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Variational wave functions and Green’s functions are two important paradigms for solving quantum Hamil-
tonians, each having their own advantages. Here we detail the variational discrete action theory (VDAT),
which exploits the advantages of both paradigms in order to approximately solve the ground state of quantum
Hamiltonians. VDAT consists of two central components: the sequential product density matrix (SPD) ansatz and
a discrete action associated with the SPD. The SPD is a variational ansatz inspired by the Trotter decomposition
and characterized by an integer N , recovering many well-known variational wave functions, in addition to the
exact solution for N = ∞. The discrete action describes all dynamical information of an effective integer time
evolution with respect to the SPD. We generalize the path integral to our integer time formalism, which converts
a dynamic correlation function in integer time to a static correlation function in a compound space. We also
generalize the usual many-body Green’s function formalism to integer time, which results in analogous but
distinct mathematical structures, yielding integer time versions of the generating functional, Dyson equation,
and Bethe-Salpeter equation. We prove that the SPD can be exactly evaluated in the multiband Anderson
impurity model (AIM) by summing a finite number of diagrams. For the multiband Hubbard model, we prove
that the self-consistent canonical discrete action approximation (SCDA), which is the integer time analog of
the dynamical mean-field theory, exactly evaluates the SPD for d = ∞. VDAT within the SCDA provides an
efficient yet reliable method for capturing the local physics of quantum lattice models, which will have broad
applications for strongly correlated electron materials. More generally, VDAT should find applications in various
many-body problems in physics.
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I. INTRODUCTION

The quantum many-body problem represents the fore-
front of many areas of physics, and determining the ground
state of the Hamiltonian is a primary objective. Variational
wave functions are a key paradigm for solving the ground
state of a Hamiltonian. Simple variational approaches such
as the Hartree-Fock approximation provide a baseline for
understanding many-body systems at a modest computational
cost. There are many more sophisticated variational wave
functions, such as the Jastrow wave function [1,2] or uni-
tary coupled cluster [3–5], but most approaches do not have
a natural mechanism for trading off between accuracy and
computational cost, which will be a key idea addressed in this
paper.

Another viewpoint for addressing the many-body prob-
lem is to start from the formally exact density matrix and
perform the Trotter-Suzuki decomposition [6–8], yielding
the Euclidean path integral, which may then be approxi-
mately evaluated using quantum Monte Carlo or diagram-
matic approaches. A prominent example of the former
is auxiliary field quantum Monte Carlo (AFQMC) [9,10],
which requires a relatively fine discretization of imag-
inary time in order to achieve converged ground-state
properties. If one is only seeking ground-state properties, no
dynamical information needs to be extracted from the Green’s
function, which motivates the possibility of obtaining highly

precise ground-state properties from an extremely coarse dis-
cretization of imaginary time. This suggestion can be realized
by creating a variational density matrix ansatz based upon the
Trotter-Suzuki decomposition, and in this paper we propose
the sequential product density matrix (SPD). Given that the
SPD is inspired by the Trotter-Suzuki decomposition, it is
naturally characterized by an integer N , which controls the
trade-off between accuracy and computational complexity.

The SPD is an extremely generic ansatz which can recover
a large number of well-known variational wave functions. An
example at N = 1 is the Hartree-Fock approximation, while
examples at N = 2 include the Gutzwiller wave function
[11–13] and the Jastrow wave function [1,2] (see Subsec.
II D for a complete list). Therefore, we already begin with
decades of intuition for the efficacy of this ansatz at small N ,
and one can easily envision the potency of larger N . Many
formal constructions are useful for organizing ideas, but the
question is whether they can be evaluated in practice. A key
development in this paper is demonstrating that our proposed
integer time Green’s function and its corresponding discrete
action theory provide a rich formalism for systematically eval-
uating observables under the SPD ansatz. Most practically,
this yields theories that have not yet been discovered and
can be implemented in practice. More generally, this discrete
action theory provides another way to think about variational
wave functions in the context of Green’s function. The dis-
crete action theory naturally gives rise to its own version of
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the path integral, generating functional, Dyson, and Bethe-
Salpeter equations. Therefore, many of the key ideas from
Green’s functions may be generalized to the discrete action
theory. The discrete action theory can then be used along with
the variational principle to give rise to the variational discrete
action theory (VDAT). Furthermore, the discrete action theory
provides many different avenues for precisely evaluating the
SPD at a given set of variational parameters.

A decisive milestone of this paper is proving that a
certain type of SPD can be exactly evaluated in infinite
dimensions, implying that we can achieve a strict upper
bound on the ground-state energy in this case. This result
extends the well-known fact that the Gutzwiller wave func-
tion is exactly evaluated by the Gutzwiller approximation
for the Hubbard model in d = ∞ [14–17], proving that
the Gutwziller-Baeriswyl [18] and Baeriswyl-Gutzwiller [19]
wave functions can be exactly evaluated in d = ∞, in addition
to an infinite number of more precise generalizations. As a
result, VDAT is a potent theory for efficiently and precisely
evaluating the Hubbard model in d = ∞. Indeed, we have
demonstrated that VDAT achieves highly precise results in the
d = ∞ Hubbard model for N = 3 [20]. The VDAT method
can immediately be understood as a practically important
tool given our knowledge of the dynamical mean-field theory
(DMFT) [21–23], which allows for the numerically exact so-
lution of the Hubbard model in infinite dimensions. DMFT is
the de facto standard for capturing local physics in models of
strongly correlated electrons and plays a key role in describing
realistic strongly correlated materials in the context of DFT +
DMFT [24]. Given that VDAT precisely captures the physics
of infinite dimensions at a tiny fraction of the cost of DMFT,
VDAT might be transformational as an efficient replacement
for DMFT in the context of ground-state properties. A DFT
+ VDAT theory might finally yield a first-principles approach
of strongly correlated electron materials with a computational
overhead not far beyond DFT itself, yet contain all of the
physics of DFT + DMFT, and more.

In this study, we restrict ourselves to static observables at
zero temperature. Given that VDAT is a variational theory
with an explicit density matrix ansatz, one can also naturally
study static observables at finite temperatures, though doing
so requires the direct evaluation of the entropy of the SPD.
Evaluating the entropy is highly nontrivial, even in the rela-
tively simple case of N = 2 or the Gutzwiller wave function
[25–27]. Therefore, extending the VDAT formalism to finite
temperatures will be pursued in future work. Another impor-
tant direction for VDAT would be to study excited states,
which are not naturally captured in a variational theory. How-
ever, one can straightforwardly apply the Landau-Gutzwiller
quasiparticle approach [28], which would clearly result in a
Fermi liquid picture which can go beyond Gutzwiller. More
generally, there is a possibility that the incoherent part of the
spectrum may be recovered with further extensions given that
VDAT with N > 2 precisely captures the insulating phase in
the single-band Hubbard model [20].

The structure of this paper is as follows. In Sec. II, we begin
by motivating and introducing a generic SPD, and introduce
three important classes of SPD which are useful for promi-
nent models of interacting electrons. Additionally, we apply
the SPD to the Hubbard plaquette, where it can be exactly

evaluated, to illustrate the convergence of the SPD with re-
spect to N . In Sec. III, we introduce the notion of the integer
correlation function and demonstrate how it can be evaluated
using the integer time Wick’s theorem. A pedagogical ex-
ample is given for the Anderson impurity model containing
a single bath site. In Sec. IV, we introduce the notion of a
discrete action and generalize the standard tools of many-body
physics to the integer time case, including the integer time
path integral, the discrete generating function, the discrete
Dyson equation, and the discrete Bethe-Salpeter equation. In
Sec. V, we introduce the canonical discrete action and use
it to evaluate the SPD that is associated with the Anderson
impurity model. In Sec. VI, we introduce the self-consistent
canonical discrete action approximation (SCDA), and we
prove that it exactly evaluates the SPD-d in infinite dimen-
sions. Furthermore, in the case of N = 2 we pedagogically
illustrate how the SCDA recovers the Gutzwiller approxima-
tion, and we derive basis-independent, rotationally invariant
Gutzwiller equations for the multiband Hubbard model. In
Sec. VII, we discuss the general work flow of performing a
VDAT calculation. Finally, we provide an Appendix which il-
lustrates the Lie group properties of the noninteracting density
matrix (see Subsec. A 1), in addition to a second discussion
which proves the integer time Wick’s theorem (see Subsec.
A 2). Additionally, we provide Supplemental Material which
illustrates the evaluation of the CDA for the case of a single
orbital and N = 3 [29]. It should be noted that there is short
companion paper, which highlights the basic aspects of the
VDAT while presenting key results on the Anderson impurity
model and the d = ∞ Hubbard model [20].

II. SEQUENTIAL PRODUCT DENSITY MATRIX (SPD)

A. Motivating the SPD

Here we motivate the notion of the sequential product
density matrix (SPD), which is the variational ansatz for the
VDAT. First, let us begin by recalling the variational principle
at zero temperature. Given some Hamiltonian Ĥ , the ground-
state energy is obtained by the constrained search over the
density matrix ansatz as

E = min
ρ̂

{〈Ĥ〉ρ̂ |ρ̂ ∈ C}, (1)

where C denotes the space of all density matrices described by
the ansatz, and we used the notation 〈Ô〉ρ̂ = Tr(ρ̂Ô)/Tr(ρ̂ )
for the measurement of some operator Ô under a density
matrix ρ̂.

We now consider a special case of the SPD ansatz which is
dictated by the form of the Hamiltonian, and we refer to this
ansatz as the Trotter SPD. The essence of the wave function
version of the Trotter SPD was anticipated several decades
ago [19]. To motivate the Trotter SPD, consider the Trotter-
Suzuki decomposition [6–8] of a finite-temperature density
matrix for a system with L spin orbitals

exp(−βĤ ) ≈
N∏

τ=1

exp

(
− β

N Ĥ0

)
exp

(
− β

N V̂

)
, (2)

where Ĥ = Ĥ0 + V̂ is the Hamiltonian, Ĥ0 is the noninteract-
ing part, and V̂ is interacting part. The Trotter SPD ansatz can
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be obtained by replacing −β/N with variational parameters
γτ , gτ with τ = 1 . . .N as

�̂ = exp(γ1Ĥ0) exp(g1V̂ ) . . . exp(γN Ĥ0) exp(gN V̂ ). (3)

We see that the Trotter SPD is composed of pairs of non-
interacting and interacting projectors, which are sequentially
multiplied together. Considering the case of N = 2,

�̂ = exp(γ1Ĥ0) exp(g1V̂ ) exp(γ2Ĥ0) exp(g2V̂ ), (4)

which we can restrict to a purely Hermitian form (see Sec. II B
for a detailed discussion) as

�̂ = exp(g1V̂ ) exp(γ1Ĥ0) exp(g∗
1V̂ ). (5)

In the limit of large N and β, the variational theorem can
select γτ = gτ = −β/N and recover the exact density matrix.
For a given finite N , the variational principle will guarantee
that the Trotter SPD will generate superior ground-state re-
sults to any approach based on the standard Trotter-Suzuki
decomposition, such as auxiliary field quantum Monte Carlo
(AFQMC) [9,10,30,31].

To understand the convergence of the Trotter SPD with
N , it is useful to solve the Hubbard plaquette, which is the
one-dimensional Hubbard model with four sites and transla-
tional symmetry, at half-filling and zero temperature, where
we can directly evaluate the exact solution. We restrict our
attention to the case of real variational parameters (see Subsec.
II C for a general discussion). The Hubbard model is given
by Ĥ0 = t

∑
〈i j〉σ â†

iσ â jσ and V̂ = U
∑

i n̂i↑n̂i↓, where 〈i j〉 de-
notes nearest neighbor sites. We now compare the double
occupancy, 〈n̂i↑n̂i↓〉 = ∂〈Ĥ〉/∂U , of the exact solution and
Trotter SPD ansatz at a given N [see Fig. 1(a)]. For N =
2, which rigorously recovers the Gutzwiller wave function
[11–13], there is relatively large disagreement with the exact
solution, completely missing the discontinuity at U/t = 0.
Moving to N = 3, we recover the discontinuity and move
closer to the exact solution. For N = 11, there is almost no
discernible difference with the exact solution, and we see that
the error monotonically decreases with increasing N . Simi-
larly, the error for the total energy monotonically decreases
with increasing N , as it must [see Fig. 1(b)]. This simple
example illustrates the efficacy of the Trotter SPD ansatz [32].
However, it should be emphasized that one can only directly
evaluate an SPD in the full Fock space for a sufficiently small
system. For macroscopic systems in the thermodynamic limit,
we will need a more advanced approach (see Secs. III and IV).

B. Defining the SPD

The Trotter SPD defined in the preceding subsection is
dictated based on the form of the Hamiltonian being studied,
whereas a general SPD will not have such limitations. In
general, one can enlarge both the noninteracting and inter-
acting projectors to include operators which do not appear
in the Hamiltonian itself, in addition to changing the relative
weights of existing operators. For the noninteracting projector,
we replace exp(γτ Ĥ0) from the Trotter SPD with exp (γτ · n̂),
where

γτ · n̂ ≡
L∑

i=1

L∑
j=1

[γτ ]i j[n̂]i j, [n̂]i j = â†
i â j, (6)

FIG. 1. Results for the Hubbard plaquette, comparing the Trotter
SPD ansatz to the exact solution. (a) Double occupancy vs U/t for
N = 2, 3, and 11. (b) Energy error vs U/t for N = 2–11.

where [γτ ]i j are the variational parameters and L is the num-
ber of spin orbitals. It should be noted that most general
noninteracting projector would include the terms â†

i â†
j and

âiâ j , but we presently omit them for brevity. For the interact-
ing projector, we replace exp(g1V̂ ) with P̂τ , which is a general
bosonic interacting projector that will have various constraints
(see Subsec. II C). Mathematically, the general SPD is then
defined as

�̂ = exp (γ1 · n̂)P̂1 . . . exp (γN · n̂)P̂N = P̂1 . . . P̂N , (7)

P̂τ = exp (γτ · n̂)P̂τ , (8)

P̂τ = exp(V̂τ ) =
∑
		′

Pτ,		′ X̂		′ , (9)

where 	,	′ label the basis of the Fock space, X̂		′ is a
Hubbard operator, and Pτ,		′ are the variational parameters.
The SPD will always be constrained to be Hermitian and
semidefinite, and this can be achieved in two distinct ways,
which we denote as Gutzwiller type (G type) or Baeriswyl
type (B type). For N = 1, 2, 3, the G- and B-type SPD are

�̂
(1)
G = exp(γ1 · n̂), (10)

�̂
(2)
G = P̂1 exp(γ2 · n̂)P̂†

1 , (11)

�̂
(3)
G = exp (γ1 · n̂)P̂1 exp(γ2 · n̂)P̂†

1 exp(γ†
1 · n̂), (12)

�̂
(1)
B = P̂1, (13)
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FIG. 2. A schematic for the classification of SPDs. The SPD-l
has an interacting projector that is restricted to a local subspace. The
SPD-d has an interacting projector which is composed of disjoint
projectors. The SPD-g corresponds to a completely general inter-
acting projector. The SPD-n is an SPD in which V̂τ is restricted to
n-particle operators. A unitary (projective) SPD is one in which the
unrestricted projectors are unitary (Hermitian).

�̂
(2)
B = exp (γ1 · n̂)P̂1 exp(γ†

1 · n̂), (14)

�̂
(3)
B = P̂1 exp (γ2 · n̂)P̂2 exp(γ†

2 · n̂)P̂†
1 . (15)

For N = 1 and G type, γ1 is a Hermitian matrix. For N =
2, 3 and G type, γ2 is a Hermitian matrix, while γ1 and P̂1

are unrestricted. For N = 1, 2 and B type, P̂1 is a Hermitian
and semidefinite operator, while γ1 is unrestricted. For N = 3
and B type, P̂2 is a Hermitian and semidefinite operator, while
γ2 and P̂1 are unrestricted. It should be noted that the N +
1 G type can always recover the N B type, and vice versa.
Throughout the paper, we will use the G type unless otherwise
specified.

It should be noted that the G- and B-type ansatz are related
by an abstract “dual” transformation, whereby one ansatz can
be obtained from the other by interchanging the interacting
projector with the noninteracting projector. This same notion
of a dual transformation has been previously introduced in the
context of the Gutzwiller, Baeriswyl, Gutzwiller-Baeriswyl,
and Baeriswyl-Gutzwiller wave functions [19], in addition to
the K and X formulations of the off-shell effective energy
theory [33].

C. Classification of the SPD

The generically defined Hermitian and semidefinite SPD
encompasses a broad variety of possibilities, and it is useful
to consider various categorization schemes. The first catego-
rization we consider is partitioning into projective, unitary, or
general SPD (SPD-g). A projective SPD is the subset where
the unrestricted projectors are Hermitian, while a unitary SPD
is the subset where the unrestricted projectors are unitary (see
Fig. 2). Most variational wave functions in the early literature
belong the projective subset of SPDs, while examples of ap-
proaches which fall into the category of unitary SPDs can be
found in the context of quantum computing (see Subsec. II D
for a detailed discussion). In this paper, we largely focus on
projective SPDs, though we do explore simple cases of unitary
SPDs as well (see Subsec. III B 1 for examples).

The second major categorization scheme is based on the re-
strictions of the interacting projectors (see Fig. 2). The choice
of interacting projector has a trade-off between computational
complexity and rate of convergence with respect to N . For

example, if the interacting projector is completely unre-
stricted, one already obtains the exact solution for the B type
at N = 1, but this simply amounts to directly diagonalizing
the target Hamiltonian in the Fock space. While the particular
Hamiltonian under consideration will ultimately guide the
choice of interacting projectors for the SPD, there are certain
interacting projectors which would be natural choices for wide
classes of Hamiltonians. If one is considering a Hamiltonian
where the interactions are local to some subspace, such as
the Anderson impurity model (AIM), a natural choice for the
interacting projector is

P̂τ =
∑

		′∈C
Pτ,		′ X̂		′ , (16)

where 	,	′ label the basis of the local subspace C, X̂		′ is a
Hubbard operator, and Pτ,		′ are the variational parameters.
We refer to this particular category of SPD as a local SPD
(SPD-l).

Another common scenario for models of interacting elec-
trons is where the interaction is local, but not restricted to
a single subspace; prominent examples include the Hubbard
model and the periodic Anderson impurity model. In such
cases, it is natural to study an SPD where the interacting
projectors are composed of disjoint interacting projectors, and
we refer to such SPD as disjoint SPD (SPD-d). The SPD-d
with N disjoint regions has an interacting projector of

P̂τ =
N∏

i=1

P̂τ,i =
N∏

i=1

(∑
		′

Pτ,i,		′ X̂i,		′

)
. (17)

Another possible way to categorize the interacting projec-
tor is to restrict it to n-particle interaction in V̂τ , but apply
no other limitations; and we refer to this as SPD-n, where
n � 2 is the number of excitations. Existing examples of
the SPD-2 are the Jastrow wave function [1,2,34,35], unitary
coupled cluster [3–5], and the adaptive variational algorithm
of Grimsley et al. [36].

In presenting the most general form of the SPD, we intro-
duce the possibility of having an infinite number of variational
parameters, which is excessive in practice. While we will
demonstrate that it is beneficial to have variational parameters
which deviate from the form of the Hamiltonian itself, typi-
cally only a few degrees of freedom beyond the parameters
present in the Hamiltonian are needed. The beauty of a varia-
tional theory is that no matter how the form of the projector is
restricted, one always obtains an upper bound on the energy,
so long as the SPD is evaluated exactly.

In summary, the SPD presents a systematic variational
ansatz for studying quantum Hamiltonians. While the un-
derlying idea behind the SPD was appreciated decades ago
in the context of the generalizations of the Gutzwiller wave
function [19], the general idea has not been fully exploited.
A key advancement achieved by our discrete action theory
is that the SPD can be formally understood in terms of an
integer time Green’s function, which has a perfect parallel to
the standard many-body Green’s function formalism, allowing
one to generalize many of the existing ideas from many-body
physics to the discrete action theory. It should be emphasized
that the discrete action theory has very practical implications,
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FIG. 3. Existing variational wave functions (WF) classified in
terms of the SPD, characterized by the number of integer time steps
N and the type of SPD. The following acronyms are used: variation
coupled cluster (VCC), unitary coupled cluster (UCC), Gutzwiller-
Baeriswyl (GB), and Baeriswyl-Gutzwiller (BG).

such as allowing for the exact evaluation of SPD-d in infinite
dimensions (see Subsec. VI B for the proof).

D. Categorizing existing wave functions in terms of the SPD

In this subsection, we use the SPD to categorize existing
variational wave function approaches within the literature (see
Fig. 3). We begin with the case of projective SPDs, and first
enumerate all G-type SPDs. For N = 1, we have the well-
known Hartree-Fock approximation, given that Eq. (10) will
result in the lowest energy single Slater determinant. For N =
2, the SPD-d recovers the Gutzwiller wave function [11–13];
the SPD-g recovers the variational coupled cluster (VCC)
ansatz [4,37]; the SPD-n recovers the Jastrow wave function
[1,2,34,35]. For N = 3, the SPD-d recovers the Gutzwiller-
Baeriswyl wave function [18]. For the preceding two cases,
variational quantum Monte Carlo is typically used to evaluate
the ansatz [2,18,38–40]. For N > 3, we are not aware of
existing ansatz in the literature.

We now consider projective SPDs of B type. For N = 1,
we are not aware of existing ansatz, which seems reasonable
given that this would often amount to a crude approximation
(see Subsec. III B 1 for an illustration). For N = 2, the SPD-d
recovers a generalized version of the Baeriswyl wave function
[41]. The SPD-d is more general given that the interacting
projector is fully variational, whereas Baeriswyl made certain
restrictions. For N = 3, the SPD-d recovers the Baeriswyl-
Gutzwiller wave function [19]. For N > 3, we are not aware
of existing ansatz in the literature.

We now consider the unitary SPD, and the most well-
known example is SPD-g for N = 2 in the case of the
unitary coupled cluster (UCC) approach [3–5]. Because of
the complexity of the Hamiltonians which are being studied
with UCC, one cannot exactly evaluate the ansatz, result-
ing in applications to very small systems or uncontrolled

approximations. For N > 2, there has recently been interest
in the context of quantum computing. Farhi et al. proposed
a Trotter-like ansatz composed of multiple unitary operations
with the intent of evaluating it within a quantum computer
[42]. These ideas were then extended and examined in the
context of small Hubbard models [43]. A further generaliza-
tion was made by Grimsley et al., where they considered pairs
of noninteracting and two-particle interacting projectors [36].
All of these ansatz are pursued under the assumption that a
quantum computer can be used to evaluate them.

E. Minimization of the total energy under the SPD

A key task in using any variational ansatz is to minimize
the total energy with respect to the variational parameters.
Given that there will typically be numerous variational pa-
rameters, it is critical to be able to compute the gradient
of the energy with respect to the variational parameters. In
this subsection, we demonstrate how to compute the gradient,
which will showcase the emergence of integer time correlation
functions.

To begin, we parametrize the noninteracting and interact-
ing projectors as

exp (γτ ({cτ i}) · n̂), P̂τ ({gτ i}), (18)

where we have chosen a parametrization such that the deriva-
tives have the following forms:

∂ exp (γτ ({cτ i}) · n̂)

∂cτ i
= K̂τ i exp (γτ ({cτ i}) · n̂), (19)

∂P̂τ ({gτ i})

∂gτ i
= P̂τ ({gτ i})Ŵτ i, (20)

where K̂τ i and Ŵτ i are operators which characterize the deriva-
tive. We note that this choice of parametrization is analogous
to that of Sorella [40]. We can now compute the derivative of
the energy as

∂

∂cτ i
〈Ĥ〉�̂ = ∂

∂cτ i

Tr(�̂Ĥ)

Tr(�̂)

= 〈K̂τ i(τ − 1)Ĥ (N )〉�̂ − 〈K̂τ i(τ − 1)〉�̂〈Ĥ (N )〉�̂,
(21)

∂

∂gτ i
〈Ĥ〉�̂ = ∂

∂gτ i

Tr(�̂Ĥ )

Tr(�̂)

= 〈Ŵτ i(τ )Ĥ (N )〉�̂ − 〈Ŵτ i(τ )〉�̂〈Ĥ (N )〉�̂, (22)

where Ô(τ ) is an operator in the integer time Heisenberg
representation defined as

Ô(τ ) = Ûτ ÔÛ −1
τ , Ûτ = P̂1 . . . P̂τ . (23)

This notion of integer time will be carefully introduced and
explored in Secs. III and IV. It should be noted that the
second derivative can also be expressed in terms of integer
time correlation functions, resulting in a new approximate
saddle point for a given set of variational parameters. The fact
that these derivatives can be evaluated in terms of computable
correlation functions is critical to minimizing the total energy
in practice.
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III. INTEGER TIME GREEN’S FUNCTION FORMALISM

A. Integer time correlation functions

While the SPD ansatz provides an intelligent route to ap-
proaching the exact solution, this form is only useful if it
can be efficiently evaluated. Therefore, it will be essential
to have a mathematical formalism which is conducive for
developing robust approximations. We introduce the notation
〈Ô〉ρ̂ = Tr(ρ̂Ô)/Tr(ρ̂) for the measurement of some operator
Ô under a density matrix ρ̂. We begin by considering the
expectation value of Ô under the SPD

〈Ô〉�̂ = Tr(exp (γ1 · n̂)P̂1 . . . exp (γN · n̂)P̂N Ô)

Tr(exp (γ1 · n̂)P̂1 . . . exp (γN · n̂)P̂N )
. (24)

This expectation value can be re-expressed in the integer time
interaction representation as

〈Ô〉�̂ = 〈P̂1,I (1)P̂2,I (2) . . . P̂N ,I (N )ÔI (N )〉�̂0

〈P̂1,I (1)P̂2,I (2) . . . P̂N ,I (N )〉�̂0

, (25)

where

�̂0 = exp (γ1 · n̂) . . . exp (γN · n̂), (26)

ÔI (τ ) = Ûτ ;I ÔÛτ ;I
−1, (27)

Ûτ ;I = exp (γ1 · n̂) . . . exp (γτ · n̂), (28)

where �̂0 is the noninteracting SPD, the subscript I denotes
the integer time interaction representation, and τ = 1, . . . ,N .
This interpretation of integer time evolution can be viewed as
arising from a discrete action (see Subsec. IV A).

While this notion of integer time may appear artificial,
it allows for a systematic evaluation using the integer time
generalization of Wick’s theorem (see the Appendix for a
derivation). In the common scenario where the interacting
projectors P̂i will be the exponential of some interacting op-
erator [see Eq. (9)], it is natural to Taylor series expand such
operators, yielding

〈Ô〉�̂ = 〈TP̂1,I (1)P̂2,I (2) . . . P̂N ,I (N )ÔI (N )〉�̂0

〈TP̂1,I (1)P̂2,I (2) . . . P̂N ,I (N )〉�̂0

(29)

=
〈
T exp

(∑N
τ=1 V̂τ,I (τ )

)
ÔI (N )

〉
�̂0〈

T exp
(∑N

τ=1 V̂τ,I (τ )
)〉

�̂0

(30)

=
∑∞

n=0
1
n!

〈
T
(∑N

τ=1 V̂τ,I (τ )
)n

ÔI (N )
〉
�̂0∑∞

n=0
1
n!

〈
T
(∑N

τ=1 V̂τ,I (τ )
)n〉

�̂0

, (31)

where the integer time ordering operator T first sorts the oper-
ators according to ascending integer time and then according
to the position in the original ordering of operators, and finally
the result is presented from left to right; additionally, the
resulting sign must be tracked when permuting Fermionic op-
erators. It should be noted that our time convention is opposite
to the usual definition [44]. It is useful to illustrate the integer
time ordering operator with the example

Tâ†
k,I (2)âk′,I (1)âk,I (2) = −âk′,I (1)â†

k,I (2)âk,I (2). (32)

By inspecting Eq. (31), it is clear that there are an infi-
nite number of terms to be evaluated; and each term can
be evaluated using the integer time Wick’s theorem (see

Appendix III B) in terms of the noninteracting integer time
Green’s function

[g0]kτ,k′τ ′ = 〈Tâ†
k,I (τ )ak′,I (τ ′)〉�̂0 , (33)

where k = 1, . . . , L labels the spin-orbital index and g0 is a
matrix of dimension LN × LN .

Having reformulated the expectation value of some opera-
tor in terms of integer time correlation functions, it becomes
clear how to straightforwardly apply the integer time version
of Wick’s theorem. This advancement will already allow us
to exactly evaluate the SPD-l in terms of a finite number
of diagrams (see Subsec. III B), allowing for the efficient
and robust solution of the Anderson impurity model within
VDAT [20]. Recently, Baeriswyl employed a perturbative ap-
proach to approximately evaluate a variant of the projective
G-type SPD-d at N = 3 (as characterized from our general
conventions) for the two-dimensional Hubbard model [45].
Baeriswyl’s perturbative approach is recovered by our inte-
ger time formulation in the special case of N = 3 where
we restrict Eq. (31) to second order, but our approach can
naturally be applied at arbitrary N (it should be noted that
τ is a variational parameter in Baeriswyl’s approach while τ

is an integer time in ours).

B. Evaluating the SPD-l via Wick’s theorem

Having developed the integer time formalism, we already
have the tools necessary to evaluate the SPD-l (see Sec. II),
given that the interacting projector is confined to a subspace.
Therefore, only a finite number of terms are required to eval-
uate an expectation value in this scenario, given as

〈Ô〉�̂ =
∑

{	τ 	′
τ }
(∏

τ Pτ,	τ 	′
τ

)〈
T
∏

τ X̂	τ 	′
τ ,I (τ )ÔI (N )

〉
�̂0∑

{	τ 	′
τ }
(∏

τ Pτ,	τ 	′
τ

)〈
T
∏

τ X̂	τ 	′
τ ,I (τ )

〉
�̂0

,

(34)

where each term can be evaluated using the integer time
Wick’s theorem (see Appendix A 2).

Given this capability of evaluating the SPD-l, we can al-
ready address many important Hamiltonians. For example, we
can approximately solve the Anderson impurity model (AIM)
[20]. For N = 2, the integer time formalism exactly evaluates
the Gutzwiller wave function, which has long been available
in the literature, but our N = 3 result had never been realized
and provides an accuracy comparable to the numerically exact
density matrix renormalization group results [46] with rela-
tively negligible computation cost. More generally, the above
evaluation of the SPD-l allows us to evaluate the multiorbital
AIM, which we will address in future work.

We now consider pedagogical examples of the single or-
bital AIM with one bath site for N � 2, evaluating unitary and
projective SPDs with G or B type. Given that the exact solu-
tion can easily be evaluated by diagonalizing the Hamiltonian
in the Fock space, this example provides a nice illustration
of the evaluation of the SPD-l using the integer time Wick’s
theorem.
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1. Illustrative examples for N � 2: Anderson impurity model
with one bath

Here we study the AIM with only one bath orbital and
particle-hole symmetry. The Hamiltonian is given as

Ĥ = t K̂ + U
d̂, (35)

where

K̂ =
∑

σ

( f̂ †
σ ĉσ + H.c.), 
d̂ =

∏
σ

(
f̂ †
σ f̂σ − 1

2

)
. (36)

We first consider the case of N = 1 with a projective G-type
SPD-l, given as

�̂ = exp(γ K̂ ), P̂1 = 1̂, (37)

where γ is the noninteracting variational parameter. It will be
inconvenient to use γ directly given that it is not bounded,
and therefore we can effectively reparameterize it with ν =
1
2 tanh ( γ

2 ) ∈ [−1/2, 1/2] or γ = 2tanh−1 (2ν). As we have
spin symmetry, we only need to compute the noninteracting
integer time Green’s function for a given spin:

gσ ;0 =
(

1
2 ν

ν 1
2

)
. (38)

We can then use the integer time Wick’s theorem to compute
the necessary integer time correlation functions required to
evaluate the total energy

〈TP̂1,I (1)〉�̂0 = 1, (39)

〈TP̂1,I (1)
d̂I (1)〉�̂0 = 0, (40)

〈TP̂1,I (1) f̂ †
σ,I (1)ĉσ,I (1)〉�̂0 = ν. (41)

The relevant expectation values can be obtained from the last
time step, which is the only time step for N = 1, as

〈 f̂ †ĉ〉�̂ = ν, 〈
d̂〉�̂ = 0. (42)

Finally, the total energy can be written as

E = min
ν∈[− 1

2 , 1
2 ]

(4tν) = −2t . (43)

We observe that N = 1 with a G-type SPD recovers the
well-known Hartree-Fock approximation, where the energy is
independent of the Hubbard U (given the chosen form of the
interacting Hamiltonian).

We now move on to N = 1 with a B-type projective SPD-l,
given as

�̂ = exp(g
d̂ ), P̂1 = exp(g
d̂ ) = (1̂ + u
d̂ ). (44)

Here we reparameterize the interacting variational parameter
g in terms of u ∈ [−4, 4]. We proceed by constructing the
noninteracting integer time Green’s function

g0;σ =
(

1
2 0

0 1
2

)
(45)

and compute all the necessary integer time matrix elements

〈TP̂1,I (1)〉�̂0 = 1, (46)

〈TP̂1,I (1)
d̂I (1)〉�̂0 = u

16
, (47)

〈TP̂1,I (1) f̂ †
σ,I (1)ĉσ,I (1)〉�̂0 = 0. (48)

The relevant expectation values can be obtained as

〈 f̂ †ĉ〉�̂ = 0, 〈
d̂〉�̂ = u

16
. (49)

The resulting total energy is then

E = min
u∈[−4,4]

(
U

u

16

)
= −U

4
. (50)

Here we see that the energy is independent of the hopping
parameter, given that this ansatz amounts to a collection of
two decoupled atoms.

We now move on to N = 2 for the G-type projective SPD-
l, given as

�̂ = exp(g
d̂ ) exp(γ K̂ ) exp(g
d̂ ), (51)

where the interacting projector is

P̂1 = P̂2 = exp(g
d̂ ) = (1̂ + u
d̂ ), (52)

γ is reparameterized with ν as before, and there is no restric-
tion on u given that it occupies the outermost position in the
SPD. The noninteracting integer time Green’s function is then

gσ ;0 =

⎛
⎜⎜⎜⎜⎝

1
2 ν 1

2 −ν

ν 1
2 −ν 1

2

− 1
2 −ν 1

2 ν

−ν − 1
2 ν 1

2

⎞
⎟⎟⎟⎟⎠, (53)

where we have used integer time major ordering of the
basis, where integer time is the slow index and goes
in ascending order and the orbital is the fast index and
goes from f to c, resulting in the four sequential indices
( f , 1), (c, 1), ( f , 2), (c, 2). For example, we have [gσ ;0]13 =
〈T f̂ †

I (1) f̂I (2)〉�̂0 , etc. The necessary integer time correlation
functions needed to compute the total energy are

〈TP̂1,I (1)P̂2,I (2)〉�̂0 = u2

16
+ 1, (54)

〈TP̂1,I (1)P̂2,I (2)
d̂I (2)〉�̂0 = u

8
, (55)

〈TP̂1,I (1)P̂2,I (2) f̂ †
σ,I (2)ĉσ,I (2)〉�̂0 = −ν

16
(u2 − 16). (56)

The relevant expectation values can be obtained as

〈 f̂ †ĉ〉�̂ = 16 − u2

16 + u2
ν, 〈
d̂〉�̂ = 2u

u2 + 16
. (57)

The ground-state energy can then be obtained as

E = min
ν∈[− 1

2 , 1
2 ],u

(
4tν

16 − u2

16 + u2
+ U

2u

u2 + 16

)

= min
u

(
−2t

16 − u2

16 + u2
+ U

2u

u2 + 16

)

= −1

4

√
64t2 + U 2.

Notice that in this simple single-bath case, N = 2 with the G-
type projective SPD-l provides the exact ground-state energy.

We now consider the B-type projective SPD-l for N = 2,
given as

�̂ = exp(γ K̂ ) exp(g
d̂ ) exp(γ K̂ ), (58)
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where the interacting projectors are

P̂1 = exp(g
d̂ ) = (1̂ + u
d̂ ), P̂2 = 1̂, (59)

and we reparameterize γ as in the previous case, though
ν ∈ [−∞,∞] given that the noninteracting projector is in the
outer position of the SPD, in addition to reparameterizing
g in terms of u, though here the interacting projector is in
the center position of the SPD and therefore u ∈ [−4, 4]. We
can proceed by constructing the noninteracting integer time
Green’s function

g0;σ =

⎛
⎜⎜⎜⎜⎜⎝

1
2

2ν
4ν2+1

1−4ν2

8ν2+2 0
2ν

4ν2+1
1
2 0 1−4ν2

8ν2+2
4ν2−1
8ν2+2 0 1

2
2ν

4ν2+1

0 4ν2−1
8ν2+2

2ν
4ν2+1

1
2

⎞
⎟⎟⎟⎟⎟⎠. (60)

We then compute all the necessary matrix elements:

〈TP̂1,I (1)〉�̂0 = 1, (61)

〈TP̂1,I (1)
d̂I (2)〉�̂0 = (1 − 4ν2)4
u

16(4ν2 + 1)4 , (62)

〈TP̂1,I (1) f̂ †
σ,I (2)ĉσ,I (2)〉�̂0 = 2ν

4ν2 + 1
. (63)

The relevant expectation values can then be obtained as

〈 f̂ †ĉ〉�̂ = 2ν

4ν2 + 1
, 〈
d̂〉�̂ = (1 − 4ν2)4

u

16(4ν2 + 1)4 . (64)

The resulting total energy is then

E = min
u∈[−4,4],ν

(
t

8ν

4ν2 + 1
+ U

(1 − 4ν2)4
u

16(4ν2 + 1)4

)
, (65)

= min
ν

(
8νt

4ν2 + 1
− (1 − 4ν2)4

U

4(4ν2 + 1)4

)
. (66)

The saddle points are then found by individually solving the
following two equations:

(4ν2 + 1)3t + 2ν(1 − 4ν2)2U = 0, (4ν2 − 1) = 0. (67)

For the former, we have

U = − (4ν�2 + 1)3
t

2ν�(1 − 4ν�2)2 , E = (16ν�4 + 56ν�2 + 1)t

8(4ν�3 + ν�)
. (68)

The ground-state energy can then be written as

E =
{ (16ν�4+56ν�2+1)t

8(4ν�3+ν� ) , U � 6.75t

−2t, U � 6.75t
, (69)

where for U � 6.75t , the B-type N = 2 projective SPD gives
the same energy as the G-type N = 1 projective SPD.

We summarize the results for the ground-state energy as a
function of U/t in these four cases in Fig. 4. As noted above,
the N = 2 G-type projective SPD (i.e., the Gutzwiller wave
function) gives the exact solution in this case. The N = 2
B-type projective SPD is interesting given that is has multi-
ple saddle points, foreshadowing the possibility of becoming

FIG. 4. Ground-state energy as a function of U/t for the single
orbital AIM with one bath site using VDAT for N = 1, 2, with
both G-type and B-type projective SPD-l. Dotted lines denote higher
energy saddle points, while solid lines denote the ground-state energy
for a given N .

stuck in a false minimum when minimizing the energy. An-
other point illustrated by this plot is that larger N always has
a lower ground-state energy, as it must.

All of the above cases have been for projective SPD-l,
and now we consider unitary SPD-l. For N = 1, there is no
difference between the projective and unitary cases, so we
begin with N = 2 G-type with an SPD given as

�̂ = exp(ig
d̂ ) exp(γ K̂ ) exp(−ig
d̂ ), (70)

where g is a real number and the unconstrained projector is
unitary. We reparameterize the interacting projector as

P̂1 = 1 + iu
d̂ = P̂†
2 . (71)

The noninteracting integer time Green’s function is the same
as in the projective case, given in Eq. (53). The integer time
correlation functions needed to compute the total energy are

〈TP̂1,I (1)P̂2,I (2)〉�̂0 = u2

16
+ 1, (72)

〈TP̂1,I (1)P̂2,I (2)
d̂I (2)〉�̂0 = 0, (73)

〈TP̂1,I (1)P̂2,I (2) f̂ †
σ,I (2)ĉσ,I (2)〉�̂0 = −ν

16
(u2 − 16). (74)

The relevant expectation values can be obtained as

〈 f̂ †ĉ〉�̂ = 16 − u2

16 + u2
ν, 〈
d̂〉�̂ = 0. (75)

The ground-state energy can then be obtained as

E = min
ν∈[− 1

2 , 1
2 ],u

(
4tν

16 − u2

16 + u2

)
= −2t, (76)

which is identical to N = 1 for the projective G-type case.
Similarly, for the unitary case of the B type at N = 2, the
result is identical to the projective B type at N = 1.

The unitary case for the G type at N = 3 does indeed
recover the exact solution (details not shown), similar to the
projective case for the G type at N = 2. Therefore, we see that
the projective SPD is clearly superior to the unitary SPD in
this Hamiltonian. This same trend was found when comparing
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the variational coupled cluster approach, which is a projective
SPD, and the unitary coupled cluster approach, which is a
unitary SPD, in the context of the Lipkin Hamiltonian [47].

IV. THE DISCRETE ACTION THEORY

A. Introducing and categorizing the discrete action

We have illustrated that the SPD can be evaluated using
only the noninteracting integer time Green’s function and the
integer time Wick’s theorem, allowing for the efficient evalu-
ation of the SPD-l (see Sec. III). However, this path forward
will not be able to extend to more complex scenarios such
as SPD-d, where the interacting projector is not strictly local,
which will require the summation of an infinite number of
diagrams. A more sophisticated approach is needed, which
motivates the introduction of a discrete action.

We begin by introducing both the integer time Heisen-
berg and Schrodinger representations. As discussed in Subsec.
III A, the integer time evolution in the integer time interaction
representation is defined as

ÔI (τ ) = Ûτ ;I ÔÛτ ;I
−1, (77)

Ûτ ;I = exp (γ1 · n̂) . . . exp (γτ · n̂), (78)

where τ = 1, . . . ,N . The integer time Green’s function under
an SPD in the integer time interaction representation is then

[g]kτ,k′τ ′ =
〈
T
(∏N

τ=1 P̂τ,I (τ )
)
â†

k,I (τ )âk′,I (τ ′)
〉
�̂0〈

T
(∏N

τ=1 P̂τ,I (τ )
)〉

�̂0

, (79)

where τ = 1, . . . ,N and k = 1, . . . , L. Therefore, g is a ma-
trix of dimension LN × LN and plays a role similar to that of
the usual many-particle Green’s function.

In the integer time Heisenberg representation, integer time
evolution of operators is given as

Ô(τ ) = Ûτ ÔÛ −1
τ , Ûτ = P̂1 . . . P̂τ . (80)

The integer time Green’s function under an SPD in the integer
time Heisenberg representation is then

[g]kτ,k′τ ′ = 〈Tâ†
k (τ )âk′ (τ ′)〉�̂. (81)

In the integer time Schrodinger representation, integer time
evolution is defined as

ÔS (τ ) = Ô, (82)

where the time index now only serves the purpose of tracking
which integer time an operator is associated with, such that
time ordering can be performed. The integer time Green’s
function under an SPD in the integer time Schrodinger rep-
resentation is then

[g]kτ,k′τ ′ =
〈
T
(∏N

τ=1 P̂τ,S (τ )
)
â†

k,S (τ )âk′,S (τ ′)
〉
1̂〈

T
(∏N

τ=1 P̂τ,S (τ )
)〉

1̂

. (83)

A more general integer time correlation function under the
SPD can be represented in the Heisenberg, interaction, and

FIG. 5. A schematic for the classification of discrete actions. The
SDA is the discrete action corresponding to an SPD. The CDA is
the discrete action where the corresponding noninteracting discrete
action is integer time mixed. The GDA is a completely general
discrete action. The SDA is a subset of the CDA, which is a subset
of the GDA.

Schrodinger representation, respectively, as

〈TÔ1(τ1) . . . ÔM (τM )〉�̂

=
〈
T
(∏N

τ=1 P̂τ,I (τ )
)
Ô1,I (τ1) . . . ÔM,I (τM )

〉
�̂0〈

T
(∏N

τ=1 P̂τ,I (τ )
)〉

�̂0

(84)

=
〈
T
(∏N

τ=1 P̂τ,S (τ )
)
Ô1,S (τ1) . . . ÔM,S (τM )

〉
1̂〈

T
(∏N

τ=1 P̂τ,S (τ )
)〉

1̂

. (85)

We therefore have the three standard pictures for describing
integer time correlations.

We now introduce the most general integer time correlation
function, which is not necessarily associated with an SPD, and
this is most naturally expressed in the Schrodinger represena-
tion as

〈TÂÔ1,S (τ1) . . . ÔM,S (τM )〉1̂

〈TÂ〉1̂

, (86)

where Â is a discrete action (DA) which characterizes all
possible integer time correlations for a given N and is defined
as

Â =
∑

η1..ηN
η′

1...η
′
N

Aη1..ηN ,η′
1..η

′
N

X̂η1η
′
1,S

(1)...X̂ηN η′
N ,S (N ), (87)

where X̂		′ = |	〉〈	′| is a Hubbard operator, {|ητ 〉} forms an
orthonormal basis for the Fock space, and Aη1..ηN ,η′

1..η
′
N

is the
discrete action represented in the given basis. In the case of the
SPD, the discrete action is a product of N distinct operators

Â = P̂1,S (1) . . . P̂N ,S (N ). (88)

Given a system with L spin orbitals, a general discrete action
for N integer time steps will contain at most 4LN nonzero
entries, which is exponentially larger than the discrete action
of an SPD where there are at most 4LN nonzero entries. The
more general discrete action will prove useful in practical
applications.

We now categorize the common types of discrete actions,
which can naturally be broken down into three varieties (see
Fig. 5 for a schematic): sequential discrete actions (SDA),
canonical discrete actions (CDA), and general discrete actions
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(GDA). We start with GDA, which is defined as

Â = Â0P̂, Â0 = ÂG(g0), (89)

ÂG(g0) = exp([vQ(g0)]kτ,k′τ ′ â†
k,S (τ )âk′,S (τ ′)), (90)

P̂ = Pη1..ηN ,η′
1..η

′
N

X̂η1η
′
1,S

(1)...X̂ηN η′
N ,S (N ), (91)

vQ(g0) = ln
((

g−1
0 − 1

)−1(
g−1

Q − 1
))T

, (92)

[gQ]kτ,k′τ ′ = 〈Tâ†
k,S (τ )âk′,S (τ ′)〉1̂, (93)

where the Einstein summation convention has been used, and
the derivation of Eq. (92) is given in Subsec. IV B. Therefore,
we see that the GDA is composed of a noninteracting discrete
action Â0 and an interacting projector P̂, where both have no
constraint with respect to the integer time structure.

The CDA is a GDA by restricting the interacting projector
into a time blocked form as

P̂ =
N∏

τ=1

P̂τ,S (τ ), (94)

which will be very useful in evaluating the SPD-d (see
Sec. VI). Finally, the SDA is the discrete action corresponding
to an SPD, which can be viewed as a CDA by restricting the
noninteracting discrete action into the following form:

Â0 = exp

( N∑
τ=1

γτ · n̂S (τ )

)
, (95)

where n̂ was defined in Eq. (6).
The form of the CDA and GDA requires the evaluation of

an integer time ordered expression with nontrivial integer time
structure, which is inconvenient to manipulate. Therefore, it
is useful to develop a more adept mathematical framework
which is conducive to handling such scenarios. This motivates
the introduction of the compound space, which is the topic of
the next subsection.

B. Integer time path integral and the compound space

Here we prescribe a mathematical formalism to recast the
integer time ordered correlations of a general discrete action
as a static measurement under an effective density matrix
in a compound quantum system. This can be viewed as a
reformulation of the path integral. In the usual path integral
formalism, one can interpret the action as the effective en-
ergy of a classical system (though for fermions one needs
Grassmann numbers, which have no classical counterpart)
with the same spatial structure and one more dimension for
the time correlation [48]. Thus, we have the well-known
fact that d-dimensional quantum fields correspond to a (d +
1)-dimensional classical system. In the following, we refor-
mulate this mapping, resulting in two key differences. First, as
the number of time steps is finite, the number of points within
the extra dimension is also finite. Second, for the evolution
of each time step, we need to retain an exact operator form
given that the P̂i cannot be treated as an infinitesimally small
expansion from the identity matrix. As a result, we obtain
a compound quantum system with a Fock space of Hc =
⊗N

τ=1H, where H is the Fock space of the original system.

FIG. 6. A schematic of the integer time path integral which
derives a map to the compound space, using the example of the
Hubbard dimer for N = 3. The first step denotes a particular snap-
shot within Eq. (99). The second step merges the state vectors from
different time steps into the compound space, while the operators are
promoted, illustrating Eq. (103). The final step illustrates the integer
time shift operator Q̂, which results in a diagonal matrix element,
corresponding to Eq. (105).

To begin, we must define how we represent operators from
the original system in the compound system. Each creation
and destruction operator will be attached to a given integer
time index when promoted to the compound space. For
example, for a system with L spin orbitals, any operator can
be built algebraically from the 2L operators â†

1, . . . , â†
L and

â1, . . . , âL. Given N time steps, any operator for the com-
pound system can be built algebraically from 2LN operators
â†(1)

1 , . . . , â†(1)
L , . . . , â†(τ )

1 , . . . , â†(τ )
L , . . . , â†(N )

1 , . . . , â†(N )
L

and â(1)
1 , . . . , â(1)

L , . . . , â(τ )
1 , . . . , â(τ )

L , . . . , â(N )
1 , . . . , â(N )

L ,
where the underscore denotes an operator in the compound
space and the superscript τ associates the operator with
integer time τ . These operators in the compound space must
obey the Fermionic anticommutation relations, yielding{

â†(τ )
k , â(τ ′ )

k′
} = δkk′δττ ′ , (96){

â(τ )
k , â(τ ′ )

k′
} = {

â†(τ )
k , â†(τ ′ )

k′
} = 0. (97)

The commutation relations indicate that the time index has
the same behavior as the orbital index in the compound
space. In order to promote some generic operator Ô =
f (â†

1, . . . , â†
L, â1, . . . , âL ) associated with a given τ , we obtain

the corresponding operator in the compound space as Ô
(τ ) =

f (â†(τ )
1 , . . . , â†(τ )

L , â(τ )
1 , . . . , â(τ )

L ).
Now we proceed to derive the mapping to the compound

space in the special case of the SPD (see Fig. 6 for a schematic
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of the following derivation). Considering a general integer time correlation function under the SPD and performing N identity
insertions

〈TÔ1(1) . . . ÔN (N )〉�̂ = Tr(P̂1Ô1 . . . P̂N ÔN )/Tr(P̂1 . . . P̂N ) (98)

= 1

C

∑
	1...	N

〈	1| exp(γ1 · n̂)P̂1Ô1|	2〉〈	2| exp(γ2 · n̂)P̂2Ô2|	3〉 . . . 〈	N | exp(γN · n̂)P̂N ÔN |	1〉 (99)

= 1

C

∑
	1...	N

〈	1|
(∑

		′
c1;		′ X̂		′

)
|	2〉〈	2|

(∑
		′

c2;		′ X̂		′

)
|	3〉 . . . 〈	N |

(∑
		′

cN ;		′ X̂		′

)
|	1〉 (100)

= 1

C

∑
	1...	N

c1;	1	2 c2;	2	3 . . . cN ;	N 	1

〈	1 ⊗ 	2 · · · ⊗ 	N |X̂ (1)
	1	2

X̂
(2)
	2	3

. . . X̂
(N )
	N 	1

|	2 ⊗ 	3 · · · ⊗ 	1〉
〈	1 ⊗ 	2 · · · ⊗ 	N |X̂ (1)

	1	2
X̂

(2)
	2	3

. . . X̂
(N )
	N 	1

|	2 ⊗ 	3 · · · ⊗ 	1〉
(101)

= 1

C

∑
	1...	N

θ	2	3...	1〈	1 ⊗ 	2... ⊗ 	N |
(∑

		′
c1;		′ X̂

(1)
		′

)(∑
		′

c2;		′ X̂
(2)
		′

)
...

(∑
		′

cN ;		′ X̂
(N )
		′

)

× |	2 ⊗ 	3... ⊗ 	1〉 (102)

= 1

C

∑
	1...	N

θ	2	3...	1

〈
	1 ⊗ 	2 · · · ⊗ 	N | exp

(
γ1 · n̂(1)

)
P̂

(1)
1 Ô

(1)
1 . . . exp

(
γN · n̂(N )

)

× P̂
(N )
N Ô

(N )
N |	2 ⊗ 	3 · · · ⊗ 	1

〉
(103)

= 1

C
Tr
(
Q̂ exp(γ1 · n̂(1) )P̂

(1)
1 Ô

(1)
1 . . . exp(γN · n̂(N ) )P̂

(N )
N Ô

(N )
N
)

(104)

= 1

C
Tr
(
Q̂ exp(γ1 · n̂(1) ) . . . exp(γN · n̂(N ) )P̂

(1)
1 . . . P̂

(N )
N Ô

(1)
1 . . . Ô

(N )
N
)
, (105)

where

θ	2	3..	1 = θ−1
	2	3..	1

= 〈	1 ⊗ 	2.. ⊗ 	N |X̂ (1)
	1	2

. . . X̂
(N−1)
	N−1	N

X̂
(N )
	N 	1

|	2 ⊗ 	3.. ⊗ 	1〉, (106)

Q̂ =
∑

	1...	N

θ	2	3...	1 |	2 ⊗ 	3 · · · ⊗ 	1〉〈	1 ⊗ 	2 · · · ⊗ 	N | =
∑

	1...	N

X̂
(N )
	1	N

X̂
(N−1)
	N 	N−1

. . . X̂
(1)
	2	1

, (107)

C = Tr(�̂) = Tr

(
Q̂ exp

( N∑
τ=1

γτ · n̂(τ )

)
P̂

(1)
1 . . . P̂

(N )
N

)
. (108)

In Eq. (99), the identity insertions consist of states |	τ 〉
built from applying the creation operators in the chosen basis
set to the empty state. In Eq. (100), we express the operators
in terms of Hubbard operators X̂		′ = |	〉〈	′| in the same
basis set. In Eq. (101), we insert unity in order to connect
the matrix elements with their corresponding operators in the
compound space, where each Hubbard operator is formed via
the promotion rules described above. In Eq. (102), the quantity
θ	2	3..	1 = ±1, and we have introduced a summation over all
Hubbard operators given that other terms will not contribute.
Equation (103) holds given that the promotion of operators
to the compound space is linear. Equation (104) introduces
the shift operator Q̂ which allows one to recast the sum as
a trace and can be recognized as the integer time version
of exp(

∫ β

0 dτ ϕ̄(τ )∂τϕ(τ )) from the usual path integral [48].
Equation (105) reorders all of the noninteracting projectors
to the left, the interacting projectors in the middle, and the
observables on the right, and it should be recalled that the

operators P̂τ are bosonic. Therefore, we see that an integer
time ordered correlation function evaluated under an SPD is
equivalent to a corresponding static expectation value in the
compound space under an effective density matrix

�̂ = �̂
0

N∏
τ=1

P̂
(τ )
τ , �̂

0
= Q̂ exp

( N∑
τ=1

γτ · n̂(τ )

)
, (109)

and it should be noted that the density matrix is not Hermitian
in general. The previous derivation corresponded to a quantity
which was initially time ordered, and in general we have

〈TÔ1(τ1) . . . ÔM (τM )〉�̂ = 〈Ô(τ1 )
1 . . . Ô

(τM )
M

〉
�̂
. (110)

Notice that the representation of Q̂ in the compound space
is completely determined from the convention in which we
combine the N copies of the original system into the com-
pound system. Therefore, we can straightforwardly determine
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Q̂ by studying a special SPD �̂Q with P̂τ = 1̂, where we have

Tr(Q̂n̂)

Tr(Q̂)
= gQ, (111)

where gQ is the single-particle integer time Green’s function
for �̂Q, which is equivalent to the definition in the Schrödinger
representation given in Eq. (93). Given that any correlator
within the noninteracting SPD can be evaluated using the
integer time Wick’s theorem (see the Appendix), this indi-
cates that Q̂ must also be a noninteracting density matrix in
the compound space. From the Lie group properties of the
noninteracting density matrix (see the Appendix), we have

ρ̂G(g) = exp

(
ln

(
1

g−1 − 1

)T

· n̂
)

, (112)

which implies that the integer time Green’s function uniquely
determines a noninteracting density matrix in the compound
space. Therefore, we can determine

Q̂ = ρ̂G(gQ). (113)

Given that Q̂ is independent of the discrete action, this specific
determination of Q̂ applies in general.

Recall that Eq. (105) is specific to the case of an SPD, and
we can generalize to the case of a general discrete action as

�̂ = Q̂Â, (114)

where Â is the promotion of Â, given as

Â = exp(vQ(g0) · n̂)Pη1..ηN ,η′
1..η

′
N

X̂
(1)
η1η

′
1
...X̂

(N )
ηN η′

N
, (115)

where the Einstein summation convention has been used. We
now proceed to derive the expression for vQ(g0) as

�̂
0

= Q̂ exp(vQ(g0) · n̂) = ρ̂G(g0) (116)

→ vQ(g0) = ln
((

g−1
0 − 1

)−1(
g−1

Q − 1
))T

. (117)

A general integer time correlation function can then be writ-
ten as

〈TÂÔ1,S (τ1)...ÔM,S (τM )〉1̂

〈TÂ〉1̂

= 〈Ô(τ1 )
1 ...Ô

(τM )
M 〉�̂. (118)

We see that �̂ is a representation of the discrete action in the
compound space, and we also refer to �̂ as the discrete action.
Finally, the expression for the general discrete action in the
compound space can be written as

�̂ = ρ̂G(g0)P̂. (119)

The CDA can also be written in the compound space, given as

�̂ = ρ̂G(g0)
N∏

τ=1

P̂
(τ )
τ . (120)

Given the abstract nature of the compound space, it is
useful to consider some simple examples. Consider a nonin-
teracting SPD with a single degree of freedom and N = 2:

�̂0 = exp(γ1â†â) exp(γ2â†â), (121)

where

â† =
(

0 0

1 0

)
, â =

(
0 1

0 0

)
, n̂ = â†â =

(
0 0

0 1

)
,

(122)

assuming an ordering of the basis as |0〉, |1〉. Consider the time
ordered expectation value, which can be directly evaluated as

〈Tâ†
I (1)âI (2)〉�̂0 = exp(γ1)

1 + exp(γ1 + γ2)
. (123)

Alternatively, we can evaluate the same quantity using the
compound space. We begin by promoting all operators to the
compound space as

â†(1) =

⎛
⎜⎜⎜⎝

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

⎞
⎟⎟⎟⎠, â†(2) =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠,

(124)

where we have chosen an ordering of the basis as |00〉, |01〉,
|10〉, and |11〉, where

|n2n1〉 = (â†(2)
)n2
(
â†(1)

)n1 |00〉. (125)

The operator Q̂ can then be constructed as

Q̂ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ (126)

and the effective density matrix is then

�̂
0

= Q̂ exp(γ1â†(1)â(1) + γ2â(2)â(2) ). (127)

Finally, we can compute the desired expectation value as

〈
â†(1)â(2)〉

�̂
0

= exp(γ1)

1 + exp(γ1 + γ2)
, (128)

recovering the previous result. This simple example illustrates
how an integer time ordered correlation function is equivalent
to a corresponding static expectation value in the compound
space.

It is useful to explore the integer time correlation function
from the viewpoint of coherent states. We begin by writing
the integer time correlation function using the standard path
integral as

〈Ô1(1)...ÔN (N )〉�̂

= 〈P̂1,I (1)Ô1,I (1)...P̂N ,I (N )ÔN ,I (N )〉�̂0

〈P̂1,I (1)...P̂N ,I (N )〉�̂0

(129)

=
∫

D[ϕ̄, ϕ] exp(Sc)�P̂1Ô1�1 . . . �P̂N ÔN �N∫
D[ϕ̄, ϕ] exp(Sc)�P̂1�1 . . . �P̂N �N

, (130)

where the notation �Ô�τ indicates that the operator Ô is first
transformed into a normal ordered form, then all creation-
annihilation operators are converted to the corresponding
Grassmann numbers at the time index τ , and the action Sc

is the noninteracting action which has been separated into N
pieces:

Sc =
∑
kk′

N∑
τ=1

∫ τ

τ−1
dτ ′ϕ̄kτ ′

(
∂

∂τ ′ δkk′ + γτkk′

)
ϕk′τ ′ , (131)
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where ϕk,τ is the Grassmann variable corresponding to the op-
erator âk at time τ (it should be noted that our time convention
is opposite to the usual definition [44]). Given that Eq. (130)
only measures the correlations at integer times, we can trace
out the Grassmann numbers in the intervals between integer
times as

〈Ô1(1) . . . ÔN (N )〉�̂

=
∫ (∏

kτ dϕ̄k,τ dϕk,τ

)
exp(Sd )�P̂1Ô1�1...�P̂N ÔN �N∫ (∏

kτ dϕ̄k,τ dϕk,τ

)
exp(Sd )�P̂1�1...�P̂N �N

,

(132)

where

Sd =
∑
kk′

N∑
τ,τ ′=1

ϕ̄kτ

[
g−1

0

]
k′τ ′,kτ

ϕk′τ ′ = ϕ̄T
(
g−1

0

)T
ϕ (133)

and g0 is the noninteracting integer time Green’s function
defined in Eq. (33). Equation (132) is an exact evaluation,
and this is an alternate viewpoint to the discrete action in
the compound space. However, due to the requirement of the
normal ordering procedure in Eq. (132), one cannot directly
apply standard techniques such as the generating functional.
We can now see that a great advantage of the compound space
is that it circumvents the need to transform an operator into
normal ordered form.

C. Discrete generating function and discrete Dyson equation

Two key concepts in many-body physics are the interacting
single-particle Green’s function and the self-energy, which
relates the noninteracting Green’s function to the the interact-
ing Green’s function via the Dyson equation. Here we will
further generalize these quantities to the integer time case
corresponding to a GDA. The interacting integer time Green’s
function under the GDA is given as

[g]kτ,k′τ ′ = 〈â(τ )†
k â(τ ′ )

k′
〉
�̂
, (134)

where τ = 1, . . . ,N and k = 1, . . . , L [see Eq. (80) for the
definition of the integer time Heisenberg representation].
Therefore, g is a matrix of dimension LN × LN and plays
a similar role to the usual many-particle Green’s function.
Furthermore, the two-particle integer time Green’s function
is given as 〈

â(τ1 )†
k1

â(τ2 )†
k2

â(τ3 )
k3

â(τ4 )
k4

〉
�̂
. (135)

More generally, our goal in this subsection is to compute an
arbitrary M-particle integer time Green’s function from the
generating function, yielding a generalization of the Dyson
equation, Bethe-Salpeter equation, etc.

To proceed, we introduce the generating function to gener-
ate M-particle integer time Green’s functions for a given SPD:

Z̃ (v1, . . . , vM ) =
〈P̂ exp([v1]i j n̂i j ) . . . exp([vM]lk n̂lk )〉�̂

0

〈exp([v1]i j n̂i j ) . . . exp([vM]lk n̂lk )〉�̂
0

,

(136)

where v is the source, �̂
0

= ρ̂G(g0) is the noninteracting dis-

crete action, P̂ is a general interacting projector, the indices
i, j, l, k are all twotuples containing both an orbital and a

time index such that n̂(k,τ )(k′,τ ′ ) = â†(τ )
k â(τ ′ )

k′ , and Einstein no-
tation for summations has been employed (and will be used
throughout this subsection). It should be noted that the Lie
group properties of the noninteracting density matrix (see the
Appendix) demand that

Z̃ (v1, .., vM ) = Z̃ (v), (137)

v = ln(exp(v1) . . . exp(vM )). (138)

The first step is to derive the M-particle integer time
Green’s functions in terms of derivatives of Z̃ (v1, . . . , vM ).
Given that we are only concerned with the single-particle and
two-particle integer time Green’s function in this paper, we
restrict ourselves to M = 2. Substituting into the expression
for Z̃ , we find

Z̃ (v1, v2) =〈P̂〉�̂
0
+ [v1]i j (〈P̂ n̂i j〉�̂0

− 〈P̂〉�̂
0
〈n̂i j〉�̂0

)

+ [v2]lk (〈P̂ n̂lk〉�̂0
− 〈P̂〉�̂

0
〈n̂lk〉�̂0

)

+ [v1]i j[v2]lk
(〈P̂ n̂i j n̂lk〉�̂0

− 〈P̂〉�̂
0
〈n̂i j n̂lk〉�̂0

+ 2〈P̂〉�̂
0
〈n̂i j〉�̂0

〈n̂lk〉�̂0

− 〈n̂i j〉�̂0
〈P̂ n̂lk〉�̂0

− 〈P̂ n̂i j〉�̂0
〈n̂lk〉�̂0

)+ · · · .

(139)

We can now evaluate the first and second derivatives of
Z̃ (v1, v2) divided by Z̃ (0, 0)

1

Z̃ (0, 0)

∂Z̃ (v1, v2)

∂[v1]i j

∣∣∣∣
v�=0

= 〈n̂i j〉�̂ − 〈n̂i j〉�̂0
, (140)

1

Z̃ (0, 0)

∂2Z̃ (v1, v2)

∂[v1]i j∂[v2]lk

∣∣∣∣
v�=0

= 〈n̂i j n̂lk〉�̂ − 〈n̂i j n̂lk〉�̂0

+2〈n̂i j〉�̂0
〈n̂lk〉�̂0

−〈n̂i j〉�̂0
〈n̂lk〉�̂

−〈n̂i j〉�̂〈n̂lk〉�̂0
, (141)

where v� = 0 for � = 1, 2, and we used 〈Ô〉�̂ =
〈P̂ Ô〉�̂

0
/〈P̂〉�̂

0
.

We now have all of the information we need to construct
arbitrary one- and two-particle integer time Green’s functions.
However, this formulation is somewhat inconvenient given
that we will use Wick’s theorem to evaluate the generating
function which necessitates the use of g0 instead of v. There-
fore, it is convenient to perform a change of variables into the
noninteracting single-particle integer time Green’s function

Z (g0) ≡ 〈P̂〉ρ̂G(g0 ) = Z̃ (v(g0)), (142)

v(g0) ≡ ln

((
1

g−1
0 − 1

)T (
g�−1

0 − 1
)T)

, (143)

where v(g0) was obtained by inverting the following relation

g0(v) = 〈n̂〉exp(v·n̂)�̂
0

(144)

and g�
0 is the single-particle integer time Green’s function

under �̂0 (i.e., g�
0 = g0(0)).

In order to convert Eqs. (140) and (141) to functions of g0,
we translate the derivatives using the chain rule. First, we need

195138-13



ZHENGQIAN CHENG AND CHRIS A. MARIANETTI PHYSICAL REVIEW B 103, 195138 (2021)

the derivatives of g0(v) with respect to vn

∂[g0]i j

∂[vn]lk

∣∣∣∣
v�=0

= − ∂[p0]i j

∂[vn]lk

∣∣∣∣
v�=0

= [g0]ik[p0]l j, (145)

where p0 = 1 − g0. We can now construct the first derivative
of Z̃ as

∂Z̃

∂[v1]i j

∣∣∣∣
v�=0

= ∂Z

∂[g0]mn
[g0]m j[p0]in. (146)

Similarly, for the second derivative

∂Z̃

∂[v1]i j[v2]lk

∣∣∣∣
v�=0

= ∂Z

∂[g0]mn∂[g0]st
[g0]sk[p0]lt [g0]m j[p0]in

+ ∂Z

∂[g0]mn
([g0]mk[p0]l j[p0]in

− [g0]m j[g0]ik[p0]ln). (147)

We now have all derivatives of Z̃ up to second order in terms
of derivatives of Z .

Given that we will always be evaluating the derivative for
g0 = g�

0, we will suppress the star superscript hereafter. We
can then write an equation for g as

[g]i j = [g0]i j + 1

Z

∂Z

∂[g0]mn
[g0]m j[1 − g0]in. (148)

Similarly, for the two-particle quantities, we can write the in-
teracting single-particle and two-particle integer time Green’s
functions in terms of the noninteracting integer time Green’s
function and derivatives of the generating function as〈

n̂i j n̂lk

〉
�̂

= [g0]i j[g0]lk + [g0]ik[p0]l j

+ 1

Z

∂Z

∂[g0]mn
([g0]mk[g0]i j[p0]ln + [g0]m j[g0]lk[p0]in

+ [g0]mk[p0]l j[p0]in − [g0]m j[g0]ik[p0]ln)

+ 1

Z

∂Z

∂[g0]mn∂[g0]st
[g0]sk[p0]lt [g0]m j[p0]in. (149)

Equation (148) can be rewritten in a more convenient form
motivated from the Lie group structure of the noninteracting
density matrix (see Sec. A 1). Introducing the integer time
self-energy � and its exponential form S = exp (−�T ) as

S =
(

Z1 +
(

∂Z

∂gT
0

)
p0

)−1(
Z1 −

(
∂Z

∂gT
0

)
g0

)
, (150)

we arrive at(
1

g−1 − 1

)T

=
(

1

g−1
0 − 1

)T

exp (�), (151)

which can be further rearranged to our preferred form of the
discrete Dyson equation:

(g−1 − 1) = (g−1
0 − 1

)
S. (152)

This discrete Dyson equation plays an important role in the
discrete action theory, analogous to the usual Dyson equation.
While we have only derived the equations for the one- and
two-particle integer time Green’s functions, it should be clear

that the above procedure can be formally executed for arbi-
trary M-particle integer time Green’s functions. It should be
emphasized that Z can be written as a finite polynomial of
g0 if P̂ contains a finite number of terms, which is why it is
beneficial to perform the above change in variables.

It is useful to illustrate how the discrete Dyson equation
connects with the usual Dyson equation, and we make this
connection in two steps. We begin by rewriting the discrete
Dyson equation as

(
1

g−1 − 1

)T

=
(

1

g−1
Q − 1

)T

exp(v0) exp (�), (153)

where v0 is defined from

(
1

g−1
0 − 1

)T

=
(

1

g−1
Q − 1

)T

exp(v0). (154)

We now consider the limit of small � and v0, where we can
Taylor series expand the above two equations and retain only
leading-order terms as

g−1 − 1 = (
g−1

Q − 1
)(

1 − vT
0 − �T

)
, (155)

g−1
0 − 1 = (

g−1
Q − 1

)(
1 − vT

0

)
. (156)

We now additionally consider the large-N limit. Given that

[
g−1

Q

]
i j

=

⎧⎪⎨
⎪⎩

−1 i = j + 1

1 i = j

0 otherwise

, (157)

we have g−1
Q vT

0 ≈ 0 and g−1
Q �T ≈ 0 for large N . Subtracting

the above two Taylor series, we then have

g−1 = g−1
0 + �T . (158)

If we select an SPD corresponding to the Trotter-Suzuki de-
composition in the large-N limit, the above equation will
recover the usual Dyson equation.

V. THE CANONICAL DISCRETE ACTION

The CDA will prove to be relevant in the context of several
different SPDs. In particular, the SPD-l can be evaluated using
the CDA. Additionally, the SPD-d can be evaluated in d = ∞
using a CDA with a self-consistently determined noninteract-
ing integer time Green’s function. Therefore, there is utility
in first studying the CDA in its own right, and we will later
illustrate how it can be used to solve the AIM and Hubbard
models. The key step to evaluating the CDA is to compute the
discrete generating function as

Z (g0) =
〈 N∏

τ=1

P̂
(τ )
τ

〉
ρ̂G(g0 )

. (159)

In the following subsections, we evaluate the generating func-
tion for the CDA in the special case of N = 3 with a single
orbital. Subsequently, we show how the CDA can be used to
evaluate the SPD-l. This particular case can be used to solve
the single-band AIM [20].
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A. CDA for N = 3 with a single orbital

We now consider the CDA for two degenerate spin orbitals
with N = 3 for interacting projectors P̂3 = 1̂ and

P̂1 = P̂2 =
(

1 − μ − 1

4
u

)
1̂ + μ(n̂↑ + n̂↓) + un̂↑n̂↓, (160)

where μ and u are variational parameters. The spin-dependent
g0 can be parameterized as

g0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11↑ 0 c12↑ 0 c13↑ 0

0 c11↓ 0 c12↓ 0 c13↓
c21↑ 0 c22↑ 0 c23↑ 0

0 c21↓ 0 c22↓ 0 c23↓
c31↑ 0 c32↑ 0 c33↑ 0

0 c31↓ 0 c32↓ 0 c33↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (161)

where we have used the time major indexing scheme (see
Subsec. III B 1), and the parameters ci jσ are arbitrary. The
generating function can then be evaluated using the integer
time Wick’s theorem, resulting in a polynomial of the form

Z (g0) = [Z (g0)]1 + [Z (g0)]2u + [Z (g0)]3u2

+ [Z (g0)]4μ + [Z (g0)]5μu + [Z (g0)]6μ
2, (162)

where

[Z (g0)]1 = 1, (163)

[Z (g0)]2 = c11↓c11↑ + c22↓c22↑ − 1
2 , (164)

[Z (g0)]3 = 1
16 (16c12↓c21↓(c12↑c21↑ − c11↑c22↑)

+ 4c11↓(c11↑(4c22↓c22↑ − 1) − 4c22↓c12↑c21↑)

− 4c22↓c22↑ + 1), (165)

[Z (g0)]4 = c11↓ + c22↓ + c11↑ + c22↑ − 2, (166)

[Z (g0)]5 = 1
4 (−c22↓(4c12↑c21↑ + 4c22↑ + 1)

+c11↑(4c22↓c22↑ − 4c12↓c21↓ − 1)

+c11↓(4c22↓c22↑ − 4c12↑c21↑ − 1)

+4c11↑c11↓(c22↓ + c22↑ − 1)

+ 2 − (4c12↓c21↓ + 1)c22↑), (167)

[Z (g0)]6 = c11↓(c22↓ + c22↑ − 1) + c11↑(c22↓ + c22↑ − 1)

−c12↓c21↓ − c22↓ − c12↑c21↑ − c22↑ + 1. (168)

Each connected term in the above polynomial can be iden-
tified with an integer time Feynman diagram (see Fig. 7 for
a schematic). We now have the complete solution for this
particular CDA, and any M-particle integer time correlation
function can be evaluated via differentiation. For example, the
single- and two-particle integer time Green’s functions can be
obtained by plugging Z into Eqs. (148) and (149), respectively
(see Ref. [29] for explicit results).

B. Evaluating the SPD-l using the CDA

We now explore how to use the CDA in the context of
the SPD-l. First recall that in Sec. III B we explored how to

FIG. 7. The connected integer time Feynman diagrams for the
generating function of the CDA with interacting projectors defined
in Eq. (160) at N = 3. Panels (a)–(e) illustrate connected diagrams
which appear in Eqs. (164)–(168), respectively. Lines represent the
noninteracting integer time Green’s function g0, squares represent
the two-particle vertex associated with the variational parameter u,
and circles represent the single-particle vertex associated with the
variational parameter μ.

evaluate the SPD-l using a diagrammatic approach. Now we
approach the same problem using the generating function and
the CDA. Starting from the sequential discrete action of the
SPD-l, we can trace out all of the orbitals that are not in the
space of the interacting projector, which we denote as bath
orbitals, and obtain a local discrete action as

�̂
loc

= Trbath�̂ = Trbath(�̂
0
)P̂

(1)
1 . . . P̂

(N )
N (169)

= ρ̂G(gloc;0 )P̂
(1)
1 . . . P̂

(N )
N , (170)

and we see that �̂
loc

is indeed a CDA. If we study the generat-
ing function of the SPD-l, we find

Z (g0) = 〈P̂〉ρ̂G(g0 ) = 〈P̂〉ρ̂G(gloc;0 ) = Zc(gloc;0 ), (171)

where Zc is the generating function of the CDA, the interacting
projector is P̂ = P̂

(1)
1 . . . P̂

(N )
N , and gloc;0 is the local impurity

subblock of the noninteracting integer time Green’s function,
given as

g0 =
(

gloc;0 glb;0
gbl;0 gbath;0

)
, (172)

and the latter equality in Eq. (171) holds given that P̂ is local.
Therefore, we can see that evaluating the SPD-l amounts to
evaluating a CDA with the corresponding interacting projec-
tors and a noninteracting integer time Green’s function gloc;0.
It is useful to note that the integer time self-energy of the
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SPD-l is local,

�(g0) = �loc(gloc;0 ) ⊕ 0, (173)

where �loc is completely determined from Zc, and this implies
that

S = Sloc ⊕ 1. (174)

In summary, we have shown that by tracing out the bath
orbitals of the SPD-l, one obtains a CDA which can be used
to evaluate the SPD-l. In analogy to the traditional many-body
Green’s function approach, the CDA is analogous to the action
obtained by integrating out all bath states from the AIM.
More precisely, for the particular case of the Trotter SPD-l in
the large-N limit, the Trotter SPD-l yields the exact density
matrix of the corresponding Anderson impurity model, and
the corresponding CDA is equivalent to the effective action of
the impurity obtained by integrating out the bath sites.

VI. SELF-CONSISTENT CANONICAL DISCRETE
ACTION (SCDA)

A. Defining the SCDA algorithm

In the preceding sections, we have built a complete formal-
ism for evaluating integer time correlation functions under a
discrete action, which can then be used to evaluate an SPD.
For a general SPD, one is still faced with a formidable prob-
lem, and therefore we need to develop approximations and
search for relevant scenarios where an appropriate SPD can
be exactly evaluated. Fortunately, all of the usual approaches
from many-body physics can be generalized to our discrete
action formalism.

A common scenario for models of interacting electrons is
where the interaction is local but not restricted to a single
subspace; prominent examples include the Hubbard model
and the periodic Anderson impurity model. In such cases, it is
natural to study the SPD-d (see Sec. II), where the interacting
projectors are composed of disjoint projectors. To specifically
address the SPD-d, we introduce the self-consistent canonical
discrete action approximation (SCDA), which is the integer
time analog of the dynamical mean-field theory (DMFT)
[21–23]. The key idea for the SCDA is that the integer time
self-energy is local, and this can be determined by mapping
the SPD-d to a collection of CDAs determined from a self-
consistency condition. Analogous to DMFT, we will prove
that the SCDA is an exact evaluation of the SPD-d in infinite
dimensions (see Sec. VI B).

We begin by outlining the SCDA in the most general case,
in the absence of any symmetry, where we consider an SPD-
d with N sites and the interacting projectors are local within
each site. The key idea for the SCDA is the assumption that
the integer time self-energy is local,

�(g) = ⊕N
i=1�i(gii ), (175)

where i labels a given site. The self-consistent procedure
can then be defined, beginning with an initial guess for the
noninteracting integer time Green’s function of the CDA and
the identification of the interacting projector of the CDA as

that from site i of the SPD-d, and we have

Gi = g0;ii, P̂i =
N∏

τ=1

P̂
(τ )
i,τ , (176)

which completely defines the effective CDA for site i. The
effective CDA can then be solved by computing the discrete
generating function Zi, yielding the exponential integer time
self-energy Si as

Si =
(

Zi1 + ∂Zi

∂GT
i

(1 − Gi )

)−1(
Zi1 − ∂Zi

∂GT
i

Gi

)
. (177)

In the absence of symmetry, one must solve a CDA for each
site, yielding the total exponential self-energy for the system
as

S = ⊕N
i=1Si. (178)

The interacting integer time Green’s function can then be
constructed as

g = 1
g0 + (1 − g0)S

g0. (179)

Finally, we construct a new noninteracting integer time
Green’s function, yielding the updated CDA:

Gi = Si
1

(1 + gii(Si − 1))
gii. (180)

This entire procedure is then iterated until self-consistency
is achieved. Upon achieving self-consistency, one has com-
pleted a single evaluation of the SPD-d. In order to obtain the
ground-state energy, one needs to minimize over the varia-
tional parameters.

The preceding outline of the SCDA is applied to a generic
system without symmetry, and now we specify the SCDA to
the case of translation symmetry where all types of orbitals
have the same density of states. We can begin with a guess for
the noninteracting integer time impurity Green’s function G
as

G =
∫

dεD(ε)g0(ε), (181)

where D(ε) is the density of states. This defines our effective
CDA for the crystal, which can then be solved by computing
the discrete generating function Z , yielding the local exponen-
tial integer time self-energy S as

Sloc =
(

Z1 + ∂Z

∂GT (1 − G)

)−1(
Z1 − ∂Z

∂GT G
)

. (182)

We then use this integer time self-energy to update the inter-
acting integer time Green’s function for each energy orbital
as

g(ε) = 1
g0(ε) + (1 − g0(ε))Sloc

g0(ε). (183)

Then we obtain the new interacting local integer time Green’s
function as

gloc =
∫

dεD(ε)g(ε). (184)
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FIG. 8. A schematic of how VDAT is used to solve for the
ground-state properties of a Hamiltonian under SPD-d within the
SCDA. ITGF is the acronym for the integer time Green’s function.

Finally, we construct a new noninteracting integer time
Green’s function, yielding the updated CDA as

G = Sloc
1

(1 + gloc(Sloc − 1))
gloc. (185)

This process is then iterated until self-consistency is achieved,
and then the entire procedure is iterated when minimizing over
the variational parameters (see Fig. 8).

B. Proof that the SCDA is exact in d = ∞
Here we prove that the SCDA exactly evaluates the SPD-d

in d = ∞ for a general multiband Hubbard model, where the
local interacting projectors P̂i are confined to site i. The main
idea follows the cavity construction method used for proving
that DMFT is exact in infinite dimensions [21]. We begin by
considering the noninteracting discrete action

�̂
0

= Q̂ exp(γ1 · n̂(1) )... exp(γN · n̂(N ) ), (186)

where

exp(γτ · n̂(τ ) ) = exp

⎛
⎝∑

�kσ

γ�kσ ;τ n̂(τ )
�kσ

⎞
⎠. (187)

In the cavity construction, one selects a particular site in the
lattice, denoted site i, and traces out all other sites. We can
rewrite the noninteracting discrete action in the following
form:

�̂
0

= exp((vi + vb + vib) · n̂), (188)

where vi is a single-particle potential within site i, vb is
the single-particle potential of the remaining sites, and vib

is the off-diagonal component of the single-particle potential
between site i and the remaining sites. We can then construct
the local discrete action for site i by tracing out all other sites

�̂
loc

= Tr/i

(
�̂

0

∏
j

P̂ j

)
= �̂

loc;0
P̂i, (189)

where

�̂
loc;0

= Tr/i

(
�̂

0

∏
j �=i

P̂ j

)
, P̂ j =

N∏
τ=1

P̂
(τ )
τ, j . (190)

We now seek to prove that �̂
loc

is a CDA in d = ∞. By
expanding �̂

loc;0
in terms of vib, we prove that the interacting

projectors within �̂
loc;0

can be replaced by an effective nonin-
teracting projector as

�̂
loc;0

= Tr/i(�̂0
exp(�B;in̂)), (191)

where �B;i is a single-particle potential for the sites not con-
taining i. Recall the general expression for the expansion of
the exponential of a sum of two operators Â and B̂,

exp(Â + B̂) = exp(Â) +
∫ 1

0
dλ exp(λÂ)B̂ exp((1 − λ)Â)

+
∫ 1

0
dλ1

∫ 1

λ1

dλ2 exp(λ1Â)B̂ exp((λ2 − λ1)Â)B̂

× exp((1 − λ2)Â) + · · · (192)

and equating

Â = (vi + vb) · n̂ = Âi + Âb, (193)

Âi = vi · n̂ =
∑
ττ ′

vττ ′
â†(τ )

i â(τ ′ )
i + H.c., (194)

Âb = vb · n̂ =
∑

j �=i, j′ �=i,ττ ′
vττ ′

j j′ â†(τ )
j â(τ ′ )

j′ , (195)

B̂ = vib · n̂ =
∑

j �=i,ττ ′

(
t ττ ′

j â†(τ )
i â(τ ′ )

j + H.c.
)
, (196)

we can then consider the expansion in vib order by order

ρ̂loc;0 = Tr/i

(
exp(Â)

∏
j �=i

P̂j

)
+ [ρ̂loc;0]1 + · · · , (197)

where

[�̂
loc;0

]1 = Tr/i

(∫ 1

0
dλ1 exp(λ1Â)

∑
j1 �=i,ττ ′

(
t ττ ′

j1 â†(τ )
i â(τ ′ )

j1
+ H.c.

)
exp((1 − λ1)Â)

∏
j �=i

P̂ j

)
, (198)

[�̂
loc;0

]2 = Tr/i

(∫ 1

0
dλ1

∫ 1

λ1

dλ2 exp(λ1Â)
∑

j1 �=i,τ1τ
′
1

(
t
τ1τ

′
1

j1
â†(τ1 )

i â
(τ ′

1 )
j1

+ H.c.
)

exp((λ2 − λ1)Â)

×
∑

j2 �=i,τ2τ
′
2

(
t
τ2τ

′
2

j2
â†(τ2 )

i â
(τ ′

2 )
j2

+ H.c.
)

exp((1 − λ2)Â)
∏
j �=i

P̂ j

)
. (199)
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We observe that a cavity Green’s function emerges as a key quantity to evaluate

Gτ1τ2
j1 j2

(λ1, λ2) = Tr/i

(
exp(λ1Âb)â(τ1 )

j1
exp((λ2 − λ1)Âb)â†(τ2 )

j2
exp((1 − λ2)Âb)

∏
j �=i

P̂ j

)
. (200)

Given that the projectors P̂ j are local, the scaling of the cavity Green’s function is [21]

Gτ1τ2
j1 j2

(λ1, λ2) ∼
(

1√
d

)| j− j′ |
, (201)

where d is the dimension of the lattice. Analogous to the case of DMFT, the local discrete action �̂
loc;0

only depends on Gτ1τ2
j1 j2

(0, 0)
and âb. To illustrate this, consider the second-order contribution

Tr/i

(
exp(λ1Â)t τ1τ

′
1

j1
â†(τ1 )

i â
(τ ′

1 )
j1

exp((λ2 − λ1)Â)t τ2τ
′
2

j2
â†(τ2 )

j2
â

(τ ′
2 )

i exp((1 − λ2)Â)
∏
j �=i

P̂ j

)

= t
τ1τ

′
1

j1
t
τ2τ

′
2

j2
G

τ ′
1τ2

j1 j2
(λ1, λ2) exp(λ1Âi )â

†(τ1 )
i exp((λ2 − λ1)Âi )â

(τ ′
2 )

i exp((1 − λ2)Âi ), (202)

where the Einstein summation convention is assumed for the orbital and time index. The total scaling of this term will be

d | j1−i|d | j2−i|d− 1
2 | j1−i|d− 1

2 | j2−i|d− 1
2 | j1− j2| ≈ 1. (203)

Considering a fourth-order contribution

t
τ1τ

′
1

j1
t
τ2τ

′
2

j2
t
τ3τ

′
3

j3
t
τ4τ

′
4

j4
G

τ ′
1τ2τ

′
3τ4

j1 j2 j3 j4
(λ1, λ2, λ3, λ4) exp(λ1Âi )a

†(τ1 )
i exp((λ2 − λ1)Âi )a

(τ ′
2 )

i exp((λ3 − λ2)Âi )

× a†(τ3 )
i exp((λ4 − λ3)Âi )a

(τ ′
4 )

i exp((1 − λ4)Âi ), (204)

the scaling for one of the connected portions is

d | j1−i|d | j2−i|d | j3−i|d | j4−i|d− 1
2 | j1−i|d− 1

2 | j2−i|

× d− 1
2 | j3−i|d− 1

2 | j4−i|d− 1
2 | j1− j2|d− 1

2 | j2− j3|d− 1
2 | j3− j4| (205)

∼ d− 1
2 | j2− j3| → 0, (206)

and all other connected diagrams will scale to zero as
well. The same result holds for higher orders, thus proving
Eq. (191).

We proceed by rewriting �̂
loc;0

as

�̂
loc;0

= Tr/i(�̂
� exp(−�loc;i · n̂)), (207)

�̂� = �̂
0

exp((�B;i + �loc;i ) · n̂), (208)

where �loc;i is the integer time self-energy for the CDA with
a given �̂

loc;0
and thus is a single-particle potential within the

site i, and �̂� is a noninteracting discrete action that has the
same integer time Green’s function as �̂. It should be noted
that �loc;i and �B;i occupy distinct blocks within the integer
time self-energy matrix and do not mix.

Finally, we prove that � is the sum of the local integer
time self-energy for all sites. To see this, we notice that the
above construction can be applied to every site i, and thus
we have � = �B;i + �loc;i for every site i. Recalling the block
structure of the self-energy, we can solve for � =∑i �loc;i,
proving the SCDA self-consistency condition, analogous to
DMFT.

For the special case of N = 2 with a G-type SPD-d, the
SCDA recovers the classic observation that the Gutzwiller
approximation exactly evaluates the Gutzwiller wave function
in d = ∞ [14–17]. For N = 2 with a B-type SPD-d, our
proof demonstrates that the Baeriswyl wave function [41]

is exactly evaluated in d = ∞ via the SCDA, which was
not previously known. For the case of N = 3, we see that
the Gutzwiller-Baeriswyl [18] and Baeriswyl-Gutzwiller [19]
wave functions can be exactly evaluated in d = ∞, which also
was not known. Furthermore, there are an infinite number of
wave functions for N � 4 which have not been considered
but can be exactly evaluated via the SCDA.

C. The SCDA for N = 2

Here we consider the case of N = 2 for the Hubbard
model, which is of practical importance given that it recovers
the Gutzwiller approximation. We will demonstrate that the
SCDA at N = 2 is a very special case in that the SCDA self-
consistency condition can be achieved a priori by choosing
G as the noninteracting local integer time Green’s function
and constraining the interacting projector such that �̂loc and
�̂loc;0 have the same local single-particle density matrix. Given
this particular implementation of the SCDA at N = 2, we can
explicitly derive the Gutzwiller equations. Alternatively, we
could choose not follow such constraints, and then the SCDA
self-consistency condition cannot be fulfilled a priori, though
we are guaranteed to reach the same ground-state properties.
This latter scenario could be numerically beneficial given that
we will not need to satisfy any constraint when minimizing
over the variational parameters, though we will need to exe-
cute the SCDA self-consistency condition instead.

In the remainder of this subsection, we will explicitly de-
rive the Gutzwiller equations in a sequence of increasingly
complex scenarios: the single-band Hubbard model at half-
filling, the multiband Hubbard model at arbitrary filling but
with symmtery dictating that the local single-particle density
matrix is diagonal, and finally the most general possible case
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for the multiband Hubbard model. The last case results in ro-
tationally invariant Gutzwiller equations in an arbitrary basis,
which have not yet been presented in the literature, and they
recover the particular case of a “mixed original-natural basis”
[49].

1. Single-band Hubbard model at half-filling

To understand how the SCDA works, we study the case of
N = 2 for a G-type SPD-d, which recovers the Gutzwiller ap-
proximation. We first focus on the case of the one band model
at half-filling, and we later generalize to the multiorbital case
at arbitrary density. For the former, the SPD-d is

�̂ = exp

(∑
i

u
d̂i

)
exp

(∑
εσ

γσ (ε)n̂εσ

)
exp

(∑
i

u
d̂i

)
,

(209)

where 
d̂ is defined in Eq. (36), n̂εσ is the number operator
for the orbital with energy ε and spin σ , and the variational
parameters are u and γσ (ε). Thus, the noninteracting integer
time Green’s function for spin σ and energy ε is

g0;σ (ε) =
(

nσ (ε) [1 − nσ (ε)]
−nσ (ε) nσ (ε)

)
, (210)

where

nσ (ε) = 1

1 + exp (−γσ (ε))
∈ [0, 1] (211)

is used as a reparameterization of the variational parame-
ter γσ (ε). As an initial guess, we choose the noninteracting
integer time Green’s function of the CDA as the local nonin-
teracting integer time Green’s function, given as

Gσ =
∫

dεD(ε)g0;σ (ε) =
(

1
2

1
2

− 1
2

1
2

)
, (212)

where D(ε) is the density of states per spin. It will also be
necessary to introduce G for an arbitrary density and spin as

G =

⎛
⎜⎜⎜⎝

a11↑ 0 a12↑ 0

0 a11↓ 0 a12↓
a21↑ 0 a22↑ 0

0 a21↓ 0 a22↓

⎞
⎟⎟⎟⎠, (213)

where we have used the time major scheme (see Subsec.
III B 1 for a definition), and this more general definition is
needed given that we will take the derivative of the discrete
generating function. The discrete generating function is given
as

Z = 1 + 1

16
(uZ1 + u2Z2), (214)

where

Z1 = 8((2a22↓ − 1)a22↑ − a22↓)

+ 16a11↓a11↑ − 8a11↓ − 8a11↑ + 8, (215)

and

Z2 = 4a12↓a21↓(4a12↑a21↑ + 2a22↑ − 1) + 1

+ 2((2a22↓ − 1)a22↑ − a22↓) − 4a22↓a11↑(2a22↑ − 1)

+ 4a11↓(2(1 − 2a22↓)a12↑a21↑ + a22↓(1 − 2a22↑))

+ 4a11↓(a22↑ − 2a11↑a22↑ + 2a22↓a11↑(2a22↑ − 1))

+ 4(2a22↓ − 1)a12↑a21↑ − 8a12↓a21↓a11↑(2a22↑ − 1)

+ a11↓(4a11↑ − 2) − 2a11↑ + 4a11↑a22↑. (216)

Evaluating Z and its derivatives for half-filling gives

Z = u2

16
+ 1,

∂Z

∂GT
σ

=
(

0 − u2

8
u2

8 0

)
, (217)

and using the discrete Dyson equation, we have

gσ = Gσ + 1

Z
(1 − Gσ )

∂Z

∂GT
σ

Gσ (218)

=
(

1
2

1
2 z(u)

− 1
2 z(u) 1

2

)
, (219)

where

z(u) = 32

u2 + 16
− 1. (220)

The exponential integer time self-energy can be constructed
as

Sσ =
(

Z + ∂Z

∂GT
σ

(1 − Gσ )

)−1(
Z − ∂Z

∂GT
σ

Gσ

)
(221)

=
(

512
u4+256 − 1 32u2

u4+256

− 32u2

u4+256
512

u4+256 − 1

)
(222)

=
(

2z(u)
z(u)2+1

2
z(u)2+1 − 1

1 − 2
z(u)2+1

2z(u)
z(u)2+1

)
. (223)

The interacting integer time Green’s function for a given εσ

is then

gσ (ε) =
(

nσ (ε) (1 − nσ (ε))z(u)

−nσ (ε)z(u)
(
nσ (ε) − 1

2

)
z(u)2 + 1

2

)
. (224)

The new interacting local integer time Green’s function can
then be constructed as

g′
loc;σ =

∫
dεD(ε)gσ (ε) =

(
1
2

1
2 z(u)

− 1
2 z(u) 1

2

)
, (225)

which is same as the interacting local integer time Green’s
function from the initial guess. Therefore, we have already
achieved self-consistency. In order to evaluate the ground-
state energy, we also need to evaluate the double occupancy
as

〈
d̂〉�̂ = 2u

u2 + 16
≡ 
d, (226)

which is computed by evaluating Eq. (149). Now we can
proceed to minimize over the variational parameters

E = min
u,nεσ ∈[0,1]

(
2uU

u2 + 16
+
∑

σ

∫
dεD(ε)nσ (ε)z(u)2

)

(227)

= min
u

(
2uU

u2 + 16
+ ε0z(u)2

)
(228)

195138-19



ZHENGQIAN CHENG AND CHRIS A. MARIANETTI PHYSICAL REVIEW B 103, 195138 (2021)

= min

d∈(− 1

4 , 1
4 )

(
dU + ε0(1 − (4
d )2)) (229)

=
{

ε0 − U 2

64ε0
U � 8ε0

0 U � 8ε0

, (230)

where ε0 = 2
∫ 0
−∞ dεD(ε)ε. Here we see that we have recov-

ered the Gutzwiller approximation, with the Brinkman-Rice
transition [50] at U = 8ε0.

2. Multiband Hubbard model at arbitrary filling with a diagonal
local single-particle density matrix

Here, the preceding analysis is generalized to the multi-
band Hubbard model for the special case where symmetry
dictates that the local single-particle density matrix is diag-
onal, and we recover the usual Gutzwilller approximation in
this scenario. We begin with the SPD for this multiband case,

�̂ =
(∏

i

P̂1,i

)
exp

(∑
εα

γα (ε)n̂εα

)(∏
i

P̂2,i

)
, (231)

where P̂1,i =∑		′ P1,		′ X̂i;		′ = P̂†
2,i is the interacting projec-

tor of site i in the physical space and the variational parameters
are P1,		′ . The noninteracting integer time Green’s function
for orbital εα is then

g0;α (ε) =
(

nα (ε) (1 − nα (ε))

−nα (ε) nα (ε)

)
, (232)

where

nα (ε) = 1

1 + exp(−γα (ε))
∈ [0, 1] (233)

is used as a reparameterization of the variational parameters
γα (ε). As an initial guess, we choose the noninteracting inte-
ger time Green’s function of the CDA to be the noninteracting
local integer time Green’s function

Gα =
∫

dεDα (ε)g0;α (ε) =
(

n̄α (1 − n̄α )

−n̄α n̄α

)
, (234)

where Dα (ε) is the partial density of states and n̄α =∫
dεDα (ε)nα (ε). Considering the CDA of site i for this SPD-

d, we have

�̂
loc

= �̂
loc;0

P̂
(1)
1,i P̂

(2)
2,i , (235)

�̂
loc;0

= ρ̂G(G) = Q̂ exp
(
v1 · n̂(1)

i + v2 · n̂(2)
i

)
, (236)

where

v1 = 0, [v2]α,α′ = −δα,α′ ln
(
n̄−1

α − 1
)
. (237)

We see that �̂
loc

is an effective discrete action of an SPD given
as

�̂loc = exp(v1 · n̂i )P̂1,i exp(v2 · n̂i )P̂2,i (238)

and

�̂loc;0 = exp(v1 · n̂i ) exp(v2 · n̂i ). (239)

We can now directly evaluate the interacting integer time
Green’s function as

gloc;α =
(

n̄α (1 − n̄α )zα

−n̄αzα n̄α

)
, (240)

where

zα = Tr(P̂1,iâ
†
iα�̂loc;0P̂2,iâiα )

Tr(â†
iα�̂loc;0âiα )

, (241)

and the constraints on the normalization of the SPD require
that

Tr(P̂1,i�̂loc;0P̂2,i )

Tr(�̂loc;0)
= 1, (242)

while the constraint of the local density matrix requires

Tr(P̂1,i�̂loc;0P̂2,iâ
†
iα âiα )

Tr(�̂loc;0)
= n̄α. (243)

To connect with the corresponding expression for the multi-
band Gutzwiller approximation [49,51–53] in this case, we
can rewrite zα as

zα = Tr(P̂1,i
√

�̂loc;0â†
iα

√
�̂loc;0P̂†

1,iâiα )

Tr(
√

�̂loc;0â†
iα

√
�̂loc;0âiα )

, (244)

given that v2 is diagonal in the α, σ basis. We can also connect
with the form presented in the off-shell effective energy theory
[33] for the K formulation within the central point expansion
as

zα = Tr(
√

�̂locâ†
iα

√
�̂locâiα )

Tr(
√

�̂loc;0â†
iα

√
�̂loc;0âiα )

, (245)

where we have assumed that P̂1 commutes with �̂loc;0. We can
now compute the exponential integer time self-energy as

Sloc;α =
( zα

−n̄αz2
α+n̄α+z2

α

1
−n̄αz2

α+n̄α+z2
α

− 1
n̄α−n̄αz2

α

(n̄α−1)z2
α−n̄α

zα

−n̄αz2
α+n̄α+z2

α

)
. (246)

Now, we have

gα (ε) =
(

nα (ε) zα (1 − nα (ε))

−zαnα (ε) z2
α (nα (ε) − n̄α ) + n̄α

)
, (247)

and the new local interacting integer time Green’s function
can then be computed as

gloc;α =
∫

dεDα (ε)gα (ε) =
(

n̄α zα (1 − n̄α )

−zα n̄α n̄α

)
, (248)

thus proving that self-consistency has been achieved. Finally,
the ground-state energy can be constructed as

E = min
P1,i,		′

nα (ε) ∈ [0, 1]

{∑
α

∫
dεDα (ε)ε

(
z2
α (nα (ε) − n̄α ) + n̄α

)+ 〈Ĥloc〉�̂loc |P1,i,		′ ∈ C
}
, (249)
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where C denotes that the constraints in Eqs. (242) and (243)
must be satisfied. In summary, the above analysis proves that
the G-type N = 2 SPD-d recovers the multiorbital Gutzwiller
approximation in this case.

3. Multiband Hubbard model: The general case.

Here we treat the most general case of the multiorbital
Hubbard model, where the Hamiltonian is defined as

Ĥ =
∑
kαβ

tαβ (k)â†
kα

âkβ +
∑

i

Ĥloc,i,

where k is a reciprocal lattice point in a D-dimensional crys-
tal, the spin orbital indices are labeled by α, β (with a total
number of spin orbitals M at a given k point), and Ĥloc,i is a
completely general local interaction at site i. The correspond-
ing SPD-d is then

�̂ =
(∏

i

P̂1,i

)
exp

(∑
k

γ (k) · n̂k

)(∏
i

P̂2,i

)
, (250)

where P̂1,i =∑		′ P1,i,		′ X̂i;		′ = P̂†
2,i is the interacting pro-

jector of site i in the physical space, and the variational
parameters for a given k are encoded in the M × M matrix
γ (k). The noninteracting integer time Green’s function for the
k point is a 2M × 2M matrix given as

g0(k) =
(

n(k) (1 − n(k))

−n(k) n(k)

)
, (251)

where

n(k) =
(

1
1 + exp(−γ (k))

)T

(252)

is used as a reparameterization of the variational parameters
γ (k), and n(k) is constrained to be Hermitian with eigenvalues
between zero and one. As an initial guess, we choose the
noninteracting integer time Green’s function of the CDA to
be the noninteracting local integer time Green’s function

G = V

(2π )D

∫
dDkg0(k) =

(
n̄ (1 − n̄)

−n̄ n̄

)
, (253)

where n̄ = V
(2π )D

∫
dDkn(k). Considering the CDA at site i

for this SPD-d, we have

�̂
loc

= �̂
loc;0

P̂
(1)
1,i P̂

(2)
2,i , (254)

�̂
loc;0

= ρ̂G(G) = Q̂ exp
(
v1 · n̂(1)

i + v2 · n̂(2)
i

)
, (255)

where

v1 = 0, v2 = − ln(n̄−1 − 1)T . (256)

We see that �̂
loc

is an effective discrete action of an SPD given
as

�̂loc = exp(v1 · n̂i )P̂1,i exp(v2 · n̂i )P̂2,i, (257)

and the noninteracting SPD is then

�̂loc;0 = exp(v1 · n̂i ) exp(v2 · n̂i ). (258)

As before, we enforce the constraints on the interacting pro-
jectors as

Tr(P̂1,i�̂loc;0P̂2,i )

Tr(�̂loc;0)
= 1,

Tr(P̂1,i�̂loc;0P̂2,in̂i )

Tr(�̂loc;0)
= n̄. (259)

We can now directly evaluate the interacting integer time
Green’s function as

gloc =
(

n̄ B

−A n̄

)
, (260)

where

Aαβ = Tr(P̂1,iâiβ�̂loc;0P̂2,iâ
†
iα )

Tr(�̂loc;0)
, (261)

Bαβ = Tr(P̂1,iâ
†
iα�̂loc;0P̂2,iâiβ )

Tr(�̂loc;0)
. (262)

Using the discrete Dyson equation, we can evaluate the
local exponential integer time self-energy as

Sloc = (G−1 − 1)−1(g−1
loc − 1

)
(263)

=
( [

g−1
loc

]
21

[
g−1

loc

]
22 − 1

1
1−n̄−1

([
g−1

loc

]
11 − 1

) 1
1−n̄−1

[
g−1

loc

]
12

)
. (264)

Now, for a given k point, we can use the discrete Dyson equa-
tion to obtain the interacting integer time Green’s function

g(k)−1 − 1 = (g0(k)−1 − 1)Sloc (265)

=
(

C(k)
([

g−1
loc

]
11 − 1

)
C(k)

[
g−1

loc

]
12[

g−1
loc

]
21

[
g−1

loc

]
22 − 1

)
, (266)

where

C(k) = (1 − n(k)−1)(1 − n̄−1)−1, (267)

and finally we have

g(k) =
(

n(k) (1 − n(k)) 1
1−n̄ B

−An̄−1n(k) n̄ + An̄−1(n(k) − n̄) 1
1−n̄ B

)
. (268)

We therefore have proven that self-consistency has been
achieved. The total energy can then be written as

E = min {K + 〈Ĥloc〉�̂loc}, (269)

where the kinetic energy K is given as

K = V

(2π )D

∫
dDkTr(t (k)T An̄−1n(k)(1 − n̄)−1B), (270)

and the minimization over all variational parameters is per-
formed under the constraints given in Eq. (259) and the
restriction that n(k) is Hermitian with eigenvalues between
zero and one. We emphasize that our expression for the total
energy is fully rotationally invariant and holds for an arbitrary
basis.

Although it is not immediately obvious, Eq. (269) recovers
the particular rotationally invariant multiorbital Gutzwiller
equation of Ref. ([49]) when we specialize to the case of a
“mixed original-natural basis.” This can be seen by inserting
the identity as
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K = V

(2π )D

∫
dDkTr(t (k)T AUU†n̄−1UU†n(k)UU†(1 − n̄)−1UU†B) (271)

= V

(2π )D

∫
dDk

∑
βαγ δ

(
[t (k)T ]βα[AU ]αγ

1

n0
γ

[U†n(k)U ]γ δ

1

1 − n0
δ

[U†B]δβ

)
, (272)

where U is a unitary transformation that diagonalizes the local
single-particle density matrix

[U†n̄U ]αβ = 〈d̂†
Rα d̂Rβ〉�̂loc;0 = n0

αδαβ (273)

and

[U†n(k)U ]αβ = 〈d̂†
kα

d̂kβ〉�̂0 , (274)

where R labels the site of the SCDA and d̂kδ =∑l âkl [U ]lδ

is the annihlation operator of the natural orbital. We can then
evaluate the matrix elements of AU as

[AU ]αγ =
∑

l

Tr(P̂1,RâRl �̂loc;0P̂2,Râ†
Rα )

Tr(�̂loc;0)
[U ]lγ (275)

= Tr(P̂1,Rd̂Rγ �̂loc;0P̂2,Râ†
Rα )

Tr(�̂loc;0)
(276)

= Tr(P̂1,R

√
�̂loc;0d̂Rγ

√
�̂loc;0P̂2,Râ†

Rα )

Tr(�̂loc;0)

√
n0

γ

1 − n0
γ

(277)

= Tr(φ fγ φ† f †
α )

√
n0

γ

1 − n0
γ

= Rαγ n0
γ , (278)

where

[φ]	n = 〈	; R|P̂1,R

√
�̂loc;0|n; R〉, (279)

[ fγ ]nn′ = 〈n; R|d̂Rγ |n′; R〉, (280)

[ fγ ]		′ = 〈	; R|âRγ |	′; R〉, (281)

Rαγ = Tr(φ fγ φ† f †
α )√

n0
γ

(
1 − n0

γ

) , (282)

and it is critical to establish a consistent ordering of the origi-
nal and natural states for evaluating fγ [49]. Similarly, we can
construct the matrix elements of U†B as

[U†B]δβ =
∑

l

[U†]δl
Tr(P̂1,Râ†

Rl �̂loc;0P̂2,RâRβ )

Tr(�̂loc;0)
(283)

= Tr(P̂1,Rd̂†
Rδ�̂loc;0P̂2,RâRβ )

Tr(�̂loc;0)
(284)

= Tr(P̂1,R
√

�̂loc;0d̂†
Rδ

√
�̂loc;0P̂2,RâRβ )

Tr(�̂loc;0)

√
1 − n0

δ

n0
δ

(285)

= Tr(φ f †
δ φ† fβ )

√
1 − n0

δ

n0
δ

= R∗
βδ

(
1 − n0

δ

)
. (286)

Finally, we can express the kinetic energy as

K = V

(2π )D

∫
dDk

∑
αβγ δ

[t (k)]αβRαγR∗
βδ〈d̂†

kγ
d̂kδ〉�̂0 , (287)

which is simply the Fourier transform of the kinetic energy in
Eq. (27) of Ref. [49], while the potential energy is straightfor-
wardly equivalent.

VII. VDAT WORKFLOW

A. General considerations

Having presented the entire VDAT formalism, we now
discuss the overall execution of the theory (see Fig. 9 for a
schematic). We begin with some Hamiltonian for which we
need to solve the ground-state properties. The first step is to
choose an appropriate SPD for the given Hamiltonian, and the
best choice will not be a priori obvious given the competition
between the complexity of the interacting projector versus
the number of integer time steps (see discussion in Subsec.
II C). Broadly speaking, it will be clear that SPD-l would
be used for a model with strictly local interactions, SPD-d
would be used for lattice models with interactions restricted
to some range, and SPD-2 would be natural for a general
model with long-range Coulomb interactions. The details of
the interacting projectors in each case may be tailored to the
problem at hand. Given that the projective SPD appears to
converge more quickly with N as compared to the unitary
SPD, the former is recommended (see Subsec. III B 1 for a
comparison).

Having selected an SPD, our approach is to use the discrete
action theory to evaluate it. In the case of SPD-l, we can
always use the CDA to evaluate it. In the case of SPD-d,
a possible choice would be to use the SCDA, though for
a finite-dimensional lattice this would only be an approxi-
mate evaluation of the SPD-d. Other choices would involve

FIG. 9. A schematic of the VDAT work flow.
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a stochastic evaluation of the integer time Feynman diagrams,
which would provide a numerically exact evaluation, though
we have not explored this in the present paper. In the case of
SPD-2, there could be various possibilities. First, a stochastic
evaluation would be possible. Second, a diagrammatic evalu-
ation based on some class of integer time Feynman diagrams,
such as the GW approach [54], would be possible, though this
would be an approximate evaluation.

Having evaluated the SPD within the discrete action theory,
the final step is to minimize the ground-state energy over the
variational parameters, which involves reevaluating the SPD
at different sets of variational parameters. In general, one can
obtain the gradient of the total energy with respect to the
variational parameters in terms of the integer time correlation
functions, which is critical for an efficient minimization (see
Subsec. II E). For N = 1 and N = 2, there are cases where
the total energy can be written in a closed form in terms of the
variational parameters, such that the gradient can be trivially
evaluated. In any case, it useful to contemplate how much
variational freedom is actually needed to achieve precise
ground-state properties, and we explore the parametrization
of the SPD in the following sections.

B. Parameterization of the SPD

An SPD will normally contain a large number of varia-
tional parameters, potentially even infinite. Our definition of
an SPD dictates that the noninteracting SPD has full varia-
tional freedom, and then in practice one can decide whether
to exploit all of it. We emphasize that this philosophy some-
times departs with common practices in related variational
wave functions, such as in the case of the Baeriswyl wave
function (i.e., N = 2, B-type SPD), which typically only has a
single variational parameter for the kinetic projectors [41,55].
Alternatively, for Hartree-Fock (i.e., N = 1, G-type SPD),
full variational freedom for the noninteracting projectors is
exploited. In any case, we have proven that for N � 3, even
very naive schemes for parametrizing the space of noninter-
acting variational parameters in terms of a small number of
variables can give highly precise results [20]. We will present
examples in the context of the Hubbard model and AIM to
illustrate these ideas.

In terms of the interacting projector, the number of vari-
ational parameters could be as large as the Fock space that
the interacting projectors span, which can be impractical even
in principle; or it could be as small as one variational pa-
rameter, which would still recover the exact solution in the
large-N limit. In the examples considered below, we will only
be evaluating a single interacting orbital, such that there is
only a single variational parameter at each integer time. The
remainder of this section focuses purely on parametrizing the
noninteracting projector for applications with N � 3, which
have been used in our accompanying applications [20].

1. Parameterization of SPD-l for the AIM on a ring

Here we consider the Anderson impurity model (AIM) on
a ring [46], given by

Ĥ = Ĥ0 + V̂ , V̂ = U

(
f̂ †
↑ f̂↑ − 1

2

)(
f̂ †
↓ f̂↓ − 1

2

)
, (288)

Ĥ0 = v
∑

σ

( f̂ †
σ ĉ0,σ + H.c.) − W

4

L−1∑
σ,n=0

(ĉ†
n,σ ĉn+1,σ + H.c.).

(289)

The interacting projector of the SPD-l is given as

P̂τ = Pτ,0X̂0 + Pτ,↓X̂↓ + Pτ,↑X̂↑ + Pτ,↑↓X̂↑↓ (290)

=
(

1 − μτ − 1

4
uτ

)
1̂ + μτ

∑
σ

f̂ †
σ f̂σ + uτ f̂ †

↑ f̂↑ f̂ †
↓ f̂↓,

(291)

where X̂	 are diagonal Hubbard operators and Pτ,	 are vari-
ational parameters, which can then be constrained using the
density and normalization. For this case of spin symmetry,
we formally have two variational parameters uτ and μτ for
each time step, though the latter should be considered as a
parameter to constrain the local density.

For the noninteracting projector, we allow for three vari-
ational parameters: one for each independent parameter in
the noninteracting Hamiltonian, though one parameter will be
fixed by the total density. In order to implement this, it is most
convenient to use a diagonal form, so we construct an effective
basis which is a function of the three variational parameters,
which then allows us to enforce a semidefinite matrix. The
noninteracting projector is given by

exp (γτ · n̂) =
∏
jσ

(
1 + h(ε jσ ;τ )

(
b̂†

jσ b̂ jσ − 1

2

))
, (292)

where ε jσ ;τ are functions of the variational parameters given
by∑

jσ

ε jσ ;τ b̂†
jσ b̂ jσ = η1;τ

∑
σ

( f̂ †
σ ĉ0,σ + H.c.)

− η2;τ

L−1∑
σ,n=0

(ĉ†
n,σ ĉn+1,σ + H.c.) + η3;τ N̂,

(293)

and η1;τ , η2;τ , η3;τ are the variational parameters, the indices
j, σ label the eigenstates of the above diagonalized form, and
the function h is defined as

h(x) =

⎧⎪⎨
⎪⎩

2, x > 2

x, −2 < x � 2

−2, x � −2.

(294)

2. Parameterization of the SPD-d for the Hubbard model

Here we consider the single-band Hubbard model in an
arbitrary dimension, defined as

Ĥ =
∑
i jσ

ti j â
†
iσ â jσ + U

∑
i

d̂i, (295)

where d̂i = n̂i↑n̂i↓, and we employ the SPD-d with local inter-
acting projectors

P̂τ =
∏

i

((
1 − μτ − 1

4
uτ

)
1̂ + μτ

∑
σ

n̂iσ + uτ d̂i

)
, (296)
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where P̂τ is a product of local projectors with the same form
as Eq. (291) and translation symmetry has been assumed.

The noninteracting projector for this SPD-d is simpler than
the case of the SPD-l for the AIM, presented in the preceding
section, given that translation symmetry fully diagonalizes
the noninteracting Hamiltonian. In this case, we choose four
variational parameters, allowing more freedom than the non-
interacting form of the Hamiltonian, which only has nearest
neighbor hopping. We have the following form for the nonin-
teracting projector:

exp (γτ · n̂) =
∏
�kσ

(
1 + h(w�kσ ;τ )

(
n̂�kσ

− 1

2

))
, (297)

where

w�kσ ;τ = η1θ (ε�kσ
− η2) + η3 f (ε�kσ

− η2, η4) + η2, (298)

f (x, α) = sgn(x)(1 − exp(−α|x|))/(1 − exp(−α)), (299)

where h(x) is defined in Eq. (294) and the four variational
parameters are ηi. The form of w�kσ ;τ is chosen such that
it recovers the Baeriswyl kinetic projector when η1 = 0 and
η4 → 0, thus allowing extra variational freedom. This partic-
ular form was motivated by examining the density distribution
within perturbation theory. However, even when restricting to
η2 and η3, the results for the ground-state energy are nearly
unchanged.

VIII. SUMMARY AND CONCLUSIONS

In this work, we have introduced the variational discrete
action theory (VDAT), which is a systematic variational ap-
proach for solving the ground state of quantum many-body
Hamiltonians. VDAT consists of two important components: a
variational ansatz referred to as the sequential product density
matrix (SPD) and a general formalism to compute observables
under the SPD, where the latter is referred to as the discrete
action theory (DAT). It should be emphasized that when DAT
exactly evaluates the energy of some Hamiltonian under the
SPD, the result is a rigorous upper bound to the exact ground-
state energy, and minimization over the variational parameters
within the SPD will provide the optimal solution for the SPD
at a given N . While for typical discretized Green’s function
approaches, such as auxiliary field quantum Monte Carlo,
a large number of time steps are required, VDAT can pro-
vide remarkably accurate ground-state results even for very
small N .

The SPD is clearly inspired by the Trotter-Suzuki de-
composition, and the essence of the idea in the context of
variational wave functions can be traced back to the work of
Baeriswyl and coworkers decades ago [19]. However, with-
out a clear prescription for evaluation, it is a tool of limited
applicability; and the discrete action theory put forward in this
paper greatly extends the reach of the SPD. In this paper, we
put forward the most generic notion of an SPD, which can be
partitioned into unitary, projective, and general cases. There
are always two ways to constrain the SPD to be Hermitian
and semidefinite: Gutzwiller type and Baeriswyl type, denoted
G type and B type. We introduced three important classes of
SPD in this work: the local SPD (SPD-l), the disjoint SPD

(SPD-d), and the n-particle SPD (SPD-n). The key charac-
teristic of an SPD-l is that it has a finite number of local
interacting projectors, and the SPD-l is naturally applied to
models where the interactions are restricted to some subspace,
like the Anderson impurity model. Alternatively, the SPD-d
has multiple sets of local interacting projectors which do not
overlap, and the SPD-d is naturally applied to interacting
lattice model like the Hubbard model or periodic Anderson
model. The SPD-n has a general n-particle interacting projec-
tor, and the n = 2 case would naturally apply to models with
long-range Coulomb repulsion.

In order to evaluate observables under the SPD, we intro-
duced the integer time Green’s function formalism, which can
be generally characterized by a discrete action. We demon-
strate that for the SPD-l, one can sum all local diagrams,
allowing for the exact evaluation of observables under the
SPD-l, and illustrations for N � 2 are provided for the AIM.
To evaluate the SPD-d, the more advanced tools of many-body
physics had to be generalized to our integer time formalism.
We first generalized the path integral to integer time, demon-
strating that integer time correlation functions under the SPD
are equivalent to a static correlation function in a compound
Fock space under an effective density matrix. Just as in the
case of the usual path integral, the integer time case unifies
the role of spatial and temporal degrees of freedom, allowing
a straightforward generalization of the generating functional,
Dyson equation, and Bethe-Salpeter equation to integer time.

We introduced a hierarchical scheme to categorize three
types of discrete actions: the sequential discrete action (SDA),
the canonical discrete action (CDA), and the general discrete
action (GDA), where the former is always a subset of the
latter. The SDA is the discrete action of an SPD, which is
a product of three operators in the compound space: a shift
matrix Q̂, a promoted sequential product of noninteracting
projectors, and a promoted sequential product of interact-
ing projectors. For the SDA, only Q̂ introduces correlations
between different integer times, while the other two compo-
nents are integer time blocked. The CDA is a product of two
operators in the compound space: a general noninteracting
projector and a promoted sequential product of interacting
projectors. For the CDA, only the noninteracting projector
introduces correlations between different integer times, while
the interacting projectors are integer time blocked. The GDA
is a general operator in the compound space.

A key step forward in this paper is the self-consistent
canonical discrete action approximation (SCDA), which is
the integer time generalization of the dynamical mean-field
theory. In general, the SPD-d cannot be exactly evaluated.
However, we prove that in d = ∞, the SPD-d can be exactly
mapped to a CDA with a self-consistently determined nonin-
teracting integer time Green’s function. Therefore, the SPD-d
can be exactly evaluated for the Hubbard model in d = ∞,
making VDAT a potent tool for solving the multiband Hub-
bard model. For N = 2, this recovers the classic result that
the Gutzwiller approximation exactly evaluates the Gutzwiller
wave function in d = ∞ [14–17]. For N = 3, this proves that
both the Gutzwiller-Baeriswyl and the Baeriswyl-Gutzwiller
wave functions can be exactly evaluate in d = ∞. For N �
4, this yields here to unexplored variational wave functions
that can be exactly evaluated in d = ∞ (see Ref. [20] for
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applications). The VDAT gives a long-awaited variational un-
derstanding of d = ∞, which traditionally necessitated the
use of Green’s function based approaches. The SPD-d within
the SCDA can also be applied as an approximation in finite
dimensions, improving upon well-characterized theories such
as the Gutzwiller approximation.

The VDAT formalism unifies many seemingly dis-
parate variational wave functions, connecting Hartree-Fock,
Gutzwiller wave function, etc., all into the same frame-
work, while putting forward an infinite number of extensions.
Equally importantly, the integer time Green’s function and
the discrete action theory provides a paradigm for generaliz-
ing concepts from the standard many-body Green’s functions
methods. For example, once the general formalism was iden-
tified, it was obvious how to realize the dynamical mean-field
theory in the integer time formalism, allowing for remarkably
accurate results at N = 3 [20].

There are many near-term and far-term directions to con-
sider for VDAT. In the near term, the multiband Hubbard
model is the most obvious target. Given that the Gutzwiller
approximation is known to produce reasonable results in the
Fermi-liquid regime of the multiband Hubbard model [49,56]
and that we know VDAT (N = 3) precisely captures the
metallic and insulating regime of the one band model in
d = ∞ [20], VDAT (N = 3) within the SCDA should be suf-
ficiently accurate for the multiband case. Further applications
could include novel approaches for evaluating the SPD-d in
low dimensions using quantum Monte Carlo, which would
expand upon the recent work of Baeriswyl in the 2d Hub-
bard model [45], which in our language was a perturbative
evaluation of a G-type SPD-d at N = 3. Other interesting
applications include the homogeneous electron gas, which
could require the use of an integer time generalized auxil-
iary field QMC to evaluate the SPD-2. In terms of further
methodological developments, it will be useful to consider
finite temperatures, where one must develop approaches for
evaluating the entropy. Furthermore, it will be useful to extend
the Landau-Gutzwiller quasiparticle approach [28] in the con-
text of VDAT, such that excited-state properties can be treated.
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APPENDIX

1. Lie group properties of noninteracting systems

In this Appendix, we study the properties of the density
matrices that are exponentially generated from single-particle
potentials, and this applies equally both to the physical
Fock space and the compound space (see Sec. IV B). Un-
derstanding these objects is critical given that they are the
noninteracting projectors of the SPD. We start with a system
containing L spin orbitals, and we define a generalized nonin-

teracting many-body density matrix as

ρ̂(v) = exp(v · n̂) = exp

(∑
i j

vi j â
†
i â j

)
, (A1)

and we refer to this as generalized because vi j forms a com-
plex matrix that is not necessarily Hermitian. In order to
understand that this operator can be viewed as being generated
from a Lie algebra, we rewrite Eq. (A1) in the form

ρ̂(v) = exp

(∑
	

v	Ô	

)
, (A2)

where 	 = (i, j) and Ô(i, j) = â†
i â j . From the anticommuta-

tion relation {â†
i , â j} = δi j , we deduce[

Ô(i, j), Ô(k,l )
] = Ô(i,l )δk j − Ô(k, j)δil . (A3)

Therefore, the operators Ô	 form a Lie algebra and ρ̂(v) form
a Lie group. This Lie group structure has long been recog-
nized [57,58], though previous application did not consider
non-Hermitian cases.

It is impractical to directly compute the noninteracting den-
sity matrix in the Fock space for a large system, and therefore
we need a more efficient approach, which can be achieved
by finding an isomorphism of the Lie algebra Ô	 ↔ A	 . The
matrices A	 are defined as

[A(i, j)]ml = δimδ jl (A4)

and have dimension L × L. The commutation relations are
given as

[A(i, j), A(k,l )] = A(i,l )δk, j − A(k, j)δil , (A5)

which have the same commutation relations as Ô(i, j), proving
the isomorphism. Therefore, we have the map

ρ̂(v) = exp

(∑
	

v	Ô	

)
(A6)

�

exp (v) = exp

(∑
	

v	A	

)
. (A7)

The single-particle density matrix is defined as

n(v) = 〈n̂〉ρ̂(v) =

⎛
⎜⎝

〈â†
1â1〉ρ̂(v) . . . 〈â†

1âL〉ρ̂(v)

. . . . . . . . .

〈â†
Lâ1〉ρ̂(v) . . . 〈â†

LâL〉ρ̂(v)

⎞
⎟⎠ (A8)

=
(

1
1 + exp (−v)

)T

. (A9)

The above equation can be derived as following, starting with

Tr(ρ̂(v)) = det(1 + exp (v)), (A10)

and writing the single-particle density matrix as a derivative,
we have

n(v) = ∂ ln (Tr(ρ̂(v)))
∂v

= ∂ ln (det(1 + exp (v)))
∂v

(A11)
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= ∂Tr(ln(1 + exp (v)))
∂v

=
(

1
1 + exp (−v)

)T

. (A12)

Now we consider group multiplication in terms of n. We begin
by parametrizing the group element in terms of n as

exp (v) =
(

1

n(v)−1 − 1

)T

, (A13)

and recalling the group multiplication

exp (v) = exp (v1) exp (v2); (A14)

we then have

(n−1 − 1) = (n−1
1 − 1

)(
n−1

2 − 1
)
; (A15)

and solving for n we have

n = n2(1 − n1 − n2 + 2n1n2)−1n1 = n1 � n2. (A16)

Finally, we have the group multiplication rules in terms of n.
This is very useful given that we will normally parametrize the
noninteracting projector in terms of the single-particle density
matrix instead of the potential v.

Recall that the integer time Green’s function is a non-
Hermitian single-particle density matrix in the compound
space. Therefore, the preceding derivations will greatly facil-
itate the manipulation of the integer time Green’s function.
Consider a noninteracting SPD �̂ = P̂1...P̂N , with P̂τ =
exp (γτ · n̂), which can be reparameterized using

nτ =
(

1
1 + exp (−γτ )

)T

. (A17)

Using the group notation, we can write the noninteracting
integer time Green’s function as

g0 = gQ � diag(n1, .., nN ), (A18)

where gQ is defined in Eq. (111). For the special case of N =
2, we have

g0 =
(

n2 � n1
(
n−1

2 − 1
)
n1 � n2

−(n−1
1 − 1

)
n2 � n1 n1 � n2

)
. (A19)

The preceding case is very important for a noninteracting SPD
at a general N given that one can always split the sequen-
tial integer time blocks into two parts, and iteratively apply
Eq. (A19) using

�̂′ = (P̂ j+1...P̂i−1P̂i
)(
P̂i+1..P̂ j

) = P̂ ′
1P̂ ′

2. (A20)

2. Proof of the integer time Wick’s theorem

Wick’s theorem is an important tool for evaluating expec-
tation values in a noninteracting system, and it is imperative
to generalize this to the integer time formalism. We begin by
introducing a unified notation for creation and annihilation
operators as

Âiθ =
{

â†
i , θ = 0

âi, θ = 1
. (A21)

Next, we consider how to commute Âiθ with the noninteract-
ing density matrix (see Subsec. II B)

Âiθ exp (v · n̂) = Miθ,i′θ ′ (v) exp (v · n̂)Âi′θ ′ , (A22)

where

Miθ,i′θ ′ (v) =
{

[exp (−vT )]ii′δθ,θ ′ , θ = 0

[exp (v)]ii′δθ,θ ′ , θ = 1
, (A23)

and Einstein notation is employed throughout this section.
Note that the above can be further generalized by consider-
ing pairing terms, which have not presently been included in
n̂. Recall the integer time Heisenberg representation for the
noninteracting SPD

Âiθ (τ ) = Uτ ÂiθU −1
τ , (A24)

where

Uτ = exp (v1 · n̂)... exp (vτ · n̂) = exp (V1,τ · n̂). (A25)

We can then use Eqs. (A22) and (A24) to find

Âiθ = Miθ,i′θ ′ (V1,τ )Âi′θ ′ (τ ), (A26)

Âiθ (τ ) = Miθ,i′θ ′ (−V1,τ )Âi′θ ′ . (A27)

For τ1 � τ2, we then have

Âiθ (τ2) = Miθ,i′θ ′
(− V1,τ2

)
Âi′θ ′ (A28)

= Miθ,i′θ ′
(− V1,τ2

)
Mi′θ ′,i′′θ ′′

(
V1,τ1

)
Âi′′θ ′′ (τ1). (A29)

Recalling the Lie group isomorphism

M(V ) ↔ exp (V ) (A30)

and the identity

exp
(− V1,τ2

)
exp

(
V1,τ1

) = exp
(− Vτ1+1,τ2

)
, (A31)

where

exp
(
vτ1

)
... exp

(
vτ2

) = exp
(
Vτ1,τ2

)
, (A32)

we then have

Miθ,i′θ ′
(− V1,τ2

)
Mi′θ ′,i′′θ ′′

(
V1,τ1

)
= Miθ,i′′θ ′′,

(− Vτ1+1,τ2

)
, (A33)

which yields

Âiθ (τ2) = Miθ,i′θ ′
(− Vτ1+1,τ2

)
Âi′θ ′ (τ1), (A34)

Âiθ (τ1) = Miθ,i′θ ′
(
Vτ1+1,τ2

)
Âi′θ ′ (τ2). (A35)

We also have{
Âiθ (τ ), Âi′θ ′ (τ )

} = δii′δθ+θ ′,1 ≡ 
iθ,i′θ ′ . (A36)

Considering τ1 � τ2 and vi+N = vi, we have

〈Âi1θ1 (τ1)Âi2θ2 (τ2)〉
= Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ2

)〈Âi′1θ
′
1
(τ2)Âi2θ2 (τ2)〉 (A37)

= Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ2

)

i′1θ

′
1,i

′
2θ

′
2

−Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ2

)〈Âi2θ2 (τ2)Âi′1θ
′
1
(τ2)〉 (A38)

= Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ2

)

i′1θ

′
1,i2θ2

−Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ1+N

)〈Âi2θ2 (τ2)Âi′1θ
′
1
(τ1 + N )〉

(A39)

= Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ2

)

i′1θ

′
1,i2θ2

−Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ1+N

)〈Âi′1θ
′
1
(τ1)Âi2θ2 (τ2)〉. (A40)
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Therefore, we have(
δi1θ1,i′1θ

′
1
+ Mi1θ1,i′1θ

′
1
(Vτ1+1,τ1+N )

)〈
Âi′1θ

′
1
(τ1)Âi2θ2 (τ2)

〉
= Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ2

)

i′1θ

′
1,i2θ2 , (A41)

and we can solve for the integer time Green’s function as〈
Âi1θ1 (τ1)Âi2θ2 (τ2)

〉
=
[

1

1 + M
(
Vτ1+1,τ1+N

)M
(
Vτ1+1,τ2

)



]
i1θ1,i2θ2

. (A42)

Now we consider how to evaluate the general case of an
M-particle integer time Green’s function.

Considering the case where the τi are ordered and N = 2M,
we have〈

Âi1θ1 (τ1)Âi2θ2 (τ2)...ÂiN θN (τN )
〉

= Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ2

)〈
Âi′1θ

′
1
(τ2)Âi2θ2 (τ2)...ÂiN θN (τN )

〉
= Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ2

)
× 〈(


i′1θ
′
1,i2θ2 − Âi2θ2 (τ2)Âi′1θ

′
1
(τ2)
)
...ÂiN θN (τN )

〉
= Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ2

)

i′1θ

′
1,i2θ2

〈
Âi3θ3 (τ3)...ÂiN θN (τN )

〉
− Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ2

)
× 〈

Âi2θ2 (τ2)Âi′1θ
′
1
(τ2)Âi3θ3 (τ3)...ÂiN θN (τN )

〉

= Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ2

)

i′1θ

′
1,i2θ2

〈
Âi3θ3 (τ3)...ÂiN θN (τN )

〉
− Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ3

)
× 〈

Âi2θ2 (τ2)(
i′1θ
′
1,i3θ3 − Âi3θ3 (τ3)Âi′1θ

′
1
(τ3))...ÂiN θN (τN )

〉
=

N∑
�=2

(−1)�Mi1θ1,i′1θ
′
1

(
Vτ1+1,τ�

)

i′1θ

′
1,i�θ�

× 〈
Âi2θ2 (τ2)...Âi�−1θ�−1 (τ�−1)Âi�+1θ�+1 (τ�+1)...ÂiN θN (τN )

〉
− Mi1θ1,i′1θ

′
1

(
Vτ1+1,τ1+N

)
× 〈

Âi′1θ
′
1
(τ1)Âi2θ2 (τ2)...ÂiN θN (τN )

〉
. (A43)

Therefore, the M-particle Green’s function can be written as
a summation of the product of a single-particle and (M − 1)-
particle integer time Green’s functions:〈

Âi1θ1 (τ1)Âi2θ2 (τ2)...ÂiN θN (τN )
〉

=
N∑

�=2

(−1)�
〈
Âi1θ1 (τ1)Âi�θ�

(τ�)
〉

× 〈Âi2θ2 (τ2)..Âi�−1θ�−1 (τ�−1)Âi�+1θ�+1 (τ�+1)...ÂiN θN (τN )
〉
.

(A44)

Iteratively applying the preceding equation proves Wick’s the-
orem.
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