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Statistics-tuned entanglement of the boundary modes in coupled Su-Schrieffer-Heeger chains
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We show that mutual statistics between quantum particles can be tuned to generate emergent novel few-particle
quantum mechanics for the boundary modes of symmetry-protected topological phases of matter. As a concrete
setting, we study a system of pseudofermions, defined as quantum particles with tunable algebra, which lie
on two distinct Su-Schrieffer-Heeger (SSH) chains. We find that as the mutual statistics of the particles are
tuned—the boundary modes present in the two chains gets nontrivially entangled showing a sudden jump in their
mutual entanglement entropy. We further show that such tuning of statistics engenders a first-order transition
between two topologically nontrivial phases which differ in the behavior of interchain entanglement. Using a
combination of analytical and numerical techniques and effective modeling, we uncover the rich physics that
this system hosts. The results are of particular relevance in context of the study of the effective low-energy
quantum mechanics of topological edge modes in one hand and their recent realization in ultracold atoms on the
other. This then provides for controlled manipulation of such low-energy modes.
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I. INTRODUCTION

Topological phases of matter show a multitude of ex-
otic phenomena with crucial implications for the theoretical
framework of understanding condensed matter phases on one
hand, and material sciences with technological perspectives
on the other [1–11]. Characteristically, several such systems
specifically in one spatial dimension, hosts symmetry pro-
tected topological (SPT) boundary zero modes [12–14] as the
manifestation of the nontrivial quantum entanglement in these
systems. The low-energy physics of these systems are then
governed effectively by the properties of the few boundary-
modes.

This emergent few-particle quantum mechanics of the
novel boundary modes is extremely rich and forms the es-
sential ingredient for estimating the usefulness as candidates
for material realization of quantum computing [14–20] where
such boundary modes serve as qubits [21–23]. Theoretical
studies examining such boundary modes in coupled-wire sys-
tems [24–28], their tunability in junctions [15,22,29] and
attempts to entangle them nontrivially are been vigorously
pursued in this regard [15,21,22,30–32]. The complementary
issue at the experimental front of controlled manipulation
and tuning of such boundary modes are also being currently
explored in wide variety of different materials [16,33–41] as
well as in cold atom systems [42–46].

It is crucial therefore to identify potential microscopic
“knobs” that can be “tuned” to manipulate the low-energy
physics of these topologically nontrivial boundary modes, and
investigate their interplay with the symmetries. In addition to
this tuning of few particle quantum mechanics, these knobs
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can further engineer novel phase transitions in the underlying
many-body system.

In this paper, we investigate the above issues in con-
text of the paradigmatic Su-Schrieffer-Heeger (SSH) model
for polyacetylene [12,13] that stabilizes symmetry protected
topological boundary modes. We examine an interesting
tuning parameter that is of relevance in context of recent
experimental [46,47] and theoretical [48–50] developments—
the generalized algebra of the interacting fermions—and
study it in context of two coupled SSH chains as shown
in Fig. 1. The statistical tuning parameter, φ [see Eq. (1)],
allows the degrees of freedom to smoothly transform from
being fermionic to (hard core) bosonic and vice-versa in
one spatial dimension. Such degrees of freedom, referred as
pseudofermions [50], are generalizations of “anyons” in one
dimension [48,51–73]. Quite remarkably, this anyonic physics
has been recently realized experimentally in a cold atomic
setting [47].

In our system, we find that as φ ∈ [0, π ] is tuned, two
topologically nontrivial SSH chains get mutually entangled.
In particular, we uncover the rich low-energy physics of the
many-body boundary modes of a finite, but long, system—as
is relevant for the experiments. Crucially, φ allows modulation
of the entanglement properties of the boundary modes resid-
ing on the two chains. The bulk, in the mean time, undergoes
a first-order transition at φ = π/2, between the two topolog-
ically nontrivial phases. We use a combination of numerical
techniques [exact diagonalization (ED), density-matrix renor-
malization group (DMRG)] and analytical methods to uncover
the physics of this system with particular emphasis to the
emergent quantum mechanics of the boundary modes.

The rest of this work is organized as follows. In Sec. II,
we introduce the model and discuss its various relevant sym-
metries. In Sec. III, we discuss how this system stabilizes
many-body boundary modes and study its dispersion as a
function of φ. In Sec. IV, we develop an effective theory
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FIG. 1. Model. Schematic figure showing two SSH chains (A and
B) labeled by site indices p. i labels the four site unit cell where t1

and t ′
1 (t2 and t ′

2) are the intra (inter) unit cell hopping strengths as
shown. Every hopping term has an additional phase φ that depends
on the fermionic occupation of an intermediate site lying on the other
chain—this implements the pseudofermionic statistics (see text).

for these boundary modes; in particular, we study the case
when both the chains contain one pseudofermion each and
investigate how the boundary modes belonging to two chains
get nontrivially entangled showing a sudden jump in mutual
entanglement. We further develop an understanding of this
physics using few-particle quantum mechanics of effective
boundary modes. We further examine the stability of these
boundary modes to disorder and symmetry breaking per-
turbations. In Sec. V, we begin investigating the half-filled
many-body system. Here we find that, while φ keeps the sys-
tem topologically nontrivial—there are in fact two distinctive
phases at φ = 0 and φ = π , which are separated by a first-
order phase transition. Using many-body trial wave functions,
we identify the nature of the many-body ground states and
further discuss the role of symmetry breaking perturbations on
this many-body system. In Sec. VI, we summarize our results
and provide concluding comments. In Appendices, we present
additional results on DMRG calculations and role of disorder
in these systems.

II. SSH MODEL FOR PSEUDOFERMIONS

We start by introducing the pseudofermions [50] and their
generalized algebra. Consider a two dimensional local Hilbert
space at each site p of a one dimensional lattice that are
created and annihilated by second quantized pseudofermions
operators a†

p and ap respectively with Np = a†
pap being the

number operator. The generalized algebra is now given by

aqap + apaqeiφ sign(p−q) = 0,
(1)

aqa†
p + a†

paqe−iφ sign(p−q) = δpq,

where sign(0) = 0 gives an onsite fermionic algebra. The
off-site algebra can be tuned from fermionic to (hard core)
bosonic by tuning statistical parameter φ ∈ [0, π ]. Particles
satisfying the above algebra have been previously dubbed as
pseudofermions [50]—a nomenclature that we continue to use
in the present work.

We take two decoupled SSH chains of pseudofermions
given by the Hamiltonian

H = −
L−1∑
i=0

[t1a†
4i+2a4i+4 + t2a†

4i+4a4i+6 + H.c.]

−
L−1∑
i=0

[t ′
1a†

4i+1a4i+3 + t ′
2a†

4i+3a4i+5 + H.c.], (2)

where i = 0, . . . , L − 1 sums over L unit cells of four site
each such that total number of sites (labeled by p = 1, . . . , N)
N = 4L (see Fig. 1). t1(t ′

1) and t2(t ′
2) are the hopping ampli-

tudes on the odd and even bonds of the upper A (lower B)
chain. We can consider all these parameters to be distinct,
however we will restrict them shortly.

The φ = 0 limit clearly gives two decoupled free fermion
chains whose properties are well known from the seminal
works starting with those of Su, Schrieffer, and Heeger [12].
Here we summarize the relevant part of these results for com-
pleteness. Choosing a two site unit cell for each of the chains
separately (see Fig. 1) the Hamiltonian for chain A (even in-
dexed sites) and B (odd indexed sites) can be straightforwardly
diagonalized to obtain the single-particle spectra for periodic
boundary conditions:

EA(k) = ±
√

(t1 + t2 cos(k))2 + (t2 sin(k))2, (3)

EB(k) = ±
√

(t ′
1 + t ′

2 cos(k))2 + (t ′
2 sin(k))2 (4)

with k ∈ [−π, π ]. At half-filling, this system is gapped at all
values of t1, t2, t ′

1 and t ′
2, except when t1 = t2(t ′

1 = t ′
2). In the

gapped phase, the ground state hosts a topological band with
a nontrivial winding number when t1 < t2(t ′

1 < t ′
2) [74]. In

such a topological phase, each individual chain under open
boundary conditions, where the couplings between the i =
(L − 1)-th unit cell and i = 0-th unit cell are removed, can
host two degenerate single-particle boundary modes which
are localized at the two ends of the open chain.

The localization length of these boundary modes depends
on the bulk gap and is given by ζ = 1/ ln t2

t1
on chain A and

similarly ζ ′ = 1/ ln t ′
2

t ′
1

on chain B. In any finite sized system,
these localized states however hybridize leading to bonding
and antibonding orbitals, exponentially close in energy by
a gap scale ∼ exp(−L/ζ ) and ∼ exp(−L/ζ ′) for chains A
and B, respectively. At this point we find it convenient to
restrict parameter space by choosing t ′

1 = γ t1 and t ′
2 = γ t2

where we take γ = 2 unless otherwise stated. This particular
parametrization proves helpful for energetic reasons as dis-
cussed below and does not affect the generality of our results.
Importantly, given the recent realization of the SSH model in
ultracold atoms [46], such a parametrization opens up ways
for controlled manipulation of the boundary modes.

Finite φ poses an interacting problem, and this becomes
explicit, following Ref. [50], once we recast Eq. (2) in terms of
spinless fermions created and annihilated by c†

p and cp respec-
tively through a fractional Jordan-Wigner transformations:

cp = Kpap, c†
p = a†

pK†
p with Kp = e−iφ

∑
q<p nq . (5)

whence the Hamiltonian in Eq. (2) becomes

H = HA + HB, (6)

where HA describes the hoppings on chain A, which now has φ

dependent terms that depend on the site occupancies of chain
B, i.e.,

HA = −
L−1∑
i=0

[t1eiφn4i+3 c†
4i+2c4i+4 + H.c.]
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−
L−1∑
i=0

[t2eiφn4i+5 c†
4i+4c4i+6 + H.c.], (7)

and similarly HB describes the hoppings on chain B with φ

dependent terms that depend on the site occupancies of chain
A, i.e.,

HB = −
L−1∑
i=0

[t ′
1eiφn4i+2 c†

4i+1c4i+3 + H.c.]

−
L−1∑
i=0

[t ′
2eiφn4i+4 c†

4i+3c4i+5 + H.c.]. (8)

Here, cp now obeys usual fermionic anticommutation algebra.
At any φ, the number density np = c†

pcp = Np and hence the
filling remains unchanged under the transformation [Eq. (5)].

Given the nonlocal character of the transformation, the
description of phases and their transitions depend on the
choice of underlying microscopic degrees of freedom. For
instance the standard Jordan-Wigner transformation can take
the symmetry-broken ground states of the transverse field
Ising model to the symmetry-protected topological states of
the Majoranas [14]. The same transformation on the SSH
model of fermions however takes fermionic SPT states to
ground states of XY dimerized magnet which retains the SPT
order albeit by a different representation [46]. In our paper,
for having a consistent description of the phases and their

transitions we discuss the physics in terms of the underlying c
fermions.

A distinct feature of Eq. (2) and hence Eq. (6) is the fact
that the total number of particles in each chain A and B remain
independently conserved leading to a UA(1) × UB(1) symme-
try for the system. This is in spite of the interaction between
the c fermions of the two chains mediated by φ �= 0 through
the physics of correlated hopping [50]. This is reminiscent of
the coulomb drag in bilayer systems [75–77].

Continuing with the symmetries of the system, a single
SSH chain made of 2L sites [46] say of the form

HS = −
L−1∑
i=0

[t1c†
2i+1c2i+2 + t2c†

2i+2c2i+3 + H.c.] (9)

is symmetric under staggered charge conjugation operation
implemented by an antiunitary operator

C =
[∏

i

(c†
2i+1 + c2i+1)(c†

2i+2 − c2i+2)

]
◦ K (10)

(where K is the complex conjugation operator) such that

CcpC−1 →
{

c†
p ∀ p ∈ odd

−c†
p ∀ p ∈ even

. (11)

This can be generalized for the present case for the two
chains and arbitrary φ by defining

Uo =
[∏

i

(c†
4i+1 + c4i+1)(c†

4i+3 − c4i+3)

][∏
i

e−i φ

2 {(4i+2)n4i+2+(4i+4)n4i+4}
]

◦ K, (12)

Ue =
[∏

i

(c†
4i+2 + c4i+2

)(
c†

4i+4 − c4i+4)

][∏
i

e−i φ

2 {(4i+1)n4i+1+(4i+3)n4i+3}
]

◦ K (13)

such that

Uoc4i+aU
−1
o →

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c†
4i+1 ∀ i and a = 1

ei
φ

2 (4i+2)c4i+2 ∀ i and a = 2

−c†
4i+3 ∀ i and a = 3

ei
φ

2 (4i+4)c4i+4 ∀ i and a = 4

(14)

and

Uec4i+aU
−1
e →

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ei
φ

2 (4i+1)c4i+1 ∀ i and a = 1

c†
4i+2 ∀ i and a = 2

ei
φ

2 (4i+3)c4i+3 ∀ i and a = 3

−c†
4i+4 ∀ i and a = 4

. (15)

Note that while Uo(Ue) leads to staggered charge conjuga-
tion in the odd B (even A) chain, it leads to a multiplication by
a site dependent phase in the even A (odd B) chain. Further,
both Ue and Uo reduces to C operators for the respective chains
A and B when φ = 0. Among other symmetries, it is useful
to note that presence of nonzero φ breaks the time-reversal
symmetry in the system. Also, the spectrum at any φ is sym-
metric about zero energy—this is due to the bipartite structure

of the Hamiltonian Eq. (6). A unitary symmetry operation of
the form c†

4i+a → c†
4i+a(a = 1, 2), c†

4i+a → −c†
4i+a(a = 3, 4)

takes H → −H and guarantees that E and −E states occur
in pairs. At φ = 0, the boundary modes of each of the SSH
chains are protected by C leading to a total of four localized
edge modes. We now discuss the fate of the system at finite φ

which, as we shall show, leads to nontrivial entanglement of
the boundary modes of the two chains.

III. INTERACTIONS AND MANY-BODY
BOUNDARY MODES

Absence of time-reversal and presence of UoUe places our
system in class D of the Altland-Zirnbauer [2,78,79] classifi-
cation. However, for general φ �= 0, the system is interacting
and does not necessarily belong to one of the ten classes of
free fermion SPTs [80,81]. Here we are mainly interested in
the fate of the boundary modes of a finite but long system at
general values of φ. This allows us to engineer protocols for
manipulating their properties using φ as a tuning parameter
interpolating between the two limits of free fermions and
hard-core bosons. Therefore we immediately focus on these
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FIG. 2. Boundary density. Difference of particle densities (〈δnp〉)
between the ground states for Ñp f = 2L and Ñp f = 2L − 2 particle
number sector, as a function of sites p for various values of φ

in (a) the topological regime (t1 = 0.1 = 1 − t2) and (b) the trivial
regime (t1 = 0.9 = 1 − t2). In (a), the values are normalized over all
the four quasidegenerate ground states for Ñp f = 2L sector (see text)
(ED, γ = 2, and N = 16 = 4L).

boundary modes while the complete characterization of the
bulk physics is deferred to Sec. V.

In the topological phase (t1 < t2, φ = 0), a half-filled open
system should comprise of many-body boundary modes at low
energies. To estimate the number of such states it is worth-
while to note that the free fermionic limit (φ = 0) hosts four
single-particle boundary modes close to zero energy which
reside on the boundary while all other states (4L − 4) reside
in the bulk. Therefore, in a system with number of fermions
= 2L − 2 (L − 1 on each chain), only the single-particle bulk
states would get occupied with no contribution from the
boundary modes, generating a unique ground state. However,
in a half-filled system, i.e., with number of fermions (=2L),
two particles now occupy the single-particle boundary modes.
The latter can be achieved in four ways while maintaining the
condition that each chain has one boundary mode occupied.
These thus correspond to four many-body quasidegenerate
ground states for a half-filled system at φ = 0 and t1 < t2 with
open boundary conditions. When t1 > t2 (i.e., in the trivial
regime) we have a unique ground state for both 2L − 2 and 2L
fermion number sectors, given the absence of any boundary
modes.

The discussion above shows that for t1 < t2 a difference
in particle densities at any site between the (four) ground
states for 2L particles and the ground state for 2L − 2 par-
ticles should reveal the boundary character of the many-body
wave functions at half-filling, if any. In contrast, for trivial
phase (t1 > t2, φ = 0) given the absence of any single-particle
boundary modes, one expects such a density difference be-
tween the two ground states at 2L and 2L − 2 particle sectors
would not have any specific boundary character. Extending
this understanding at φ �= 0, we calculate the difference in
particle densities at every site for number of pseudofermions,
Ñp f = 2L system (averaged over the four lowest energy states
for t1 < t2 and unique state for t1 > t2) and for Ñp f = 2L − 2
system. We find that even when φ �= 0 and t1 < t2 (topological
phase) the residual densities (normalized over all the four de-
generate states) are ∼0.5 on the boundary sites [see Fig. 2(a)];
however, when t1 > t2 (trivial phase) the residual densities lie
in the bulk showing that the system with Ñp f = 2L − 2 should

FIG. 3. Many body boundary excitations. (a) Energy of the four
boundary modes for a half-filled system with open boundary condi-
tions as measured by the two-particle gap defined by Eq. (16) (shown
using points). (b) The corresponding mutual entanglement between
the chains A and B with bulk contribution removed [see Eq. (17)]
(shown using points) saturates to a value of ln(2) (shown by a solid
line) (ED, N = 4L = 16, t1 = 0.1, t2 = 1 − t1, γ = 2). Dashed lines
(e1 . . . e4) represent the results from two-particle problem as dis-
cussed in Sec. IV. The erratic behavior of energies and entanglement
entropy exactly at φ = π

2 [in both (a) and (b)] is due to a bulk
transition which we discuss in Sec. V.

be considered as two delocalized holes which distribute uni-
formly over the bulk sites [see Fig. 2(b)]. This shows that the
boundary modes remain intact for the entire parameter regime
of φ ∈ [0, π ] and thereby continuously interpolating be-
tween the “fermionic” (φ = 0) and the (hard core) “bosonic”
(φ = π ) limits.

Given the existence of such boundary modes for t1 < t2
and φ �= 0, we track the energetics of the quasidegenerate
subspace by calculating the symmetrized two-particle gap
given by

�̃ = E (Ñp f = 2L)

− 1
2 (E (Ñp f = 2L + 2) + E (Ñp f = 2L − 2)), (16)

where E is the ground-state energy for Ñp f pseudofermions
in a system of L unit cells with open boundary conditions. As
defined, �̃ measures the energy cost to populate the boundary
modes of our system in the topological phase [see Eq. (16)]
at a given value of φ. The resulting behavior of �̃ is shown
in Fig. 3(a). The figure also shows that the modulation of
energy of the boundary modes occurs at a much smaller scale
compared to the single-particle bulk gap [see Fig. 10(d)] and
hence proving that the boundary modes retain their sanctity
for all φ except at φ = π

2 .
To further probe the nature of the four energetically iso-

lated (from the bulk) boundary modes at the ends of the chain,
we calculate, for the half-filled system, their mutual quantum
entanglement defined as follows. We calculate the bipartite
entanglement of chain A with respect to chain B [82], S(Ñp f )
for Ñp f = 2L (half-filled) as well as Ñp f = 2L ± 2. In order
to distill the contribution from the boundary modes, we then
subtract any residual bulk contribution by defining

S̃ = S(Ñp f = 2L)

− 1
2 (S(Ñp f = 2L + 2) + S(Ñp f = 2L − 2)). (17)
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The resulting behavior is shown in Fig. 3(b). While, as is
expected, the modes are unentangled (between chains A and
B) at φ = 0; each of these states however display a mutual
entanglement of ∼ ln(2) at φ = π . This is the central result
of this work—where φ, the parameter which tunes the alge-
bra of pseudofermions, can engineer an effective interaction
between the subspace of many-body boundary modes leading
to nontrivial entanglement between the two physically sepa-
rated SSH chains. The effective dynamics of these boundary
modes, in the low-energy subspace, leads to an emergent few
body quantum mechanics which we now focus on.

IV. EFFECTIVE THEORY OF THE BOUNDARY MODES

Having provided the evidence for the existence of the
boundary modes for general φ in the half-filled system for
t1 < t2, we now develop an effective theory of these many
body boundary modes which are energetically separated from
the extended bulk states. This effective theory as we show
below is correctly captured by a two-particle problem where
each of the chain is populated by just one particle residing
in the boundary modes. In Fig. 3, we plot the energies of
the two-particle states which are close to zero (corresponding
to boundary modes) and their mutual entanglement entropy
along with the results of the half-filled system. The close
agreement for all φ �= π/2 indicates the one-to-one corre-
spondence between the boundary modes of the two-particle
system and the half-filled one as detailed below. In Sec. V,
we shall discuss the phase transition at φ = π/2 in the half-
filled system which is of course a many-body bulk effect.
However, both the energies and entanglement entropies for the
two-particle system show extreme sensitivity to this transition
as generically expected from the bulk-edge correspondence.
Following our discussion near Fig. 2, at φ = 0 and in the
topological regime one expects four two-particle boundary
states which are a direct product of single-particle boundary
modes of each chain. In the next section, we discuss the effect
of nonzero φ on these two-particle states.

A. Boundary modes and entanglement

We numerically diagonalize the Hamiltonian in Eq. (6) for
the above two particle set up to obtain their energy spectrum
which is plotted as a function of φ for both periodic and
open boundary conditions in Figs. 4(a) and 4(b), respectively.
Unlike the periodic system, the system with open boundary
conditions shows four quasidegenerate zero energy states,
labeled (e1 − e4), whose energies are weakly sensitive to φ

as shown in Fig. 4(c). Our choice of γ = 2 [defined above
Eq. (5)] changes the relative bandwidths of the two chains
in such a way that the two-particle spectrum is gapped at
E = 0 for the periodic system, and existence of two-particle
boundary modes, if any, is clearly visible.

In Fig. 4(d), we plot the local density of states (LDOS) for
these four states showing that they indeed remain localized at
the boundary. As remarked above, the boundary modes of the
two-particle system very closely reproduces the excitation en-
ergies of the boundary of the half-filled system as was shown
in Fig. 3(a). We explore this one-to-one correspondence for
the boundary modes to explore their properties in greater de-

FIG. 4. Two-particle problem and boundary modes. Energies for
a two-particle system under (a) periodic boundary conditions (PBC)
and (b) open boundary conditions (OBC) as a function of φ. (c) The
near-zero energy states in (b) are zoomed—showing four states (la-
beled e1 − e4), which disperse as a function of φ. (d) The combined
LDOS of the four states plotted as a function of position, p show
that the states close to E = 0 are localized at the boundaries. (e)
The mutual entanglement entropy (S) between the two chains as a
function of φ for each of the four states. They reach a value of ln(2)
at φ = π (shown by dashed line). [ED, t1 = 0.1, t2 = 0.9, γ = 2 for
(a)–(d) N = 4L = 40].

tail. It is worthwhile to note that these two-particle boundary
modes are not the ground states of the two-particle problem
and are separated in energy from all two-particle bulk states
by tuning γ . This is in contrast to the many-body boundary
modes where such boundary modes become the quasidegener-
ate ground-state manifold for an half-filled system. Also given
the presence of just one particle per chain the renormalization
of the energies of the bulk two-particle states due to φ [see
Fig. 4(a)] is not as drastic as the half-filled many-body states,
which we discuss in Sec. V.

The mutual entanglement between the boundary modes of
chain A and B for the two-particle system can be calculated in
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a straightforward manner as follows. We perform a singular
value decomposition (SVD) of the two-particle state |�〉 to
obtain

|�〉 =
2L−1∑
i, j=0

ai j |2i + 2〉|2 j + 1〉, (18)

where |p〉 = c†
p|0〉 is the single-particle fermionic state at po-

sition p with the even and odd positions belonging to chain
A and B, respectively. The matrix a can be SVD diagonalized
	 = U −1aV to obtain the diagonal eigenvalues 	i [83]. The
|�〉 then can be expressed as

|�〉 =
∑

j

	 j |� jA〉|� jB〉, (19)

where |� jA〉 = ∑
i Ui j |2i + 2〉 and |� jB〉 = ∑

i(V
−1) ji|2i +

1〉 form orthonormal vectors in single-particle Hilbert space
of both the chains separately. This decomposes the wave func-
tion in a way that the two sectors correspond to two distinct
chains. 	i characterizes the entanglement properties of this
two-particle state. In particular, a direct product state has
	i = δi,0. More generally the entanglement entropy between
two chains is given by [83]

S = −
∑

j

[|	 j |2 ln |	 j |2]. (20)

In Fig. 4(e), we plot S for the four boundary modes of
the two-particle problem (e1, . . . , e4 < �bw) (where �bw is
the bandwidth of these modes as discussed below). Interest-
ingly, while for all the states, the chains remain unentangled
at φ = 0, the entanglement entropy saturate to a value of
∼ ln 2 at φ = π undergoing a jump at φ = π/2. A systematic
increase in L doesn’t change this functional dependence of S
on φ, thereby reflecting that this result is indeed stable even
at the thermodynamic limit [see Fig. 4(e)]. Once again, the
results of the two-particle mutual entanglement properties of
the boundary modes are in one-to-one correspondence with
that of the half-filled case as shown in Fig. 3(b).

It is important to contrast the above mutual (interchain)
entanglement, with the intra-chain entanglement as a function
of φ. To this end, we partition the system into three regions
I–III (see inset in Fig. 5) with the bipartite entanglement
between the particular part and the rest of the system being
given by SI, SII, and SIII, respectively. While SIII represents
the mutual entanglement previously calculated [see Fig. 4(e)],
SI represents the entanglement entropy of the left part of chain
B with the rest of the system. Figure 5 shows that SI remains
close to ln(2) as a function of φ indicating that the left bound-
ary mode in B continues to remain entangled throughout—as
is expected in a topological phase. We further calculate

Sex = SI − SIII, (21)

which represents the exclusive entanglement entropy between
regions I and II. At φ = 0, given the ground state is in a direct
product state of two electrons residing in bonding orbitals in
each of the chains, the entanglement entropy between left half
of chain A (B) and right half of chain A (B) is expected to be
ln(2) which is confirmed in Fig. 5 for φ < π/2. However, as
seen in the figure, Sex jumps from ∼ ln(2) to ∼zero at φ = π

2

FIG. 5. Intrachain entanglement. The behavior of entanglement
entropy SI, SIII, and Sex [see Eq. (21)] (the regions I–III are shown
in the inset) as a function of φ for the two-particle system in
the topological regime for the two-particle state e1 [see Fig. 4(c)].
(ED, t1 = 0.1, t2 = 0.9, γ = 2, and N = 4L = 16).

(see Fig. 5). The almost perfect anticorrelation between Sex

and SIII shows that as the chains get mutually entangled, the
exclusive entanglement between left and right parts of chain
B (A) goes to zero in accordance with the monogamy of
entanglement for the boundary modes akin to spin S = 1/2
degree of freedom or spinless fermions.

B. Minimal model for the boundary modes

In order to develop possible protocols to manipulate the
boundary modes for finite chains, it is desirable to develop an
effective description only involving them that is operational
at energy scales much below the bulk gap. This takes the
form of an effective few particle quantum mechanics with
subtle features resulting from the underlying nontrivial nature
of the bulk stemming from the underlying topological phase.
In our case, this leads to a four-site quantum mechanics whose
features can be controlled by tuning φ.

For a single finite SSH chain [see Eq. (9)] in its topological
phase, there are two nearly degenerate eigenstates close to
zero energy. These are the bonding (+) and the antibonding
(−) orbitals formed out of the linear combination of the
boundary modes

c†
+ = 1√

2
(c†

L + c†
R), c†

− = 1√
2

(c†
L − c†

R), (22)

where c†
L(c†

R) creates an exponentially localized wave function
on left (right) edge of the chain. c+ and c− are energetically
split by energy [84]

α ≈ t1t2
2

t2
1 + t2

2

e−(L−1)/ζ , (23)

where ζ = 1/ ln(t2/t1). Therefore, an effective Hamiltonian
for just the boundary modes of a single SSH chain is Heff =
−α(c†

LcR + H.c.).
For two chains A and B, we similarly have four single-

particle degrees of freedom (c†
L,(A/B), c†

R,(A/B) ) corresponding
to left and right boundary modes on each chains A and B.
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FIG. 6. Minimal four-site model. (a) Schematic of the four-site
model of the boundary modes. (b) Entanglement jump of ln(2) as a
function of φ for the ground state of the four-site system [Eq. (25)
with γ = α = 1] that changes from an unentangled state [Eq. (27),
two red-colored bonding orbitals] to an mutually entangled state
(Eq. (28), blue-shaded plaquette]. (c) For actual choice [see Eq. (23)]
of α and γ in Eq. (25), the spectra of this four-site problem compared
to the two-particle boundary modes (t1 = 0.1, t2 = 1 − t1, γ = 2,
and N = 4L = 40). (d) Behavior of the bandwidth of boundary
modes (�bw) from the two-particle problem and its comparison to
that obtained from the effective Hamiltonian in Eq. (25), as a function
of system size L.

Identifying c†
LB, c†

LA, c†
RB, and c†

RA with four “effective sites”
≡ (1, 2, 3, 4) of a four site cluster [see Fig. 6(a)], we form a
two particle basis given by

|1, 2〉 ≡ |LB, LA〉, |1, 4〉 ≡ |LB, RA〉,
|3, 2〉 ≡ |RB, LA〉, |3, 4〉 ≡ |RB, RA〉, (24)

which reflects that both the chains have one particle each.
In order to uncover the effective dynamics among these

boundary modes, as tuned by φ dependent correlated hopping
term, one can consider the case where a particle localized at
right boundary of chain A (RA - “site 4”) is brought to the left
boundary (LA -“site 2”) via a hopping process ∝ t1(t1t2)L−1.
However, in the process the φ dependent term would con-
tribute an overall phase which depends on the number density
on the chain B up until it encounters the left boundary of chain
B. This should lead to an effective term of the kind ∼c†

2c4eiφn3

since n3 measures the density on the right boundary of chain
B. Similarly considering the equivalent process on the other
chain, the effective Hamiltonian at any φ is given by

Heff = −αeiφn3 c†
2c4 − γαeiφn2 c†

1c3 + H.c., (25)

where γα is the magnitude of the corresponding energy split-
ting between the boundary modes of the (finite) chain B
(t ′

1 = γ t1, t ′
2 = γ t2). The effective Hamiltonian, for φ = 0,

reduces to

Heff(φ = 0) = −α(c†
LAcRA + H.c.) − γα(c†

LBcRB + H.c.),
(26)

which is trivially two copies of the edge Hamiltonian for two
decoupled SSH chains, A and B. It is interesting to note that
the four-site effective Hamiltonian of the boundary modes
[see Eq. (25)] is also the Hamiltonian for a single unit cell
comprising of four sites in our parent Hamiltonian when α =
t1, t2 = 0 [see Eq. (6)].

The eigenspectrum of Heff and the mutual entanglement
of the states (given a choice of t1, t2, γ , L) matches with the
results for the full system almost exactly. The comparison
of the eigenspectra for this effective four-site model and that
of the boundary modes from the exact two-particle system is
shown in Fig. 6(c). Furthermore the fact that the dispersion of
the boundary modes for this two-particle system and its entan-
glement properties almost exactly matches the corresponding
features of many-boundary modes (see Fig. 3) shows that
Eq. (25) is the effective Hamiltonian for the many-body
boundary modes in this system as tuned by φ. The discussion
above also provides for the effective bandwidth of the two
particle boundary states (�bw) given by 2|α + γα|, which,
as expected, falls off exponentially with L [see Fig. 6(d)].
Given the exponential fall in �bw with increasing L, it is
pertinent; especially in an experimental setting, to maintain
L and ζ length scales which can allow for tunability between
the boundary modes even while resolving their individual en-
ergies. Apart from energetic scale α and the anisotropy factor
γ which denote the finite hybridization between the boundary
modes of the finite chain, it is the presence of φ—reflecting a
correlated hopping process—that plays the central role in the
effective boundary physics and entanglement characteristics.

To understand this, we momentarily set α = γ = 1 in
Eq. (25). The resultant ground state is given by

|�1〉 =
(

ei
φ

2 c†
1 + c†

3√
2

)(
ei

φ

2 c†
2 + c†

4√
2

)
|�2〉 (27)

∀ φ < π/2 and

|�2〉 = 1
2 (−eiφc†

1c†
2 − ieiφ/2c†

1c†
4 + ieiφ/2c†

3c†
2 + c†

3c†
4)|�2〉

(28)

∀ φ > π/2, where |�2〉 describes the vacuum state of the
effective quantum mechanics of the boundary modes. At
φ = π/2 the above two states are energetically degenerate
and the corresponding energy-levels cross at φ = π/2. In
this case, for the ground state, up until φ = π/2 the mutual
entanglement between the two chains is identically zero and
then jumps to ln(2) at φ = π

2 [showed by dashed line in
Fig. 6(b)]. This is expectedly so, given the form of |�1〉 [see
Eq. (27)] is a direct product state between the two chains
which can be shown schematically by two disjoint bonding-
like orbitals on the two chains. This is to be contrasted
with |�2〉 [see Eq. (28)], which is an entangled state [shown
schematically in Fig. 6(b)] where even when fermions are
delocalized equally among the four sites, the state cannot be
represented as a direct product (as shown by a blue shaded
plaquette).

Therefore we show that the effective low-energy physics of
the many-body boundary modes (which in turn was captured
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TABLE I. Eigenvalues of the symmetry operators Ue and Uo

[Eqs. (12) and (13)] for the two eigenstates |�1〉 and |�2〉 [see
Eqs. (27) and (28)]. |�1〉 (|�2〉) is the ground state for φ < π

2 (φ >
π

2 ) for the effective Hamiltonian [see Eq. (25)] when α = γ = 1.

|�1〉 |�2〉
Uo e−i5φ/2 ie−i5φ/2

Ue e−i2φ −ie−i2φ

by the physics of two-particle boundary modes; see Fig. 3);
is actually that of a correlated hopping in a four-site cluster,
albeit nonlocal. This allows for the entanglement tuning of the
nonlocal modes that is facilitated by the nontrivial bulk (see
Fig. 3).

At this point, we note that |�1〉 and |�2〉 are in fact eigen-
states of the two symmetry operators Uo and Ue defined in
Eqs. (12) and (13) with the eigenvalues shown in the Table I.
The level crossing at φ = π

2 , which leads to an entanglement
jump, is therefore a reflection of the change in the symmetry
representation of the ground state as φ is tuned above φ = π

2 .
We shall discuss the implication of these ideas further in
Sec. V where we discuss the underlying phase transition in
the many-body system.

We now briefly comment on a possible experimental pro-
tocol to measure the above mutual entanglement [Fig. 4(e)]
relevant to recent experiments [46,47] and especially appli-
cable in this two particle setting. Following Ref. [85], the
setup comprises of engineering a quantum switch with two
states denoted by |↑〉, |↓〉 coupled to the Hamiltonian [see
Eq. (6)]. Now consider two values of the statistical parameter
φ and φ′ such that the complete system (SSH chains and
the switch) is prepared in the ground states |↑〉 ⊗ |�(φ)〉
and |↓〉 ⊗ |�(φ′)〉 where |�(φ)〉 and |�(φ′)〉 are the ground
states for H (φ) and H (φ′), respectively. A system in |�(φ)〉
can be made to oscillate via Rabi oscillations to a state
|�(φ′)〉 using a tunneling term of the form H ′ = �(|↑〉〈↓| +
|↓〉〈↑|) on the quantum switch. This leads to a characteristic
Rabi frequency � where � = �′

h̄ and �′ = �〈�(φ)|�(φ′)〉
[85], which can then be experimentally measured. Note
that this quantity is dependent on the overlap χ (φ, φ′) =
〈�(φ)|�(φ′)〉.

In order to track a mutually entangled state, it is particu-
larly useful to discuss two choices of φ and φ′: (a) φ = 0 and
φ′ = π where the χ (0, π ) = 1

2 [calculated using the forms
of wave functions shown in Eqs. (27) and (28)] and (b) φ =
ε(∼ 0) and φ′ = −ε where χ ∼ 1. Note that the ground state
for each of these values of φ and φ′ have the same energy.
However, the measurement of Rabi oscillations in (a) is half
of that measured in (b). Unlike case (b), in case (a), |�(φ′)〉
is an mutually entangled state. This characteristic halving
of � would therefore signal generation of nontrivial mutual
entanglement between chains A and B. While this result is ex-
pected for the four site cluster, and for the boundary modes for
the two-particle problem—in a many-body problem χ (φ, φ′)
falls exponentially with increasing system size (as we have
checked numerically using many-body wave functions) ren-
dering such a protocol potentially challenging to implement
in an experimental setting.

FIG. 7. Stability to hopping disorder. [(a) and (b)] The energy
spectra for a two-particle problem as a function of φ with hopping
disorder strength W = t1/5 under (a) periodic boundary conditions
(PBC) and (b) under open boundary conditions (OBC). [(c) and
(d)] The jump in mutual entanglement S as a function of φ for the
four two-particle boundary modes (e1, . . . , e4) for disorder strength
(c) W = t1/10 and (d) W = t1/5. (ED, t1 = 0.1, t2 = 0.9, γ =
2, and N = 4L = 40).

C. Stability to disorder and other perturbations

While our discussion until this point describes the exis-
tence of boundary modes and their tunability with respect
to φ, their topological origin should impart them stability
against symmetry preserving disorder and other perturbations.
Here we examine these effects in turns starting with the
disorder.

For hopping disorder, the hopping amplitudes, i.e., vari-
ous t in Eq. (6) are modified to t̃ = t + δt where a small
random number (δt) is uniformly drawn from a box distri-
bution between [−W,W ] independently for each bond. We
find that such a disorder does not destroy the boundary modes
and their entanglement properties (see Fig. 7) for the two
particle problem. We have also checked that this property
holds even for the many-body boundary modes (not shown).
In contrast to site disorder [86], hopping disorder retains
the generalized charge-conjugating symmetries Ue and Uo

separately. However, such protection of boundary modes is
guaranteed only until the point when the disorder scale is
weak compared to the bulk gap scale in the system whence
it drives a bulk phase transition to a trivially localized phase.
In that limit, both topological features and corresponding en-
tanglement entropy changes significantly (also seen in other
systems such as [87,88]) (see Appendix B for a detailed
discussion).

We now turn to the role of translationally invariant
symmetry preserving and symmetry breaking perturbations
to Eq. (6). Specifically, we study the effect of Hubbard
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FIG. 8. Symmetry breaking/preserving perturbations. (a) Ener-
gies of the single-particle boundary modes as a function of interchain
hopping strength t⊥ at φ = 0 [see Eq. (30)]. (b) Energies of boundary
modes in presence of two particles, as a function of Hubbard interac-
tion strength U [see Eq. (29)] at φ = π/4. Here, an overall constant
proportional to U is subtracted. (ED, t1 = 0.1, t2 = 1 − t1, γ =
2, and N = 4L = 20).

interaction given by

HU = U

2

L−1∑
i=0

[(ñ4i+1 + ñ4i+2 + ñ4i+3 + ñ4i+4)2 − 1]

+U
L−1∑
i=0

[(ñ4i+4 + ñ4i+3)(ñ4(i+1)+1 + ñ4(i+1)+2)], (29)

where ñp = np − 1
2 and the interaction term coupling the i =

(L − 1) and the i = 0 unit cell is kept such that the perturbing
term does not break the symmetry of the parent periodic
system. While this term is invariant under a product of Uo and
Ue, it is not invariant under them separately. This term further
maintains the UA(1) × UB(1) number conservation symmetry
of the system. Upto an overall chemical potential renormal-
ization we find that the boundary modes do not split and
remain quasi degenerate (exponentially close in system size
∼e−L/ζ ). This can be contrasted with the case when the system
is perturbed by an interchain hopping term of the kind

Ht⊥ = −
L−1∑
i=0

t⊥(c†
4i+1c4i+2 + c†

4i+2c4i+3

+ c†
4i+3c4i+4 + c†

4i+4c4(i+1)+1 + H.c.). (30)

Here t⊥ breaks Uo,Ue,UoUe and UA(1) × UB(1) symmetries.
We find that such a perturbation immediately splits the bound-
ary modes [see Fig. 8(a)].

The two distinct behaviors for the two kinds of perturba-
tions can be understood from the effective Hamiltonian for
the boundary modes as discussed in Eqs. (26) and (25). Ht⊥
effectively generates a hopping term of the kind

Ht⊥ = −t⊥(c†
LBcLA + c†

RBcRA + H.c.) (31)

immediately hybridizing the boundary modes, while HU gen-
erates a term of the kind

HU = U (ñLBñLA + ñLBñRA + ñRBñLA + ñRBñRA), (32)

which acts as an identity term in Eq. (25). Given the two
distinctive behaviors of these perturbing terms, this analysis

shows that the symmetry protecting this topological phase is
rather a product of two antiunitary operators UoUe, in combi-
nation with the number conservation UA(1) × UB(1).

This completes our discussion of the effective quantum
mechanics of the boundary modes. Our discussion of the
two-particle problem shows existence of quasidegenerate
eigen-modes in an open system when t1 < t2, which reside
on the boundaries and are robust to disorder and symmetry
preserving perturbations; taken together, these results provide
a comprehensive understanding that these modes are indeed
of topological origins at any value of φ. In this section, we
further discussed their effective dynamics in presence of φ,
their entanglement properties and potential measurement pro-
tocols.

Having discussed this interplay of statistics, entanglement
and symmetries—on the boundary modes of this topological
phase, we now turn to the many-body problem and discuss
the bulk physics of the half-filled system and understand its
properties as a function of φ.

V. MANY-BODY SYSTEM

The trivial and topological phase of a single SSH chain [see
for e.g., Eq. (9)] is distinguished by the value of polarization
(defined modulo 2)

P = 1

π
Im

[
ln

(〈
exp

(
i

2π

L

j=1,2∑
i=0,...,L−1

xin2i+ j

)〉)]
, (33)

where i runs over the unit cell index and j over the sites
within a unit cell and xi describes the position of the ith unit
cell [89–92]. Also 〈· · · 〉 denotes expectation is taken over the
many-body ground state of the system. The resulting value
of polarization can be related to the geometric phase of the
single-particle bands in an noninteracting system [90]. Given,
presence of a nontrivial φ engineers interactions which does
not allow the description of the many-body state in terms of
single Slater determinant; here, while one can not evaluate a
single-particle geometric phase (and corresponding winding
number)—but a many-body polarization can still be calcu-
lated for the half-filled system as follows.

For our two-chain system, we calculate the polarization for
each chain separately (PA and PB) given by

PA = 1

π
Im

[
ln

(〈
exp

(
i

2π

L

i=0...L−1∑
j=2,4

xin4i+ j

)〉)]
,

PB = 1

π
Im

[
ln

(〈
exp

(
i

2π

L

i=0...L−1∑
j=1,3

xin4i+ j

)〉)]
. (34)

We find that the values when evaluated over the ground state
(defined modulo 2) continues to be nontrivially 1 as a function
of φ when t1 < t2 [see Fig. 9 (a)]. It is not well defined at
φ = π

2 owing to a level crossing of the ground states which
we shall shortly discuss. Our results therefore show that the
many body topological phase which exists at φ = 0 is indeed
stable all the way up to φ = π remaining independent of φ.
Therefore we have not been able to find a topological invariant
that distinguishes φ < π

2 and φ > π
2 regions.

195134-9



SANTRA, AGARWALA, AND BHATTACHARJEE PHYSICAL REVIEW B 103, 195134 (2021)

FIG. 9. Polarization. The behavior of PA and PB [see Eq. (34)]
with respect to φ for (a) t1 = 0.1 (topological phase) (b) t1 = 0.9
(trivial phase) (see text). The behavior of 〈O〉, 〈O′〉 [see Eq. (35)] as
a function of φ in (c) t1 = 0.1 and (d) 0.9. (ED, t2 = 1 − t1, γ =
1, and N = 4L = 16).

Even as polarization remains nontrivial, is there another
operator which differentiates the bulk phase φ < π

2 and φ >
π
2 ? To construct such operators we draw insights from our
study of the four-site problem which was introduced as an
effective problem for the boundary modes in Eq. (25). While
there these four “sites” represented the effective boundary
modes (see Fig. 6); this effective Hamiltonian is also identical
to the terms which appear in the Hamiltonian of a single unit
cell (comprising of four sites) in our correlated fermionic
Hamiltonian [see Eq. (6)]. Specially at t2 = 0 limit, our
complete system can be understood as a direct product of
four-site clusters, each of which satisfies the Hamiltonian (25)
with α = t1. Motivated by this connection we construct the
following Hermitian operators, both of which commute with
Uo and Ue:

O = 1

L

∑
i

[
ei

φ

2 c†
4i+1c4i+3 + H.c.

][
ei

φ

2 c†
4i+2c4i+4 + H.c.

]
,

O′ = 1

L

∑
i

[
ei

φ

2 c†
4i+3c4i+5 + H.c.

][
ei

φ

2 c†
4i+4c4i+6 + H.c.

]
.

(35)

〈O〉 for a single four site cluster has an value +1(−1)
for ground-state wave function |�1〉(|�2〉) [see Eqs. (27) and
(28)] and O′ is displaced by half a unit cell from O. While
at φ = 0, O is a product of two hopping operators on the
two bonds of chains A-B, at φ = π , they appear as prod-
uct of two current operators between the two chains. For a
many-body system, these effectively measures the location
and the phase relationship of fermions on the bonds of the two
chains, respectively. Indeed for φ = 0, 〈O〉 = 0 (〈O′〉 = 1)

FIG. 10. Half-filled periodic system. (a) The behavior of mutual
entanglement entropy S as a function of φ shows a jump of L ln(2)
at φ = π

2 for different system sizes. (b) Schematic showing that the
ground state for t1 � t2 and t1 � t2 can be interpreted as weakly cou-
pled four-site clusters of unentangled states at φ ∼ 0 and entangled
states at φ ∼ π . (c) Ground-state energy E and its derivative with
respect to φ ( ∂E

∂φ
) as a function of φ. (d) Behavior of 1/�(n) (see

Eq. (36)) as a function of φ. For (a) ED studies and for (c) and (d)
N = 4L = 48, DMRG calculations further details in Appendix A).
(t1 = 0.1, t2 = 0.9, and γ = 2, PBC).

in the topological phase (t1 < t2) and other way around in
the nontopological phase (t1 > t2). Interestingly even in the
topological (trivial) phase, as φ is tuned, the sign of 〈O′〉 (〈O〉)
changes at φ = π

2 [see Figs. 9(c) and 9(d)]. This signals the
nontrivial phase relationship of the bonding orbitals which is
tuned by φ and suddenly changes its character at φ = π

2 .

A. Entanglement and gap

In a system with open boundary conditions we had found
that φ engineered a jump in the mutual entanglement between
the boundary modes belonging to the two chains. In a periodic
system, the ground state is unique (except at φ = π

2 ) and we
now investigate the behavior of mutual entanglement between
the two chains in this ground state as a function of φ. We find
that such mutual entanglement jump continues at φ = π

2 , but
with a value of L ln(2), which is extensive in system size [see
Fig. 10(a)] given L is the number of four-site unit cells. This
suggests that this entanglement is engineered through bulk
states—where each unit cell contributes a value of ln(2). This
reflects what we had found as the properties of a single four-
site cluster as discussed near Eq. (25). The transition for the
many-body state thus provides a natural understanding of the
state, where deep in both the topological regime (t1 � t2) and
trivial regime (t1 � t2), the state can be interpreted as weakly
coupled four-site clusters each of which contributing a ln(2)
entropy [see Figs. 6(a) and 6(b)] to the many-body state once
φ > π

2 [see Fig. 10(b)]. This also provides the understanding
for the effective four-site problem. This entanglement jump,
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as we have discussed above, is not specific to the topologi-
cal phase; for instance even between the two trivial phases,
φ can engineer an entanglement jump. Furthermore, while
characterization of entanglement entropy depends on the mi-
croscopic degree of freedom used (for instance, fermions or
hard-core bosons), once defined with a chosen basis, its value
and variation with φ is physical.

The sudden jump in entanglement at φ = π
2 hints at an

underlying thermodynamic phase transition. This is further
confirmed by the behavior of the ground-state energy as a
function of φ and find that its first-order derivative shows a
distinctive jump at φ = π

2 , reflecting that the transition is of
first-order [see Fig. 10(c)]. Interestingly even though system
undergoes this first-order transition the single-particle gap
�(n) defined as energy required to add or remove n particles
from the half-filled sector

�(n) = E (Ñp f = 2L + n) − E (Ñp f = 2L), (36)

where E is the ground-state energy for Ñp f particles in a
system of L unit cells, remains finite as a function of φ

across the tuning range [see Fig. 10(d)]. That these gaps
remain finite even as the system size is systematically in-
creased (see Appendix A for details) shows that even when φ

entangles the boundary modes and the bulk remains gapped to
single-particle excitations, the ground state undergoes a level
crossing.

B. Trial many-body wave functions

Motivated by the structure of the wave functions in the free
SSH limit as well as that of the effective boundary Hamilto-
nian Eq. (25), we propose the following trial wave functions
for the many-body ground state for the Hamiltonian in Eq. (6)
with t1 = γ = 1, t2 = 0.

∣∣� (L)
1

〉 =
L−1∏
i=0

(
ei

φ

2 c†
4i+1 + c†

4i+3√
2

)(
ei

φ

2 c†
4i+2 + c†

4i+4√
2

)
|�〉

(37)
for φ < π/2 and

∣∣� (L)
2

〉 =
L−1∏
i=0

[
1

2

( − eiφc†
4i+1c†

4i+2 − iei
φ

2 c†
4i+1c†

4i+4

+ iei
φ

2 c†
4i+3c†

4i+2 + c†
4i+3c†

4i+4

)]|�〉 (38)

for φ > π/2. Here |�〉 is the many-body vacuum.
The overlap with the exact ground-state for the half-filled

system (even when t1 �= 1.0), as obtained from ED, with
|� (L)

1 〉 (|� (L)
2 〉) for 0 � φ < π/2 (π/2 < φ � π ) is notably

high as shown in Fig. 11(a). The corresponding comparison
of energies are shown in Fig. 11(b). This reflects that the
ground-state wave function is indeed well approximated by
weakly coupled four site cluster wave functions which are
unentangled between chains A and B at φ = 0. However,
as φ is tuned, these unentangled chains become entangled
all throughout the bulk at φ = π

2 undergoing the first-order
transition. It is interesting to note that at φ = 0 and t1 = 1, one
has an extremely large degeneracy at many-body zero energy,
given each four site cluster has energy eigenvalues given by

FIG. 11. Trial wave functions. (a) The behavior of the over-
lap (≡ |〈�e|�var〉|2) for the two choices of trial wave functions
|�var〉 = |� (L)

1 〉, |� (L)
2 〉 [see Eqs. (37) and (38)] with the exact

ground-state wave function |�e〉 as a function of φ. (b) Compar-
ison of the corresponding energies for the trial wave functions
(E1 = 〈� (L)

1 |H |� (L)
1 〉, E2 = 〈� (L)

2 |H |� (L)
2 〉) and the exact ground-

state energy (E = 〈�e|H |�e〉) as a function of φ. (ED, t1 = 0.8 =
1 − t2, γ = 1, and N = 4L = 16).

−2, 0, 0, 2. The many-body spectrum can take at least
(L

L
2

)
(assuming L is even) number of zero energy many-body states.
However φ chooses a particular combination of entangled
states to engineer the many-body state which then forms
the ground state when φ > π

2 . Therefore it is this change of
ground-state wave function that is reflected both in the first-
order transition, the jump in entanglement and corresponding
jump in the value of the operators O, O′ (see Fig. 9). Unlike
a finite temperature first-order transition, which occurs with
a latent heat corresponding to jump in the thermodynamic
entropy; this quantum first-order transition occurs with a jump
in the mutual entanglement entropy.

C. Breaking of UA(1) × UB(1) symmetry

In the last section our ED, DMRG and studies using trial
wave functions convincingly point to a first-order transition,
which can be engineered using φ. Importantly, in a system
with open boundary conditions φ allows one to tune the
entanglement properties of the many-body boundary modes
(Fig. 3). The crucial symmetry protecting this physics has
been UoUe [see Eqs. (12) and (13)] and the number con-
servation UA(1) × UB(1) on each chain as was discussed in
Sec. IV C. In Sec. IV C, we had looked at the effect of
symmetry-breaking and symmetry-preserving perturbations
on the two-particle problem and found that boundary modes
would split in presence of an interchain hopping of strength
t⊥ (see Fig. 8). In particular for this interchain hopping, the
splitting is ∝ t⊥ which is a much larger scale compared to the
finite size splitting scale at t⊥ = 0 which is exponential small
in system size. However, the actual mixing depends on the
strength of perturbations with respect to the bulk gap and the
boundary modes may survive for practical purposes for small
perturbations, albeit now split. This occurs especially when
the perturbing energy scales and probe fields are much smaller
than the bulk gap. In this section, we investigate such fea-
tures and potential signatures which would be experimentally
measurable even in presence of weak interchain hopping—

195134-11



SANTRA, AGARWALA, AND BHATTACHARJEE PHYSICAL REVIEW B 103, 195134 (2021)

FIG. 12. Breaking UA(1) × UB(1). (a) Energies of the ground
state and first excited state (GS and ES) as a function of φ for
a half-filled system under periodic boundary conditions (PBC) in
presence of interchain hopping t⊥ [see Eq. (30)]. (b) Energies of
the seven low lying energy states (GS and ES1 − ES6) for the same
system but under open boundary conditions (OBC). (c) Behavior of
entanglement entropy S as a function of φ for the ground state under
PBC for various system sizes. (d) Behavior of bulk entanglement en-
tropy S′ = S − 2 ln 2 as a function of φ for various system sizes. [ED,
t1 = 0.1, t2 = 0.9, t⊥ = t1/2, γ = 2, for (a) and (b), N = 4L = 16].

particularly when, such terms may be realistically present in
any experimental setting [46].

In order to study this we add a quadratic hopping term t⊥
[see Eq. (30)] along dashed lines (see Fig. 1) to the parent
Hamiltonian [Eq. (6)] and perform ED studies on the many-
body problem. Given the number of particles on each chain
are no longer conserved, simple counting in the free fermionic
limit shows that one would expect six low-energy states in an
open system (six ways of occupying boundary modes) when
both the chains are in topological regime (instead of four as
discussed before) and expect a unique ground state with a
finite gap to excitations in a periodic system. This expectation
is borne out in the ED studies [see Figs. 12(a) and 12(b)]
where the many-body energy spectra for both periodic and
open system is shown. In particular, we find that the low-
energy manifold in the open system is not exactly degenerate,
but split (∝ t⊥) due to a finite t⊥ [consistent with results in
Sec. IV C]. However, these lowest six eigenstates still remains
separated in energy to bulk excitations with an energy scale
t1 − t2 that characterizes the bulk gap scale. This gap scale is
characterized by the energy of the transition from ground state
to sixth excited state, which remains finite [see Fig. 12(b)],
except when near φ = π

2 where the first-order phase transition
occurs.

We now investigate if the entanglement properties of the
many-body states remain stable to interchain hopping. For

a half-filled system under periodic boundary conditions and
t1 < t2 (topological regime), the system has a L scaling for the
entanglement jump [see Fig. 12(c)] as was the case when t⊥ =
0 [see Fig. 10(a)]. Thus, for a periodic system, presence of a
finite t⊥ does not change the jump in the mutual entanglement.
However, under open boundary conditions, the many-body
ground state shows a 2 ln(2) entropy even at φ = 0 and then
jumps to a value of (L + 1) ln(2) at φ > π/2. This behavior
seems to have an extra component of 2 ln(2) entropy added to
the expected behavior of (L − 1) bulk unit cells which would
contribute a entropy jump of (L − 1) ln 2 at φ = π

2 [apart from
the boundary sites the system has L − 1 four site clusters, see
Fig. 10(b)].

This extra entanglement can be understood from the fact
that any interchain coupling immediately hybridizes the left
(right) boundary mode of chain A with left (right) boundary
mode of chain B with an energy t⊥. This leads to a formation
of two bonding like orbitals at the ends of our zigzag ladder
(see Fig. 1) coupling the two chains A and B dominating over
the physics of effective correlated hopping process whose
energetics is exponentially small in system size [∝α, see
Eq. (25)]. These boundary bonding orbitals adds a 2 ln(2)
contribution of mutual entanglement entropy to the bulk part
independent of φ. Thus, separating the bulk entanglement
entropy part ≡ S′ = S − 2 ln(2), we can recover the expected
scaling nature that is ∝(L − 1) ln 2 [see Fig. 12(d)].

Our discussion here, shows that—even though t⊥ splits the
boundary modes; perturbatively, the physics of the transition,
entanglement jump between two phases and existence of the
low-energy boundary sector under open boundary conditions
remains stable when t⊥ is smaller than the bulk gap. We have
further checked that many-body polarization remains nontriv-
ial in presence of t⊥ (not shown).

VI. SUMMARY AND OUTLOOK

We now summarize our results. In this paper, using a
combination of numerical and analytical calculations, we have
shown that mutual statistics between quantum particles can
be potentially “tuned” to engineer novel quantum mechanics
for the low-energy subspaces formed out of topologically
protected boundary modes in SPTs. We achieve, in partic-
ular, nontrivial tuning of the entanglement between the two
one-dimensional chains which host topological phases using
a statistical parameter φ. Our study therefore brings out an
interesting interplay between quantum statistics, topological
phases of matter, entanglement and symmetries.

As a concrete setting to achieve this end, we studied a
system of pseudofermions on two distinct SSH chains. We
noticed that for a half-filled system the boundary modes gets
mutually entangled showing a jump in the entanglement en-
tropy of ln(2) at φ = π

2 (see Fig. 3). In Sec. IV, our study of
just two particles in this system, provides a consistent under-
standing and the effective low-energy quantum mechanics of
the boundary phenomena. Moving on to the bulk physics then,
we found that φ engenders a first-order transition between
two topological phases, again with a corresponding jump in
the mutual entanglement entropy between the bulk sites (see
Fig. 10). While such a transition is not specific to topolog-
ical phases, here, it allows to entangle the boundary modes
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FIG. 13. Gap scaling. The scaling of energy gap to add one par-
ticle [�(1), see Eq. (36)] over the half-filled state with system size L
for (a) periodic and (b) open boundary conditions for various values
of t1, t2 = 1 − t1, γ = 2, and φ. (DMRG results, further details in
Appendix A).

nontrivially. We further investigated the role of disorder and
various symmetry breaking and preserving perturbations to
characterize the phase and its stability. Our work therefore
points to an interesting class of phase and phase transitions,
with potential technological implications, that can be engi-
neered by tuning the algebra of these one-dimensional anyons.
It might be interesting to compare the physics we discuss here
with the physics of level crossings which occur in finite sized
systems within a gapped topological phase due to presence
of other perturbations [93–96]. While there, incommensu-
rate correlations lead to level crossings between low lying
eigenstates in the open system, these are not accompanied by a
bulk first-order transition. Here on the other hand, the system
undergoes a thermodynamic transition (which is independent
of both system size and boundary conditions) at φ = π

2 . How-
ever, success in seeing their signatures in experiments [97],
shows that similar protocols even in material systems can
potentially allow for observation of a φ engineered first-order
phase transition.

The possibility to tune the boundary modes and entan-
gle them using statistical phase φ is particularly noteworthy
given the exciting developments in the experimental fore-

front where the SSH model has been recently realized in a
cold atomic setting—[46] using Rydberg atoms [98]. This
experimental setting has shown unprecedented control in
populating individual boundary modes and their possible ma-
nipulation and measurement [99]. The crucial ingredient of
our system—i.e., the phase dependent correlated hopping has
also been achieved experimentally [47], potentially making
such manipulation of the boundary modes not very far from
an actual experimental realization. These results, therefore,
are of particular relevance in context of the study of the
effective low-energy quantum mechanics of topological edge
modes in one hand and their realization in ultracold atoms
on the other. Devising concrete protocols for quantum gate
operations in these low-energy subspaces could be an inter-
esting future direction which would allow such platforms to
be used for quantum computation. Finally, we conclude by
re-emphasizing that our study points out that particle statistics
is an interesting handle to uncover the rich interplay of entan-
glement, topological order and role of symmetries in quantum
few and many-body phenomena.
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APPENDIX A: DMRG DETAILS AND GAP SCALING

Here in Fig. 13, we show the system size scaling of the
energy gap �(1) [see Eq. (36)] which quantifies the amount
of energy required to add one particle about the ground state at
half-filling for both periodic and open system. In Fig. 10(d),
we had seen its behavior as a function of φ for a particular
system size. In Fig. 13, we show the scaling of this gap as
a function of L showing that the single-particle gap remains
finite even in the thermodynamic limit. Under open boundary
conditions, this excitation energy goes to zero when t1 < t2
reflecting the existence of zero-energy boundary modes [see
Fig. 13(b)].

We briefly mention the details of our DMRG calculations
which were performed using open software ITENSOR [102].
ITENSOR uses a two-site DMRG update. Data pertaining to
calculation of gap as shown in Figs. 10(c), 10(d) and 13
corresponds to evaluation of Eq. (36). Since the energy dif-
ference is being calculated for states belonging to different
particle number sectors (which is a conserved quantity) one
performs a ground-state DMRG for each particle number
sector separately and then calculates the difference for cal-
culating the excitation energy. In Fig. 13, 40 DMRG sweeps
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FIG. 14. Strong disorder. (a) Behavior of average energies of the
four close to zero energy states [labeled (e1 − e4)] and the average
energy gap to the bulk excited states defined as δ as a function of
W/t1 at φ = 0. The averaging is done over 50 samples. The error
bars reflect the standard deviation. (b) Entanglement entropies of the
boundary modes as a function of φ for W/t1 = 3. [(c) and (d)] The
entanglement entropies of the boundary modes as a function of W/t1

in (c) φ = π/4 and (d) φ = π . (ED, N = 4L = 40, t1 = 0.1 = 1 −
t2, and γ = 2).

were performed where the bond dimension was systematically
increased up to a value of 200. The truncation error is kept
at 10−10 and after 40 sweeps typically the energies would
converge up to a precision of 10−8. In Figs. 10(c) and 10(d),
we instead use 10 sweeps.

APPENDIX B: DISORDER AVERAGING

In Fig. 7, we had shown the entanglement entropy of the
boundary modes as a function of φ in presence of hopping
disorder of strength W . Here, we systematically increase the
value of W and analyze the behavior of entanglement en-

FIG. 15. Probability distribution of S. The probability distribu-
tion of the mutual entanglement entropy P(S) for the two-particle
boundary mode (e1) for different values of hopping disorder strength
W/t1 in (a) for φ = π and W/t1 = 7, 30 and in (b) for φ = π/4
and W/t1 = 7, 30. The distribution at large W/t1 is not a normal
distribution. The sampling is done for 5000 independent disorder
configurations. (ED, t1 = 0.1, t2 = 1 − t1, γ = 2, N = 4L = 40,
and bin size = 0.01).

tropies in Fig. 14. Given the presence of one particle on each
chain; in Fig. 14(a), we compare the energies of the near-zero
energy modes and the gap to the bulk-excited states (≡ δ)
at φ = 0. We find that the band-gap collapses near W/t1 ∼ 3
for t1 = 0.1 = 1 − t2, γ = 2. We investigate the entanglement
entropy as a function of W/t1 for various values of φ in
Figs. 14(c) and 14(d). While for low values of W (� δ) the
fluctuations in the entanglement entropy remains small, but
with large W these fluctuations become significantly large.
Investigating the probability distribution of S (see Fig. 15), we
find that at large W/t1, S is far from any normal distribution
consistent with studies of entanglement entropy in strongly
disordered systems [87,88]. It is useful to note entanglement
entropy can be consistently defined only for nondegenerate
eigenstates, therefore in sample averaging we discard states
which are degenerate up to machine precision (∼10−14).

We briefly mention here the details of the ED calculation
which were performed using QUSPIN [100,101]. ED calcula-
tions, both in absence/presence of disorder, were performed
on finite sized systems without any symmetry implementa-
tion. For systems at half filling, when we were interested
only in low-energy eigenvalues and wave functions, standard
PYTHON based sparse solvers were used that are declared
within the QUSPIN package.
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9, 98 (2013).

[12] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B 22,
2099 (1980).

195134-14

https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1088/0031-8949/2015/T168/014001
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.7566/JPSJ.82.102001
https://doi.org/10.1038/nmat3332
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevB.22.2099


STATISTICS-TUNED ENTANGLEMENT OF THE BOUNDARY … PHYSICAL REVIEW B 103, 195134 (2021)

[13] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.
42, 1698 (1979).

[14] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[15] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[16] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P.

Bakkers, and L. P. Kouwenhoven, Science 336, 1003
(2012).

[17] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nat. Phys. 8, 887 (2012).

[18] C. Nayak, S. H. Simon, A. Stern, M. Freedman,
and S. Das Sarma, Rev. Mod. Phys. 80, 1083
(2008).

[19] T. Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R.
Akhmerov, and C. W. J. Beenakker, Phys. Rev. B 88, 035121
(2013).

[20] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M.
Marcus, K. Flensberg, and J. Alicea, Phys. Rev. X 6, 031016
(2016).

[21] P. Boross, J. K. Asbóth, G. Széchenyi, L. Oroszlány, and A.
Pályi, Phys. Rev. B 100, 045414 (2019).

[22] M. Zaimi, C. Boudreault, N. Baspin, H. Eleuch, R.
MacKenzie, and M. Hilke, Qubits as edge state detectors:
illustration using the ssh model, arXiv:1910.12739 [cond-
mat.mes-hall].

[23] F. Mei, G. Chen, L. Tian, S.-L. Zhu, and S. Jia, Phys. Rev. A
98, 032323 (2018).

[24] D. Baeriswyl and K. Maki, Phys. Rev. B 28, 2068
(1983).
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