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Anisotropic nonlinear optical response of nodal-loop materials
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Nodal line semimetals have lately aroused much experimental and theoretical interest, with their gap closing
along unconventional trajectories in the three-dimensional Brillouin zone. These trajectories or nodal lines can
close into loops and trace out intricate knotted or linked configurations with complicated topologies. In this
paper, we investigate the semiclassical optical response of two nodal loops in linked, unlinked, and touching
configurations, focusing particularly on the interplay of response anisotropy and nonlinearity. We provide a
geometric picture that unifies these aspects and sheds light on the effects of nodal topology and geometry. Based
on a model abstracted from generic multi-nodal-loop scenarios, both with or without linkages, our findings will
be applicable for a large class of nodal semimetal materials with multiple nodal lines or loops.
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I. INTRODUCTION

Topological materials are among the most intensely re-
searched current topics and encompass not just topological
insulators [1–10] but also semimetals with topological non-
trivial nodal structures [11–15]. Such nodal materials have
provoked widespread studies due to their unconventional
density of states and band structure, which have led to
new or enhanced avenues for nonlinear optical responses,
electron tunneling behavior, high-order-harmonic genera-
tion, superconductivity, and quantum Hall effects [13,16–28].
The potentially intricate topology of nodal loops in three-
dimensional (3D) space has also inspired their design and
realization in metamaterials and lossy or nonreciprocal media
[29–46].

Despite their seemingly exotic nature, various nodal-line
semimetal (NLSM) materials have recently been experimen-
tally characterized, such as PbTaSe2 [47,48], BiTeI [49],
Mg3Bi2 [50–52], ZrSiTe and ZrSiSe [53,54], ZrSiS [55–57],
BaAgAs [58], TaN [59], Ca3P2 [60,61], SrAs3 [62,63],
CaAgX (X = P, As) [64,65], the ZrGeXc (Xc = S, Se, Te)
family [66,67], magnetic semimetals EuB6 [68], spin gapless
semimetals [69], the centrosymmetric superconductor SnTaS2

[70], and PbTaS2 [71]. In the form of closed loops, they have
also been observed as nodal links in CaAuAs [72], nodal
chains in TiB2 [73,74], and nodal line networks in RuO2 [75].
Other materials such as the Ti3X (X = Al, Ga, Sn, Pb) family
[76], YH3 [77], YoCoC2 [78], MnN [79], TiTaSe2 [80], the
CaP3 family [81], ABC-stacked graphdiyne [82], and layered
X2Y (X = Ca, Sr, Ba; Y = As, Sb, Bi) [83] have also been
theoretically proposed to possess nodal loops.

In some of these NLSMs, the conduction and the valence
bands intersect to form potentially very intricate structures,
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even more intricate than common examples in knot theory and
prototypical nodal knot setups [43,84–87]. For instance, the
material Co2MnGa was theorized [88] to possess a compli-
cated network of 3D band crossings characterized by various
types of nontrivial nodal linkages and coupled chains enabled
by perpendicular mirror planes. This was subsequently con-
firmed experimentally [89]. Another proposal of interlocking
nodal chains may be realized in carbon networks, consist-
ing of armchair graphene nanoribbon [90]. While transport
and optical response properties are already well studied for
simpler NLSMs [15,57,67,68,91–94], those of more compli-
cated nodal-loop semimetals are still not well understood.
Recently, it was proposed that topological nodal linkages can
significantly enhance optical response nonlinearity and hence
high-order-harmonic generation (HHG) [95]. However, the
nonlinear response does not afford any topological quantiza-
tion, unlike the linear response via the Kubo formula, and a
complete understanding of the response properties of realistic
nodal-loop material necessitates a systematic study of how the
geometry of the nodal structure and its topology interplay and
lead to various anisotropic and nonlinear behaviors.

As such, this work shall be concerned with a systematic
investigation of how the relative shapes and linkage of nodal
loops can lead to various anisotropic and nonlinear response
components and how the various responses come together into
a bigger picture that reveals the overall nodal topology and ge-
ometry. Following a review of semiclassical response theory
in Sec. II, we introduce a canonical model of two nodal loops
whose linkage and shapes can be independently tuned. This
model serves as an abstraction of the multiple nodal touch-
ings and linkages in realistic nodal materials, for instance,
Co2MnGa. In Sec. III, we study the various components in
the response tensor of our model system, some of whose
nonlinear properties have never been investigated. In Sec. IV,
we show how these results help piece together a response sur-
face whose evolution with field strength encapsulates the full
information about the response anisotropy and nonlinearity,
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and to some extent the nodal structure and its dispersion. For
our model, the direction which the response surface points
towards in the high-field limit depends on whether the nodal
structure is topologically linked.

II. NONLINEAR SEMICLASSICAL OPTICAL RESPONSE

To systematically relate the Hopf link response to its
detailed momentum-space profile, we first review the the-
ory of nonlinear semiclassical response and next introduce
our model with tunable nodal linkage. Similar semiclassical
approaches have been highly successful in explaining phe-
nomena such as Hall effects and quantum oscillations in
diverse settings [96–100], as well as Bloch oscillations and
Berry curvature effects in the context of HHG [101,102].
HHG refers to the high-order-harmonic generation induced by
strong nonlinear interactions when a very intense laser pulse
is focused into a sample.

A. Semiclassical response theory

The nonlinear response of nodal materials emerges even
at the semiclassical level, where many-body processes are
simply encapsulated by a nonequilibrium occupation function
F {ε[k − eA(t)]} that weighs different contributions to the
response optical current [103]:

J =
∫

F {ε[k − eA(t)]}〈k|Ĵ|k〉d3k. (1)

Here, F (ε) = (1 + eβ[ε(k)−μ] )−1 is the equilibrium Fermi-
Dirac occupation function that depends on the energy
dispersion ε(k), and eA(t ) = e

∫ t
−∞ E(t ′)dt ′ is the impulse

on an electron e due to an external electric field E(t ).
In frequency space, we can always replace A with E/i�.
The current operator for a given Hamiltonian Ĥ is Ĵ = ∂Ĥ

∂k ,
which reduces to the dispersion velocity 〈k|Ĵ|k〉 = v(k) =
∂ε(k)
∂k in the translation-invariant intraband case. We express

this optical response in material-dependent units of nevF ∼
1012 A m−2, where n and vF are the charge carrier density
and the Fermi velocity, respectively. In real materials, we have
vF being 2.22 × 105 and 4.0 × 105 ms−1 in ZrGeSe [104]
and CaAgAs [93], respectively, and n being 3.37 × 1026,
2.98 × 1026, and 1.7 × 1026 m−3 in YbCdGe [92], CaCdSn
[94], and CaAgAs [93], respectively. In these NLSMs, the
Fermi surface is a simple nodal loop. The optical response of
real materials with more sophisticated nodal structure, beyond
the simplest nodal loop, have also been computed in Ref. [95].
Compared with the response predicted for graphene, using
Eq. (1), the optical response for a graphene monolayer [105]
is only ∼109 A m−2, a few orders of magnitude smaller.

Equation (1) holds in the ballistic limit, where it is the ex-
act solution to the semiclassical Boltzmann equation and the
semiclassical equations of motion for electronic wave packets
[103]. This requires �τ � 1, where � is the optical frequency
defined by E(t ) ∼ E(0)ei�t and τ is the relaxation time due
to impurity scattering. For a nodal material with relaxation
time τ ∼ 10−12–10−13 s, comparable to that in high-quality
graphene samples [106], �τ � 1 can be achieved in the
terahertz regime of � ∼ 50–100 THz. The relaxation times
can be computed from a microscopic model for the scattering

processes [107]. In this ballistic regime, scattering processes
cannot catch up with the much shorter oscillation timescales
[102,108].

According to Eq. (1), the response current arises from con-
tributions at k for which the Fermi-Dirac occupation F [ε(k)]
is nonvanishing. As such, it strongly depends on the shape
of the (occupied) Fermi region in the Brillouin zone (BZ),
particularly its codimensionality. This intraband response is
the expectation of v[k + eA(t )] within the occupied region
that is dynamically shifted by the external electromagnetic
impulse. When the occupied region is not a “blob” in the
BZ but a thin Fermi “tube” of nontrivial codimension, the
expectation of v[k + eA(t )] can fluctuate wildly with A(t )
due to “destructive interference” of v at different A(t ) shifts,
as previously pointed out in Refs. [95,103,109]. In Ref. [103],
this observation was first used to explain the nonlinear re-
sponse of graphene due to its vanishing density of states at
small chemical potential. This was generalized in Ref. [109] to
nodal-loop structures, i.e., where two bands intersect along a
loop in the BZ, where a stronger nonlinearity from a character-
istic nonlinear response curve was reported. In Ref. [95], this
nonlinear response was further shown to be strongly enhanced
in a 3D material with nontrivial nodal topology, i.e., when
band intersections form loops that are topologically linked.

To more concretely understand why nodal structures with
nontrivial linkages have strong nonlinear responses, consider
small chemical potentials μ such that the occupied states
take the form of nodal “tubes” along nodal lines, which are
then shifted by the electromagnetic impulse

∫ t E(t ′)dt ′ away
from the original nodal structure in the BZ. By differentiating
Eq. (1) with respect to the vector potential, we obtain [95], for
small μ,

∂Ji

∂Aj
≈ 2

∑
α∈NLs

μ

ê j · vF

∂2ε(kα + eA)

∂ki∂k j
, (2)

where kα labels the trajectories of all the nodal lines α in
the BZ and ê j · vF is the component of the Fermi veloc-
ity of the αth nodal line (NL) at momentum kα along the
applied field. In Eq. (2), the differential (optical) response
tensor of a nodal line structure is given by a sum over the
Hessian of the dispersion at the nodal lines shifted by A in
the BZ. Evidently, we expect the response to be nonlinear
whenever ∂Ji

∂Aj
is significantly nonconstant, which has to be the

case around nodal crossings with vanishing gap. In particular,
in the diagonal sector where i = j, ε(kα + eA) has to pass
through a singularity whenever two nodal loops are linked in
the direction A, since the locus of kα + eA for one of the
loops α must intersect another loop α′ as A increases. This
leads to the enhancement of diagonal response nonlinearity in
topologically linked nodal loops, which can be quantified by
the extent of HHG it causes.

However, the abovementioned argument for nonlinearity
enhancement pertains only to the diagonal i = j sector, where
the response is probed in the direction where the applied
field displaces the nodal loops. It remains an open question
whether a nodal linkage also possesses signature response
behaviors in the other directions, in both longitudinal and
transverse sectors. In this paper, we shall focus on elucidating
the signature contributions to the optical response due to a
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FIG. 1. (a) The Fermi surface of the Hopf link in k space, with
the parameters rx , ry, rz, and d as labeled. We assumed rx = rz.
The quantity 2(ry − d ) controls the extent of linkage in the Hopf
link. (b) The three distinct possibilities of the Hopf structure are as
follows: Hopf link (ry < d), nodal chain (ry ≈ d), and unlinked nodal
loops (ry > d), illustrated here for a nonvanishing μ = 0.1.

generic nodal linkage, particularly on how nontopological
contributions from the dispersion profile compete with those
from the topological linkage. While real nodal materials may

also experience response contributions from the Berry curva-
ture and interband scattering, these additional contributions
are very material dependent and do not form the focus of
this work, which aims to explore the most generic response
behavior expected from nodal linkages.

B. Canonical Hopf link model

In this paper, we have chosen to focus on the simplest topo-
logically nontrivial nodal linkage, which is the Hopf link—a
nodal configuration consisting of two nodal loops that will
be linked when they are sufficiently close to each other. By
introducing a canonical two-band Hopf link model where
the key parameters ry, rx, and d [Fig. 1(a)] are all indepen-
dently adjustable, we can isolate the various geometric and
topological factors that influence its nonlinear response. The
parameters are as follows:

(i) ry is the width of the loops in the ky direction or longi-
tudinal direction along which the two loops are separated;

(ii) rx is the width of the loops in the kx or kz transverse
directions;

(iii) 2d is the displacement between the two loops, centered
at (0,±d, 0). They are linked if ry > d , since the longitudinal
separation between them is given by 2(ry − d ) (Fig. 1).

Our two-band nodal Hopf link Hamiltonian takes the form

HHopf(k) = h(kx, ky, kz )σx + g(kx, ky, kz )σy, (3)

where the functions h(k) and g(k) are obtained by de-
forming a well-known Hopf link model derived through the
Hopf map [43,110–112], for which the Hopf link parame-
ters cannot be easily adjusted independently [113]. The gap
2ε(k) = 2

√
g(k)2 + h(k)2 closes along two loops given by

the simultaneous solutions of g(k) = 0 and h(k) = 0. Explic-
itly, with the intermediate parameters ξ = cos ry−1

cos rx−1
1

sin d − 1 and

� = cos rx cos ry−1
cos rx−1

1
sin d , h(k) and g(k) are given by

h(kx, ky, kz ) = sin2(kz − kx ) − (ξ cos(kx + kz ) + cot d cos(ky) + cos(kz − kx ) − �)2 − sin2(kx + kz ) + sin2(ky), (4a)

g(kx, ky, kz ) = 2 sin(kz − kx )(ξ cos(kx + kz ) + cot d cos(ky) + cos(kz − kx ) − �) − 2 sin(kx + kz ) sin(ky). (4b)

At chemical potential μ = 0, the two nodal loops lie in the
planes kx = 0 and kz = 0, with a common mirror symmetry
axis along the ky line. The nodal loops each touch this sym-
metry axis at two points, giving rise to a total of four touching
points ±(ry ∓ d ). From Fig. 1, ry − d evidently describes the
extent of their linkage. When ry > d , the two nodal loops are
linked together, and we call this resulting arrangement a Hopf
link.

In realistic materials, the chemical potential μ can often
be tuned away from the nodal energy, so as to obtain a finite
density of states available for transport. For generic linearly
dispersive nodal systems, μ scales with the thickness of the
nodal tube. A large μ tends to result in thick tubes that in-
evitably intersect, resulting in a nodal chain even when ry �= d .

In total, there are three possibilities as illustrated in
Fig. 1(b):

(i) Hopf link. The two nodal loops are topologically linked
(ry > d for μ � 1).

(ii) Unlinked nodal loops. The two nodal loops are disjoint
and not topologically linked (ry < d for μ � 1).

(iii) Nodal chain. The two nodal loops touch each other at
a point and are not topologically linked (ry ≈ d for μ � 1).

Due to the periodicity of its various terms, the Hamiltonian
can sometimes admit additional solutions, i.e., “periodic im-
ages” within the first BZ. These solutions, analogous to the
degenerate valleys in graphene, occur as two distinct types, as
further elaborated in Appendix A. To prevent the confounding
ambiguities resulting from the interference of multiple nodal
linkages, we shall exclusively study only cases where such
periodic images do not exist.

For the rest of this paper, we shall set the temperature to
a representative value of 10 K, i.e., β := eV

kBT = 1160, which
can be adjusted to fit the physical temperature of an actual
physical scenario by trivially rescaling our canonical model.
For definiteness, we choose a chemical potential of μ = 0.1
eV, such that the nodal structure consists of thin closed tubes
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that exhibit distinct crossovers in topology (linked, intersect-
ing, unlinked) as they are shifted due to photon excitations.
However, our results shall continue to hold even when typical
photon energies are much smaller than μ. We shall study
the behavior of the optical response as the three independent
parameters {d, rx, ry} are varied, insofar as the parameters do
not admit periodic images, for all three types of cases (linked,
unlinked, and nodal chain).

III. OPTICAL RESPONSE IN VARIOUS DIRECTIONS

We next investigate the various diagonal and off-diagonal
(Hall) responses of the nodal Hopf link in the principal
directions—both longitudinal (along the direction of loop
separation ŷ) and transverse directions (perpendicular to the
direction of loop separation x̂ and ẑ).

Consider a sinusoidal time-varying applied electric field
signal E(t ) = E0 cos �t , which corresponds to the vector po-
tential A(t ) = A sin �t , where A = E0/i�. In the presence
of an oscillatory electric field E(t ), the minimally coupled
Fermi-Dirac occupation in Eq. (1) will be F {ε[k − eA(t )]},
which is equivalent to a translation of the Fermi tube of occu-
pied states in the field direction according to the momentum
shift k → k − eA(t ). This picture motivates the A depen-
dence of J rather than E. The ballistic criterion � ∼ 100 THz
is independent of the nodal energy since the Fermi surface
is translationally invariant. Although there are nine possible
response components Ji(A ĵ), i, j ∈ x, y, z, some of them nec-
essarily generically vanish or are not independent due to the
symmetries of our Hamiltonian [Eq. (3)]:

Jx(Aŷ) = 0, Jz(Aŷ) = 0, (5a)

Jx(A x̂) = Jz(Aẑ), (5b)

Jz(Ax̂) = Jx(Aẑ), (5c)

Jy(Ax̂) = −Jy(Aẑ). (5d)

Equation (5a) holds since the nodal loops have mirror
symmetry about the kx = 0 and kz = 0 planes, respectively.
As the dispersion velocity 〈k|Ĵ|k〉 [Eq. (1)] inherits the same
symmetry as the Fermi surface—mirror symmetry about the
ky axis—when the Fermi surface is displaced along the longi-
tudinal ky axis (Fig. 2), the resulting contribution by the Fermi
tubes on the left of the ky axis will exactly cancel that due to
the Fermi tubes on the right. Equations (5b) and (5c) follow
from the symmetrical roles played by transverse momenta kz

and kz. Equation (5d) is true because the loops are related
to each other by interchanging kx ↔ −kz. In all, there are
only four unique current responses in the following response
matrix:

Ji(A ĵ) =
⎛
⎝Jx(Ax̂) Jy(Ax̂) Jz(Ax̂)

0 Jy(Aŷ) 0
Jz(Ax̂) −Jy(Ax̂) Jx(Ax̂)

⎞
⎠. (6)

Since A scales with E0 for our sinusoidal electric field, Eq. (6)
is similar to a conductivity tensor. As we shall show, the
diagonal responses are much more affected by the topological
linkage of the nodal loops, compared with the nondiagonal
response, i.e., Hall responses.

FIG. 2. Contribution to the semiclassical response [Eq. (1)]: In
the presence of an illustrative applied field along the ky direction, the
Fermi surface is displaced along the ky axis in k space in a manner
symmetric about the kx = 0 and kz = 0 planes. This accounts for the
vanishing responses Jx and Jz.

A. Transverse diagonal responses Jx(Ax̂), Jz(Aẑ)

According to Eq. (1), we generically expect a nonlinear
semiclassical response since its integral is a highly nonlinear
function. This is especially the case for a Hopf link, where
each nodal loop juts out of the plane of the other nodal loop.
As such, it acts as a source of dispersion velocity 〈k|Ĵ|k〉,
which “destructively interferes” with those due to the nodal
loop that encloses this nodal tube [95]. When the Fermi sur-
face of the Hopf link starts to translate by the impulse from an
applied field [Fig. 3(a)], the response, computed from Eq. (1),
initially increases sharply followed by a much slower non-
monotonic change until the applied field is sufficiently large
that the Fermi surface begins to leave the region of influence
exerted by the singularity.

Beyond that, the contribution of 〈k|Ĵ|k〉 continues to add
up, giving a subsequent monotonic response. The extent of
nonlinearity afforded by each singularity is described by
Eq. (2), where the gradient is a sum of the second derivatives
of the dispersion. The transverse (perpendicular to the direc-
tion of the loop separation) diagonal optical response of the
Hopf link was found to observe the following general trends
[we plot the most nonlinear responses in Figs. 3(b)–3(d)]:

(1) The response demonstrates a weak dependence on the
longitudinal separation d when the nodal loops are topologi-
cally linked, but not true otherwise, as illustrated in Figs. 3(b)
and 3(f), respectively.

(2) The extent of response nonlinearity is enhanced with
larger transverse radius rx or smaller longitudinal radius ry,
i.e., larger loop aspect ratio rx/ry, as illustrated in Figs. 3(c)
and 3(d). Correspondingly, the response currents generally
decrease with increasing nonlinearity.

We can physically understand these trends. Since the rel-
ative separation d of the centers of the loops merely changes
the relative longitudinal ky position of the loops, intuitively it
should not play a significant role in influencing the transverse
response resulting from the transverse translation of the Fermi
surface. Indeed, the transverse diagonal response is almost
independent of d [Fig. 3(b)] in the Hopf link. Yet, this in-
dependence from d no longer holds when the loops are no
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FIG. 3. (a) In the presence of an applied transverse field Ax̂, the Fermi surface of the Hopf link is displaced along the transverse kx axis in k
space, in turn giving rise to a transverse diagonal optical response Jx (Ax̂). (b) For the Hopf link, the transverse response weakly depends on d ,
for rx = 0.8 and ry = 1.2 > d . (c) Enhancement of transverse response nonlinearity for the Hopf link as rx increases, for d = 0.5 < ry = 1.0.
(d) Enhancement of transverse response nonlinearity for the Hopf link with ry > d = 0.5 and rx = 1.0. (e) Displacement of the Fermi regions
of the unlinked nodal loops along the transverse kx axis in k space, with the singularities from each loop becoming weaker as the loops are
farther separated. (f) The transverse response shows a stronger dependence on d when the nodal loops are no longer topologically linked. As
the longitudinal loop separation increases, the response currents become smaller. Here, we contrast the responses of the Hopf link (dash-dotted
lines, d = 0.25, 0.35), unlinked nodal loops (dashed lines, d = 1.1, 1.3), and the nodal chain (solid lines, d = 0.5, 0.9) for ry = 0.6, rx = 0.4.
For (b)–(d), the chosen parameter sets are among those that exhibit the greatest nonlinearity in the transverse response. The responses are in
units of envF , where n and vF are the number density and Fermi velocity of the NLSM material, respectively.

longer topologically linked [Figs. 3(e) and 3(f)] because far-
ther separated loops, i.e., sources of singularities, correspond
to more uniform velocity fields, in turn leading to smaller
response currents. This is unlike the linked cases, where the
nodal linkage guarantees the proximity to nodal singularities
and topologically “protects” the transverse response (previ-
ous literature, i.e., Ref. [95], only reported the topological
enhancement of the longitudinal response).

On the other hand, increasing the transverse radius rx or
decreasing the longitudinal radius ry stretches the aspect ratio
of each loop and hence the boundary for “interference” (de-
fined by the locus of points where the competition of opposing
dispersion velocity vectors terminates) along the transverse kx

direction, giving more room for destructive interference as the
Fermi surface is displaced along the transverse kx direction.
This in turn gives a greater range of Ax̂ where the response
undergoes a nonmonotonic change.

B. Longitudinal diagonal response Jy(Aŷ)

Unlike in the transverse diagonal response, the longitudi-
nal separations of the loops 2(ry − d ) now greatly influence
the longitudinal (along the direction of the loop separation)
responses of the Hopf link. As before, these nodal tubes are
sources of destructive interference for the dispersion velocity
〈k|Ĵ|k〉. The semiclassical response is again computed from

Eq. (1) as the Fermi surface of the Hopf link is displaced along
the longitudinal ky direction [Fig. 4(a)]. The general trends for
the longitudinal diagonal optical response of the Hopf link are
as follows:

(1) The extent of response nonlinearity is enhanced
with larger longitudinal loop separation d , as illustrated in
Fig. 4(b).

(2) Increasing the longitudinal radius ry also enhances the
extent of response nonlinearity, as illustrated in Fig. 4(d).

(3) The transverse radius rx does not change the shape of
the response curves, but the magnitude of the response does
increase with rx, as illustrated in Fig. 4(c).

To physically explain these trends, note that as d increases
with ry fixed, the loop separation 2(ry − d ) decreases, en-
hancing the extent of nonlinearity due to the closer proximity
of one loop with the band singularity of the other. While
the nonlinearity is still present, as shown in Fig. 4(f), when
the nodal loops are no longer topologically linked, this is an
artifact from the weaker dispersion field when the loops are
separated farther apart. Increasing ry at fixed d also enhances
the nonlinear response by providing a greater range of values
of A ŷ for significant destructive interference to occur.

On the other hand, rx only stretches the nodal loop in the
transverse kx direction, which plays no role in the destructive
interference in the longitudinal direction. Yet rx increases the
circumferential length of the nodal loop, which gives a greater
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FIG. 4. (a) In the presence of an applied longitudinal field Aŷ, the Fermi surface of the Hopf link is displaced along the longitudinal ky

axis in k space, in turn giving rise to a longitudinal diagonal optical response Jy(Aŷ). (b) Enhancement of longitudinal response nonlinearity
by increasing d in the linked regime with ry = 1.0 > d , rx = 0.6. (c) The shape of the longitudinal response for the Hopf link is independent
of the transverse radius rx but increases in magnitude with rx , as plotted for ry = 1.2 > d = 0.8. (d) Enhancement of longitudinal response
nonlinearity for the Hopf link by increasing ry > d = 0.6 at rx = 1.0. (e) Displacement of the Fermi regions of the unlinked nodal loops along
the longitudinal ky axis in k space, with the singularities from each loop becoming weaker as the loops are farther separated. (f) Comparing
the longitudinal responses for the Hopf link (dash-dotted lines, d = 0.25, 0.35), unlinked nodal loops (dashed lines, d = 1.2, d = 1.4), and
the nodal chain (solid lines, d = 0.4, d = 0.8) for ry = 0.6, rx = 0.4. The longitudinal response decreases in magnitude but becomes more
nonlinear as d increases. This increasing nonlinearity is an artifact of the weaker influence of the singularities as the loops are farther separated.
For (b)–(d), the chosen parameter sets are among those that exhibit the greatest nonlinearity in the transverse response. The responses are in
units of envF , where n and vF are the number density and Fermi velocity of the NLSM material, respectively.

contribution to J in Eq. (1) and hence a greater response
magnitude.

IV. GLOBAL ASPECTS OF OPTICAL
RESPONSE ANISOTROPY

Having discussed the nonlinearity of the response ten-
sor along the principal directions, we now present how the
anisotropic response behaves as a whole. Due to nonlinearity,
i.e., J(A1 + A2) �= J(A1) + J(A2), the responses in directions
away from the previously studied principal directions Â =
(1, 0, 0), (0,1,0), and (0,0,1) may behave unexpectedly. In the
following, we shall represent the response across all directions
in the form of constant |A| = A0 level surfaces in J space
[recall that A(t ) = ∫ t

−∞ E(t ′)dt ′]. We parametrize this surface
SA with spherical angular coordinates as follows:

SA = {A0Â = A0(cos θ cos φ, cos θ sin φ, sin θ )}, (7)

where 0 � θ � π, 0 � φ � 2π . The anisotropy in the op-
tical response of our canonical double-nodal-loop model
[Eqs. (3), (4a), and (4b)] due to α = A0Â is described by the
anisotropy of the smooth SJ surface embedded in the J space.
We represent the azimuthal angle φ with a color map defined
by SA in Fig. 5(a), which will be significantly distorted by
anisotropy when bijectively mapped onto SJ (Figs. 6 and 7).

Insight into the shapes of the constant A0 response sur-
faces, as well as their significance with regard to nodal
topology and geometry, can be obtained by computing the
response in a few high-symmetry directions of Â, such as
Â = ±(0, 1, 0),±(1, 0, 1),±(1, 0,−1) (for notational sim-
plicity, we shall henceforth drop the normalization factor).
From Eq. (5a), we know that for a longitudinal external
field Â = ±(0, 1, 0), there is a vanishing transverse response,
i.e., Jx = Jz = 0 for such Â. Hence the corresponding point
on the SJ surface must be along the Jy axis, with |Jy| be-
ing the width of the surface along the Jy axis. This is also
the longitudinal diagonal current discussed in Sec. III. Also,
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FIG. 5. (a) To draw the response surfaces, we represent an ex-
ternal field of constant magnitude A0 but arbitrary direction as a
sphere SA in A space. The sphere is colored by the azimuthal angle φ

and is significantly distorted by anisotropy when bijectively mapped
onto the response surfaces SJ in 3D J space. (b) and (c) Illustrative
examples of the distortion for our model [Eq. (3)] with rx = 0.6, ry =
1.0, μ = 0.1, A0 = 1.25, for d = 0.5 and 0.7, respectively (J in units
of 10−3 envF ). (d) Origin of the thicker “waist” of (b) vs (c) in
terms of Jy(A0ŷ) response. At A0 = 1.25, the d = 0.5 case (b) has
a response current almost three times as large. (e) This difference
in Jy(A0ŷ) corresponds to a large difference in the thickness of the
concave waist of the response surface, as more clearly illustrated by
comparing cross sections of (b) and (c) at θ = π

2 .

the response surface point corresponding to Â = ±(1, 0, 1)
must lie in the Jx-Jz plane, since Jy = 0 from Eq. (5d). By
Eq. (5b), there is an equal contribution of Jx and Jz from Â =
±(1, 0, 1), so all corresponding points from this orientation
of Â must lie on the 45◦ diagonals along the Jx-Jz axes, as
evident in Figs. 6 and 7. Incidentally, points corresponding to
Â = ±(1, 0,−1) also lie in the Jx-Jz plane despite not being
directly protected by Eqs. (5a) and (5d), a fine illustration
of the nonlinearity of J(A). Other high-symmetry directions
which we shall use in the following discussion include Â =
±(1, 1, 0), ±(0, 1, 1), ±(1,−1, 0), ±(0, 1,−1).

Before starting the detailed analysis of the response sur-
face, we consider a quick example. In Sec. III, we highlighted
that a greater longitudinal separation d between two topolog-
ically linked nodal loops results in a more nonlinear response
[Fig. 4(b)]. This is indeed seen in our corresponding SJ sur-
faces. At an illustrative A0 = 1.25, this nonlinear response is
approximately three times larger, i.e., less nonlinear for d =
0.5 vs d = 0.7 [Fig. 5(d)], which corresponds to a proportion-
ally smaller width of the “waist” of the response surface in the
ŷ direction [Figs. 5(b) and 5(c)]. This is more evident when
viewed in the cross-sectional plane Â = (1, 0, 1) with only

θ = π
2 points plotted [Fig. 5(e)]. That the general shapes of the

d = 0.5 and d = 0.7 surfaces appear rather similar [Figs. 5(b)
and 5(c)] can be understood from the weak dependence on d
for the transverse diagonal responses, as discussed in Sec. III.
Clearly, the results from Sec. III alone are inadequate in
working out the entire response surface, and thus the response
surfaces provide a bigger picture and, as we will see, shed
light on nodal topology and geometry.

A. Response surfaces and nodal topology

It is already known [95] that nodal linkages can enhance
the nonlinearity of the response, at least in the longitudinal
diagonal direction Jy(A0ŷ) (Fig. 4). Furthermore, significant
nonlinearity is also present in the transverse diagonal direc-
tions Jx(A0x̂) and Jz(A0ẑ), although not necessarily enhanced
by the topological linkage. Hence we shall expect such non-
linearity to be manifested in the constant A0 response current
surface too.

Indeed, as shown in Fig. 6, typical linked, touching, and
unlinked nodal loops exhibit significantly different evolutions
of the constant A0 response surfaces as A0 is increased. At
small A0, all three cases have ellipsoidal-shaped response sur-
faces, testimony to anisotropy of the nodal system, even in the
linear (small A0) limit. At very large A0, i.e., A0 = 1.75, where
the Fermi regions have been displaced far from their original
positions, the response surfaces are all very anisotropic and
large, since minimal cancellation of the velocity field dε/dk
occurs. Their exact shapes depend on the details of the energy
dispersion away from the loops and are nonuniversal though
decidedly anisotropic. What is most interesting is the interme-
diate A0 ≈ 0.75 regime, which for the linked case is around
when the Fermi region of one loop crosses the singularity
from the other loop. For the linked case, the significant non-
linearity of the response around intermediate values of A (see
Figs. 3 and 4) suppresses the response current, particularly in
the longitudinal directions with “untwisted colors” in Fig. 7.
As such, this leads to a somewhat “squeezed” appearance of
the response surface compared with that of the nodal chain
or unlinked cases, where the response surface looks compar-
atively “puffed up” during the A0 evolution. Compared with
the other cases, the unlinked case shows the least variation in
response surface shape during the evolution due to the least
amount of cancellation of dε/dk during the evolution.

A more detailed characterization of the shape of the
response surfaces can be performed by analyzing the high-
symmetry directions. For instance, for the Hopf linked case,
the constant A0 surfaces look similar to ellipsoids [Figs. 6(b),
7(b), 7(f), and 7(j)] with the longest axis oriented along the 45◦
diagonal between the Jx > 0 and Jz > 0 axes, corresponding
to the direction J ∝ ±(1, 0, 1). The three “principal axes” of
the response surfaces are thus marked out by the three pairs of
points ±(0, 1, 0), ±(1, 0, 1), and ±(1, 0 − 1), as discussed.
[This is seen in Figs. 16(m)–16(p), where the magnitude for
the responses along ±(1, 0,−1) is significantly smaller than
along ±(1, 0, 1) and ±(0, 1, 0). This accounts for its oblate
appearance.]

As we increase A0 for the linked case, the two faces
of the constant A0 surface in Fig. 6(c) which are charac-
terized by ±(1, 0,−1) exhibit concavity, reminiscent of the
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FIG. 6. For the three possible nodal configurations (linked, nodal chain, and unlinked) of our double-loop Hamiltonian, shown here are
their corresponding surfaces SJ for constant chemical potential μ = 0.1 under small, medium, and large impulses A0 = 0.1, 0.75, 1.75 for
the linked and chain cases and A0 = 0.1, 0.5, 1.0 for the unlinked case. The qualitative evolution of the response surfaces with increasing
A0 differ for the different topological nodal configurations, with the large-A0 response surface elongated towards the Jz ± Jx direction in the
topologically linked and unlinked cases. (a)–(d) The response surfaces for the Hopf link ry = 0.6 > d = 0.15, rx = 0.6 exhibit concavity along
directions ±(0, 1, 1), (1, 0, ±1) due to the locally depressed responses in these directions. (e)–(h) The response surfaces for the nodal chain
ry = 0.6 = d , rx = 0.6 do not obey the same symmetries as those in the Hopf link since the Fermi surface of the nodal chain breaks reflection
symmetry. In particular, for intermediate A0 values, the surface looks like a saddle with asymmetric responses; for example, Â = (0, 1, 1) has
a greater response than Â = (0,−1, −1) at A0 = 0.75. (i)–(l) The response surfaces for unlinked nodal rings ry = 0.6 > d = 0.15, rx = 0.6
respect these symmetries too but possess topologies distinct to the topologically linked case. The units of the response currents J are 10−3 envF ,
and parameters are chosen such that no periodic images are present.

shape of a red blood cell. [The concavity along the direc-
tions ±(1, 0,−1) can be better seen in Fig. 14(b), where
the same response surface is viewed from a lateral direc-
tion.] This characteristic suppressed response is similar to
that in Fig. 5(d), where it was a consequence of the non-
monotonicity of the response. In these cases, the responses
along ±(1, 0,−1) increase significantly slower than in other
directions [Figs. 16(m)–16(q)]. As A0 continues to increase,
the Â directions characterized by ±(1, 0, 1) and ±(0, 1, 0)

also exhibit concavity. Again, this is because the responses
along ±(1, 1, 0), ±(0, 1 − 1), ±(0, 1, 1), ±(1,−1, 0) [which
correspond to the eight corners of the surface in Fig. 6(d)]
grow much quicker than along the principal directions [consis-
tent with the individual response curves in Figs. 16(a)–16(l)].
This surface [Fig. 6(d)] also shows symmetry consistent with
the symmetries in the responses [Figs. 16(a)–16(l)]. For in-
stance, the constant A0 surface has mirror symmetry about
the Jy = 0 plane. Due to the non-negligible thickness of the
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FIG. 7. The dependence of the surface morphologies on the aspect ratio parameters rx, ry of the nodal Hopf link at constant μ = 0.1.
Again, their response surfaces SJ are plotted for small, medium, and large impulses A0 = 0.1, 0.75, 1.75, with current J in units of 10−3 envF .
(a)–(d) The response surfaces for the Hopf link ry = 0.4 > d = 0.15, rx = 0.6. (e)–(h) The same response surfaces as in Figs. 6(a)–6(d).
(i)–(l) The response surfaces for the Hopf link ry = 0.6 > d = 0.15, rx = 0.4 share several similarities with (e)–(h), but with a more depressed
longitudinal response at A0 = 0.75 and A0 = 1.75 and a less depressed response along Â = ±(1, 0, 1) at A0 = 1.75. Overall, the response
surfaces differ for different geometric parameters but do not change as drastically as when the nodal topology changes (Fig. 6).

nodal loops, certain symmetries of the μ = 0 nodal sys-
tem may be broken. This symmetry breaking is particularly
pronounced in the nodal chain case, where the two nodal
rings intersect with relatively weak dispersion. Generically,
the finitely thick nodal tube can break reflection symmetry
in the direction of impulse; that is, translating the Fermi
surface in the +A0ŷ direction results in a different response
compared with doing so in the −A0ŷ direction. For small A0,
the surfaces are imperfectly rounded blobs [Fig. 6(f)] and
evolve into a saddle shape [Fig. 6(g)] as A0 grows. [This

saddlelike shape is more obvious when viewed in a different
orientation illustrated in Fig. 14(c).] It can be characterized
by 6 out of the 14 points in total: (0,1,1), (1,1,0), (0,±1, 0),
(0, 1,−1), and (−1, 1, 0). Again, we observe asymmetry in
the sense that the responses grow more than proportionately in
the directions (0,1,1), (1,1,0), (0, 1,−1), and (−1, 1, 0) (the
negative pair does not grow as fast). As A0 grow, so do the
responses corresponding to the remaining eight points, giving
rise to a surface such as that in Fig. 6(h), with six concave
sides.
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FIG. 8. (a) The regions in parameter space for the single Hopf structure (uncolored), type I periodic images (yellow), and type II periodic
images (purple). (b) and (c) For nonvanishing μ, we illustrate the two types of periodic images which come in pairs in the first BZ. (b) The nodal
loops of type I periodic images lie in the planes (kx = +π/2, kz = +π/2) and (kx = −π/2, kz = −π/2), as illustrated for the case ry = 0.6 >

d = 0.4, rx = 1.0. (c) The nodal loops of type II periodic images lie in the planes (kx = −π/2, kz = +π/2) and (kx = +π/2, kz = −π/2),
as illustrated for the case ry = 1.0 > d = 0.2, rx = 0.8.

For the unlinked nodal loops, the surface for small A0

is again imperfectly rounded due to linear anisotropy. For
intermediate A0, the surface expands into a lemonlike shape
due to the relatively small response nonlinearity and can be
characterized by the surface directions ±(1, 1, 0),±(0, 1, 1),
and ±(1,−1, 0). As A0 grow, the responses in the ±(1, 0, 1)
directions do not grow as fast, and thus the face character-
ized by this pair of points exhibits concavity. For large A0,
the response surface elongates towards the Jz − Jx direction,

which differs from the linked case, where it elongates towards
the Jz + Jx direction. This conclusively relates the response
surfaces with the topological linkage of the nodal loops.

B. Response surfaces and nodal geometry

Since the nonlinear response current does not correspond
to any topologically quantized value, we expect it to be af-
fected by deformations of the nodal structure too. This should

FIG. 9. (a) In the presence of an applied transverse field Ax̂, the Fermi surface of the Hopf link is displaced along the transverse kx axis
in k space. On top of the diagonal responses, we obtain additional Hall responses, which exhibit trends that are not related to the topological
linkage of the nodal rings. (b) When the intermediate parameter ξ in the Hamiltonian [Eq. (3)] is set to 1, the transverse Hall response
will vanish for all values of impulse A(t ) = e

∫ t
−∞ E (t ′)dt ′. For the case of circular nodal loops rx = ry, the corresponding critical d value

is dcrit = π/6. In the plot, we chose rx = ry = 0.6 and μ = 0.1 such that the nodal tubes are thick enough to give nodal chains even when
d = π/6 < ry. Yet, even as the nodal loops touch each other, the transverse Hall response still vanishes when d = dcrit. This demonstrates
that the topological linkage of the nodal loops is not important for this response. (c) Comparing the longitudinal transverse Hall responses
for the Hopf link (solid lines, d = 0.2, 0.3), unlinked nodal loops (dashed lines, d = 0.9, d = 1.0), and the nodal chain (dash-dotted lines,
d = 0.4, d = 0.8) for ry = 0.6 = rx . The response increases in magnitude with d and exhibits the largest magnitude when the nodal loops
touch each other. For the Hopf link, this response is extremely weak at small fields and increases as we increase the field strength A. Here,
there is no distinct difference between the topologically trivial case and the topologically linked case, but rather a smooth continuous change
with d . (b) and (c) The responses are in units of envF , where n and vF are the electronic number density and Fermi velocity of the NLSM
material, respectively.
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FIG. 10. To demonstrate the anisotropic response of the Hopf link, we compare its transverse and longitudinal diagonal responses for the
parameters rx = 1, d = 0.6 < ry = 1.0, 1.2. (b), (c), (f), and (g) demonstrate how the response curves distort sinusoidal signals of different
amplitudes A = 0.75, 1.0, 1.25 near the turning point of the responses (as indicated by the corresponding colored regions in the response
curves) for ry = 1.0 and ry = 1.2, respectively. (a)–(d) We compare the extent of nonlinearity of the transverse diagonal response Jx (Ax̂) for
ry = 1.0, 1.2. In (a), the response for ry = 1.0 is clearly more nonlinear. (b) and (c) The sinusoidal signal for ry = 1.0 experiences slightly more
distortion. The greater nonlinearity is confirmed in (d), where the HHG coefficients |cn| are consistently larger for ry = 1.0. (e)–(h) Similarly,
we compare the extent of nonlinearity of the longitudinal diagonal response Jy (Ay ). In (e), the response for ry = 1.2 is instead more nonlinear.
(f) and (g) The sinusoidal signal for ry = 1.2 acquires additional fluctuations of higher frequency. This is confirmed in (h), where the HHG
coefficients |cn| are drastically larger for ry = 1.2, especially at the turning point Ay = 1.0.

apply to both linked and unlinked cases, even if the linked
case is more likely to possess a strongly nonlinear response.
Earlier, we have considered circular nodal loops with rx = ry.
How will the surfaces in Fig. 6 change as we vary ry and
rx? Varying ry and rx adds one more layer of complexity in
our analysis of these surfaces. To study that, we shall start
from the parameters in Figs. 6(a)–6(c) and change ry and rx

separately, as presented in Fig. 7.
Generally, the surfaces along the same column of Fig. 7

will have relatively similar morphologies since they are only
slightly distorted from each other and correspond to the same

A0 impulse. In particular, the special symmetries in Figs. 6(b)–
6(d) are no longer satisfied as the relative responses along
the various directions now behave quite differently. This oc-
curs because a chemical potential of μ = 0.1 results in nodal
loops with significantly nonuniform and asymmetric thick-
ness [Fig. 7(i)]. This further enhances the anisotropy of the
response surfaces, particularly at A0 = 0.75. However, at high
fields A0 = 1.75, the surface morphologies of Figs. 7(d) and
7(h) share similar morphological features—suppressed re-
sponse at ±(1, 0, 1) and ±(1, 0,−1). Again, this anisotropic
response is due to the varying rates of growth for the responses

FIG. 11. To demonstrate the enhanced nonlinearity of the longitudinal diagonal response of the Hopf link, we compare d = 0.5, 0.7
for the parameters rx = 0.6, ry = 1.0 > d . In (a), the response for d = 0.7 is clearly more nonlinear. (b) and (c) demonstrate how the
response curves distort sinusoidal signals of different amplitudes A = 1.0, 1.25, 1.5 near the turning point of the responses (as indicated by
the corresponding colored regions in the response curves) for d = 0.5 and d = 0.7, respectively. The sinusoidal signal for the latter acquires
additional fluctuations of higher frequency and thus appears significantly distorted. The greater nonlinearity for d = 0.7 is confirmed in (d),
where the HHG coefficients |cn| are drastically higher for d = 0.7 at the turning points of the response curves.
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FIG. 12. For the parameters rx = 0.9, ry = 1.1 and μ = 0.1, we plot the HHG coefficients |cn| against the loop separation d for various
small longitudinal fields Ay, and n = 3, 5, 7. The HHG coefficients are consistently higher in the d < ry regime, i.e. topologically linked.

along the individual directions. For instance, ±(1, 0, 1) does
not grow as fast as, say, ±(1, 1, 0) in Fig. 7(h) but grows at
comparable rates in Fig. 7(l).

V. CONCLUSION

In this paper, we have systematically studied in detail
the anisotropic and nonlinear optical response of two nodal
loops that are linked, unlinked, or touching (nodal chain).
This system, as parametrized by our canonical two-nodal-loop
model, represents the simplest abstraction of simultaneously
occurring nodal loops (linked or unlinked) in nodal materials.
First, we studied the effects of nodal geometry and topology
individually along various axis directions. Next, we presented
constant A0 response surfaces to highlight the anisotropy of
the response and how that global picture can shed light on the
overall configuration of the nodal structure. Our findings gen-
eralize existing results on the enhancement of optical response
nonlinearity by nodal linkages [95] to various transverse, Hall,
and diagonal sectors and introduce a geometric picture of
response nonlinearity and anisotropy that will be invaluable
in analyzing generic nodal material responses, as well as the
engineering of high-order-harmonic generation materials for
applications such as terahertz radiation generation.
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APPENDIX A: PERIODIC IMAGES
OF THE NODAL HAMILTONIAN

Periodic images occur when there is more than one branch
of solution (usually three in total) when we solve h = 0
and g = 0 simultaneously in the Hamiltonian HHopf(k) =
h(k)σx + g(k)σy, as defined in Eqs. (4a) and (4b) of the main
text. We can deduce their positions from the kz planes the
periodic images lie in, as well as the kx lines these periodic
images are symmetrical with respect to. There are two types of
periodic images, both of which occur in pairs. We distinguish
them based on their positions:

(i) Type I. The pair of images have their loops lie in
the planes (kx = +π/2, kz = +π/2) and (kx = −π/2, kz =
−π/2), respectively [Fig. 8(b)].

(ii) Type II. The pair of images have their loops lie in
the planes (kx = +π/2, kz = −π/2) and (kx = −π/2, kz =
π/2), respectively [Fig. 8(c)].

Only the single Hopf regime [uncolored in Fig. 8(a)] is
studied in detail in this paper, since it provides the most
conclusive results on how the nodal shape and topological
linkage affect transport properties.

Trivially, g = 0 in both types of constraints, and we only
need to solve for h = 0 to obtain the explicit form of the

FIG. 13. (a) and (b) The expansion coefficients a(i)
xx , i = 1, 2, 3, were plotted with rx (a) and ry (b) for the parameters ry = 1.0, d = 0.5

and rx = 1.0, d = 0.5, respectively. The parameters chosen are identical to the transverse diagonal response Jx (Ax̂) in Fig. 3. (c) and (d) The
expansion coefficients a(i)

yy , i = 1, 2, 3, were plotted with ry (c) and d (d) for the parameters ry = 1.0, rx = 0.6 and rx = 1.0, d = 0.6. The
parameters chosen are identical to the longitudinal diagonal response Jy(Aŷ) in Fig. 4.
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FIG. 14. For three particular surfaces, shown in Figs. 7(k), 6(c), and 6(g), we present a viewpoint that is different from the previous
standardized orientation. This new viewpoint was chosen to highlight the key features of these response surfaces, namely, (a) and (b) the
concavity along the directions Â = ±(1, 0, −1), which characterizes its red-blood-cell-like appearance, as well as (c) the overall saddle-shaped
appearance. The units of J are in 10−3envF .

periodic images. For type I images, we have

α sin ky = ±(β cos ky + γ ), (A1)

where α = (cos rx − 1), β = −(cos rx − 1) cot d , and γ =
2 + cosec d (−2 + cos ry) + cos rx(cos ry cosec d − 2). Equa-
tion (A1) can be solved as follows:

√
α2 + β2 sin(ky ∓ δ) = ±γ ⇒

ky = sin−1

(
± γ√

α2 + β2

)
± tan−1 β

α
, (A2)

where γ√
α2+β2

= γ sin d
cos rx−1 , β

α
= − cot d . Type I periodic im-

ages arise when there exist real solutions for Eq. (A2). This
implicitly requires the argument in the inverse sine in Eq. (A2)
to have magnitude less than 1. In other words, the criteria for
type I periodic images are given as the following inequality:

−2 + cos ry(1 + cos rx )

cos rx − 1
− 2 sin d � 1. (A3)

Type II images arise from another solution branch described
by a quadratic equation in cos ky, which gives the solution

cos ky = 1

2
sin2 d ((4 + 2 cos ry) cot dcosec d ±

√
−12+ 4 cot2 d− 16 cos rycosecd − 4 cos2 rycosec2d ). (A4)

The corresponding regime for the type II image is set by
the above discriminant (the argument in the square-root term)
being strictly positive, i.e.,

−12 + 4 cot2 d − 16 cos rycosecd − 4 cos2 rycosec2d > 0.

(A5)

APPENDIX B: NONDIAGONAL RESPONSES ALONG THE
PRINCIPAL DIRECTIONS

There are a total of four distinct responses along the
principal directions in Eq. (6), where the diagonal responses
are accounted for in detail in Sec. III. The remaining two
responses are nondiagonal (Hall responses) and are distin-
guished with respect to the direction of the loop separation,
i.e., transverse Hall response Jz(Ax̂) and longitudinal trans-
verse Hall response Jy(Ax̂). As we will show, these responses
are specific to the chosen form of the Hamiltonian and are not
related to the topological linkage of the nodal loops.

When we set the intermediate parameter ξ = cos ry−1
cos rx−1

1
sin d −

1 in the Hamiltonian [Eq. (3)] as 1, the functions h(k) and
g(k) [Eqs. (4a) and (4b)] are even and odd under the inversion
k = (kx, ky, kz ) → (−kx, ky,−kz ). This symmetry results in a
vanishing transverse Hall response for all values of impulse A.
In another words, there exists a critical value of d , dcrit, that

satisfies ξ = 1 and is given as

dcrit = sin−1 cos ry − 1

2(cos rx − 1)
. (B1)

When such solutions for dcrit exist, then the sign of the re-
sponse will be sgn(d − dcrit ). This remains true even if the
nodal loops are no longer linked, i.e., dcrit > ry. In Fig. 9(b),
we considered the simple example of circular nodal loops
where ry = rx; then Eq. (B1) gives dcrit = π

6 . In the particular
example where μ = 0.1 and rx = ry = 0.6 > dcrit = π

6 , the
nodal tubes are sufficiently thick to have the nodal loops of the
Hopf link touch each other, giving an accidental nodal chain
instead. As we can see, the topological linkage of the nodal
loops is not important in this response.

The longitudinal transverse Hall response increases in
magnitude with d and attains the largest possible magnitude
when the nodal loops touch each other. This is illustrated in
Fig. 9(b), where we again consider ry = rx = 0.6. We see
that when d = 0.2, 0.3 < ry, the response of the Hopf link
is significantly weaker, but nonvanishing at small fields. This
response grows with d and is the largest when the nodal
loops touch each other, d = 0.6, 0.7 ∼ ry. As for the unlinked
case, this response is weaker than that of the nodal chain and
stronger than that of the Hopf link. The response thus has no
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FIG. 15. When the loop aspect ratio rx
ry

is only slightly greater than unity, the response surfaces are similar to that in Fig. 7(f)–7(h) in terms
of morphology, showing little deviation. (a-c) The response surfaces for the Hopf link ry = 0.5 > d = 0.15, rx = 0.6 for small, medium and
large impulses A0 = 0.1, 0.75, 1.75. The units of J are in 10−3envF .

significant contrast between the topologically linked case and
the trivial case, but rather it varies smoothly with d .

APPENDIX C: NONLINEAR AND ANISOTROPIC
RESPONSE OF THE HOPF LINK IN TERMS OF HHG

For an oscillatory electric field of frequency �, the po-
tential amplitude A = E/� is related to the external field
amplitude E . To quantify the nonlinearity of the response
expansion, we can do a vectorial perturbative expansion for
the response about the point A0 up to second order, which is
valid in the perturbative regime, i.e., for sufficiently small A0:

Ji(A) − Ji(A0) =
∑

j=x,y,z

∂Ji

∂Aj

∣∣∣∣
A0

(A − A0) · ĵ

+ 1

2

∑
j,k=x,y,z

∂2Ji

∂Aj∂Ak

∣∣∣∣
A0

× (A − A0) · ĵ (A − A0) · k̂ + · · ·
=

∑
j=x,y,z

ai j�A · ĵ

+ 1

2

∑
j,k=x,y,z

ai jk�A · ĵ �A · k̂ + · · · , (C1)

where we defined the expansion coefficients as the partial
derivatives in the expansion, for instance,

ai j = ∂Ji

∂Aj

∣∣∣∣
A0

, ai jk = ∂2Ji

∂Aj∂Ak

∣∣∣∣
A0

, (C2)

which can be approximated using the finite difference method
for a small perturbation |�A| = |A − A0|. These coefficients
are related to the conductivities or susceptibilities familiar
in optical materials and are of experimental interest. The
evolution of the response surface with the field strength A0

may thus be reconstructed once all the expansion coefficients

are determined. For a given field strength A0 and direction
A0
A0

, the 18 unique coefficients ai jk quantify the lowest-order
nonlinearity of the responses (the mixed partial derivatives are
symmetrical).

Unfortunately, these expansion coefficients alone display
limited information since they are local properties of the
response manifold and only contain geometric information
around their chosen field directions and magnitudes. Com-
bined with our response surface picture, the topology and
geometry of the overall response behavior are given a clearer
global picture.

To understand the coefficients ai jk , we consider the simple
case of j = k. Consider A along a particular direction (in
general, higher-order response coefficients involve more than
one component of A), e.g., the principal directions, so we may
simply fit the optical response J with a simple polynomial in
A:

Ji(A · ĵ) = a(0)
i, j + a(1)

i, j A + a(2)
i, j A2 + a(3)

i, j A3 + · · · . (C3)

The coefficients a(r>1)
i, j quantify the response’s nonlinearity.

Take the example rx = 1, d = 0.6 < ry = 1.0, 1.2 [diagonal
response curves given in Figs. 10(a) and 10(e)]; the response
curves are linear in the small field regime 0 < A < 0.1 and
cubic in the intermediate field regime 0.1 < A < 1.2. For the
cubic regime, the coefficients are

a(1)
x,x = 0.6935, a(2)

x,x = −0.905 31, a(3)
x,x = 1.478 78,

(C4a)

a(1)
y,y = 0.751 34, a(2)

y,y = −2.130 35, a(3)
y,y = 1.311 72.

(C4b)

The drastic difference in a(2)’s shows that the longitudinal
diagonal response Jy(Aŷ) is significantly more nonlinear than
the transverse diagonal response Jx(Ax̂); hence the optical
response is anisotropic. Another way to quantify the nonlin-
earity of the response is the high-order-harmonic generation
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FIG. 16. The evolution with field strength of the diagonal responses, as well as the responses along the high-symmetry directions that fully
characterize the response surfaces in Fig. 6 for the Hopf link d = 0.15 < ry, the nodal chain d = 0.6 = ry, and the unlinked case d = 1.3 > ry.

(HHG) coefficients cn ∼ |J (n�)|/|J (�)|; that is, the greater
the nonlinearity, the larger the HHG coefficients, which is
experimentally measured by the extent of distortion for a sinu-
soidal signal. Under a sinusoidal signal, we can always expand
the response as a superposition of high-order-harmonic sig-

nals, i.e.,

Ji[Aj (t )] = Ji(Aj,0 sin �t ) ∝ sin �t +
∑
n>1

cn sin �t .

(C5)
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FIG. 17. The evolution with field strength of the diagonal responses, as well as the responses along the high-symmetry directions that fully
characterize the response surfaces in Figs. 7(b)–7(d). Although we showed only the response surfaces for the Hopf link in Fig. 7, we have also
included the responses for the nodal chain case d = 0.6 = ry and the unlinked case d = 1.2 > ry.

For the same example, we compare the HHG coefficients of
the transverse and longitudinal diagonal responses. ry = 1.0
indeed shows smaller and larger HHG coefficients [Figs. 10(d)
and 10(h)] in the longitudinal and the transverse directions,
respectively. The resulting distortion to an arbitrary sinusoidal

signal is more apparent in the former. Considering another
example, increasing the loop separation d greatly increases
the nonlinearity of the longitudinal diagonal response curve
and thus leads to enhanced HHG (Fig. 11). This is manifested
as a larger kink in the response curves [similar to Fig. 4(b)]

195125-16



ANISOTROPIC NONLINEAR OPTICAL RESPONSE OF … PHYSICAL REVIEW B 103, 195125 (2021)

FIG. 18. The evolution with field strength of the diagonal responses, as well as the responses along the high-symmetry directions that fully
characterize the response surfaces in Figs. 7(j)–7(l). Although we showed only the response surfaces for the Hopf link in Fig. 7, we have also
included the responses for the nodal chain case d = 0.4 = ry and the unlinked case d = 1.0 > ry.

and thus significantly more distortion to the sinusoidal
signal.

Finally, since the longitudinal diagonal response is
distinctly more nonlinear when the loops are topologi-
cally linked, we thus see enhanced HHG in the topo-

logically linked regime (Fig. 12). This is consistent
with Ref. [95], which demonstrates that real materi-
als with topologically linked nodal loops exhibit higher
HHG compared with materials with only a single nodal
loop.
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The expansion coefficients a(k>1)
i, j in Eqs. (C4a) and (C4b)

also vary with the loop parameters rx, ry, d , adding one more
layer of complexity to the response of nodal link semimetals
(NLSMs). Up to intermediate fields of A � 1.2, the pertur-
bative expansion equation (C3) remains valid. The expansion
coefficients of the transverse diagonal response Jx(Ax̂) in
Figs. 3(c) and 3(d) were plotted with the variation of rx

and ry in Figs. 13(a) and 13(b), respectively. Similarly, for
the longitudinal diagonal response Jy(Aŷ) in Figs. 4(b) and
4(d), the expansion coefficients were plotted with the varia-
tion of ry and d in Figs. 13(c) and 13(d), respectively. We
can immediately see that the nonlinearity of the responses
evolves differently in the longitudinal and transverse di-
rections, hinting at anisotropic behavior in the response of
NLSMs.

This anisotropic behavior is, however, the tip of the ice-
berg. Given further that J(A1 + A2) �= J(A1) + J(A2), the
global anisotropy picture cannot be sufficiently illustrated via
perturbative expansion plots such as those in Fig. 13. This thus
brings us to the response surface illustration, as elaborated in
Sec. IV and supplemented in Appendix D.

APPENDIX D: DETAILED STUDY OF
THE ANISOTROPY

In Sec. IV, we demonstrated the evolution of the response
surface with field strength. This encapsulates the full infor-
mation about the response anisotropy and nonlinearity, and to
some extent the nodal structure and its dispersion. In Figs. 6
and 7, we illustrated the surface using a common viewpoint to
demonstrate this evolution with field strength. Yet this is not
always the best orientation to understand the important char-

acteristics of these surfaces. A locally suppressed response
when viewed away from the observer will not be seen in this
standard orientation.

For instance, in Figs. 7(g) and 7(k), it is not immediately
obvious that these surfaces are indeed reminiscent of the shape
of a red blood cell. In Figs. 14 and 15, we better illustrate
the distinctive concave shapes that characterize a red blood
cell appearance by explicitly demonstrating the concavity
along the directions Â = ±(1, 0,−1). In addition, we clearly
highlight the saddle-shaped appearance [which is not made
obvious in Fig. 6(g)] by choosing a better orientation in Fig.
14. Here, we can more clearly see that the responses along
the directions Â = (0, 1, 1), (1, 1, 0), (0, 1,−1), (−1, 1, 0)
are indeed asymmetric as they demonstrate a stronger growth
along a preferred sense.

In Fig. 7, the response surfaces appear distinct when the
loop aspect ratio rx

ry
is greater than unity. But when the loop

aspect ratio is only slightly greater than unity, the response
surfaces (Fig. 15) look almost similar to that in Fig. 7(f)–7(h),
with only slight variation. It thus shows that there is a greater
morphology variation when we increase the loop aspect ratio.

Finally, only snapshots of the response surfaces at partic-
ular A0 values were chosen in Figs. 6 and 7. This, however,
does not capture the full evolution of these surfaces with
field strength. Since the diagonal responses and the re-
sponses along the high-symmetry directions [namely, Â =
(1,±1, 0), (0, 1,±1), (1, 0,±1)] were shown to be useful
in identifying key features of the response surface, we thus
show these individual response curves (Figs. 16–18) for the
corresponding surfaces. The relative rates of growth of these
individual responses can account for the evolution of these
surfaces.
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