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Quantum Monte Carlo study of an anharmonic Holstein model
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We study the effects of anharmonicity on the physics of the Holstein model, which describes the coupling of
itinerant fermions and localized quantum phonons, by introducing a quartic term in the phonon potential energy.
We find that the presence of this anharmonic term reduces the extent of the charge density wave (CDW) phase
at half-filling as well as the transition temperature to this phase. Doping away from half-filling, we observe a
first-order phase transition between the CDW and a homogeneous phase which is also present in the harmonic
model. In addition, we study the evolution of the superconducting susceptibility in the doped region and show
that anharmonicity can enhance the superconducting response.
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I. INTRODUCTION

Electron-phonon interactions in solids drive a number of
quantum many-body effects. One is conventional supercon-
ductivity (SC) [1,2]. Another is the formation of insulating
charge density wave (CDW) phases [3–5]. Complex Hamil-
tonians which describe both many electronic orbitals and
multiple phonon bands are typically needed to describe these
phenomena in real materials. Fortunately, simplified models
can often capture the key qualitative consequences of the
electron-phonon coupling, while being much more analyti-
cally and computationally tractable.

The Holstein Hamiltonian [6] is one such model. It de-
scribes a single electronic band and dispersionless quantum
phonons coupled locally to the fermion density. A consid-
erable body of computational work exists for the Holstein
model. Studies of the dilute limit reveal how individual
electrons are dressed by phonons, and the effective mass
and transport properties of these polarons have been eval-
uated [7–15]. At higher densities, the emergence of SC at
generic fillings and gapped CDW phases at commensurate
occupations have been investigated [16–23].

The solution of even this relatively simple model is not,
however, computationally easy. Only relatively recently have
the critical temperatures for the CDW transition been evalu-
ated for the square [24] and cubic [25] lattices via quantum
Monte Carlo (QMC). Likewise, the determination of the crit-
ical interaction strength at the quantum critical point for the
CDW transition on a honeycomb lattice is a recent develop-
ment [26]. Analytic approaches, especially Migdal-Eliashberg
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theory [27,28], have been critical to the understanding of the
Holstein Hamiltonian [29,30]. Their comparison with QMC
has been an especially useful line of investigation, especially
in efforts to determine the largest possible SC transition tem-
perature [31].

In the course of these studies, it has become apparent
that the Holstein Hamiltonian has a significant deficiency in
some parameter regimes. Specifically, it has been shown [32]
that the values of the phonon displacement reached in CDW
phases could be quite large, even reaching values comparable
with the intersite spacing in the system. Thus, the harmonic
description of phononic excitations in the medium provided
by the Holstein model may not be sufficient, and the effects of
anharmonic terms on the phases of Holstein systems should
be considered [32–37,39–41]. Several approaches to include
anharmonic effects have been considered, for example, non-
linear coupling terms between fermions and phonons [32–37],
or quartic [38–40] or Gaussian [41] contributions to the
phonon potential energy. Anharmonicity has also been con-
sidered in the context of Migdal-Eliashberg theory [42–44].

In infinite dimensions, using a technique like dynamical
mean field theory (DMFT), Freericks et al. [40] studied the ef-
fects of a simple anharmonic term in the form of an additional
quartic potential energy for the phonons. They concluded that
a CDW phase exists for a large range of densities at low an-
harmonicity but that the CDW is gradually replaced at low and
high densities by a SC phase as the anharmonicity increases.
The half-filled system always remains in a CDW state. They
also observed a decrease of the critical temperatures at which
CDW and SC phases appear with increasing anharmonicity.
Similar models have been studied in one dimension [39].

The goal of this paper is to study the effects of such an
additional quartic anharmonic term on the behavior of the
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Holstein model in two dimensions using a recently introduced
Langevin algorithm [45,46]. Unlike DMFT, the Langevin
approach handles spatial correlations in finite dimensions
without introducing systematic error. In Sec. III, we introduce
the Holstein model and its anharmonic extension, as well
as the methods we use to study the system and characterize
the different phases. Section II is devoted to the study of
the behavior at half-filling, especially the CDW phase and
how it evolves with anharmonicity. Section IV concentrates
on the behavior away from half-filling, discussing possible
CDW phases as well as superconducting behavior. We then
give some final thoughts and conclusions.

II. MODEL AND METHODS

We studied a generalized version of the Holstein Hamil-
tonian which incorporates anharmonicity in a specific way,
namely, as an additional term in the quantum phonon potential
energy [40]:

H − μN = −t
∑
〈i j〉σ

(c†
iσ c jσ + H.c.) − μ

∑
iσ

niσ (1)

+
∑

i

(
mω2x2

i

2
+ p2

i

2m

)
+ ω4

∑
i

x4
i (2)

+ λ
∑

iσ

xiniσ , (3)

The sums run over the L2 sites of a two-dimensional (2D)
square lattice. The operator ciσ (c†

iσ ) destroys (creates) a
fermion of spin σ =↑ or ↓ on site i; niσ = c†

iσ ciσ is the cor-
responding number operator; and xi and pi are the canonical
displacement and momentum operators of the phonon mode
at site i. The first term [Eq. (1)] represents the hopping energy
of the fermions between neighboring sites 〈i j〉. A chemi-
cal potential term is included as our algorithm performs the
simulations in the grand canonical ensemble. The hopping pa-
rameter t is used as the energy scale. The second term [Eq. (2)]
represents the energy of the phonons of harmonic frequency
ω and includes an anharmonic term proportional to x4

i with
a prefactor ω4, and we put m = 1 in the rest of this paper.
The third term [Eq. (3)] is the phonon-electron interaction.
This coupling can be rewritten as g

∑
iσ (a†

i + ai )niσ , where
g = λ/

√
2ω and ai and a†

i are the destruction and creation
operators of phonons at site i. We focused on the cases where
g = 1, ω = 0.5, and ω = 1. Using two values of ω yields the
evolution of the anharmonic effects as a function of ω and also
allows comparison with previous studies [40,47].

The average value of xi on a doubly occupied site can be
roughly estimated as −2λ/ω2 (see Appendix A). With this
expression, the ratio η of the anharmonic-to-harmonic terms
is given by

η ≡ 16ω4 g2

ω5
. (4)

For g = 1 and ω < 1, η becomes substantial even for rela-
tively small values of ω4. Indeed, we will see that ω4 � 0.01
is sufficient to affect profoundly the CDW physics at ω = 0.5.

We studied this model using a recently developed QMC
algorithm [45] based on a Langevin equation approach [46].

This method does not suffer from the sign problem for the
Holstein model, and the scaling of the simulation time with
the number of sites is more advantageous than with con-
ventional methods such as determinant QMC (DQMC) [48].
For the Langevin algorithm applied in two dimensions, the
simulation time scales approximately as L2.2 instead of L6 for
DQMC [45]. Throughout this paper, we use sizes and inverse
temperatures ranging up to L = 16 and β = 20, although, as
will be seen, it is difficult to obtain reliable results for some
quantities on large systems, especially away from half-filling
or for small values of both ω and ω4.

The Langevin approach requires a discretization of the
inverse temperature β. We used an imaginary time step �β =
0.1, which we checked was sufficient so that systematic ef-
fects are smaller than statistical error bars. The Langevin time
step was generally dt = 10−3, and we used up to a few million
Langevin steps for equilibration before performing measure-
ments over up to 107 steps, using a standard binning of the
data to analyze statistical errors [49].

We will look at the density ρ = ∑
i〈niσ 〉/L2 and its behav-

ior as a function of μ to detect the presence of charge gaps. We
will also examine other simple diagonal quantities such as the
average value of the phonon displacement 〈xi〉 and the double
occupancy 〈ni↑ni↓〉. In the harmonic case, the particle-hole
symmetry yields an analytical expression for the chemical
potential at half-filling μ = −λ2/ω2 and for the average value
of the displacement 〈xi〉 = −λ/ω2 (see Appendix A). With
ω4 �= 0, there is no particle-hole symmetry, and the value
of μ for which the system is at half-filling as well as the
average displacement are unknown and must be determined
by simulations, although some rough estimations can be made
(Appendix A).

To characterize the presence of a CDW phase, we studied
the charge structure factor, the Fourier transform at momen-
tum (π, π ) of the density-density correlation function

Scdw =
∑

i

〈nini+ j〉(−1) j . (5)

Here, ni is the total number of particles on site i, ni = ni↑ +
ni↓. The ordering vector for a half-filled square lattice is
known to be at (π, π ). Incommensurate order at q �= (π, π )
is possible upon doping, but we do not see evidence of it here.
As the fermions enter the CDW phase, the electron-phonon
coupling induces a corresponding order in the average values
of 〈xi〉, where |〈xi〉| takes alternatively small and large values
on neighboring sites, following the alternating values of the
density ni (see Fig. 1).

Away from half-filling, the system is suspected to be su-
perconducting, with Cooper pairing driven by the phonons
that generate onsite attraction Ueff between particles, as noted
in the discussion of Eq. (A3). We will look at this behavior
through the s-wave pairing susceptibility

χs = 1

L2

∫ β

0
dτ 〈�(τ )�†(0) + H.c.〉,

�(τ ) =
∑

i

ci↓(τ )ci↑(τ ) ciσ (τ ) = eτH ciσ e−τH . (6)
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FIG. 1. Behavior of the average density, 〈ni〉, and phonon dis-
placement, |〈xi〉|, as functions of the position, i, along one axis in the
square lattice in the homogeneous and charge density wave (CDW)
phases. In CDW phase at half-filling, there is symmetry breaking
and two alternate values of 〈ni〉 and 〈xi〉 are observed. Out of half-
filling, in an homogeneous phase, 〈ni〉 and 〈xi〉 are independent of
the position.

III. HALF-FILLING

Without anharmonicity, the Holstein model develops a
Peierls CDW phase at half-filling, where the chemical poten-
tial at half-filling is given by μ = −2g2/ω. In the presence
of the anharmonic term, however, we do not have an analytic
expression for μ at half-filling (Appendix A).

We first study the effects of the anharmonic term [Eq. (3)]
on this phase. To this end, we examine the evolution of the
density as a function of μ at inverse temperature β = 20,
which we verified had converged to the low temperature limit.
A large system is not needed to obtain reliable measurements
of the charge gap at half-filling, so we used L = 6. These
simulations also determine the value of μ for which the sys-
tem is at half-filling. We observe (Fig. 2) that ω4 shifts the
insulating plateau to larger values of μ and that the width of
the half-filled density plateaux decrease with ω4. The other
smaller plateaux that are observed away from half-filling are
finite-size (shell) effects due to the finite system size. These
shell effects are revealed by nonzero ω4, as it inhibits the
CDW order. In Fig. 2, results from a L = 8 simulation for
ω4 = 0.0025 show that these shell effects are reduced for
larger sizes, while the gap at half-filling remains essentially
unchanged. This confirms that the small plateaux appearing
off of half-filling are finite-size effects, while the gap at half-
filling is not.

The plateau at half-filling is a genuine collective effect
since there is no gap at half-filling at g = 0. Indeed, the density
of states diverges there for a square lattice, and only half
of the states present at the Fermi level are occupied in the
free system. Then the gap observed at half-filling cannot be a
spurious shell effect, even on small-size systems.

A collection of chemical potential sweeps such as that in
Fig. 2, for different values of ω4, yields the boundaries of
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FIG. 2. Density as a function of μ for different values of ω4. L =
6, g = 1, β = 20, and ω = 0.5. We find a reduction of the charge
density gap at half-filling when ω4 is increased. The apparent gaps
away from half-filling are shell effects. A simulation at L = 8, ω4 =
0.0025 shows that half-filled plateau is not affected by finite size
effects, while the plateaux off of half-filling are reduced for larger
sizes.

the CDW region in a phase diagram in the (μ, ω4) plane. We
delimit the CDW region with the value of μ for which 1 − δ <

ρ < 1 + δ, using a small threshold value δ. Figure 3 shows
ω = 0.5 in panel (a) and ω = 1 in panel (b), for δ = 0.05. The
effect of ω4 on the width and the position of the CDW gap is
much stronger at ω = 0.5 than at ω = 1, as the ω dependence
in the expression for the relative size of the anharmonic term
η in Eq. (4) would suggest should be the case. In both cases,
we observe a shift of the chemical potential at half-filling
toward smaller absolute values. This shift can be explained
qualitatively using a simple approximation presented in
Appendix A. The red triangles in Fig. 3 show the values of
μ at ρ = 1 obtained with this approximation. In both cases,
ω = 1 and ω = 0.5, we observe a reduction of the charge
gap (width of the CDW lobe) as ω4 is increased, although the
effect is more dramatic for ω = 0.5 [see Fig. 3(c)]. The sen-
sitivity of the system to the anharmonic term in the ω = 0.5
case is noticeable with strong differences already obtained for
ω4 of the order of 10−3, a value for which η ∼ 0.5. As the
charge gap is much reduced for ω = 0.5, it becomes smaller
than the ω = 1 charge gap as ω4 � 0.0075, despite the fact
that it is much larger at small ω4 [Fig. 3(c)].

For large ω4, the gap becomes small in the ω = 0.5 case
[Fig. 3(c)]. We verified for larger systems that the small gap
is not a finite size effect (Fig. 4). In these cases, the plateau is
rounded (Fig. 4) by thermal excitations at β = 10, and inverse
temperatures up to β = 20 are needed to observe the flat
plateau typical of the ground state behavior. We also observe
an abrupt change of the density and of the CDW structure
factor when the system is doped away from half-filling. In the
parameter regime which is accessible to our QMC, we did
not find a value for ω4 where the gap at half-filling vanishes
completely. The QMC simulations for ω4 > 0.01 become
prohibitively difficult because they require exceedingly large
values of β.
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FIG. 3. Phase diagrams of the system obtained from L = 6 sim-
ulations at β = 20 and g = 1, for (a) ω = 0.5 and (b) ω = 1 and
(c) comparison of the charge gaps in these cases. The anharmonic pa-
rameter ω4 ranges from 0 to 0.01. The area enclosed by blue curves is
the incompressible charge density wave (CDW) phase at half-filling,
while the rest of the phase diagram corresponds to compressible
phases that should become superconducting at low temperatures. The
red triangles mark the half-filled chemical potential inferred from the
approximate theory of Appendix A. The width of the CDW phase is
strongly reduced due to the anharmonic effects for (a) ω = 0.5. For
(b) ω = 1, the charge gap is relatively unaffected by the anharmonic-
ity ω4 in the range shown, although (c) it is generally smaller for
ω = 1 than for ω = 0.5.

Knowing the values of μ where the system is half-filled,
we performed several targeted simulations at half-filling. In
Fig. 5 (top), we show the evolution of the average value
|〈xi〉| = −〈xi〉 for different ω4 and sizes L in the CDW phase
at half-filling for the ω = 0.5 case. We have not been able
to obtain reliable results at this low temperature and large
sizes for small values of ω4, the ω4 = 0 case being partic-
ularly difficult. We then compare with the analytical value
at ω4 = 0, |〈xi〉| = | − λ/ω2| = 4 (see Appendix A). We find
that, although it always extrapolates to a nonzero value, |〈xi〉|
is strongly reduced as ω4 increases, by a factor of two at
ω4 = 0.01 compared with ω4 = 0. This is expected as the
anharmonicity penalizes large values of x, as does a large
value of ω. As the phonon field generates an effective attrac-
tion between the fermions, this attraction is weakened, and
the double occupancy 〈ni↑ni↓〉 is correspondingly reduced,
although it always remains larger than the uncorrelated value
〈ni↑〉〈ni↓〉. This suppression of |〈xi〉| and the resulting reduc-
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FIG. 4. The density ρ and charge density wave (CDW) structure
factor Scdw (rescaled for better visibility) for an L = 10 system,
focusing on the CDW plateau. Notice that, for β = 10, the density
does not yet show a plateau at half-filling; β = 20 is necessary for
the system to display the ground state behavior and exhibit the CDW
gap. The structure factor Scdw displays an abrupt change of values
when the system is doped away from half-filling.

tion of the effective attraction between fermions explain the
observed shrinking of the CDW charge gap.

For ω = 1, we find the same effects but with a much re-
duced amplitude. In that case, for ω4 = 0, |〈xi〉| = √

2, which
we have confirmed numerically (for L = 16 and β = 20, we
find |〈xi〉| = 1.4143(4)). Here, |〈xi〉| varies from

√
2 down to

|〈xi〉| 
 1.3, when ω4 varies from 0 to 0.005, while 〈ni↑ni↓〉
decreases from 〈ni↑ni↓〉 
 0.35 to 〈ni↑ni↓〉 
 0.33 over the
same ω4 interval.
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FIG. 5. Average value 〈xi〉 (top) and double occupancy (bottom)
as functions of L−1 for different ω4 in half-filled systems. |〈xi〉| is
reduced as ω4 increases, although it always extrapolates to nonzero
values. For the harmonic case ω4 = 0, 〈xi〉 = −4. The double occu-
pancy is also reduced but always extrapolates to values larger than
〈ni↑〉〈ni↓〉 = 0.25.
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FIG. 6. Structure factor Scdw as a function of size L for different
values of ω4 at half-filling. For all ω4, the linear extrapolation of Scdw

to L → ∞ is nonzero. The linear extrapolation is based on fits for
the data with L � 8.

The gapped phase is expected to show CDW order, which
we confirmed by a direct study of Scdw at half-filling for differ-
ent ω4 (Fig. 6). In all the cases studied here, Scdw extrapolates
to a nonzero value in the thermodynamic limit L → ∞ and
is reduced as ω4 increases. We verified the presence of a
corresponding CDW order in the distribution of |〈xi〉|.

A. Finite temperature transition to CDW order

To complete this analysis of the CDW behavior at
half-filling, we analyze the transition to this phase as the
temperature T is lowered. The CDW transition breaks trans-
lation symmetry between the two sublattices of the square
lattice. It is, therefore, in the universality class of the 2D Ising
model with a finite critical temperature Tc and 2D Ising critical
exponents.

We used standard finite-size scaling analysis where, close
to the transition, the structure factor behaves as

Scdw

L2
= L−2β/ν S̃(L1/νt ) ⇒ Scdw = L7/4S̃(Lt ), (7)

with the critical exponents β = 1
8 and ν = 1, t = T − Tc is the

reduced temperature, and S̃ is a universal scaling function. As
the critical exponents are known a priori, the only unknown
quantity is Tc, which is chosen to optimize the superposition of
the curves obtained for different system sizes (see Fig. 7). To
do so, we choose a value of Tc, rescale all the data according
to Eq. (7), and fit those data with a high degree polynomial.
We then determine the optimal value of Tc as the one that
minimizes the distance between the polynomial fit and the
data. At large ω4, finite-size corrections to scaling are larger,
and we have not found sizes where finite-size scaling analysis
can be used (see Appendix B), which limits the range in which
we are able to determine the critical temperature.

As expected, Tc decreases with ω4 (see Fig. 8). This behav-
ior could have been inferred from the evolution of the charge
gap and the structure factor at low temperatures. Compared
with the infinite-dimension results presented in Ref. [40],
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FIG. 7. Finite size analysis for ω = 0.5 and ω4 = 0.001. (top)
Structure factor for different sizes as a function of temperature T .
(bottom) Rescaled structure factor as a function of the rescaled
reduced temperature. The critical temperature Tc = 0.24 ± 0.01 is
chosen to obtain the best possible collapse between the different
curves.

which focused on the ω = 0.5 case, we observe a similar
reduction of Tc with ω4. Our simulations show that the crit-
ical temperature changes from Tc 
 0.25 at ω4 = 0 down
to Tc 
 0.12 at ω4 = 0.005. Freericks et al. [40] also pre-
dicted an initial increase of Tc with ω4. While we observe
such an effect in some simulations, we cannot give a definite
conclusion concerning this increase of Tc due to the lack
of precision of our data for small ω4. The most remarkable
difference with the infinite dimension description is the range
of ω4 over which noticeable changes are observed: we found
a strong modification of critical temperature for ω4 
 5 ×
10−3, whereas similar variations are found in Ref. [40] for
ω4 
 10−1.

In the ω = 1 case, for a similar range of ω4, we did not
observe a strong change of the value of the critical temperature
with ω4. Values of ω4 where we could apply the finite-size
analysis were more restricted than for ω = 0.5, and we could
only get results for ω4 up to 0.001. At ω4 = 0, we found a
critical temperature of Tc = 0.16 ± 0.01, which is compat-
ible with values found recently in similar cases [24,50,51].
For ω4 = 0.001, the critical temperature is barely reduced to
Tc = 0.15 ± 0.01. This was expected as we observed that, in
this case, the anharmonicity hardly changes the width of the
gap at half-filling.
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FIG. 8. Charge density wave (CDW) critical temperature Tc at
half-filling as a function of anharmonicity ω4 for ω = 0.5, t = 1,
and g = 1. With sizes up to L = 12, the finite-size analysis was only
feasible for ω4 � 0.005.

Finally, for both ω = 0.5 and ω = 1, we observed a reduc-
tion of the charge gap and critical temperature as ω4 increases,
but we did not observe a disappearance of the CDW phase in
the accessible parameter range. For larger values of ω4, as in
the pure Holstein case [23], there are two possible scenarios.
The first is a persistence of the CDW phase at half-filling with
decreasing gap and critical temperature, which is possible
because our model retains the Fermi surface nesting present
in the Holstein model that favors CDW order. The second
scenario is the existence of a critical value of ω4 above which
the CDW phase no longer exists.

IV. DOPED SYSTEM

A. First-order transition near half-filling

The infinite dimension prediction by Freericks et al. [40]
show a CDW when the system is doped away from half-filling
as well as a SC phase. At sufficiently low temperature, in
our Langevin simulations, the evolution of the density with
μ, for both ω = 0.5 (Fig. 4) and ω = 1 (Fig. 9), exhibits an
abrupt change of the density in the neighborhood of the CDW
plateau. We see that these jumps are not finite-size effects
as their amplitude does not vary much with the size of the
system (Fig. 9). We observe this kind of discontinuity in the
density for all values of ω4, down to ω4 = 0. They are more
pronounced for the lower phonon frequency ω = 0.5. Below
half-filling, for ω = 1, the density jumps from ρ 
 0.75 to
ρ = 1, and the extent of the jump does not depend much on
ω4 (Fig. 10), although it decreases slightly with increasing ω4.
We observe a similar jump above half-filling.

For ω = 0.5, the finite temperature effects are stronger,
and it is more difficult to assess precisely the size of the
discontinuity. It appears the change is from ρ = 1 to a value
which is around ρ 
 0.25 for ω4 = 0.001, whereas as can be
observed in Fig. 4, the jump is reduced to ρ = 1 down to
ρ 
 0.75 for ω4 = 0.0075. The structure factor is essentially
zero when the density is no longer one. We do not find at these
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FIG. 9. Density ρ and structure factor Scdw as functions of the
chemical potential for ω = 1 and several sizes at β = 16. An abrupt
change of the density is found when the system is doped away from
half-filling, which also corresponds to the disappearance of charge
density wave (CDW) order.

low temperatures any sign of an intermediate doped region
with nonzero structure factor.

Such discontinuities indicate that the transition, as μ is
changed, is of the first order. If the simulations were done
in the canonical ensemble, there would be phase separation
between a CDW and a uniform phase in the jump region, as
was observed in bosonic Hubbard models when the system is
doped away from a CDW phase [52]. Such a transition was
recently observed in variational Monte Carlo simulations [22]
and was also reported in Ref. [47]. To confirm the first-order
nature of the transition, we analyzed the behavior of the
density and energy for a large enough system L = 10 at low
temperature β = 20 doping below half-filling (Fig. 11). By
choosing appropriate values of the phonon coordinates, we
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FIG. 10. Density ρ as a function of the chemical potential for
ω = 1 and several values of ω4 at β = 16. The abrupt change of the
density found when the system is doped is present for all values of
ω4.
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FIG. 11. Density ρ, energy per site E/L2, and grand potential per
site E/L2 − μρ as functions of μ for different initial conditions of
the simulations [charge density wave (CDW) start or homogeneous
start]. We observe hysteresis with an intermediate region where two
different phases coexist.

are able to start the Langevin simulations with two differ-
ent initial conditions: a homogeneous solution and a CDW
one.

For such large systems, the simulations remain “stuck” in
the kind of phase that was initially imposed upon the system,
indicating a metastability characteristic of first-order transi-
tions. This leads to hysteresis, as is seen clearly in Fig. 11.
In the hysteresis region, we find the grand potentials E − μN
of the two phases to be essentially equal, and since E − μN
is minimized at equilibrium, we then observe two equivalent
solutions in this chemical potential range. As a consequence,
the energy E of the CDW phase is lower than that of the
homogeneous phase in the coexistence region.

Contrary to what was observed in infinite dimensions [40],
we do not find in two dimensions a region away from half-
filling where CDW order survives. It is noticeable that smaller
systems, such as the ones used at the beginning of this study
(Fig. 2), or higher temperatures may give the false signal that
there is CDW away from half-filling because it is possible to
choose a value of μ that gives an average density located in
the unstable region. The system will then have a broad density
distribution ranging from the low homogeneous phase density
up to ρ = 1, and since measured quantities are averaged over
this wide distribution, the structure factor can appear to be
nonzero [52].

B. Superconducting behavior

Away from half-filling, the system is expected to become
superconducting at low temperatures. However, in general,
the transition temperatures appear to be low [31,47]. For the
ω = 1 harmonic Holstein model, the transition toward a SC
state happens for β 
 28 [47] and even larger inverse temper-
ature for ω = 0.5. This makes it difficult to observe the effects
of anharmonicity on the critical temperature itself, especially
since ω4 is expected to reduce Tc even further. Instead, we
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FIG. 12. Density ρ and s-wave pairing susceptibility χs as func-
tions of β for ω = 0.5, ω4 = 0.001, and g = t = 1. μ = −3.1
corresponds to the half-filled system, μ = −4 to a lower density
ρ 
 0.25, and μ = −2.5 to ρ > 1.5.

focus on the evolution of the superconducting susceptibility
χs, without attempting to discern where it might diverge.

Figure 12 shows the evolution of the density ρ as well
as the superconducting susceptibility χs as functions of β

for ω = 0.5 and three values of μ corresponding to densities
below, at, and above half-filling. We first observe that, away
from half-filling, the density reaches its ground state behavior
only above β = 10. As can be expected, the pairing suscep-
tibility at half-filling does not diverge but remains small. For
the doped system, it was not possible to observe a divergence
of χs in the range of accessible temperatures. As shown in
Fig. 12, statistical fluctuations in χs become large in the doped
system for β > 10 and would become even more problematic
in attempting to approach the superconducting transition one
expects at much lower temperature.

With this limited access to superconducting behavior, we
study the effects of the anharmonicity through the evolution
of χs as a function of ω4 for small size and intermediate tem-
peratures β = 8, 10. In Fig. 13, ω = 0.5, we observe that the
superconducting response increases rapidly as ω4 is increased
for a density range 0 < ρ � 0.6. Once again, we observe
that increasing ω4 has roughly the same effect as increasing
ω; it promotes SC. We did not study the region between
ρ = 0.6 and ρ = 1, as it corresponds to the unstable region
between homogeneous and CDW phases. We remark that, for
the smaller values of ω4, the system will already be unstable
for ρ > 0.25.

For ω = 1, the anharmonicity has limited effect on the SC
susceptibility at the values of ω4 we studied (Fig. 14). This
parallels the small ω4 dependence of the CDW lobe in the
phase diagram [Fig. 3(b)] for this phonon frequency.

In both cases, ω = 0.5 (Fig. 13) and ω = 1 (Fig. 14), we
observe an increase of χs as β goes from 8 to 10 but cannot
observe the divergence of χs.
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FIG. 13. The s-wave pairing susceptibility χs as a function of
density ρ for ω = 0.5, g = t = 1, different values of ω4, and β =
8, 10. The susceptibility increases as ω4 or β increases.

V. CONCLUSIONS

In this paper, we studied the effect of an anharmonic
quartic term on the physics of the Holstein model at strong
electron-phonon coupling g = 1 and phonon frequencies ω =
0.5 and ω = 1. We observed similar effects of the anhar-
monicity for the two phonon frequencies, but the effects were
much reduced for the ω = 1 case in the range of anharmonic-
ities we studied. We found that the main effect of the quartic
term is to reduce the importance of the electron-phonon
coupling compared with the phonon potential energy. At half-
filling, this shrinks the charge gap and leads to a suppression
of the CDW structure factor at zero temperature and to a
lowering of the critical temperature for the CDW transition.

The behavior of the density as one approaches an insulating
plateau has been a central interest in a number of contexts,
including early Bethe ansatz solutions of the one-dimensional
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FIG. 14. The s-wave pairing susceptibility χs as a function of
density ρ for ω = 1, g = t = 1, different values of ω4, and β = 8, 10.
The susceptibility is not sensitive to changes in ω4 but increases
with β.

fermion Hubbard model [53]. For the 2D fermion Hubbard
model, Assaad and Imada [54] used QMC methods to ex-
tract critical exponents. Further fermion work is reviewed
in Ref. [55]. In parallel, similar issues have been central
to the investigation of the boson-Hubbard model, including
theoretical prediction [56] of the mean field nature of the
density-controlled transition into the Mott lobe, which were
confirmed by QMC [57].

In this paper, we have added further information to this area
by studying the anharmonic Holstein Hamiltonian. Doping the
system away from half-filling, we observed a first-order phase
transition between the CDW phase at half-filling and a homo-
geneous phase at lower densities. This first-order transition is
present, though not widely studied previously, in the harmonic
Holstein model [22,47].

In the homogeneous phase below half-filling, for ω = 0.5,
we observed a clear enhancement of the superconducting sus-
ceptibility at finite temperature as ω4 is increased. However,
with the limited range of accessible temperatures, we were not
able to observe the superconducting transition. For ω = 1, ω4

does not have a strong effect on the superconducting response.
The results we present here show that the transitions from

ρ = 1 to ρ > 1 and to ρ < 1, as μ is tuned, are both first order
(Fig. 10). However, most of our results for the doped system
focused on ρ < 1, and since the system is no longer particle-
hole symmetric, it would be interesting to study its properties
above half-filling further. To complete the understanding of
the role of the quartic term, it is necessary to study the system
at other coupling parameters, in particular lower values of g.
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APPENDIX A: APPROXIMATE VALUES OF 〈xi〉, μ AND Ueff

In the harmonic case, the value of the chemical potential
at half-filling and of the average phonon displacement can
be found exactly by a particle-hole transformation combined
with a transformation of the phonon displacement

ciσ = (−1)ic̃†
iσ , c†

iσ = (−1)ic̃iσ ,

xi = −x̃i + x0, pi = −p̃i. (A1)

The transformed Hamiltonian is the same as the original one
provided that x0 = −2λ/ω2 = −2

√
2ωg/ω2, which cancels
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out terms that are linear in xi, and that μ = λx0/2, which is
then the chemical potential at half-filling.

Using this value of μ, the resulting Hamiltonian can be
expressed in terms of δi = xi − x0/2 and is invariant under
the particle-hole transformation combined with a δi → −δi

transformation. This shows that 〈xi〉 is exactly equal to x0/2 =
−λ/ω2 = −√

2ωg/ω2 in the ground state at half-filling.
We can roughly estimate the relative sizes of the harmonic

and anharmonic terms as follows: at half-filling, a CDW phase
develops, and we approximately have an alternation of empty
and doubly occupied sites. As 〈xi〉 = x0/2 when averaged
over all sites, the value of xi on doubly occupied sites can
be approximated by x0. If we then compute the ratio η of the
anharmonic to harmonic terms at x0, we obtain

η ≡ ω4x4
0

ω2x2
0/2

= 16ω4 g2

ω5
. (A2)

We can also estimate the effective attraction between
fermions. Completing the square of the phonon term at ω4 = 0
results in

1

2
ω2x2 + λxn = 1

2
ω2

(
x + λn

ω2

)2

− λ2

2ω2
n2. (A3)

Since n2 = n↑ + n↓ + 2n↑n↓, the second term on the right-
hand side of this expression gives an attractive interaction
between up and down electrons Ueff = −λ2/ω2. The first term
shows that the phonon potential energy is indeed minimized
at x0 = −2λ/ω2 on a doubly occupied site.

Adding the anharmonic term [Eq. (1)] breaks the particle-
hole symmetry, and it is no longer possible to derive
analytically the value of the chemical potential at half-filling.
One can obtain an approximate value by using particle-hole
transformation [Eq. (A1)] and by canceling the terms that are
linear in xi, neglecting higher-order terms. This leads to the
following equation for x0:

ω2x0 + 4ω4x3
0 = −2λ, (A4)

and the chemical potential at half-filling is approximately
given by μ = λx0/2. Here, |x0| is obviously reduced as ω4
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FIG. 15. For ω4 = 0.0075, ω = 0.5, and L = 6 to L = 16,
rescaled data for Scdw do not cross each other, precluding the use of
finite-size scaling. This is probably due to larger finite-size scaling
corrections.

increases, and then the chemical potential at half-filling is
increased. This approximate formula is used to derive the
chemical potential shown in Fig. 3.

APPENDIX B: CORRECTIONS
TO FINITE-SIZE SCALING

For values of ω4 > 0.005, in the range of temperatures
and sizes that we could simulate, we have not been able to
find cases where rescaled structure factor curves obtained for
different sizes would cross each other. Finite-size analysis
[Eq. (7)] predicts that, for large systems, Scdw · L−7/4 should
take a unique value S̃(0) at Tc. For ω = 0.5 and ω4 = 0.0075,
we studied sizes of systems up to L = 16 for β � 10 (see
Fig. 15), but even for these relatively large systems, we
could not find a crossing point for the curves and then could
not apply a finite-size scaling analysis to find the critical
temperature.
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Rev. B 60, 1633 (1999).

[16] R. Peierls, Surprises in Theoretical Physics (Princeton Univer-
sity Press, Princeton, 1979).

[17] J. E. Hirsch, and E. Fradkin, Effect of Quantum Fluctuations on
the Peierls Instability: A Monte Carlo Study, Phys. Rev. Lett.
49, 402 (1982).

[18] J. E. Hirsch and E. Fradkin, Phase diagram of one-dimensional
electron-phonon systems. II. The molecular-crystal model,
Phys. Rev. B 27, 4302 (1983).

[19] R. T. Scalettar, N. E. Bickers, and D. J. Scalapino, Competition
of pairing and Peierls-charge-density-wave correlations in a
two-dimensional electron-phonon model, Phys. Rev. B 40, 197
(1989).

[20] J. K. Freericks, M. Jarrell, and D. J. Scalapino, Holstein model
in infinite dimensions, Phys. Rev. B 48, 6302 (1993).

[21] F. Marsiglio, Pairing and charge-density-wave correlations in
the Holstein model at half-filling, Phys. Rev. B 42, 2416 (1990).

[22] T. Ohgoe and M. Imada, Competition among Superconduct-
ing, Antiferromagnetic, and Charge Orders with Intervention
by Phase Separation in the 2D Holstein-Hubbard Model, Phys.
Rev. Lett. 119, 197001 (2017).

[23] M. Hohenadler and G. G. Batrouni, Dominant charge density
wave correlations in the Holstein model on the half-filled square
lattice, Phys. Rev. B 100, 165114 (2019).

[24] M. Weber and M. Hohenadler, Two-dimensional Holstein-
Hubbard model: critical temperature, Ising universality, and
bipolaron liquid, Phys. Rev. B 98, 085405 (2018).

[25] B. Cohen-Stead, K. Barros, Z. Y. Meng, C. Chen, R. T.
Scalettar, and G. G. Batrouni, Langevin simulations of the
half-filled cubic Holstein model, Phys. Rev. B 102, 161108(R)
(2020).

[26] Y. X. Zhang, W. T. Chiu, N. C. Costa, G. G. Batrouni, and R. T.
Scalettar, Charge Order in the Holstein Model on a Honeycomb
Lattice, Phys. Rev. Lett. 122, 077602 (2019).

[27] A. B. Migdal, Interaction between electrons and lattice vibra-
tions in a normal metal, ZhETF 34, 1438 (1958) [Sov. Phys.
JETP 7, 996 (1958)].

[28] G. M. Éliashberg, Interactions between electrons and lattice vi-
brations in a superconductor, Sov. Phys. - JETP 11, 696 (1960).

[29] J. Bauer, J. E. Han, and O. Gunnarsson, Quantitative reliability
study of the Migdal-Eliashberg theory for strong electron-
phonon coupling in superconductors, Phys. Rev. B 84, 184531
(2011).

[30] A. S. Alexandrov, Breakdown of the Migdal-Eliashberg theory
in the strong-coupling adiabatic regime, Europhys. Lett. 56, 92
(2001).

[31] I. Esterlis, B. Nosarzewski, E. W. Huang, B. Moritz, T. P.
Devereaux, D. J. Scalapino, and S. A. Kivelson, Breakdown of
the Migdal-Eliashberg theory: A determinant quantum Monte
Carlo study, Phys. Rev. B 97, 140501(R) (2018).

[32] C. P. J. Adolphs and M. Berciu, Going beyond the linear approx-
imation in describing electron-phonon coupling: Relevance for
the Holstein model, Europhys. Lett. 102, 47003 (2013).

[33] S. Li and S. Johnston, The effects of non-linear electron-phonon
interactions on superconductivity and charge-density-wave cor-
relations, Europhys. Lett. 109, 27007 (2015).

[34] Shaozhi Li, E. A. Nowadnick, and S. Johnston, Quasiparticle
properties of the nonlinear Holstein model at finite doping and
temperature, Phys. Rev B 92, 064301 (2015).

[35] P. M. Dee, J. Coulter, K. Kleiner, and S. Johnston, Relative
importance of nonlinear electron-phonon coupling and vertex
corrections in the Holstein model, Commun. Phys. 3, 145
(2020).

[36] M. A. Sentef, Light-enhanced electron-phonon coupling from
nonlinear electron-phonon coupling, Phys. Rev. B 95, 205111
(2017).

[37] J. Sous, B. Kloss, D. M. Kennes, D. R. Reichman, and
A. J. Millis, Phonon-induced disorder in dynamics of opti-
cally pumped metals from non-linear electron-phonon coupling,
arXiv:2009.00619.

[38] J. E. Hirsch, Polaronic superconductivity in the absence of
electron-hole symmetry, Phys. Rev. B 47, 5351 (1993).

[39] A. Chatterjee and Y. Takada, The Hubbard-Holstein model with
anharmonic phonons in one dimension, J. Phys. Soc. Jap. 73,
964 (2004).

[40] J. K. Freericks, Mark Jarrell, and G. D. Mahan, The Anhar-
monic Electron-Phonon Problem, Phys. Rev. Lett. 77, 4588
(1996).

[41] Ch. U. Lavanya, I. V. Sankar, and A. Chatterjee, Metallicity in
a Holstein-Hubbard chain at half filling with Gaussian anhar-
monicity, Sci. Rep. 7, 3774 (2017).

[42] J. C. K. Hui, and P. B. Allen, Effect of lattice anharmonicity on
superconductivity, J. Phys. F 4, L42 (1974).

[43] A. E. Kavakozov and E. G. Maksimov, Influence of anhar-
monicity on superconductivity, ZhETF 74, 681 (1978) [Sov.
Phys. JETP 47, 358 (1978)].

[44] G. D. Mahan and J. O. Sofo, Resistivity and superconduc-
tivity from anharmonic phonons, Phys. Rev. B 47, 8050
(1993).

[45] G. G. Batrouni and R. T. Scalettar, Langevin simulations of a
long-range electron-phonon model, Phys. Rev. B 99, 035114
(2019).

[46] G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B.
Svetitsky, and K. G. Wilson, Langevin simulations of lattice
field theories, Phys. Rev. D 32, 2736 (1985).

[47] O. Bradley, G. G. Batrouni, and R. T. Scalettar, Superconduc-
tivity and charge density wave order in the 2D Holstein model,
arXiv:2011.11703.

[48] J. Gubernatis, N. Kawashima, and P. Werner, Quantum Monte
Carlo Methods: Algorithms for Lattice Models (Cambridge Uni-
versity Press, Cambridge, 2016).

[49] K. A. Benedict, Quantum Monte Carlo methods: algorithms for
lattice models, Contemp. Phys. 60, 80 (2016).

[50] N. C. Costa, T. Blommel, W.-T. Chiu, G. Batrouni, and
R. T. Scalettar, Phonon Dispersion and the Competition be-
tween Pairing and Charge Order, Phys. Rev. Lett. 120, 187003
(2018).

[51] N. C. Costa, W. Hu, Z. J. Bai, R. T. Scalettar, and R. R. P. Singh,
Principal component analysis for fermionic critical points,
Phys. Rev. B 96, 195138 (2017).

195117-10

https://doi.org/10.1103/PhysRevB.60.14080
https://doi.org/10.1103/PhysRevB.60.1633
https://doi.org/10.1103/PhysRevLett.49.402
https://doi.org/10.1103/PhysRevB.27.4302
https://doi.org/10.1103/PhysRevB.40.197
https://doi.org/10.1103/PhysRevB.48.6302
https://doi.org/10.1103/PhysRevB.42.2416
https://doi.org/10.1103/PhysRevLett.119.197001
https://doi.org/10.1103/PhysRevB.100.165114
https://doi.org/10.1103/PhysRevB.98.085405
https://doi.org/10.1103/PhysRevB.102.161108
https://doi.org/10.1103/PhysRevLett.122.077602
http://www.jetp.ac.ru/cgi-bin/e/index/e/7/6/p996?a=list
https://doi.org/10.1103/PhysRevB.84.184531
https://doi.org/10.1209/epl/i2001-00492-x
https://doi.org/10.1103/PhysRevB.97.140501
https://doi.org/10.1209/0295-5075/102/47003
https://doi.org/10.1209/0295-5075/109/27007
https://doi.org/10.1103/PhysRevB.92.064301
https://doi.org/10.1038/s42005-020-00413-2
https://doi.org/10.1103/PhysRevB.95.205111
http://arxiv.org/abs/arXiv:2009.00619
https://doi.org/10.1103/PhysRevB.47.5351
https://doi.org/10.1143/JPSJ.73.964
https://doi.org/10.1103/PhysRevLett.77.4588
https://doi.org/10.1038/s41598-017-03985-2
https://doi.org/10.1088/0305-4608/4/3/003
https://doi.org/10.1103/PhysRevB.47.8050
https://doi.org/10.1103/PhysRevB.99.035114
https://doi.org/10.1103/PhysRevD.32.2736
http://arxiv.org/abs/arXiv:2011.11703
https://doi.org/10.1080/00107514.2019.1579866
https://doi.org/10.1103/PhysRevLett.120.187003
https://doi.org/10.1103/PhysRevB.96.195138


QUANTUM MONTE CARLO STUDY OF AN ANHARMONIC … PHYSICAL REVIEW B 103, 195117 (2021)

[52] G. G. Batrouni and R. T. Scalettar, Phase Separation in Super-
solids, Phys. Rev. Lett. 84, 1599 (2000).

[53] H. Frahm and V. E. Koropin, Critical exponents for the
one-dimensional Hubbard model, Phys. Rev. B 42, 10553
(1990).

[54] F. F. Assaad and M. Imada, Insulator-Metal Transition in the
One- and Two-Dimensional Hubbard Models, Phys. Rev. Lett.
76, 3176 (1996).

[55] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transi-
tions, Rev. Mod. Phys. 70, 1039 (1998).

[56] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
Boson localization and the superfluid-insulator transition, Phys.
Rev. B 40, 546 (1989).

[57] G. G. Batrouni, R. T. Scalettar, and G. T. Zimanyi, Quantum
Critical Phenomena in One-Dimensional Bose Systems, Phys.
Rev. Lett. 65, 1765 (1990).

195117-11

https://doi.org/10.1103/PhysRevLett.84.1599
https://doi.org/10.1103/PhysRevB.42.10553
https://doi.org/10.1103/PhysRevLett.76.3176
https://doi.org/10.1103/RevModPhys.70.1039
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.65.1765

