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Luttinger semimetals have quadratic band crossings at the Brillouin-zone center in three spatial dimensions.
Coulomb interactions in a model that describes these systems stabilize a nontrivial fixed point associated with
a non-Fermi liquid state, also known as the Luttinger-Abrikosov-Beneslavskii phase. We calculate the optical
conductivity σ (ω) and the dc conductivity σdc(T ) of this phase, by means of the Kubo formula and the Mori-
Zwanzig memory matrix method, respectively. Interestingly, we find that σ (ω), as a function of the frequency ω

of an applied ac electric field, is characterized by a small violation of the hyperscaling property in the clean limit,
which is in contrast with the low-energy effective theories that possess Dirac quasiparticles in the excitation
spectrum and obey hyperscaling. Furthermore, the effects of weak short-ranged disorder on the temperature
dependence of σdc(T ) give rise to a stronger power-law suppression at low temperatures compared to the clean
limit. Our findings demonstrate that these disordered systems are actually power-law insulators. Our theoretical
results agree qualitatively with the data from recent experiments performed on Luttinger semimetal compounds
like the pyrochlore iridates [(Y1−xPrx )2Ir2O7].

DOI: 10.1103/PhysRevB.103.195116

I. INTRODUCTION

Theories of non-Fermi liquid (NFL) phases in two and
three dimensions are one of the biggest enigmas in the field
of strongly-correlated quantum matter and even today, after
many decades of intense research, remain largely an unsolved
problem. A deep understanding of these NFL phases turns
out to be crucial in view of the fact that these states natu-
rally lead to new emergent phases (such as high-temperature
superconductivity, topological phenomena in semimetals and
superconductors, etc.) as some external parameter like tem-
perature, pressure, or doping is varied in the system. It is
a theoretically challenging task to study such systems, and
consequently there have been intensive efforts dedicated to
building a framework to understand them [1–20]. They are
also referred to as critical Fermi-surface states, as the break-
down of the Fermi-liquid theory is brought about by the
interplay between the soft fluctuations of the Fermi surface
and some gapless bosonic fluctuations.

Recently, there has been also an upsurge of interest in a new
frontier of this field where NFL phases can be observed at a
Fermi point, i.e., in the absence of a large Fermi surface. From
the analysis of the electronic structure of compounds like
pyrochlore iridates, the half-Heusler compounds, and grey-Sn,
a minimal effective model to describe such systems turns
out to be the well-known three-dimensional Luttinger model
with quadratic band crossings at the zone-center (i.e., the �

point). Consequently, the materials that are well-described
by this low-energy effective theory are nowadays known as
“Luttinger semimetals” in the literature [21–26]. This class
of materials not only exhibits strong spin-orbit coupling, but

also has strong electron-electron interactions. Since electron-
electron interactions are not screened in these systems, an
effective description must also include long-range Coulomb
interactions. Interestingly, this problem was studied for the
first time back in 1974 by Abrikosov [27], who demon-
strated, using renormalization group (RG) arguments, that
the Coulomb interaction in the model stabilizes a nontrivial
fixed point associated with a new NFL state in three spatial
dimensions, which was later called the Luttinger-Abrikosov-
Beneslavskii (LAB) phase [21]. This fixed point is stable
provided that time-reversal symmetry and the cubic sym-
metries are preserved in the system. This earlier work was
later rediscovered and extended by Moon et al. [21], who
calculated the universal power-law exponents describing var-
ious physical quantities in this LAB phase in the clean (i.e.,
disorder-free) limit, including the conductivity, susceptibility,
specific heat, and the magnetic Gruneisen number.

From a strictly theoretical point of view, there has also been
an increasing interest in the LAB phase, since it may realize
the so-called “minimal-viscosity” scenario [28], in which the
ratio of the shear viscosity η with the entropy s is close to
the Kovtun-Son-Starinets ratio [29], i.e., η/s � 1/(4π ). This
means that these systems may be considered as an example of
a strongly-interacting “nearly-perfect fluid”. Other important
examples that satisfy this condition include the hydrodynam-
ical fluid that emerges in a clean single-layer graphene sheet
at charge neutrality point [30], the quark-gluon plasma [31]
generated in relativistic heavy-ion colliders, and ultracold
fermionic gases tuned to the unitarity limit [32].

Naturally, transport properties of NFL phases are ex-
tremely important in order to characterize these systems.
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One of the widely used methods to calculate nonequilib-
rium properties is the application of the quantum Boltzmann
equation. This method has many merits, and along with the
well-established ε expansion, it has been successfully used to
discuss the hydrodynamical regime of many quantum critical
systems. However, this approach also has some limitations,
as one of its main assumptions is that the quasiparticle exci-
tations exist even at low energies in the model, which is of
course not valid at the LAB fixed point. Therefore, alternative
methods to calculate transport properties, which do not rely
on the existence of quasiparticles at low energies, should be
used instead in order to provide an unbiased evaluation of
such properties in NFL systems at low temperatures. For this
reason, in the present paper, we will apply the Kubo formula,
and also its implementation using the Mori-Zwanzig memory
matrix formalism, to the Luttinger model with long-range
Coulomb interactions, in order to describe some transport
coefficients of the LAB phase. More specifically, we will
compute the optical conductivity σ (ω) at T = 0 as a function
of the frequency ω of an applied ac electric field, and the
dc resistivity ρ(T ) as a function of temperature T with the
addition of weak short-ranged disorder. Since the effects of
disorder are relevant in the renormalization group flow sense
[22,23] for the LAB phase, they turn out to be important also
for the study of the transport properties of the system at low
temperatures.

The main results obtained in the paper are the following:
We find that σ (ω) in the LAB phase is characterized by
a small violation of the hyperscaling property in the clean
limit, in contrast to the low-energy effective theories that
possess Dirac quasiparticles in the excitation spectrum and
obey hyperscaling. Furthermore, on investigating the effects
of weak short-ranged disorder on the dc conductivity σdc(T ),
we find that σdc(T ) displays a stronger power-law suppression
at low temperatures compared to the corresponding result in
the clean limit. We then compare this theoretical result with
the available experimental data.

The paper is structured as follows. In Sec. II, we define
the LAB phase for the Luttinger Hamiltonian coupled with
long-range Coulomb interactions. Then, we calculate the op-
tical conductivity of the LAB phase up to two-loop order
in Sec. III, using the Kubo formula. Next, in Sec. IV, we
calculate the dc resistivity of the model as a function of
temperature, with the addition of weak short-ranged disorder
using the memory matrix formalism. Finally, in Sec. V, we
end with a summary and some outlook. Appendix A illustrates
the derivation of some relations involving the 	 = 2 spherical
harmonics in d spatial dimensions that are useful for the loop
integrals. The details of the two-loop calculations have been
explained in Appendices B and C.

II. MODEL

We consider a spin-orbit coupled system, in which the
states near k = 0 at the Fermi energy are split into four-
fold degenerate angular momentum j = 3/2 states. The k · p
Hamiltonian for the noninteracting system takes the following
effective form:

H0 = k2

2m′ −
5
4 k2 − (k · J )2

2m
, (1)

FIG. 1. The noninteracting dispersion εk of the isotropic Lut-
tinger semimetal [see Eq. (2)] shows quadratic band touching at the
Brillouin-zone center. Here, we choose m = 1 and m′ = 0.5. For
visualization, εk is shown as a function of kx and ky (i.e., we set
kz = 0).

where J is the three-vector of the angular momentum opera-
tors transforming as the T2 representation of the cubic group.
This model is also known as the Luttinger Hamiltonian [33].
The system harbors quadratic band crossings at the Brillouin-
zone center in three spatial dimensions (see Fig. 1), where the
low-energy bands can be cast in terms of a four-dimensional
representation of the lattice symmetry group [21,34,35] as
follows:

H0 =
5∑

a=1

da(k) �a + k2

2 m′ , da(k) = d̃a(k)

2 m
, (2)

where the �a matrices are the rank-four irreducible represen-
tations of the Clifford algebra relation {�a, �b} = 2 δab in the
Euclidean space. We have used the common notation {A, B} =
AB + BA for denoting the anticommutator. There are five such
matrices that are related to the familiar gamma matrices of
the Dirac equation (plus the matrix conventionally denoted as
�5), but with the Euclidean metric (instead of the Minkowski
metric). In d = 3, the space of 4×4 Hermitian matrices is
spanned by the identity matrix, the five 4×4 Gamma matrices
�a, and the ten distinct matrices �ab = 1

2i [�a, �b]. Further-
more, the d̃a(k)’s are the 	 = 2 spherical harmonics that have
the following structure:

d̃1(k) =
√

3 ky kz, d̃2(k) =
√

3 kx kz, d̃3(k) =
√

3 kx ky,

d̃4(k) =
√

3
(
k2

x − k2
y

)
2

, d̃5(k) = 2 k2
z − k2

x − k2
y

2
. (3)

The isotropic k2

2 m′ term in Eq. (2) with no spinor structure
makes the band masses of the conduction and valence bands
unequal.

The Euclidean action of the interacting system can be writ-
ten as

S0 =
∫

dτ d3x
[ Nf∑

i=1

ψ
†
i (τ, x){∂τ + H0 + i e ϕ(τ, x)}ψi(τ, x)

+ c

2
{∇ϕ(τ, x)}2

]
, (4)
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e2 Λε/2 V (q)
2 c

ω + Ω,k + q ω − Ω,k − q

ω,k ω ,k

FIG. 2. The four-fermion vertex arising due to Coulomb
interactions.

where the Coulomb interactions are mediated by a scalar
boson field ϕ(x) with no dynamics, and Nf is the number of
fermionic flavors (to be explained below).

If we integrate out the scalar boson, the Coulomb interac-
tion shows up as an effective four-fermion term. Then the total
action takes the form

S =
Nf∑
i=1

∫
dω d3k
(2 π )4

ψ̃
†
i (ω, k)(−i ω + H0)ψ̃i(ω, k)

+ e2 �ε/2

2 c

Nf∑
i,i′=1

∫
dω dω′ d� d3q d3k d3k′

(2π )12

× V (|q|) ψ̃
†
i (ω, k) ψ̃i(ω + �, k + q)

× ψ̃
†
i′ (ω

′, k′) ψ̃i′ (ω
′ − �, k′ − q), (5)

where the Coulomb interaction vertex is given by e2 �ε/2

2 c V (|q|)
(see also Fig. 2), with V (|q|) = 1

q2 , in the momentum space.
The tilde over ψi indicates that it is the Fourier-transformed
version. We have also included a mass scale � such that e2

c is
dimensionless.

The bare Green’s function for each fermionic flavor is
given by

G0(ω, k) = i ω − k2

2 m′ + d(k) · �

−(
i ω − k2

2 m′
)2 + |d(k)|2

, (6)

where |d(k)|2 = k4

4 m2 . On occasions, to lighten the notation,
we will use dk to denote d(k).

This system turns out to be an NFL, which can be analyzed
by a controlled approximation using dimensional regulariza-
tion [21,27]. The LAB fixed point for the clean system is given
by e = e∗, where

e∗2 = 60 π2 c ε

m (4 + 15 Nf )
, (7)

and the dynamical critical exponent z at this fixed point is
given by z∗ = 2 − 4 ε/(15Nf + 4) [21], where ε = 4 − d ,
with d being the number of spatial dimensions. It is to be
noted that the results obtained using dimensional regulariza-
tion can also be obtained by large-Nf methods. Hence, we
have considered here a setting with Nf independent fermionic
flavors, although the physical case corresponds to Nf = 1.

Using the Noether’s theorem (see, e.g., Ref. [36]), the cur-
rent J and momentum P operators of the Luttinger semimetal

FIG. 3. Feynman diagram for the contribution to the current-
current correlation function at one-loop order.

are given by

J(q0, q)

=
∑

i

∫
dk0 dd k
(2 π )d+1

ψ̃
†
i (k0 + q0, k + q)[∇kd(k) ·�]ψ̃i(k0, k),

P(q0, q)

=
∑

i

∫
dk0 dd k
(2 π )d+1

(k + q/2)ψ̃†
i (k0 + q0, k + q) ψ̃i(k0, k),

(8)

which are associated with the global U(1) symmetry and con-
tinuous spatial translation invariance, respectively, of Eq. (4).

III. CURRENT-CURRENT CORRELATION FUNCTION
AND OPTICAL CONDUCTIVITY

In this section, we will compute the optical conductivity
σ (ω) = σzz(ω, q = 0) at T = 0 via the Kubo formula

σ (ω) = −〈Jz Jz〉(i �)

�

∣∣∣∣
i �→ω+i 0+

, (9)

for current flowing along the z direction. Here we will con-
sider the case with equal band masses, i.e., m′ = ∞. Since
the model is isotropic, the scaling relation is not dependent
on the choice of the direction of the current flow. We take
an approach similar to the ones taken in the context of NFL
models in the presence of a large Fermi surface [15,17,37].

We will employ the scheme developed by Moon et al.
[21], where the radial momentum integrals are performed with
respect to a d = 4 − ε dimensional measure

∫ |k|3−εd|k|
(2 π )4−ε , but

the � matrix structure is as in d = 3. The angular integrals are
performed only over the three-dimensional sphere parameter-
ized by the polar and azimuthal angles (θ, φ). However, the
overall angular integral of an isotropic function

∫
�̂

·1 is taken
to be 2 π2 (which is appropriate for the total solid angle in
d = 4), and the angular integrals are normalized accordingly.
Therefore, the angular integrations are performed with respect
to the following measure:∫

dS (. . .) ≡ π

2

∫ π

0
dθ

∫ 2π

0
dφ sin θ (. . .), (10)

where the π/2 is inserted for the sake of normalization. To
perform the full loop integrals, we will use the relations shown
in Appendix A.

A. One-loop contribution

The current-current correlation function at one-loop level
(see Refs. [38–42] for related work) is given by a simple
fermionic loop with two current insertions, as shown in Fig. 3.
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In the present model, it evaluates to

〈JzJz〉1loop(i ω) = −
Nf∑
i=1

∫
dk0

2π

∫
d3k

(2π )3
Tr

[{
∂kz d(k) · �

}
G0(k + q)

{
∂kz d(k) · �

}
G0(k)

]

= −Nf

∫
dk0

2π

∫
d3k

(2π )3
Tr

[{
∂kz d(k) · �

} i k0 + i ω + d(k) · �

−(i k0 + i ω)2 + |d(k)|2
{
∂kz d(k) · �

} i k0 + d(k) · �

−(i k0)2 + |d(k)|2
]

= −4 Nf

∫
dk0

2π

∫
d3k

(2π )3

−{
∂kz d(k)

}2
(k0 + ω) k0 + 1

4

{
∂kz d

2(k)
}2 − {

∂kz d(k)
}2

d2(k)[−(i k0 + i ω)2 + |d(k)|2][−(i k0)2 + |d(k)|2]
= −Nf m1− ε

2 |ω|2− ε
2

π2 ε
, (11)

where q = (ω, 0). Consequently, at zeroth order, the optical
conductivity σ (ω) is proportional to ω1− ε

2 . In d = 4 − ε, this
result then agrees with the so-called hyperscaling property,
where the optical conductivity is expected to scale as σ (ω) ∼
ω(d−2)/z for ω � T .

In the next subsection, we will consider the effect of the
Coulomb interactions and show how this affects the hyper-
scaling property of the Luttinger semimetal.

B. Two-loop contributions

At two loops, we obtain three Feynman diagrams shown in
Figs. 4(a)–4(c). The first two diagrams [Figs. 4(a) and 4(b)]
correspond to the fermion self-energy corrections (due to the
Coulomb interactions), given by the insertion of the one-loop
rainbow graph to the current-current correlator. We include a
factor of 2, since the diagrams in Figs. 4(a) and 4(b) give equal
contributions. This yields the result

〈JzJz〉(1)
2loop(i ω) = e2 Nf m2− ε

2 |ω|2− ε
2

90 π4 c ε2

(
�

m |ω|
)ε/2

−e2 Nf m2− ε
2 |ω|2− ε

2 ln
(m |ω|

�

)
180 π4 c ε

. (12)

The calculational details of the above equation can be found
in Appendix B 1. From the results presented in that Appendix,
one can also show that since the fermionic self-energy at

one-loop level does not have a frequency dependence, the
quasiparticle weight defined by ZF = (1 − lim

ω→0

∂
∂ω

�1(�))
−1

is

equal to unity at this order (we note, however, that corrections
to ZF do appear in higher-loop contributions). Moreover, if
one calculates the renormalized mass m∗, which is given by
the standard definition ( m

m∗ ) = ZF (1 + ∂
∂ε�

�1(�)|�=0), one ob-
tains that the effective mass satisfies m∗ → 0.

As for the diagram in Fig. 4(c), which refers to the simplest
vertex correction, it evaluates to

〈JzJz〉(2)
2loop(i ω) =

e2 Nf m2− ε
2 |ω|2− ε

2
(

�
m |ω|

)ε/2

120 π4 c ε2

−e2 Nf m2− ε
2 |ω|2− ε

2 ln
(m|ω|

�

)
240 π4 c ε

. (13)

Note that this vertex corresponds to the four-fermion vertex
(see Fig. 2), which arises from Coulomb interactions. Again,
the details of the calculations can be found in Appendix B 2.

C. Scaling of the optical conductivity up to two-loop order

In order to obtain the renormalized quantity in the effective
field theory model, we have to use the fact that 1

ε2 terms are
canceled by the corresponding counterterms of the renormal-
ized action [36]. We also use the value m e∗2

π2 c = 60 ε
4+15 Nf

at the
NFL fixed point. Gathering all the terms, the final expression
for 〈JzJz〉 up to two-loop order takes the form

〈JzJz〉(i ω) = 〈JzJz〉1loop(i ω) + 〈JzJz〉(1)
2loop(i ω) + 〈JzJz〉(2)

2loop(i ω) + 〈JzJz〉(1)
counterterms(i ω)

= −Nf m1− ε
2 |ω|2− ε

2

π2 ε
− e∗2 Nf m2− ε

2 |ω|2− ε
2 ln

(m|ω|
�

)
180 π4 c ε

− e∗2 Nf m2− ε
2 |ω|2− ε

2 ln
(m |ω|

�

)
240 π4 c ε

= −Nf m1− ε
2 |ω|2− ε

2

π2 ε

[
1 + 7 ε

12(4 + 15 Nf )
ln

(
m |ω|

�

)]

 −Nf m1− ε
2 |ω|2− ε

2 + 7 ε

12(4+15 N f )

π2 ε

( m

�

) 7 ε

12(4+15 N f )
, (14)
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FIG. 4. Feynman diagrams for the contributions to the current-
current correlation function at two-loop order. (a) and (b) represent
the diagrams with self-energy corrections, while (c) corresponds to
the diagram with vertex correction.

after reexponentiating the correction term coming from the
two-loop diagrams. Therefore, the corrected optical conduc-
tivity scales as

σ (ω) ∼ ω
1− ε

2 + 7 ε

12(4+15 N f ) , (15)

after including the leading order corrections.
Since the optical conductivity does not scale as ω(d−2)/z∗

,
where z∗ is the dynamical critical exponent at the LAB fixed
point, we conclude that there exists a small violation (propor-
tional to ε) of the hyperscaling for the optical conductivity in
the LAB phase. This should be contrasted with other effective
theories that possess Dirac quasiparticles in the excitation
spectrum, and obey hyperscaling.

IV. MEMORY MATRIX FORMALISM

The second method that we will use in this work to
calculate transport properties is the Mori-Zwanzig memory
matrix approach (see Refs. [43–56], for many successful ap-
plications of this formalism in various recent works). This
method turns out to be ideal to describe the strongly in-
teracting regime of the LAB phase, since: (i) it is not
based on the existence of well-defined quasiparticles at low
energies, and (ii) it can correctly describe the effective
nearly-hydrodynamic regime that is expected to govern the
complicated nonequilibrium dynamics of these systems. Here,
we will be concise in explaining the technicalities of this
formalism, as more details can be found in the literature
[50,55]. In this framework, the matrix of conductivities can be
written as

σ (ω, T ) = χR
JP(T )[

MPP(T ) − i ω χR
JP(T )

][
χR

JP(T )
]−1 , (16)

with χR
JP(T ) being the static retarded susceptibility (which

gives the overlap of the current and momentum in the model),
and MPP(T ) is the memory matrix. For transport along the z
direction, χR

JP(T ) is given by

χJzPz (T ) =
∫ β

0
dτ 〈Jz(τ ) Pz(0)〉. (17)

As for the memory matrix, to leading order, it is given by
(again, for transport along the z direction)

MPzPz (T ) =
∫ β

0
dτ

〈
Ṗ†

z (0)
i

ω − L0
Ṗz(i τ )

〉
, (18)

where L0 is the noninteracting Liouville operator. Conse-
quently, the dc conductivity [i.e., σdc(T ) ≡ σ (ω → 0, T )] is

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

FIG. 5. Plot of the current-momentum susceptibility χ
1loop
JzPz

(T )
at one-loop order versus temperature T . Here, we have chosen the
parameters m = 1, m′ = 5, Nf = 1, and the UV cutoff �0 for the
momentum integrals has been taken to the infinity limit (note that
this result does not depend on the UV cutoff). The temperature
dependence of this one-loop contribution is found to be |χ1loop

JzPz
(T )| ∼

0.170 T 3/2.

given by

σdc(T ) = χ2
JzPz

(T )

limω→0
Im GR

Ṗz Ṗz
(ω,T )

ω

, (19)

where GR
Ṗz Ṗz

(ω, T ) = 〈Ṗz(ω) Ṗz(−ω)〉0 is the corresponding
retarded correlation function in the Matsubara formalism.
The notation 〈. . .〉0 indicates that the average is in a grand-
canonical ensemble to be taken with the noninteracting
Hamiltonian of the system.

One important mechanism for momentum relaxation that
causes dissipation in the present transport theory is the cou-
pling of the fermions to (weak) disorder. For this reason, we
now add an impurity term that couples to the fermionic density
as represented by the action:

Simp =
∑

i

∫
dτ d3x W (x) ψ

†
i (τ, x) ψi(τ, x). (20)

We consider a weak uncorrelated disorder following a
Gaussian distribution: 〈W (x)〉avg = 0 and 〈W (x)W (x′)〉 =
W0 δ3(x − x′), where W0 represents the average magnitude
square of the random potential experienced by the fermionic
field. Therefore, to leading order in the impurity coupling
strength, we obtain the expression:

lim
ω→0

Im GR
ṖzṖz

(ω, T )

ω
≈ lim

ω→0
W0

∫
d3q

(2π )3

Im �R
0 (q, ω)

ω
, (21)

where �R
0 (q, ω) = �0(q, i ω → ω + i 0+) is the correspond-

ing retarded correlation function in the model, with the
polarizability �0(q, i ω) being given by

�0(q, i ω)

=−T Nf

∑
k0

∫
d3k

(2π )3
k2

z Tr[G0(k+q, i k0+i ω) G0(k, i k0)].

(22)

We now proceed to calculate χJzPz (T ) and MPzPz (T ) in the
static limit at finite temperatures in the following subsections.
Note that, unlike in the previous section, instead of performing
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a systematic ε expansion, we will work directly in d = 3 to
overcome technical complexity. Furthermore, we will use a

hard ultraviolet (UV) cutoff �0 for the the momentum inte-
grals, rather than using a dimensional regularization.

A. Current-momentum susceptibility at finite T

First we note that for equal band masses, implemented by taking the limit m′ → ∞, the current-momentum susceptibility
clearly vanishes at one-loop order, as only an odd power of k0 appears in the numerator. Furthermore, at two-loop order, the
contribution to the current-momentum susceptibility due to self-energy insertions [similar to the diagrams depicted in Figs. 4(a)
and 4(b)] is given by

−χJzPz/Nf =
(

e2

2 c

)
T 2

∑
k0,	0

∫
d3k d3�

(2π )6
kz Tr

[(
∂kz d(k) · �

)
G0(k0, k)

G0(	0, k + �)

�2 G0(k0, k) G0(k0, k)

]

=
(

e2

2 c

)
T 2

∑
k0,	0

∫
d3k d3�

(2π )6
kz

Tr
[(

∂kz d(k) · �
) i k0+d(k)·�

(i k0 )2−|d(k)|2
d(k)·�

(i 	0 )2−|d(k)|2
i k0+d(k)·�

(i k0 )2−|d(k)|2
i k0+d(k)·�

(i k0 )2−|d(k)|2
]

(k + �)2 = 0, (23)

which also vanishes, as it also contains only odd powers of k0 in the numerator after performing the trace in the above integral.
One can verify that the same result holds for the two-loop diagram with the vertex correction, similar to Fig. 4(c). In fact, this
vanishing result holds for all higher-order loops. This is related to the particle-hole symmetry of the model, which is present
for equal band masses. Since J and P are odd and even, respectively, under particle-hole symmetry, their overlap (i.e., the
current-momentum susceptibility) must be zero at all loop orders.

The vanishing of χJzPz (T ) no longer holds for finite m′ (i.e., for unequal conduction and valence band masses). For this reason,
we will analyze the effect of higher-order corrections of the current-momentum susceptibility for finite m′.

We first calculate the free fermion susceptibility. It evaluates to

χ
1loop
JzPz

(T ) = − lim
q→0

T Nf

∑
k0

∫
d3k

(2π )3
kz Tr

[(
∂kz d(k) · �

)
G0(k0, k + q) G0(k0, k)

]

= −4 T Nf lim
q→0

∑
k0

∫
d3k

(2π )3
kz

(
i k0 − (k+q)2

2m′
) kz k2

2m2 + (
i k0 − k2

2m′
)
∂kz d(k) · d(k + q)[(

i k0 + i ω − (k+q)2

2m′
)2 − |dk+q|2

][(
i k0 − k2

2m′
)2 − |dk|2

] . (24)

We then perform the above summation over the fermionic Matsubara frequency k0 using the method of residues using the
standard formula

T
∑
ωn

h(ωn) =
∑

zk

Res[nF (z) h(−i z)]

∣∣∣∣
zk= Poles of h(−i z)

, (25)

where Res[...] denotes the residue, and nF (z) = 1
ez/T +1 is the Fermi-Dirac distribution function. Next we solve Eq. (24) by means

of both analytical and numerical techniques using the software Mathematica, and obtain that χ
1loop
JzPz

(T ) ∼ T 3/2 (see Fig. 5).
One can easily check that there are only three Feynman diagrams at two-loop order. The corresponding diagrams are similar

to the ones in Figs. 4(a)–4(c). These contributions evaluate to χ
2loop
JzPz

(T ) = χ
(2,1)
JzPz

(T ) + χ
(2,2)
JzPz

(T ), where

χ
(2,1)
JzPz

(T ) ∼
(

8 e2�0

15π2c T

)
Nf T

∑
k0

∫
d3k

(2π )3
kz

[(
i k0 − k2

2m′
)3(

∂kz dk · dk
) + 3

(
i k0 − k2

2m′
)(

∂kz dk · dk
)|dk|2

]
[(

i k0 − k2

2m′
)2 − |dk|2|

]3 , (26)

χ
(2,2)
JzPz

(T ) ∼
(

e2 �0

2π2c T

)
Nf T

∑
k0

∫
d3k

(2π )3
kz

(
i k0 − k2

2m′
)(

∂kz dk · dk
)

[(
i k0 − k2

2m′
)2 − |dk|2|

]2 . (27)

We provide the detailed steps of the calculation in Appendix C. Finally, we evaluate the expressions in Eqs. (26) and (27)
numerically, and obtain that χ

2loop
JzPz

(T ) ∼ e2

c T 1/2 (see Fig. 6).

B. Memory matrix calculation

We now compute the Feynman diagram associated with the calculation of the memory matrix to leading order, as shown in
Fig. 7, which is given by

M (0)
PzPz

(T ) = −W0 Nf lim
ω→0

Im
[ ∫ d3k d3q

(2π )6 k2
z T

∑
k0

Tr[G0(ω + k0, k + q) G0(k0, k)]
]∣∣

i ω→ω+i δ

ω

= −4W0 Nf lim
ω→0

Im
[ ∫ d3k d3q′

(2π )6 k2
z T

∑
k0

{
i k0+i ω− (k+q)2

2m′
}(

i k0− k2

2m′
)
+(dk+q·dk ){(

i k0− (k+q)2

2m′
)2−|dk+q|2

}{
(i k0− k2

2m′ )
2−|dk|2

} ]∣∣
i ω→ω+i δ

ω
. (28)
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FIG. 6. Plot of the current-momentum susceptibility χ
2loop
JzPz

(T ) at
two-loop order vs temperature T . Here, we have chosen the param-
eters m = 1, m′ = 5, e = 0.1, c = 1, Nf = 1, and �0 = 150. The
temperature dependence of this two-loop contribution is found to be
|χ (2loop)

JzPz
(T )| ∼ 0.005 T 1/2.

As before, the summation over k0 is evaluated using the
method of residues. After performing the analytical contin-
uation, the resulting integral is then evaluated numerically,
which finally gives M (0)

PzPz
(T )/W0 ∼ a′ + b′/T (see Fig. 8),

where a′ and b′ (b′ � a′) are nonuniversal constants that de-
pend only on the UV cutoff �0. These constants are such that
a′ scales as �2

0 and b′ scales as �4
0, leading to a′

b′ → 0 for
�0 → ∞. Therefore, the final expression can be effectively
approximated as M (0)

PzPz
(T ) ≈ b′/T at low temperatures.

C. Scaling of dc conductivity

Taking into account all contributions, the scaling of the dc
conductivity of the LAB phase in the presence of weak short-
ranged scalar disorder is given by

σdc(T ) ≡ 1

ρ(T )
= |χJzPz (T )|2

MPzPz (T )
∼ T n, where 2 � n � 4,

(29)

and ρ(T ) is the resistivity. It is important to compare this
expression with the dc conductivity of the LAB phase in the
clean limit. If we assume that ω/T scaling of the conduc-
tivity holds for the present system, this quantity is given by

FIG. 7. Feynman diagram for the calculation of the leading-
order contribution M (0)

PzPz
(T ) to the memory matrix. The solid line

represents the bare fermionic propagator, whereas the dashed line
represents the impurity line that carries only internal momentum and
external energy ω.

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

FIG. 8. Plot of M (0)
PzPz

(T ) vs temperature T . Here, we have chosen
the parameters W0 = 1, Nf = 1, m = 1, m′ = 5, and �0 = 150. To
obtain the memory matrix, we have performed the analytical con-
tinuation i ω → ω + i δ, where we have set δ = 10−9. The curve
corresponds to the fit given by g(T ) = a′ + b′/T , where the parame-
ters a′ ≈ 0.059 and b′ ≈ 211.25 depend only on the UV cutoff �0.

σdc(T ) ∼ T α∗
in the clean limit according to our previous

calculation in this work, where α∗ ≈ 0.53 is the renormalized
exponent that violates hyperscaling at the LAB fixed point for
d = 3 and Nf = 1. This implies that σdc(T ) in the presence
of disorder displays a stronger power-law suppression as a
function of temperature, which is an expected feature since
the influence of disorder is a relevant perturbation in the
vicinity of the LAB fixed point [22,23]. It is also interesting
to compare our theoretical results with recent transport experi-
ments [57] performed on Luttinger semimetal compounds like
pyrochlore iridates [(Y1−xPrx )2Ir2O7]. In these compounds,
some degree of disorder is always present, and the dc resistiv-
ity has been found to follow the power law ρ(T ) ∼ T −n, with
the exponent being n ≈ 2.98 at zero doping [57]. Therefore,
we conclude that our calculation is in qualitative agreement
with these experimental data.

V. SUMMARY AND OUTLOOK

In this paper, we have computed the scaling behavior of
the optical conductivity and the dc conductivity of the LAB
phase of Luttinger semimetals, by means of the Kubo formula
and the Mori-Zwanzig memory matrix method, respectively.
We have found that the optical conductivity in the LAB
phase is characterized by a small violation (proportional to
ε = 4 − d) of the hyperscaling property in the clean limit, in
contrast to the low-energy effective theories that possess Dirac
quasiparticles in the excitation spectrum (which obey hyper-
scaling). In the computations for dc conductivity σdc(T ), we
have included the effects of weak short-ranged scalar disorder.
We have shown that σdc(T ) exhibits a stronger power-law
suppression at low temperatures compared to the correspond-
ing result in the clean limit. This was an expected feature
since the influence of disorder is a relevant perturbation in
the system. Lastly, we have directly compared our theoretical
prediction with recent experiments performed in disordered
Luttinger semimetal materials like the pyrochlore iridates [57]
and found qualitative agreement with the experimental data.
In some other experiments [58], the experimentalists have
measured the optical conductivity in the Luttinger semimetal
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material Pr2Ir2O7, but they could not tune the Fermi energy
low enough to touch the band-crossing point. Their sample
was thus a slightly doped Luttinger semimetal, where they
found a number of signatures that are precursors to the LAB
physics. Further experiments are planned in this direction,
which will hopefully support our analytical findings. More-
over, from a theoretical point of view, it will be interesting to
see if other computational strategies, such as the Kubo for-
mula or the kinetic Boltzmann equation are able to reproduce
the dc conductivity at T > 0 due to weak-disorder effects,
obtained here using the memory matrix approach.

We would like to point out that we have computed the
finite-temperature scalings of the thermal conductivity and the
thermoelectric coefficient of the LAB phase in a companion

paper [59]. Finally, we would like to stress that it would be
extremely interesting to investigate the effects of magnetic
field on the magnetoresistance and the Hall coefficient of the
LAB phase, and compare the results with the corresponding
experimental data available for the pyrochlore iridates [57].
The magnetic field breaks time-reversal symmetry and, in
view of this, it must be a strongly relevant perturbation that
ultimately makes the LAB fixed point unstable at low energy
scales.
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APPENDIX A: da-FUNCTION ALGEBRA

We derive a set of useful relations [35,60] for the vector functions d(k) (whose components da(k) are the 	 = 2 spherical
harmonics in d spatial dimensions) and the generalized real d × d Gell-Mann matrices �a (a = 1, 2, . . . , N). The matrices �a

are symmetric, traceless, and orthogonal, satisfying

Tr[�a �b] = 2 δab,

N∑
a=1

(�a)i j

(
�a

l j′
) = δil δ j j′ + δi j′ δ jl − 2

d
δi j δl j′ . (A1)

Hence, the index a (or b) runs from 1 to N = (d−1)(d+2)
2 . We define the components of d(k) by

da(k) =
√

d

2(d − 1)

d∑
i, j=1

ki(�a)i jk j

2 m
. (A2)

This gives the following identities:

∂kz da(k) =
√

d

2(d − 1)

∑d
j=1 (�a)z jk j + ∑d

i=1 ki(�a)iz

2 m
=

√
2 d

d − 1

∑d
j=1 (�a)z jk j

2 m
,

N∑
a=1

{
∂kz da(k)

}2 = 2 d

d − 1

d∑
i

(
δii + δiz δzi − 2

d δiz δiz
)
k2

i

4 m2
= d × (

k2 + d−2
d k2

z

)
2 m2(d − 1)

,

N∑
a=1

da(k) da(p) = d (k · p)2 − k2 p2

4 m2(d − 1)
,

N∑
a=1

[
∂kz da(k)

]
da(p) = kz{d (k · p) − p2}

2 m2(d − 1)
,

N∑
a=1

[∂pz da(p)]
[
∂kz da(k)

] =
N∑

a=1

2 d

4 m2(d − 1)

d∑
j=1

(�a)z j p j

d∑
j′=1

(�a)z j′k j′ = d p · k + (d − 2) pz kz

2 m2(d − 1)
. (A3)

For the special case of p = k, we obtain

N∑
a=1

d2
a (k) = k4

4 m2
,

1

2
∂kz

N∑
a=1

d2
a (k) = kzk2

2 m2
. (A4)

APPENDIX B: TWO-LOOP CONTRIBUTIONS TO THE CURRENT-CURRENT CORRELATORS

1. Self-energy corrections

The diagrams in Figs. 4(a) and 4(b) involve inserting the one-loop fermion self-energy (�1) corrections into the current-
current correlator. We include a factor of 2 as the two diagrams give equal contributions and the expression incorporating this
correction takes the form

〈JzJz〉(1)
2loop(i ω) = −2

Nf∑
i=1

∫
dk0

2π

∫
dd k

(2π )d
Tr[{∂kz d(k) · �}G0(k + q) �1(k + q)G0(k + q){∂kz d(k) · �} G0(k)], (B1)
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where �1(�) = − m e2

15 π2 c ( �1/2

|�| )
ε d(�)·�

ε
(see Refs. [22,23]). This gives us

〈JzJz〉(1)
2loop(i ω) = 2 Nf m e2

15 π2 c ε

∫
dk0

2π

∫
dd k

(2π )d

(
�1/2

|k|
)ε

term1

{k2
0 + |d(k)|2}2{(k0 + ω)2 + |d(k)|2} , (B2)

where

term1 = Tr
[{

∂kz d(k) · �
}{i k0 + d(k) · �}{d(k) · �}{i k0 + d(k) · �}{∂kz d(k) · �

}{i k0 + i ω + d(k) · �}]
= −k2

0 Tr
[{

∂kz d(k) · �
}{d(k) · �}{∂kz d(k) · �

}{d(k) · �}]
− 2 k0(k0 + ω)Tr

[{
∂kz d(k) · �

}{d(k) · �}{d(k) · �}{∂kz d(k) · �
}]

+ Tr
[{

∂kz d(k) · �
}{d(k) · �}{d(k) · �}{d(k) · �}{∂kz d(k) · �

}{d(k) · �}]
= −4 k2

0

[
2
{
∂kz d(k) · d(k)

}2 − {
∂kz d(k) · ∂kz d(k)

}|d(k)|2
]

− 8 k0(k0 + ω)
{
∂kz d(k) · ∂kz d(k)

}|d(k)|2

+ 8
{
∂kz d(k) · d(k)

}2|d(k)|2 − 4
{
∂kz d(k) · ∂kz d(k)

}|d(k)|4

= k2
0 k6 × (6 − 5 d ) sin2 θ − d

2(d − 1)m4
− k0 ω k6 × d + (d − 2) sin2 θ

(d − 1)m4
+ k10

[
(3 d − 2) sin2 θ − d

]
8(d − 1)m6

, (B3)

using the identities from Appendix A.
Performing the integrals, we finally get

〈JzJz〉(1)
2loop(i ω) = e2 Nf m2− ε

2 |ω|2− ε
2

90 π4 c ε2

(
�

m ω

)ε/2

− e2 Nf m2− ε
2 |ω|2− ε

2 ln
(m |ω|

�

)
180 π4 c ε

. (B4)

2. Vertex corrections

The diagram in Fig. 4(c) equals 〈JzJz〉(2)
2loop(i ω), where

〈JzJz〉(2)
2loop(i ω)

e2 �ε/2

2c

=
Nf∑
i=1

∫
dk0 d	0

(2π )2

∫
dd k dd�

(2π )2d
Tr

[{
∂kz d(k) · �

}
G0(k + q)

1

�2 G0(k + q + 	)
{
∂kz+	z d(k + �) · �

}
G0(k + 	) G0(k)

]

=
Nf∑
i=1

∫
dk0 d	0

(2π )2

∫
dd k dd�

(2π )2d
Tr

[{
∂kz d(k) · �

}
G0(k0 + ω, k)

1

�2 G0(	0 + ω, k + �)
{
∂kz+	z d(k + �) · �

}
G0(	0, k + �) G0(k0, k)

]
.

(B5)

with 	 = (	0, �), We observe that the expression to be evaluated is

〈JzJz〉(2)
2loop(i ω)

e2 �ε/2

2 c

= Nf

∫
dd k dd�

(2π )2d
Tr

[∫ dk0
2π

G0(k0 − ω, k)
{
∂kz d(k) · �

}
G0(k0, k)

∫ d	0
2π

G0(	0 + ω, �)
{
∂	z d(�) · �

}
G0(	0, �)

(k + �)2

]
,

(B6)

after some clever regrouping of the terms in the integrand. Evaluating∫
d	0

2π
G0(	0 + ω, �){∂	z d(�) · �}G0(	0, �) =

∫
d	0

2π

−	0(	0 + ω)∂	z d(�) · � + i(2 	0+ω)	z �2

2 m2 + d(�)·� 	z �2

2 m2

{(	0 + ω)2 + |d(�)|2}{	2
0 + |d(�)|2}

= [2 	z d(�) − �2 ∂	z d(�)] · �

2 m
(

�4

m2 + ω2
) , (B7)

we get

〈JzJz〉(2)
2loop(i ω)

e2 �ε/2 Nf

2 c

=
∫

dd k dd�

(2π )2d
Tr

[[
2 kz{d(k) · �} − k2

{
∂kz d(k) · �

}][
2 	z{d(�) · �} − �2{∂kz d(�) · �

}]
4 m2(k + �)2( k4

m2 + ω2
)(

�4

m2 + ω2
)

]

=
∫

dd k dd�

(2π )2d

kz 	z {d (k · �)2 − k2 �2} − 2 kz 	z k2{d (k · �) − �2} + k2 �2 d k·�+(d−2) kz 	z

2

m4(d − 1)(k + �)2( k4

m2 + ω2
)(

�4

m2 + ω2
) , (B8)
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using the identities from Appendix A. Performing the integrals, we finally obtain

〈JzJz〉(2)
2loop(i ω) =

e2 Nf m2− ε
2 |ω|2− ε

2
(

�
m |ω|

)ε/2

120 π4 c ε2
− e2 Nf m2− ε

2 |ω|2− ε
2 ln

(m|ω|
�

)
240 π4 c ε

. (B9)

APPENDIX C: TWO-LOOP CONTRIBUTIONS TO THE CURRENT-MOMENTUM SUSCEPTIBILITY

For the contributions at two-loop order represented by diagrams with self-energy insertions [similar to the diagrams in
Figs. 4(a) and 4(b)], we get the expression

χ
(2,1)
JzPz

(T ) = −2 T Nf

∑
k0

∫
d3k

(2π )3
kz Tr

[{
∂kz d(k) · �

}
G0(k0, k) �T (k0, k) G0(k0, k) G0(k0, k)

]
, (C1)

where

�T (k0, k) = −e2

c
T

∑
	0

∫
d3�

(2π )3

G0(k0 + 	0, k + �)

�2 = − e2

15π2c

[
�0

T
{d(k) · �} − 5 m

4 �IR

∣∣d(k)
∣∣], (C2)

where �0 and �IR correspond to the ultraviolet and infrared cutoff scales, respectively. In order to obtain the leading-order
scaling in T of χ

(2,1)
JzPz

(T ), we can neglect the temperature independent term in Eq. (C2). Performing the trace in Eq. (C1), we
obtain

χ
(1)
JzPz

(T )/Nf ∼
(

2 e2 �0

15 π2 c T

)
T

∑
k0

∫
d3k

(2π )3
kz

4
(
i k0 − k2

2m′
)3(

∂kz dk · dk
) + 12

(
i k0 − k2

2m′
)(

∂kz dk · dk
)|dk|2[(

i k0 − k2

2m′
)2 − |dk|2|

]3 . (C3)

For the two-loop diagram with the vertex correction [similar to Fig. 4(c)], we get the expression

χ
(2,2)
JzPz

(T ) = −T Nf

∑
k0

∫
d3k

(2π )3
kz Tr

[{
∂kz d(k) · �

}
G0(k0, k) �̃1(k0, k) G0(k0, k)

]
, (C4)

where

�̃1(k0, k) = −2 e2

c
T

∑
	0

∫
d3�

(2π )3

G0(k0 + 	0, k + �) G0(k0 + 	0, k + �)

�2 = − e2

16π2c T

(
�0 + 2 m

3 �IR

∣∣d(k)
∣∣). (C5)

Plugging this in, we get

χ
(2,2)
JzPz

(T )/Nf =
(

e2

16π2c T

)
T

∑
k0

∫
d3k

(2π )3
kz

(
�0 + 2 m

3 �IR
|d(k)|

)
8
(
i k0 − k2

2m′
)(

∂kz dk · dk
)

[(
i k0 − k2

2m′
)2 − ∣∣dk

∣∣2]2
. (C6)

In order to obtain the leading-order dependence on T , we can neglect the second term in Eq. (C5).
In Fig. 6, we show the numerical result for χ

2loop
JzPz

(T ) = χ
(2,1)
JzPz

(T ) + χ
(2,2)
JzPz

(T ) as a function of temperature.
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