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The treatment of intershell interactions remains a major challenge in the theoretical description of strongly
correlated materials. Most previous approaches considered the influence of intershell interactions at best in a
static fashion, neglecting dynamic effects. In this paper, we propose a slave-rotor method that goes beyond this
approximation by incorporating the effect of intershell interactions in a dynamic manner. Our method is derived
and implemented as a quantum impurity solver in the context of dynamical mean field theory and benchmarked
on a two-orbital model system. The results from our slave-rotor technique are found to be in good agreement
with our reference calculations that include intershell interactions explicitly. We identify and analyze qualitative
features emerging from the dynamic treatment. Our results thus provide qualitative new insights, revealing the
ambivalent effect of intershell interactions in strongly correlated materials.
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I. INTRODUCTION

Transition metal oxides (TMOs) constitute one of the most
fascinating classes of solids. Historically, they were the first
systems for which a breakdown of band theory was observed
[1,2] and, since then, the interest in these compounds has
hardly declined. The interaction-driven localization of elec-
trons [3,4]—the Mott metal-insulator transition and various
ordering phenomena involving spin, charge, or orbital degrees
of freedom or superconductivity are only examples of the rich
physics displayed in these compounds [5].

From a microscopic perspective, the properties of TMOs
are largely dictated by the Coulomb interactions felt by the
electrons in the d orbitals on the transition metal (TM) ions.
Even though these interactions are screened by intra-atomic,
anionic, and intersite processes, typical values of the effective
interactions still exceed several eV, and are thus compa-
rable to or even larger than the relevant kinetic energies
[6–15].

Early theories, developed since the 1960s, have set up
effective lattice models for describing the physics emerging
from the interplay of Coulomb interactions and kinetic energy
in TMOs. The most famous of these is probably the Hubbard
model [6], which offers a minimal description of correlated
systems, considering only a single orbital. Despite its sim-
plicity, it incorporates many of the effects found in strongly
correlated materials, such as the Mott metal-insulator transi-
tion [3,4], antiferromagnetism [16,17], or—depending on the
lattice under consideration—superconductivity [18–21].

Based on these early successes, more recently, intense re-
search lines focusing on a quantitative theoretical description

*jakob.steinbauer@polytechnique.edu

of correlated TMOs have emerged. The single orbital Hubbard
model is indeed often a crude oversimplification. In most
materials, more than one electronic band crosses the Fermi
level and a faithful description of the physics thus requires
low-energy models comprising multiple orbitals. In the case
of TMOs, many of their interesting electronic response prop-
erties can be attributed to the strongly correlated nature of the
partially filled TM d shells. Orbital degeneracies (or lifting
thereof by crystal field splittings) [22–24], electronic filling,
and hybridizations provide additional degrees of freedom con-
tributing to the rich landscape of phenomena observed in
TMOs [5].

The challenge to theory consists of the derivation of ef-
fective low-energy Hamiltonians taking these microscopic
details into account. Ideally, this should be done by means of
appropriate downfolding techniques [25] applied directly to
the continuum Coulomb Hamiltonian. However, constructing
the interacting part of a low-energy Hamiltonian is a deli-
cate issue. Here, immense progress has been made with the
development of the constrained random phase approxima-
tion [10,11] (cRPA) method. Within the cRPA, the partially
screened effective Coulomb interactions are calculated by
considering screening from degrees of freedom that lie outside
of the low-energy window of interest.

Such (semi)quantitative approaches nowadays provide ac-
cess to explicit estimates of the effective Coulomb interactions
and have revealed that not only the celebrated local Hubbard
U on the TM d-shell is non-negligible: Depending on the com-
pound, nonlocal interactions or intershell interactions between
the d shell and ligand p orbitals can become important as
well. This is consistent with early discussions on screening
phenomena in solids [26–28] and has also been the starting
point to recent investigations studying the renormalization of
local Coulomb interactions by intershell interactions [29].
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Including the ligand p states can have important conse-
quences on the physics [30,31], especially for compounds
assigned to the family of the late TMOs, where charge
transfer is found to play an important role [32,33]. Za-
anen et al. early on argued that, besides the effective
d orbital Coulomb interaction, the charge-transfer energy
constitutes a central quantity in the characterization of
TMOs [32].

To describe the physics of the late TMOs, the state of the art
thus consists of considering so-called d-p models that include
both TM d orbitals, as well as ligand p orbitals. To get on top
of the increasing complexity of performing numerical calcu-
lations on such models, the p states are commonly treated as
uncorrelated and intershell interactions are either ignored or
treated within static mean-field schemes.

Recently, an approach to include the effect of intershell
interactions was suggested with the so-called shell-folding
[29] scheme. Within shell folding, interactions of the corre-
lated orbitals are treated on the same footing as intershell
interactions with the ligands. It’s basic assumption is per-
fect screening of the correlated orbitals by the neighboring
ligands, i.e., that the total charge within each Wigner-Seitz
cell is a conserved quantity [27]. This permits us to derive
an effective low-energy model without intershell interactions
and with statically renormalized (reduced) effective Coulomb
interactions.

However elegant the shell-folding approximation is, its
dependence on the perfect screening assumption means that
it will break down whenever charge fluctuations become too
strong. Instead of pursuing such a procedure, one might
consider skipping the final down-folding step and directly
attempt to solve the low-energy model including intershell
correlations and correlated ligands. This might work for the
most simple model Hamiltonians; in the case of more realistic
multiorbital systems, however, the problem quickly becomes
intractable.

In this paper, we propose a method that goes beyond
the shell-folding approximation by explicitly incorporating
charge fluctuations at moderate computational cost. Our
method is to be understood as a solver for impurity models
with intershell interactions. A slave rotor [34,35] approach
allows deriving a shell-folding-like Hamiltonian that can be
treated by means of standard QMC methods, while the in-
tershell contribution is treated analytically. A similar hybrid
approach has already successfully been applied to models
with dynamic Hubbard interaction [36].

The paper is outlined as follows. In Sec. II, we describe the
model systems under consideration and give a short review
of the shell-folding approximation upon which our technique
is built. In Sec. III, we then derive our method to efficiently
include dynamic effects from ligand interactions. We discuss
approximations to be applied in practice, their physical mean-
ing, and possibilities for improvement. In Sec. IV, we test our
slave rotor technique on a two-orbital model that incorporates
intershell interactions in a minimal fashion. Our method is
benchmarked in various parameter regimes and compared
to the shell-folding technique, as well as calculations us-
ing a Hartree-Fock mean-field approximation. In Sec. V,
we summarize our findings and give an outlook of possible
applications.

II. THE MODEL: FROM THE LATTICE TO THE
IMPURITY

As a starting point for our derivation, we consider a low-
energy model comprised of orbitals from two different shells.
Throughout the paper, we will refer to them as d and p,
inspired by the TM d orbitals and ligands p orbitals. We
emphasize, however, that our scheme can be applied to a
larger class of compounds, such as, e.g., f-electron systems.
The problem shall then be solved within dynamical mean-field
theory (DMFT) [37], which maps the original lattice model
onto an interacting impurity connected to an uncorrelated
bath, which is to be determined self-consistently.

In the following sections, we will elaborate a method to
effectively describe the d-p interactions of such models at the
cost of solving a model with interacting d orbitals only. In
Sec. III C, we then discuss how this scheme can be used in the
context of DMFT.

A. The d-p model

Within DMFT, a multiorbital lattice model is mapped onto
a quantum impurity model, which is described by the follow-
ing Hamiltonian:

H = H0 + Hint + Hhyb. (1)

Here, we consider the case of a d-p model with Nd + N p

orbitals, where Nd and N p are the numbers of the correlated d
orbitals and the ligand p orbitals, respectively. The noninter-
acting part of the Hamiltonian then reads

H0 =
∑
mσ

d†
mσ

( − μ + εd
m

)
dmσ +

∑
nσ

p†
nσ

( − μ + ε p
n

)
pnσ

+
∑
mnσ

(
Vmnd†

mσ pnσ + H.c.
)
, (2)

and explicitly considers on-site hybridization between the or-
bitals of the two shells. The second term in Eq. (1) describes
the Coulomb interactions

Hint = 1

2

∑
(mσ )�=(m′σ ′ )

U dd
mσm′σ ′ n̂d

mσ n̂d
m′σ ′

+ 1

2

∑
(nσ )�=(n′σ ′ )

U pp
nσn′σ ′ n̂p

nσ n̂p
n′σ ′ + U d p

∑
σσ ′

N̂d
σ N̂ p

σ ′ . (3)

It includes intra- and intershell interactions, with N̂ (d/p)
σ =∑

m n̂(d/p)
mσ .

Finally, the last term in Eq. (1) describes the hybridization
between the correlated quantum impurity and the surrounding
bath sites. It takes the form

Hhyb =
∑

mm′kσ

d†
mσV dd

mm′kbd
m′kσ + H.c.

+
∑
mnkσ

{
d†

mσV d p
mnkbp

nkσ
+ p†

nσV pd
nmkbd

mkσ

} + H.c.

+
∑
nn′kσ

p†
nσV pp

nn′kbp
n′kσ

+ H.c.

+
∑
mkσ

Ed
mkbd†

mkσ
bd

mkσ +
∑
nkσ

E p
nkbp†

nkσ
bp

nkσ
, (4)
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where the V ’s describe the hybridization strengths, while the
E ’s specify the bath-site energies.

Switching to a functional integral formalism, this last term
can be brought to a more elegant form by integrating out the
bath sites,

Shyb =
∑

iω

{∑
mm′σ

d†
mσ (iω)�dd

mm′ (iω)dm′σ (iω)

+
∑
nn′σ

p†
nσ (iω)�pp

nn′ (iω)pn′σ (iω)

+
∑
mnσ

(
d†

mσ (iω)�d p
mn(iω)pnσ (iω) + H.c.

)}

=
∑
iωσ

( �d†
σ (iω) �p†

σ (iω)
)
�d p(iω)

( �dσ (iω)

�pσ (iω)

)
,

(5)

where in the last line, we introduced a vector/matrix notation
with( �d†

σ �p†
σ

)
= (

d†
1σ d†

2σ . . . d†
Nd σ �p†

1σ �p†
2σ . . . �p†

N pσ

)
(6)

to get a more compact expression. The hybridization functions
�dd

mm′ (iω), �
pp
nn′ (iω), and �

d p
mm′ (iω) are related to the parame-

ters in Eq. (4) by

�dd
mm′ (iω) =

∑
m′′k

V dd
mm′′kV

dd∗
m′′m′k

iω − Ed
m′′k

+
∑

nk

V d p
mnkV

pd∗
nm′k

iω − E p
nk

, (7)

�
pp
nn′ (iω) =

∑
n′′k

V pp
nn′′kV

pp∗
n′′n′k

iω − E p
n′′k

+
∑
mk

V pd
nmkV

d p∗
mn′k

iω − Ed
mk

, (8)

�d p
mn(iω) =

∑
m′′k

V dd
mm′′kV

d p∗
m′′nk

iω − Ed
m′′k

+
∑
n′′k

V d p
mn′′kV

pp∗
n′′nk

iω − E p
n′′k

. (9)

They will be determined from the DMFT self-consistency
condition, incorporating the structure of the lattice. In this
sense, a nonzero �

d p
mm′ (iω) arises from intersite hopping from

one shell to another.
In the following, it will be convenient to introduce the

(Nd + N p) × (Nd + N p) matrix Green’s function:

Gσ (τ ) = −
〈( �dσ (τ )

�pσ (τ )

)( �d†
σ (0) �p†

σ (0)
)〉

. (10)

Considering the case of TMOs, it might seem odd to find
the ligand p orbitals on the same impurity as the d orbitals
corresponding to the TM. In realistic materials, such as NiO
or the cuprate superconductors, the TM atoms are rather sur-
rounded by their oxygen ligands. The choice of our model
can, however, be justified by considering a Zhang-Rice-type
construction [38], in which a unitary transformation is applied
to change basis from the original ligands to Wannier orbitals,
centered on the TMs. For details about the derivation, the
reader may refer to the original paper by Zhang and Rice [38];
a more pedagogic introduction can be found here [39].

Impurity models like Eq. (1) constitute complex many-
body problems, for which there is, in general, no analytic
solution. Still, the marvel of modern computational tech-
niques, like the variety of available quantum Monte Carlo

(QMC) solvers, allows for a numerical solution up to (in
theory) arbitrary precision. In practice, however, one encoun-
ters problems: The computational complexity of most QMC
algorithms scale very badly with the number of impurity or-
bitals (e.g., in the case of the continuous time hybridization
expansion solver, the scaling is exponential). To make matters
worse, a nonzero intershell hybridization function �

d p
mm′ (iω)

in Eq. (5) will give rise to a negative sign problem.
The method that we present in this paper is designed

to tackle these problems, by considering an efficient hybrid
approach, combining QMC with an analytical slave rotor tech-
nique. The technique is a direct extension of the shell-folding
technique, which we shall briefly review in the following.

B. Shell folding

The shell-folding technique is based on the observation
that, by means of a purely algebraic manipulation, we can
rewrite the interacting part of Hamiltonian Eq. (3) in a way
that lets us separate fluctuations of the total charge from those
of the individual orbitals. Indeed, this local Hamiltonian can
be written as

Hint = 1

2

∑
(mσ )�=(m′σ ′ )

Ũ dd
mσm′σ ′ n̂d

mσ n̂d
m′σ ′

+ 1

2

∑
(nσ )�=(n′σ ′ )

Ũ pp
nσn′σ ′ n̂p

nσ n̂p
n′σ ′ + U d p

2
(N̂ − Q0)2, (11)

with N̂ = ∑
σ (N̂d

σ + N̂ p
σ ) and Ũ (dd/pp)

mσm′σ ′ = U (dd/pp)
mσm′σ ′ − U d p. Q0

is an arbitrary, integer value that we introduced by exploiting
our freedom to redefine the chemical potential μ.

In this notation, it becomes apparent that the intershell
interaction U d p renormalizes the intrashell interactions while
suppressing fluctuations of the total charge. The shell-folding
approximation assumes that charge fluctuations of the d shell
are perfectly compensated by those of the p shell, which
implies a constant total charge, such that we can drop the last
term in Eq. (11). This way, one arrives at a Hamiltonian in
which the d and p shells are decoupled. If, furthermore, the
p orbitals are effectively treated by a static (Hartree/Hartree-
Fock) approximation, the problem is simplified to one where
only the d orbitals are interacting.

In the context of TMOs, one argument to justify such an
approximation is related to the manipulations applied to the
lattice model, necessary to derive a single-site impurity model
for both the TM and the ligands. Applying a Zhang-Rice-type
transformation to obtain TM-centered ligand-type Wannier
orbitals, one eventually arrives at a Hamiltonian in which the
amplitude of the intersite hoppings is rather small compared
to the on-site hybridization between the TM and the Wannier
orbitals on the same site. This implies that the dominant
screening process for TM d orbitals on a given site is provided
by charge fluctuations of the ligand-type Wannier orbitals on
the same site, such that the overall charge of the site remains
approximately constant.

III. SLAVE ROTOR FORMULATION OF THE d-p MODEL

In the following sections, we present an efficient way to
extend the shell-folding approximation by deriving a theory
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that incorporates fluctuations of the total local charge N in an
analytic way.

We achieve this by employing the slave rotor technique
[34,35], which was invented as a lightweight method to treat
strongly correlated systems. The main idea is to rewrite
the original electronic operators by means of a rotor phase
variable θ (τ ) ∈ [0; 2π ), carrying the charge and auxiliary
pseudofermions carrying the spin. If the fluctuations of charge
and spin live on different energy scales, it is possible to ef-
fectively decouple these degrees of freedom in a mean-field
fashion, which drastically simplifies the problem.

In the case of our d-p problem, we want an effective
way to treat the total charge corresponding to the operator∑

σ (N̂d
σ + N̂ p

σ ). Following the logic of the shell-folding ap-
proximation, we assume that fluctuations of the total charge
live on a different energy scale than the intrashell fluctuations,
therefore motivating us to apply a slave rotor decoupling.

A. Rotorization

We start by rewriting the electronic creation/annihilation
operators as a product of rotor and pseudofermionic operators,
denoted with a tilde:

d†
σ = d̃†

σ eiθ , dσ = d̃σ e−iθ , (12)

p†
σ = p̃†

σ eiθ , pσ = p̃σ e−iθ . (13)

The new, composite operators act on an enlarged Hilbert space∣∣σ d
1 . . . σ d

Qd , σ
p

1 . . . σ
p

Qp

〉 = ∣∣σ̃ d
1 . . . σ̃ d

Qd , σ̃
p

1 . . . σ̃
p

Qp

〉
⊗ |Qd + Qp − Q0〉θ , (14)

where the integer Q0 allows us to shift the rotor ground
state. For the most simple case of a model with only one
d and one p orbital we can, for instance, set Q0 = 2, such
that the rotor ground state corresponds to the half-filled
system. We then have states like |0, 0〉 = |0, 0〉| − 2〉θ ,

|0,↓p〉 = |0, ↓̃p〉| − 1〉θ , | ↑d , 0〉 = |↑̃d
, 0〉| − 1〉θ ,

| ↑d ,↓p〉 = |↑̃d
, ↓̃p〉|0〉θ , | ↑d↓d ,↓p〉 = |↑̃d ↓̃d

, ↓̃p〉|1〉θ ,
etc.

The symbols eiθ /e−iθ can be understood as ladder op-
erators, raising/lowering the angular momentum l , which,
for physical states, corresponds to the total charge l =̂ Qd +
Qp − Q0:

eiθ |l〉θ = |l + 1〉θ , e−iθ |l〉θ = |l − 1〉θ . (15)

The angular momentum states |l〉θ are eigenstates of the an-
gular momentum operator L̂ = −i∂θ ,

L̂|l〉θ = l|l〉θ , (16)

which is conjugate to the phase [θ, L̂] = i.
The purpose of this new formalism is that it allows us to

replace the original total charge operator by this angular mo-
mentum operator, acting only on the auxiliary phase variable:

N̂ =
∑

σ

(
N̂d

σ + N̂ p
σ

) → L̂ + Q0. (17)

The expanded Hilbert space will also contain states, where
the angular momentum does not correspond to the cumula-
tive electronic charge, e.g., |0, 0〉 = |0, 0〉| − 1〉θ , |0,↓p〉 =

|0, ↓̃p〉| − 2〉θ or | ↑d , 0〉 = |↑̃d
, 0〉|1〉θ . For the substitution

Eq. (17) to be valid, we need to eliminate such unphysical
states. This can be done by means of a projector P̂phys that can
be formulated in terms of a static Lagrange multiplier φ0:

P̂phys =
∫

dφ0 eiφ0(L̂−N̂+Q0 ). (18)

This corresponds to adding an additional term to the Hamilto-
nian

H → H + h(L̂ − N̂ + Q0), (19)

where we substituted h = −iφ0. Integrating over h, one would
exactly cancel all unphysical states and retrieve the physics of
our original problem. In practice, however, one rather treats
the constraint on average by fixing the Lagrange multiplier to
its complex saddle point value. The value of h is then defined
by the saddle point condition:

〈L̂〉h = 〈N̂〉h − Q0. (20)

Coming back to our d-p problem, the slave rotor for-
malism gives us the possibility to replace the last term in
Eq. (11), which is quartic in the electronic fields (and oth-
erwise dropped within the shell-folding approximation), by a
simple kinetic term:

U d p

2
(N̂ − Q0)2 → U d p

2
L̂2. (21)

B. Deriving the slave rotor Hamiltonian

We proceed by applying the substitutions Eqs. (12), (13),
and (17) to the various parts of the Hamiltonian Eq. (1).
A superscript SR will designate the parts of the transformed
Hamiltonian.

The term incorporating the Lagrange multiplier [Eq. (19)]
is added to the free, atomic part

HSR
0 =

∑
mσ

d̃†
mσ (−μ + εd

m − h)d̃mσ

+
∑
nσ

p̃†
nσ (−μ + ε p

n − h) p̃nσ

+
∑
mnσ

(Vmnd̃†
mσ p̃nσ + H.c.) + hL̂, (22)

which otherwise does not change, since the rotor operators
cancel each other out (e.g., d̃†

mσ eiθ p̃nσ e−iθ = d̃†
mσ p̃nσ ).

This is not the case for the hybridization part Eq. (4), which
transforms to

HSR
hyb =

∑
mm′kσ

d̃†
mσV dd

mm′kbd
m′kσ eiθ + H.c.

+
∑
mnkσ

{
d̃†

mσV d p
mnkbp

nkσ
eiθ + p̃†

nσV pd
nmkbd

mkσ eiθ
} + H.c.

+
∑
nn′kσ

p̃†
nσV pp

nn′kbp
n′kσ

eiθ + H.c.

+
∑
mkσ

Ed
mkbd†

mkσ
bd

mkσ +
∑
nkσ

E p
nkbp†

nkσ
bp

nkσ
, (23)

where the time dependence of the phase variable θ (τ ) causes
an explicit coupling between the pseudofermions and rotor
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variables. Finally, we have got the interaction part

HSR
int = 1

2

∑
(mσ )�=(m′σ ′ )

Ũ dd
mσm′σ ′ n̂d̃

mσ n̂d̃
m′σ ′

+ 1

2

∑
(nσ )�=(n′σ ′ )

Ũ pp
nσn′σ ′ n̂p̃

nσ n̂p̃
n′σ ′ + U d p

2
L̂2, (24)

where we reexpressed the last term using the slave rotor an-
gular momentum variable.

1. Mean-field decoupling

Until now, the only approximation that we employed was
to fix the Lagrange multiplier to its saddle point value h;
otherwise, everything is still treated exactly. Rewriting the
Hamiltonian Eq. (1) in terms of the slave rotor formalism
brought us one step closer to an effective, dynamic description
of total charge fluctuations beyond shell folding. However, we
traded a quartic fermionic term in Eq. (24) with an explicit
interaction between slave rotor and pseudofermionic variables
in Eq. (23).

To make the problem tractable, we follow the strategy
presented in Ref. [[35]] and decouple HSR in a mean-field
fashion:

HSR
mean-field = H f + H θ . (25)

The pseudofermionic Hamiltonian H f reads

H f = H f
0 + H f

int + H f
hyb, (26)

with

H f
0 =

∑
mσ

d̃†
mσ (−μ + εd

m − h)d̃mσ

+
∑
nσ

p̃†
nσ (−μ + ε p

n − h) p̃nσ

+
∑
mnσ

(Vmnd̃†
mσ p̃nσ + H.c.), (27)

H f
int = 1

2

∑
(mσ )�=(m′σ ′ )

Ũ dd
mσm′σ ′ n̂d̃

mσ n̂d̃
m′σ ′

+ 1

2

∑
(nσ )�=(n′σ ′ )

Ũ pp
nσn′σ ′ n̂p̃

nσ n̂p̃
n′σ ′ (28)

H f
hyb =

∑
mm′kσ

d̃†
mσV dd

mm′kbd
m′kσ 〈eiθ 〉θ + H.c.

+
∑
mnkσ

{
d̃†

mσV d p
mnkbp

nkσ
+ p̃†

nσV pd
nmkbd

mkσ

}〈eiθ 〉θ + H.c.

+
∑
nn′kσ

p̃†
nσV pp

nn′kbp
n′kσ

〈eiθ 〉θ + H.c.

+
∑
mkσ

Ed
mkbd†

mkσ
bd

mkσ +
∑
nkσ

E p
nkbp†

nkσ
bp

nkσ
. (29)

The decisive difference of this Hamiltonian compared to the
original one, Eq. (1), is that the new expressions do not con-
tain any intershell interactions ∼U d p. Apart from that, other
differences include:

(1) Compared to Eq. (2), the bare energies of the d and
p orbitals are shifted by the Lagrange multiplier h, which
emerged from the saddle point condition Eq. (20).

(2) Since we adopted the shell-folding notation, the inter-
action strengths in Eq. (28) are reduced by the the intershell
interaction:

Ũ dd = U dd − U d p, (30)

Ũ pp = U pp − U d p. (31)

This can be further exploited for an effective treatment of
the p-p interactions.

(3) The hybridization amplitudes with the bath sites are
renormalized by 〈eiθ 〉.

On the other hand, the rotor part of the mean-field Hamil-
tonian Eq. (26) takes the simple form

H θ = hL̂ + U d p

2
L̂2 + 1

2
E f

kin(eiθ + e−iθ ), (32)

where E f
kin is the kinetic energy of the pseudofermionic sys-

tem, defined as

E f
kin

2
=

∑
mm′kσ

〈
d̃†

mσV dd
mm′kbd

m′kσ

〉
f

+
∑
mnkσ

〈
d̃†

mσV d p
mnkbp

nkσ

〉
f + 〈

p̃†
nσV pd

nmkbd
mkσ

〉
f

+
∑
nn′kσ

〈
p̃†

nσV pp
nn′kbp

n′kσ

〉
f

= 1

β

∑
iωσ

eiω0+
Tr{G f

σ (iω)�(iω)}. (33)

The label f indicates that these quantities correspond to the
pseudofermionic part of the mean-field Hamiltonian Eq. (25).

Within the mean-field formalism, the physical Green’s
function factorizes to

Gσ (τ ) = G f
σ (τ )Gθ (τ ), (34)

where the pseudofermion and the rotor Green’s function

G f
σ (τ ) = −

〈( �̃dσ (τ )

�̃pσ (τ )

)( �̃d†
σ (0) �̃p†

σ (0)
)〉

f

, (35)

Gθ (τ ) = 〈
e−i(θ (τ )−θ (0))

〉
θ

(36)

are defined with respect to the corresponding parts H f and H θ

of the mean-field Hamiltonian Eq. (25).
For a given set of hybridization strengths V ’s and bath-site

energies, the mean-field condition requires a self-consistent
evaluation of the quantities 〈eiθ 〉θ and E f

kin, while h must be
set such that saddle point condition Eq. (20) is fulfilled.

Note that evaluating E f
kin still requires calculating G f

σ (τ )
from the interacting impurity model Eq. (26). As compared
to the original problem Eq. (1), the complexity of such cal-
culations can be drastically reduced by acknowledging that
often [29,40] the intershell interaction U d p is of a similar
magnitude as U pp, such that Ũ pp = U pp − U d p is small. The
weak remaining interaction can be efficiently treated within a
Hartree approximation. In this way, we end up with a quantum
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FIG. 1. Rotor Green’s functions Gθ (τ ) for various parameters
E f

kin (the atomic limit is equal to E f
kin = 0), U d p = 0.5, β = 40 and

Q0 = 2. Panel (a) was evaluated at half filling 〈L̂〉Hθ
= 0, while panel

(b) corresponds to the incommensurate filling 〈L̂〉Hθ
= 0.2. Note how

the asymmetry caused by finite dopings is washed out by the last term
in Eq. (32), which is proportional to E f

kin.

impurity model, in which the p orbitals are noninteracting and
can, therefore, be integrated out.

On the other hand, the rotor Green’s function Eq. (36) can
be evaluated with minimal computational cost by diagonaliz-
ing the rotor Hamiltonian Eq. (32). This requires a truncation
of the infinite spectrum of the rotor operator L̂, which can then
be written as a matrix of finite dimension. Upon increasing the
dimension of the matrix, the results quickly converge toward
those of the full L̂. Figure 1 shows the rotor Green’s functions
for different values of E f

kin and different fillings.

2. Spectral properties

In connection to realistic material investigations, the spec-
tral function A(ω) = − 1

π
ImG(ω) is of central interest, since

it can be directly related to experimental photoemission
and absorption spectra. The spectral function can be inter-
preted as a probability distribution function, its integral thus
has to be normalized to 1. This normalization is related
to the anticommutation relation of the electron operators
{d, d†} = 1, {p, p†} = 1. By construction, this physical con-
straint is also fulfilled within the slave rotor formalism, since
{d̃e−iθ , d̃†eiθ } = {d̃, d̃†} = 1 and { p̃e−iθ , p̃†eiθ } = { p̃, p̃†} =
1. This still holds true for the mean-field implementation
pursued in this paper. Indeed, using the Lehmann represen-

tation of the rotor Green’s function in the real frequency
domain Gθ (ω), one can easily show that the mean-field-
induced factorization Eq. (34) leads to a redistribution of
spectral weight corresponding to the pseudofermionic Green’s
function G f

σ (ω).

3. Symmetry of the rotor Green’s function

It is interesting to note that the rotor Green’s function is
invariant under changes of the parameter h that change the
angular momentum l by an integer value. This is most easily
seen by considering the following transformation on the rotor
Hamiltonian Eq. (32):

H θ → H̃ θ = e−iθ H θeiθ

= h(L̂ + 1) + U d p

2
(L̂ + 1)2 + 1

2
E f

kin(eiθ + e−iθ ).

(37)

Applying this transformation is equivalent to changing h →
h + U d p and has the effect of decreasing the expectation value
of the angular momentum:

〈L̂〉H̃ θ = 1

Z
Tr{e−iθ e−βH eiθ L̂} = 〈L̂〉H θ − 1. (38)

On the other hand, it is straightforward to show that apply-
ing this transformation to the Hamiltonian leaves the Green’s
function unchanged:〈

e−i(θ (τ )−θ (0))〉
H̃ θ =〈

e−i(θ (τ )−θ (0))〉
H θ . (39)

This means that the rotor Green’s function is invariant under
h → h + nU d p, where n ∈ Z is an arbitrary integer. Further-
more, it implies that the symmetry property Gθ (β/2 + τ ) =
Gθ (β/2 − τ ), that can be observed in Fig. 1(a) for a half-
filled system with h = 0 is periodically restored for h = nU d p,
n ∈ Z.

4. Simplifications at commensurate fillings

The above observations have some very practical impli-
cations. In particular, they allow for simplifications in the
calculation of the rotor Green’s function at arbitrary integer
fillings, which would otherwise only occur at half-filled sys-
tems due to particle-hole symmetry.

In the case of a half-filled system, the constraint Eq. (20)
can be trivially fulfilled by setting h = 0 if the integer Q0 is
set equal to the number of orbitals. This holds true irrespective
of the value of E f

kin.
Property Eq. (39) described in the previous section now

implies that the rotor Green’s function, at any commensurate
filling 〈N̂〉, is identical to the one at half filling, corresponding
to Hamiltonian Eq. (32) with h = 0.

Another way of seeing this is by reconsidering our freedom
to chose the integer Q0 in Eq. (14). In the case of commen-
surate fillings 〈N̂〉, we can always set Q0 = 〈N̂〉, such that
the saddle point condition Eq. (20) is trivially fulfilled by a
vanishing Lagrange multiplier h = 0, since

〈L̂〉h=0 = 〈N̂〉 − Q0 = 0. (40)

To perform calculations at arbitrary commensurate fillings, it
is thus sufficient to change the definition of the integer Q0 and
set h = 0.
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FIG. 2. Scheme of the DMFT loop with the slave rotor approx-
imation. Thick boxes frame initial inputs and overall results, while
calculation steps are put in thin boxes. Diamonds frame results of
calculations from the preceding boxes (to which they are connected
by dotted lines) if those calculations are too lengthy to be written out
explicitly. For the sake of compactness, spin and orbital indices are
omitted. Details on the calculations can be found in the text.

C. Slave rotor + dynamical mean-field theory

In its essence, the slave rotor method described above can
be seen as an efficient, approximate quantum impurity solver
for the d-p problem described by Hamiltonian Eq. (1). While
the physics of impurity models is interesting by itself, much
richer phenomena can be expected to emerge in lattice sys-
tems.

To describe such systems, our slave rotor method can be
implemented in the framework of DMFT [37].

This can be done in various ways. The most direct proce-
dure would be to solve the mean-field system (Sec. IIIB1) at
every cycle of the DMFT loop. However, such an approach is
conceivably inefficient, since solving the mean-field equations
involves several runs of QMC to get G f from Hamiltonian
Eq. (26).

A more efficient strategy is to solve the mean-field equa-
tions at the same time as the DMFT self-consistency equations
by updating 〈eiθ 〉θ , E f

kin and h within the DMFT cycles.
The procedure is illustrated in Fig. 2, and consists of the

following steps:
(1) Initialization: The DMFT calculation starts with some

initial guess for the Weiss field G init or the hybridization
function �init for the physical system. The pseudofermionic
hybridization function � f is set to �init.

(2) Self-consistency loop:
(a) The hybridization function � f is transferred to the

QMC solver, which evaluates the impurity Green’s function
G f corresponding to Hamiltonian Eq. (26).

(b) From the impurity Green’s function, we calculate the
kinetic energy of the pseudofermions via Eq. (33).

(c) Using E f
kin, the rotor Green’s function Gθ is evaluated

from Hamiltonian Eq. (32). Figure 1 illustrates Gθ (τ ) for two
different fillings and various values of E f

kin.
(d) The pseudofermion and rotor Green’s functions are

used to reconstruct the physical Green’s function G(τ ) =
G f (τ )Gθ (τ ), which is used to

(e) calculate the self-energy �, the local Green’s function
Gloc and, finally, the updates for the hybridization function �

and the Weiss field G.
(f) The pseudofermionic hybrdization function is calcu-

lated as � f (τ ) = �(τ )〈eiθ 〉2
Hθ

and transferred back to the
QMC solver.

(3) Results: The cycle is converged when the DMFT self-
consistency condition Gloc = Gimp is fulfilled and the values
of 〈eiθ 〉Hθ

and E f
kin are stabilized. If this is the case, the quan-

tities of interest G(iω), �(iω), etc. can be extracted.
We note that Fig. 2 describes only one possible implemen-

tation of the slave rotor + DMFT method, leaving space for
optimizations. In practice, e.g., it turned out that convergence
can be further stabilized by updating E f

kin [step (2)(b)] and thus
Gθ only once every three to five cycles.

IV. TESTING THE SLAVE ROTOR METHOD

A. Two-orbital d-p model on the square lattice

To test the performance of our slave rotor method, we con-
sider a minimal two-orbital model. These two orbitals serve
as proxies for two different atomic shells; as before we shall
refer to them as d and p. The Hamiltonian for our impurity
model thus reads

H = H0 + Hhyb + Hint, (41)

with

H0 =
∑

σ

(εd − μ)d†
σ dσ +

∑
σ

(ε p − μ)p†
σ pσ

+
∑

σ

(
V d†

σ pσ + H.c.
)
, (42)

Hhyb =
∑
kσ

{[
d†

σ p†
σ

][V dd
k V d p

k

V pd
k V pp

k

][
bd

kσ

bp
kσ

]
+ H.c.

}

+
∑
kσ

Ed
k bd†

kσ
bd

kσ +
∑
kσ

E p
k bp†

kσ
bp†

kσ
(43)

and

Hint = (U dd − U d p)nd
↑nd

↓ + (U pp − U d p)np
↑np

↓

+ U d p

2
(N̂ − Q0)2. (44)

The energies Ed/p
k of the bath sites, as well as the hybridization

matrix Vk are defined via the DMFT self-consistency equa-
tions and thus incorporate the structure of the lattice. In the
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FIG. 3. Schematic representation of the two-orbital d-p model on a two-dimensional square lattice. Up to the chemical potential μ, the d
and p orbitals on each site are characterized by bare energy levels εd and ε p, respectively, with an on-site hybridization of strength V . In the
spirit of the Zhang-Rice model [38], nearest-neighbor hoppings are d-to-p only, with a hopping-strength t d p.

following, we consider a two-dimensional square lattice with
on-site d-p hybridization V and intershell nearest-neighbor
hopping t d p, as depicted in Fig. 3. For the sake of simplic-
ity, we will focus on the case where U d p = U pp, such that
Ũ pp = U pp − U d p = 0. The hopping t d p will serve as our unit
of energy and will thus be set to t d p = 1.

The form of this model is reminiscent of the one resulting
from the Zhang-Rice construction [38] for the copper-oxide
planes in cuprate superconductors. In their paper [38], the con-
struction is used to derive an effective two-orbital model on
a two-dimensional square lattice, comprised of copper dx2−y2

orbitals that hybridize with Wannier orbitals (formed as linear
combinations of the oxygen px and py orbitals), centered at
the d sites. In contrast to our model, the resulting system
also includes hopping from the d orbitals to Wannier orbitals
beyond nearest-neighbor sites, with an hopping amplitude that
decreases as |ti j | ∼ |ri − r j |−3.

B. Implementation and benchmarking

To assess the performance of our slave rotor tech-
nique, it is benchmarked against reference results for which
the full model Hamiltonian Eq. (41)—including intershell
interactions—was solved with QMC techniques. In contrast to
the other calculations, the reference curves are often afflicted
by relatively high levels of noise. This is due to the negative
sign problem, which emerges in QMC calculations for the
interacting two-orbital model with off-diagonal hybridization.
To contain the problem and render the DMFT calculations
feasible, we rely on transformations of the orbital basis [41].

In addition to the reference calculations, the results of the
slave rotor technique are compared to those obtained from the
model Eq. (41) with U d p = U pp = 0, as well as results from
the shell-folding scheme described in Sec. II B and from the
Hartree-Fock approximation [42]. Considering the case where
U d p = U pp, both of the latter methods reduce the system to
one where the p orbitals are effectively uncorrelated. The p-
electron fields can thus be integrated out and the problem is
reduced to correlated one-orbital model, which can be solved
with QMC techniques, without encountering a negative sign
problem. This last point also holds true for the implementation
of our slave rotor technique; in this case, however, p electron
correlations are included via the slave rotors.

C. Representative results

In this section, we provide a proof of concept of our slave
rotor method. For the sake of readability, we will only restrict
ourselves to the most important results; a more exhaustive
benchmark can be found in Appendix B, where our method
is tested in various parameter regimes.

Our slave rotor technique is a direct extension of the
shell-folding approach. As a first application, we thus show
that it is able to cure the most important deficiencies of its
progenitor: Being based on the assumption of generalized per-
fect screening, the shell-folding scheme will always predict
intershell interactions to decrease the correlations of the sys-
tem. However, intershell interactions also lead to an increased
energy cost for nonlocal charge excitations, thus increasing
the electronic correlations. This can be demonstrated to hold
true for finite on-site hybridization V �= 0 by considering the
atomic limit (see Appendix A and Ref. [[43]]). First, we shall
consider the case 〈N̂〉 = 3, which is motivated by the physics
of TMOs with partially filled d bands and filled p-band (e.g.,
undoped CuO2 planes [38,39]). In this case, we can make use
of the simplifications that come along in the case of commen-
surate fillings (see Sec. IIIB4).

1. Two faces of intershell interactions

Figure 4 illustrates the competition between these two ef-
fects by comparing the change in the imaginary parts of the
d-orbital self-energies upon turning on intershell interactions
for two different parameter sets. In Fig. 4(a), the on-site
hybridization is set to V = 3.5, and intershell interactions
decrease the correlations (red arrow up). On the other hand,
setting V = 7, the effect is reversed and the additional inter-
actions lead to an increase in correlations (red arrow down).

In both cases, the curve corresponding to the slave rotor
approximation is rather close to the reference solution, cor-
rectly reproducing the effect of U d p and U pp for the different
parameters. In contrast, the shell-folding scheme drastically
overestimates the decrease in correlations for both parameter
sets. This is also the case for the Hartree-Fock approxima-
tions. While the corresponding results are better than the
ones obtained from the shell-folding approach, their devia-
tions from the reference solutions are still bigger than those
from the curves obtained from setting U d p = U pp = 0. This
indicates error cancellation among higher-order terms and
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FIG. 4. Imaginary parts of the d-orbital self-energy, comparing
the QMC results for the full Hamiltonian Eq. (41) (reference) to
results with U d p = U pp = 0 and to results obtained from different
approximate techniques to treat the intershell interactions. Filling
N = 3, model parameters U dd = 8.75, U d p = U pp = 0.5U dd , � =
0, β = 32. The on-site hybridization is V = 3.5 panel (a) and V = 7
in panel (b); the red arrows indicate the direction in which the
results are changed by the intershell interactions, corresponding to
a decrease (a) or an increase (b) in correlations.

underlines the fact that naive low-order corrections can be
worse than simply ignoring the intershell interactions.

2. Increasing the intershell interactions: The metal insulator
transition

In Fig. 5, we show results from different methods for dif-
ferent strengths of U d p (= U pp). One effect of the intershell
interactions is the redistribution of charge, induced by the
effective change of the charge transfer energy � due to the
corresponding Hartree contribution. Here, we eliminate this
effect by fixing the fillings of the d and the p orbitals to
constant values

∑
σ 〈nd

σ 〉 = 1.1 and
∑

σ 〈np
σ 〉 = 1.9. Without

the Hartree terms, even weak intershell interactions signifi-
cantly change the results, as can be seen in Fig. 5(a), where
they correspond to only 10% of the d-d interaction. Further
increasing U d p and U pp to 25% [Fig. 5(b)] and 50% [Fig. 5(c)]
of U dd leads to a localization of the conduction electrons, thus
inducing a metal-insulator phase transition.

Comparing the different approximate schemes allows us
to evaluate their performance for different intershell interac-
tion strengths. As can be anticipated from the perturbative
character of the Hartree-Fock approximation, it succeeds
rather well in approximating the effect of weak U d p = U pp,
slightly outperforming the slave rotor method (at least in
the low-frequency regime—a closer inspection of the high-
frequency tail reveals a better performance of the slave-rotor
methods). The shell-folding scheme—generally presuming a
reduction of the effective interaction strength—fails to predict
the direction of the shift even at weak intershell interaction
strengths.

The strength of our new slave rotor method becomes
visible at stronger intershell interactions. In Figs. 5(b)
and 5(c), the ever larger values of U d p and U pp push
the system into the insulating phase, while the shell-
folding and Hartree-Fock approximations predict increasing
spectral weight at the Fermi level. Only the slave ro-
tor method reproduces the metal-insulator transition, giving
even better results at stronger interactions. The fact that

FIG. 5. Imaginary part of the d orbital Green’s function for different values of the intershell and p-p interaction, comparing the QMC
results for the full Hamiltonian Eq. (41) to different approximate methods. Panels (a)–(c) show the results for increasing U d p and U pp; the total
filling is N = 3, individual fillings are fixed to

∑
σ 〈nd

σ 〉 = 1.1 and
∑

σ 〈np
σ 〉 = 1.9. The residual model parameters are U dd = 6.5, V = 3.5,

β = 16 (μ and � are fixed corresponding to the fillings).
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the slave rotor method is closer to the direct DMFT re-
sults at intermediate to strong interactions is reminiscent
of analogous observations within the standard slave ro-
tor method for the orbitally degenerate Hubbard model
[35].

The performance of the slave rotor technique at weak
interaction strengths could be optimized by discarding rotor
states that are a priori unphysical, such as those with angular
momentum Qd + Qp > 2(Nd + N p) (Nd and N p being the
number of d and p orbitals, respectively; the factor of 2 stems
from the spin d.o.f.) and Qd + Qp < 0. Such an implemen-
tation has been suggested in Ref. [[44]] for the degenerate
multiorbital Hubbard model. In the case of our problem,
such an approach would promise slightly better results in the
case of commensurate fillings. For incommensurate fillings,
however, this technique is problematic since preserving the
correct noninteracting limit comes at the cost of violation of
the fermionic anticommutation relations and vice versa.

3. Spectral properties—results

Figure 6 shows the spectral functions of the d and the
p orbitals, comparing results from different methods. The
parameters �, V and β are equivalent to those in Fig. 4(b),
while U dd = 10, U d p = U pp = 0.5U dd corresponds to a more
strongly correlated regime. The results from all different cal-
culations show sharp quasiparticle peaks at the Fermi level,
both for the d and p orbitals, confirming the metallic character
of the solution. Comparing panels Figs. 6(a) and 6(b), one
remarks a strong similarity between the spectral functions of
the two orbitals. This is due to the strong on-site hybridization
V = 7 and the weak charge-transfer energy � = 0. While this
feature is captured by all techniques, only the results from the
slave rotor approach remain close to the reference curve at
all energy scales. Remarkably, the shell-folding and Hartree-
Fock methods are outperformed by the most trivial technique
of simply ignoring the intershell interactions (U d p = U pp =
0). This indicates that in the regime under consideration, the
different effects of intershell interactions (screening from the
ligands and increase of the nonlocal charge-excitation en-
ergy) are of a similar magnitude and cancel each other out.
Figure 6(b) demonstrates that the slave rotor technique also
provides decent results for the p orbitals. This is remarkable,
since the correlations of the p orbitals are solely incorporated
via the rotor Green’s function. A more extensive study of
the spectral properties in different parameter regimes can be
found in the Appendix.

It shall be noted that care must be taken in the interpreta-
tion of the real-frequency results. The spectral functions were
obtained from analytic continuation of the Green’s functions
on the Matsubara axis, which is known to be an ill-defined
problem. Within the maximum entropy method [45] which
was applied here, the results depend on the specific choice
of the default model. To allow for an objective comparison of
the different methods, we used the same default model for all
results corresponding to the same set of parameters.

Finally, we shall note that the spectral functions in Fig. 6,
as well as most other spectral functions of metallic character
shown in this paper exhibit little humps around the Fermi
level. These are reminiscent of the specific form of the DOS

(a)

(b)

FIG. 6. Spectral functions of the d orbitals (a) and the p orbitals
(b), comparing the QMC results for the full Hamiltonian Eq. (41)
(reference) to results obtained from different approximate techniques
to treat the intershell interactions: (1) Setting U d p = U pp = 0, (2) our
slave rotor scheme, (3) Hartree-Fock, and (4) shell folding. U dd =
10, U d p = U pp = 0.5U dd , � = 0, V = 7, β = 32. All spectral func-
tions were obtained from analytic continuation of the corresponding
Green’s functions on the Matsubara axis by using the maximum
entropy method [45].

of the 2D square lattice, renormalized by the quasiparticle
Z factor. Similar structures have been observed in previous
works [46].

4. Incommensurate fillings

So far, we only considered systems at commensurate fill-
ings. Figure 7 shows the imaginary parts of the d-orbital
self-energies for the case of an incommensurate total filling
N = 2.8.

Compared to the results corresponding to case of N = 3,
the slave rotor curves show a stronger deviation from the
reference curves, which is particularly pronounced at lower
frequencies. Earlier works [34] already reported limitations
of the slave rotor method (in the context of a sigma model
approximation to the rotor Hamiltonian) away from half fill-
ing. Here, the increased inaccuracy at low frequencies is of
a different origin and must be attributed to the mean-field
decoupling Eq. (25). At noninteger fillings, it is possible to
have low-energy charge excitations; the energy scales thus
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FIG. 7. Imaginary parts of the d orbital self-energy, comparing
the QMC results for the full Hamiltonian Eq. (41) (reference) cor-
responding to model Hamiltonian Eq. (41) to results obtained from
different approximate techniques to treat the intershell interactions:
(1) Setting U d p = U pp = 0, 2) our slave rotor scheme, (3) Hartree-
Fock, and (4) shell folding. The total filling is set to N = 2.8, the
model parameters are U dd = 10, U d p = U pp = 0.5U dd , � = 0, V =
3.5, β = 32.

cease to be well separated. On the other hand, the Hartree-
Fock method performs remarkably well in the low-frequency
regime close to the Fermi level. Only at higher energies, the
slave rotor method trumps the Hartree-Fock approximation,
providing a good description of the high-frequency tail of the
self-energies.

As a final remark, it shall be noted that we observed the de-
viations to decrease upon approaching commensurate fillings,
making our slave-rotor method well suited for applications in
weakly doped regimes.

V. SUMMARY AND OUTLOOK

In summary, we have proposed a method that allows for
an approximate description of intershell interactions in the
context of impurity models with multiple electron shells. Our
method is based on the shell-folding approximation, which we
have extended by taking into account the effect of fluctuations
of the total local electron charge. This is achieved using the
slave rotor technique by introducing a rotor variable that rep-
resents the fluctuations of the total local charge.

Beyond the formal derivation of our technique, we have
suggested and tested a practical implementation of our
method, which relies on a simple mean-field decoupling of
the rotor and fermionic degrees of freedom. In the case of
a commensurate filling 〈N̂〉 = 3, we have found that the
slave rotor method reproduces the different effects which in-
tershell interactions can have on the electronic correlations,
clearly outperforming the shell-folding and the Hartree-Fock
approximations. We further show that our method is capa-
ble of faithfully reproducing the scenario of an intershell
interaction-driven metal-insulator transition. The quality of
the slave rotor method is reduced in the case of incommen-

FIG. 8. Energy cost for a nonlocal charge transfer in the atomic
limit (the lattice model corresponds to Hamiltonian Eq. (41)—see
Fig. 3—with t d p = 0), with N = 3 electrons per site. Various lines
show the results for different charge-transfer energies; the d orbital
interaction is fixed to U dd = 10 and the on-site hybridization is V =
3.5.

surate fillings. In this case, deviations from the reference
results are found in the low-frequency domain. Remarkably,
however, the high-frequency features are still reproduced ac-
curately.

In this paper, we applied our method to a minimal model
system. Its main merit, however, lies in its potential to allow
calculations of more complex, realistic systems:

Potential applications of our method include all late TMOs,
where there is significant metal-to-ligand charge transfer.
Even though intershell interactions in such compounds can
be significant [29,40], they are usually ignored or only treated
on the Hartree-level. Here, our slave rotor method opens new
routes for more realistic calculations.

One application—and natural extension to the model
Hamiltonian considered here—might be the three-band
Emery model [47,48] for cuprate systems. Theoretical studies
on this model emphasized the importance of U d p in stabi-
lizing the charge-transfer insulating state [40] (in that work,
the intershell interaction was, however, only treated on a
Hartree level). More generally, our approach bears promise
for treating late TMOs, where d-p fluctuations are expected
to play a role. An example would be NiO, where the inter-
shell interaction was calculated to be U d p = 2.2 eV, which
exceeds 25% of the d-d interaction [29]. Including the cor-
responding terms might prove important to improve upon
the—hitherto rather unsatisfactory [49]—agreement between
theoretical and experimental spectral properties. Similarly,
our slave rotor method might be of use to further in-
vestigate the physics of other nickelate systems. Previous
model studies were restricted to treating the ligand states
as uncorrelated [30,50]—or did not include them at all
[51].
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FIG. 9. Benchmarking different approximative methods to treat
the intershell interaction in comparison to the Monte Carlo results
for the full Hamiltonian Eq. (41) (black curve; reference). Panels
(a) and (b) show the imaginary time Green’s functions for the d
and p orbitals, respectively; panels (c) and (d) show the spectral
functions for the d and p orbitals (respectively), obtained from the
maximum entropy analytic continuation; panels (e) and (f) show the
imaginary part of the Green’s function and self-energy (respectively)
for the strongly correlated d orbital. U dd = 8.75, U d p = U pp =
0.5U dd , εd = 0, ε p = 0, V = 3.5, with total filling N = 3 and β

= 32.

In the context of realisitic materials calculations, it
is of paramount interest to access real-frequency prop-
erties of the quantum systems such as the electronic
spectral function. Here, the pathological problem of the
analytic continuation could be circumvented by using meth-
ods like exact diagonalization or the numerical renor-
malization group [52], which would allow direct access
to the pseudofermionic Green’s function. Since the ro-
tor Hamiltonian Eq. (32) can be easily diagonalized, the
composite, physical spectrum could then be obtained di-
rectly.

The accuracy of the slave rotor method might be further
improved by considering corrections beyond the mean-field
approximation, which was applied to decouple the rotor and
pseudofermionic operators. This should also lead to an im-
proved description in the case of incommensurate fillings.
Another route might be to modify the rotor Green’s function
to incorporate information about the anticipated low-energy
behavior from analytic considerations. A similar approach
has been successfully applied in the description of satellite
features due to dynamic interactions [53].

FIG. 10. Benchmarking different approximative methods to treat
the intershell interaction in comparison to the Monte Carlo results
for the full Hamiltonian Eq. (41) (black curve; reference). Panels
(a) and (b) show the imaginary time Green’s functions for the d and p
orbitals, respectively; panels (c) and (d) show the spectral functions
for the d and p orbitals (respectively), obtained from the maximum
entropy analytic continuation; panels (e) and (f) show the imagi-
nary part of the Green’s function and self-energy (respectively) for
the strongly correlated d orbital. U dd = 10, U d p = U pp = 0.5U dd ,
εd = 0, ε p = 0, V = 3.5, with total filling N = 3 and β = 32.

ACKNOWLEDGMENTS

We thank S. Florens and M. van Schilfgaarde, as well
as A. Galler, S. Bhandary and C. Glatz for interesting and
stimulating discussions. This work was supported by the Eu-
ropean Research Council (Consolidator Grant No. 617196
CORRELMAT) and supercomputing time at IDRIS/GENCI
Orsay (Project No. t2020091393). We thank the computer
team at CPHT for support.

APPENDIX A: NONLOCAL CHARGE EXCITATION IN
THE ATOMIC LIMIT

The results of the numeric simulations for the d-p model
showed that intershell interactions can have varying effects
on the electronic correlations, depending on the parameter
regimes under consideration. While screening from the lig-
and orbitals causes a decrease in correlation, there is an
increased energy cost associated with nonlocal charge exci-
tations, which can lead to an increase of correlations.

The latter effect is easily demonstrated in the atomic limit:
Fig. 8 shows the energy cost of moving an electron from one
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FIG. 11. Benchmarking different approximative methods to treat
the intershell interaction in comparison to the Monte Carlo results
for the full Hamiltonian Eq. (41) (black curve; reference). Panels
(a) and (b) show the imaginary time Green’s functions for the d and p
orbitals, respectively; panels (c) and (d) show the spectral functions
for the d and p orbitals (respectively), obtained from the maximum
entropy analytic continuation; panels (e) and (f) show the imagi-
nary part of the Green’s function and self-energy (respectively) for
the strongly correlated d orbital. U dd = 12.5, U d p = U pp = 0.5U dd ,
εd = 0, ε p = 5, V = 3.5, with total filling N = 3 and β = 32.

lattice site to another (the corresponding system is illustrated
in Fig. 3), when the initial filling per site is N = 3 and the sites
are isolated from each other t d p = 0. The figure clearly shows
that, independently of the charge-transfer energy, intershell
iteractions increase the energy cost for displacing an electron.
It must be noted that this is only true if the local hybridization
V �= 0. Otherwise, the result is independent of U d p and U pp.

APPENDIX B: BENCHMARK TEST OF THE SLAVE
ROTOR TECHNIQUE

In this Appendix, we present results that allow for com-
parison of the slave rotor, shell-folding and Hartree-Fock
approximations in different parameter regimes. As before,
we consider the two-orbital model which we introduced in
Sec. IV A; the curves from the approximate methods are
again benchmarked against those from the exact QMC calcu-
lation (reference) and the results without U d p and U pp. The
Figs. 9–14 in this section share the same structure: Panels
(a) and (b) show the d- and p-orbital Green’s functions on

FIG. 12. Benchmarking different approximative methods to treat
the intershell interaction in comparison to the Monte Carlo results
for the full Hamiltonian Eq. (41) (black curve; reference). Panels
(a) and (b) show the imaginary time Green’s functions for the d
and p orbitals, respectively; panels (c) and (d) show the spectral
functions for the d and p orbitals (respectively), obtained from the
maximum entropy analytic continuation; panels (e) and (f) show
the imaginary part of the Green’s function and self-energy (re-
spectively) for the strongly correlated d orbital. U dd = 10, U d p =
U pp = 0.5U dd , εd = 0, ε p = 0, V = 7, with total filling N = 3 and
β = 32.

the imaginary time axis; the insets show the logarithm of
the (absolute value of the) same quantities, to improve the
distinction of the different curves. Panels (c) and (b) show
the spectral functions of the d and p orbitals, obtained from
analytic continuation using the maximum entropy method
[45]. Care must be taken when drawing conclusions from the
comparison of these spectral functions, since the results of
the analytic continuation algorithm is sensitive to the input
parameters of the routine. Finally, panels (e) and (f) focus on
the imaginary parts of the Green’s function and self-energy
of the d orbital, which provides insights into the physics of
the strongly correlated subspace. All of the following results
were obtained at inverse temperature β = 32; as before, all
parameters are given in units of the off-diagonal intersite
hopping t d p.

Figures 9 and 10 were obtained at commensurate
filling 〈N〉 = 3, on-site hybridization V = 3.5, and bare
charge-transfer energy � = 0, for U dd = 8.75 and U dd =
10, respectively. In both cases, the additional interac-
tions U d p = U pp = 0.5U dd decrease the correlations. In
Fig. 10, the system is in the vicinity of the metal-insulator
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FIG. 13. Benchmarking different approximative methods to treat
the intershell interaction in comparison to the Monte Carlo results
for the full Hamiltonian Eq. (41) (black curve; reference). Panels
(a) and (b) show the imaginary time Green’s functions for the d and p
orbitals, respectively; panels (c) and (d) show the spectral functions
for the d and p orbitals (respectively), obtained from the maximum
entropy analytic continuation; panels (e) and (f) show the imagi-
nary part of the Green’s function and self-energy (respectively) for
the strongly correlated d orbital. U dd = 15, U d p = U pp = 0.5U dd ,
εd = 0, ε p = 0, V = 7, with total filling N = 3 and β = 32.

transition and deviations from the reference solution are
stronger.

Figure 11 was obtained at commensurate filling 〈N〉 = 3
and on-site hybridization V = 3.5, however, the bare charge-
transfer energy and the d-d interaction are changed to � =
−5 and U dd = 12.5, respectively. The increase of the bare p
orbital energy leads to an enhanced p-d charge transfer, which
amplifies the effect of the intershell interactions.

Figures 12 and 13 show the results for commensu-
rate filling 〈N〉 = 3, on-site hybridization V = 7, and bare
charge-transfer energy � = 0 for U dd = 10 and U dd = 15,
respectively. In the first case, the system is in the metal-
lic regime and turning on U d p = U pp = 0.5U dd leads to an

FIG. 14. Benchmarking different approximative methods to treat
the intershell interaction in comparison to the Monte Carlo results
for the full Hamiltonian Eq. (41) (black curve; reference). Panels
(a) and (b) show the imaginary time Green’s functions for the d and p
orbitals, respectively; panels (c) and (d) show the spectral functions
for the d and p orbitals (respectively), obtained from the maximum
entropy analytic continuation; panels (e) and (f) show the imagi-
nary part of the Green’s function and self-energy (respectively) for
the strongly correlated d orbital. U dd = 10, U d p = U pp = 0.5U dd ,
εd = 0, ε p = 0, V = 3.5, with total filling N = 2.8 and β = 32.

increase in correlations. In Fig. 13, the system is a charge-
transfer insulator. Here, the additional interactions result in
a broadening of the spectral gap. The results from the shell-
folding and the Hartree-Fock approximations are completely
off the reference results, even predicting metallic solutions.
The result from the slave rotor method, on the other hand, is
in good agreement with the reference.

Figure 14 finally shows the results at an incommensurate
filling 〈N〉 = 2.8 with an on-site hybridization V = 3.5, bare
charge-transfer energy � = 0, and U dd = 10. As explained
above, the slave rotor solution shows a stronger deviation at
low frequencies; the Hartree-Fock approximation, on the other
hand, is rather good in this regime. Only, at higher frequen-
cies, the slave rotor technique trumps the other methods.
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