonchiral model,
the entanglement entropy in the subsystem located at the
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FIG. 11. (a) and (d) The entanglement entropy as a function of time for subsystems located in the bulk and at the edge of the system.
(b) and (e) The same for the cases where the final Hamiltonian has an additional longitudinal field. (c) and (f) The results for the case where
the initial state is a parity eigenstate of the form | · · · 1111 · · · 〉 + | · · ·ωωω · · · 〉 + | · · · ω̄ω̄ω̄ · · · 〉. The above results are obtained in a system
of size L = 40 and for a final Hamiltonian with f = 0.1 and θ = π/8.

boundary continues to grow after time �/vg. In contrast, here
the entanglement entropy saturates to a constant [Fig. 11(d)].
This can be understood to arise from scattering properties at
the boundary. In the chiral case, the domain walls of the form
AB that reach the right-hand-side boundary are reflected back
as a domain wall of type AB. When the domain walls exit
the subsystem, they leave the subsystem in the same state as
the initial state | · · · 1111 · · · 〉A. There is no increment in the
population of the oppositely ordered states. This is unlike the
nonchiral model.

In the nonchiral case, the incoming AB domain wall
reflects at the open boundary as an AC domain wall. Scat-
tering of AB → AB type (as opposed to AB → AC) occurs if
the opposite-chirality domain walls have bands [Sec. II and
Figs. 1(b) and 1(c)] that do not overlap, i.e., if

2
√

3J sin θ > 4 f . (10)

This is verified in Fig. 12, which shows the rate of change
of entropy after the expected saturation time �/vg in the sub-
systems located at the system edge, plotted as a function of
θ . The rate of change is 0 for large θ and nonzero at small θ

with an f -dependent crossover θc that is consistent with the
above estimate [θc( f ) ∼ sin−1 2 f√

3J
, marked in the figure with

arrows].

VI. SUMMARY AND CONCLUSIONS

In this paper, we have explored postquench domain wall
dynamics in the ferromagnetic chiral clock model. Using
finite-size simulations, we have addressed the evolution of
magnetization expectation values, equal-time two-point corre-
lation functions, and entanglement growth, and a microscopic

picture based on effective dynamics of single domain walls
has been presented.

Entanglement growth and the spread of correlation happen
through evolution of domain wall pair states. Irrespective of
θ , domain wall pair states of type 1ω1 and 1ω̄1 form with
equal probability from all points in the system immediately
after the quench. Domain walls propagate with a maximal
group velocity vg = 2 f independent of the chirality param-
eter θ . As a consequence there is no qualitative difference
between the nonchiral and chiral models in the entanglement
and correlation spread in the bulk. In the nonchiral model, the
total probability of 1ω1 and 1ω̄1 states decays linearly with
time as the domain walls scatter at the boundary and convert
to 1ωω̄ and 1ω̄ω due to collisions with the right boundary

FIG. 12. Rate of change of entropy in a subsystem located at the
edge at an instant (Jt = 60) after the saturation time �/vg is shown
as a function of θ for different f in the final Hamiltonian. The arrows
are crossover θc estimated for each f based on Eq. (10). Entropy
saturates for θ > θc.

195141-9



NISHAD, SANTHOSH, AND SREEJITH PHYSICAL REVIEW B 103, 195141 (2021)

and to ω̄ω1 and ωω̄1 due to collisions on the left. In the
chiral model, there is no such scattering to different domain
wall types. Three-domain-wall states of the form 1ωω̄1 and
1ω̄ω1 are also generated with smaller probabilities compared
with two-domain-wall states. In the chiral model the two
types of three-domain-wall states are generated with unequal
probabilities.

Magnetization decays linearly with time at the short times
accessible within our simulations. Oscillations around the lin-
ear decay have a frequency equal to the energy cost of two
domain walls, namely, 6J cos θ − 4 f . In the presence of a
longitudinal field that couples to σ + σ †, domain wall pairs
form bound states of energies that appear to increase linearly
with the field and decrease with the chirality.

Equal-time two-point correlations spread with the same
speed 2vg ∼ 4 f in both the chiral and nonchiral models.
The imaginary part of the specific correlation 〈σ0(t )σr (t )†〉c

reflects the relative abundances of the opposite-chirality three-
domain-wall states. It is zero for the nonchiral model and
increases in magnitude with θ .

The entanglement entropy in subsystems located in the
bulk shows a linear growth and saturates at a characteristic
time scale τs ≈ �/2vg. In small subsystems located in the bulk,
a subleading growth of entanglement is seen after this time.
In the nonchiral model, similar behavior is seen even in the
subsystems located at the boundary of the system (till a time
τs �/vg). In the chiral models, with the chirality parameter
θ > sin−1 2 f√

3
, the entanglement saturates to a constant.

We find that a linear-in-time entanglement growth is seen
even outside the ferromagnetic regime of θ that we have
studied. However, a simple isolated domain wall description
is not sufficient to understand the behavior. At larger values
of θ above π/3 where the ground state is not ferromagnetic,
chirality in the ground-state magnetization will have a more
complex interplay with a longitudinal field than in the small-θ
cases we have studied. The second parameter in the model
(φ) will act as an effective magnetic field to the domain
wall particles, bringing in richer structures in the quenches
in the model. We leave the exploration of the dynamics in the
extended parameter space of the model for future studies.

The saturation of entanglement in the small subsystems at
the edge of the system points to the inability of the spreading
domains to thermalize the spins at the boundary of the sys-
tem into an equally probable mixture of 1, ω, and ω̄. As a
consequence the initial magnetization survives at long times
after quench. Careful accounting of the domain walls at the
boundary after the saturation time indicates that the density of
flipped spins near the boundary linearly changes with distance
from the boundary. Consequently, the postquench magnetiza-
tion in the chiral model shows a linear decay of magnetization
away from the boundary (Fig. 13).

In contrast, the nonchiral model shows a magnetization that
appears to decay to 0 at the boundary. Thus the θ -dependent
boundary scattering presents a peculiar scenario of a non-
thermal steady state near the boundary of this chain. Such
a mechanism for failure of thermalization is related to the
long coherence times of boundary spins in models carrying
boundary zero modes in Jordan-Wigner-transformed dual de-
scription [40,41].

FIG. 13. Magnetization profile in the chain with open bound-
ary conditions at the left and right ends. The magnetization at the
boundary of the chain decays with time in the nonchiral model (a),
whereas it saturates to a constant in the chiral model [(b) and (c)].
The saturation values vary linearly with distance from the boundary.
(d) The magnetization at a fixed position near the edge as a function
of time for three different values of θ .
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APPENDIX: FOURTH-ORDER ACCURATE
TIME EVOLUTION

Here, we summarize the fourth-order approximant [52]
for the exponential of a time-independent local Hamiltonian,
which is used to construct the unitary time evolution opera-
tor. Any Hamiltonian on a chain with only nearest-neighbor
couplings can always be split into two parts Ho and He acting
only on odd and even bonds, respectively. The two parts Ho

and He can be further written as

Ho =
∑

n

An and He =
∑

n

Bn, (A1)

where An for n = 1, 2, 3, . . . has support on sites 2n − 1 and
2n only and Bn has support on sites 2n and 2n + 1 only. Since
An’s commute with each other and Bn’s commute with each
other, the exponential of −ıHodt and −ıHedt can be written
as the product of two site operators

∏
n e−ıdtAn and

∏
n e−ıdtBn ,

respectively, and these can be efficiently implemented as ma-
trix product operators. Note that An and Bn do not generically
commute with each other if their supports overlap and the full
unitary is not the product of these two exponentials. However,
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FIG. 14. MPO sequence for second-order approximant G2(x),
where the blue- and yellow-colored two-site MPOs correspond to
eıAnx/2 and eıBnx , respectively.

by suitable combination of such terms, the exponential of
the Hamiltonian can be written to an arbitrary finite order
of accuracy in dt using a fractal decomposition where a
higher-order approximant is obtained recursively from lower-
order approximants [52]. The fourth-order approximant G4 of
the unitary operator exp(−ıdtH) used in our calculation is

given by

G4(dt ) = G2(s2 dt )2G2((1 − 4s2) dt )G2(s2 dt )2, (A2)

where s2 = 1/(4 − 3
√

4) and G2 is a second-order approxi-
mant which is given by

G2(dt ) = e−ıHo dt/2e−ıHe dt e−ıHo dt/2. (A3)

Using the commutative properties operators of A and B,
G2(dt ) can be represented by following the matrix product
operator (MPO) sequence shown in Fig. 14.

Each two-site MPO in Fig. 14 is of the form eMdt

and can be approximated as E = ∑4
s=0 Ms dts

s! . E ob-
tained numerically can be expanded as

∑
i j λi jOi ⊗ Oj ,

where Oi ∈ {I, σ, σ †, τ, τ †, σ τ, στ †, σ †τ, σ †τ †} and λi, j =
tr(EO†

i ⊗ O†
j )/9.
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