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Many-body wavefunctions for quantum impurities out of equilibrium. II. Charge fluctuations
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We extend the general formalism discussed in the previous paper (A. B. Culver and N. Andrei, [Phys. Rev. B
103, 195106 (2021)]) to two models with charge fluctuations: the interacting resonant level model and the
Anderson impurity model. In the interacting resonant level model, we find the exact time-evolving wavefunction
and calculate the steady-state impurity occupancy to leading order in the interaction. In the Anderson impurity
model, we find the nonequilibrium steady state for small or large Coulomb repulsion U , and we find that the
steady-state current to leading order in U agrees with a Keldysh perturbation theory calculation.
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I. INTRODUCTION

A quench, or sudden change in a system’s Hamiltonian, is
a useful way of probing nonequilibrium physics, in particular
the nonequilibrium steady state that may occur in the long
time limit (with the system size taken to infinity first). In
this paper we extend our wave-function formalism for quench
dynamics and nonequilibrium steady states [1] to quantum
impurity models with charge fluctuations, focusing on the
interacting resonant level model and the Anderson impurity
model. In the former case, we find the exact time-evolving
wavefunction; in the latter case, we find the nonequilibrium
steady state for large or small Coulomb repulsion. We then
use these wavefunctions to compute some physical quantities.
This computation leads to complex mathematical expressions
which require us to expand in some parameter to make them
accessible in the thermodynamic limit.

Let us recall the basic setup of our quench, as described
in our previous paper [1]. The system consists of a quantum
impurity coupled to any number of leads (reservoirs of elec-
trons), which are held at arbitrary temperatures and chemical
potentials. The leads themselves are noninteracting; it is the
coupling between the leads and the impurity that makes this a
many-body problem. Prior to t = 0, the impurity is decoupled,
and the system is in a very simple state: a Fermi sea in each
lead filling up to the chemical potential (or more generally,
a finite-temperature Fermi distribution in each lead). The
quench at t = 0 consists of turning on the coupling between
the impurity and the leads.

Previously, we used our formalism for calculating the
many-body wavefunction and expectation values in the Kondo
model, in which the quantum impurity has only a fluctuating
spin. Here we present an extension of our formalism to models
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in which both the spin and the charge of the impurity can fluc-
tuate. We set up a general formalism, focusing in particular on
two models. The first is the interacting resonant level model
(IRL), in which the impurity is a spinless fermion d† that has
tunneling and Coulomb interaction with any number of leads:

HIRL = −i
∫ L/2

−L/2
dx

Nleads∑
γ=1

ψ†
γ (x)

d

dx
ψγ (x) + εd†d

+
Nleads∑
γ=1

[
v√

Nleads
ψ†

γ (0)d + H.c.

]

+ U
Nleads∑
γ=1

ψ†
γ (0)ψγ (0)d†d. (1.1)

With a view towards universal low energy physics, we have
followed the usual steps of taking the wide-band limit and
“unfolding” the leads, resulting in a one-dimensional model
with linear dispersion. We have also assumed equal tunneling
and Coulomb interaction strength for each lead.

The second model we focus on is the Anderson impurity
model (AIM), again with any number of leads with equal
tunneling to the dot:

HAIM = −i
∫ L/2

−L/2
dx

Nleads∑
γ=1

ψ†
γ a(x)

d

dx
ψγ a(x) + εd†

a da

+
Nleads∑
γ=1

[
v√

Nleads
ψ†

γ a(0)da + H.c.

]
+ Un↑n↓. (1.2)

In this case, the impurity is a single spin-1/2 fermion d†
a with

a Coulomb energy cost U to having both spins present. We
again are considering the wide-band limit.

The nonequilibrium physics of these models has been
studied by a great variety of approaches, usually in the case
Nleads = 2 that is most relevant to transport experiments.
The IRL has been studied by, for instance, a nonequilib-
rium version of the Bethe ansatz [2]; perturbative, NRG,
and Anderson-Yuval Coulomb gas methods [3]; Hershfield
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density matrix [4]; conformal field theory and integrability
[5]; time-dependent DMRG and integrability [6]; and func-
tional renormalization group and real-time renormalization
group in frequency space [7]. There is still more literature on
the AIM out of equilibrium; the reader may see the references
in Ref. [8] for an extensive list (that also includes work on the
related nonequilibrium Kondo problem).

In the quench setup we consider, the first challenge is to
find the many-body wavefunction following the quench. One
of our main results is the exact solution of this problem in
the case of the multilead IRL. We show that in the long-time
limit, the time-evolving wavefunction becomes a nonequilib-
rium steady state (NESS): a solution of the time-independent
Schrodinger equation with the boundary condition of incom-
ing plane waves (the Fermi seas of the leads). In addition, the
time-independent version of our formalism yields this NESS
directly, without following the quench dynamics. In the AIM,
we use the time-independent formalism to find the NESS in
the limits of small U (which we use as a check, comparing
with Keldysh perturbation theory) and U → ∞.

NESS wavefunctions for the IRL and AIM have previously
been obtained by Nishino and collaborators [9–12]; our more
general approach recovers some of their results in special
cases. We discuss these special cases in more detail below.

We emphasize that the NESS wavefunctions in this paper
differ in an essential way from Bethe ansatz wavefunctions.
The key point is that Bethe ansatz wavefunctions are well
suited to quantization on a ring with periodic boundary con-
ditions, which is most natural for equilibrium problems (one
can enumerate states and calculate the partition function). In
contrast, the NESS wavefunctions in this paper are simple on
the “incoming” side (x < 0) and complicated on the “out-
going” side (x > 0)—they are scattering “in” states. These
wavefunctions permit the evaluation of observables directly
in steady state nonequilibrium, without the need to follow the
real-time dynamics that establish the steady state.

The paper is organized as follows. In Sec. II, we present our
wave-function formalism for models with charge fluctuations.
This presentation begins with the noninteracting resonant
level model as a warmup, then proceeds to the one-lead IRL
as the first nontrivial application of our approach. Then, the
approach is presented in a more formal and general way, in
both time-dependent and time-independent forms, and results
are presented for the multilead IRL and the multilead AIM. In
Sec. III, we use our wavefunctions to calculate observables.
We calculate the impurity occupancy in the IRL at leading
order in U , verifying that the steady state equilibrium answer
agrees with a calculation in the literature and presenting some
new results in steady state nonequilibrium. We also calcu-
late the steady-state current in the two-lead AIM for small
U (obtaining an answer that we have verified with Keldysh
perturbation theory) and for U → ∞ with small � ≡ 1

2 |v|2
(recovering a scaling law well known from the equilibrium
case). We conclude in Sec. IV with a summary and outlook.

II. WAVEFUNCTION FORMALISM FOR
CHARGE FLUCTUATIONS

We present a reformulation of the many-body Schrodinger
equation (time-dependent or time-independent) that allows us

to calculate wavefunctions in the IRL and AIM. Our formal-
ism takes care of much of the combinatorial bookkeeping
involved in solving for an N-body wavefunction in order
to isolate the hard part of the interacting problem, which
we find is a certain family of differential equations that we
call “inverse problems.” The equivalence of the many-body
Schrodinger equation to these inverse problems holds under
fairly general conditions; in some one-dimensional quantum
impurity models with linear spectrum, the inverse problems
can be solved in closed form.

We present our formalism first in a specific example: the
one-lead IRL. We warm up in Sec. II A with the noninteracting
resonant level, which provides a starting point for our calcula-
tions in both the IRL and the AIM. In Sec. II B, we present the
time-evolving wavefunction of the one-lead IRL. This exam-
ple motivates the more general formalism for time evolution
that we set up in Sec. II C; we also give a brief account of
the time-independent version of the formalism in Sec. II D. In
Sec. II E, we present the time-evolving wavefunction of the
multilead IRL, and in Sec. II F we present the NESS of the
multilead AIM for small or large U .

A. Noninteracting case: The resonant level model

We consider first the one-lead RLM:

H (0) = −i
∫ L/2

−L/2
dx ψ†(x)

d

dx
ψ (x) + εd†d

+ [vψ†(0)d + H.c.]. (2.1)

We use the following notation throughout the rest of the paper

� = 1

2
|v|2, z = ε − i�, T (k) = 2�

k − z
. (2.2)

We begin by defining the time evolution of the momentum
creation operators c†

k ≡ 1√
L

∫ L/2
−L/2 dx eikxψ†(x) as follows:

c†
k (t ) ≡ e−iH (0)t c†

keiH (0)t . (2.3)

The point is that, since H (0) annihilates the empty state |0〉,
the time evolution of an initial state with arbitrary momenta is
given by e−iH (0)t c†

kN
. . . c†

k1
|0〉 = c†

kN
(t ) . . . c†

k1
(t )|0〉. This same

approach was used by Gurvitz in noninteracting Floquet mod-
els [13]; our approach will be to use the c†

k (t ) operators as a
basic ingredient in constructing the wavefunction in an inter-
acting model. We emphasize that our calculation is done in
the Schrodinger picture.

A straightforward calculation yields the following explicit
form in the regime of interest (0 � t < L/2):

c†
k (t ) = e−ikt c†

k + 1√
L

∫
dx Fk (t − x)

×
(

�(0 < x < t )ψ†(x) + i

v
δ(x)d†

)
, (2.4)

where

Fk (t ) = −iT (k)(e−ikt − e−izt ). (2.5)

Let us make one comment on this solution. Due to the linearity
of the spectrum, the wavefunction is discontinuous at x = 0,
and one therefore needs a prescription to make sense of δ(x)
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multiplying a discontinuous function. Here and in all wave-
function calculations in this paper, the prescription we use is
to average the two limits of the discontinuous function as x →
0±. This has the effect of replacing, e.g., �(x)δ(x) → 1

2δ(x).
This prescription has been used successfully in equilibrium
calculations with the Bethe ansatz [14].

In the infinite time limit, the c†
k (t ) operators create scatter-

ing “in” states: that is, states with an incoming plane wave
(eikx for x < 0). This infinite time limit must be taken in a
particular sense, removing a trivial overall phase factor and
taking the limit pointwise: A limit is reached at each point x
but not uniformly for all x. We send L → ∞ before t → ∞,
removing the prefactor 1/

√
L to convert from Kronecker delta

normalization to Dirac delta normalization. The result is

c†
k,in ≡ lim

t→∞ eikt lim
L→∞

√
L

(∫
dx {ψ (x), c†

k (t )}ψ†(x)

+{d, c†
k (t )}d†

)
(2.6a)

= c†
k +

∫
dx Fk,in(x)

(
�(0 < x)ψ†(x) + i

v
δ(x)d†

)
,

(2.6b)

where c†
k = ∫

dx eikxψ†(x) in the second line (i.e., Dirac nor-
malized) and

Fk,in(x) = −iT (k)eikx. (2.7)

From the electron part of the wavefunction c†
k,in|0〉, we can

see that T (k) is the bare T matrix for a single electron
crossing the impurity. The corresponding bare S matrix is
S = 1 − iT (k) = k−ε−i�

k−ε+i� , in agreement with Bethe ansatz.
We proceed to the simplest multilead RLM, in which an

arbitrary number of leads indexed by γ = 1, . . . , Nleads all
tunnel to the dot with the same tunneling coefficient:

H (0) = −i
∫ L/2

−L/2
dx

Nleads∑
γ=1

ψ†
γ (x)

d

dx
ψγ (x) + εd†d

+
Nleads∑
γ=1

[
v√

Nleads
ψ†

γ (0)d + H.c.

]
. (2.8)

After a unitary rotation, the Hamiltonian separates into
Nleads − 1 free fermion fields and a copy of the RLM,
with the latter involving the “even” combination cek =

1√
Nleads

∑Nleads
β=1 cβk . The time evolution of operators is straight-

forward in this rotated basis, seeing as the free fermion fields
evolve by phase factors and the RLM field evolves according
to Eq. (2.4). Rotating back to the original basis, we obtain

c†
γ k (t ) = e−ikt c†

γ k + 1

Nleads

√
L

∫
dx Fk (t − x)

×
(

�(0 < x < t )
Nleads∑
β=1

ψ
†
β (x) + i

√
Nleads

v
δ(x)d†

)
,

(2.9)

where c†
γ k (t ) = 1√

L

∫ L/2
−L/2 dx eikxψ†

γ (x). Taking the long-time
limit in the same way as in the one-lead case yields

c†
γ k,in = c†

γ k + 1

Nleads

∫
dx Fk,in(x)

×
(

�(0 < x)
Nleads∑
β=1

ψ
†
β (x) + i

√
Nleads

v
δ(x)d†

)
,

(2.10)

where the momentum creation operators here are Dirac nor-
malized [c†

γ k = ∫
dx eikxψ†

γ (x)].

B. Time-evolving wavefunction of the one-lead IRL

To the one-lead resonant level model Hamiltonian H (0) of
the previous section, we add a Coulomb interaction between
the dot and the charge density at x = 0 to arrive at the one-lead
IRL:

H (1) = Uψ†(0)ψ (0)d†d, (2.11a)

H = H (0) + H (1). (2.11b)

We present the exact time-evolving wavefunction of this
model given an initial state c†

kN
. . . c†

k1
|0〉 with arbitrary mo-

menta. We use this model to illustrate a more general method
which is detailed in the next section.

We wish to find the following time-dependent wavefunc-
tion:

|	(t )〉 ≡ e−iHt

(
N∏

j=1

c†
k j

)
|0〉. (2.12)

Equivalently, we need to solve the differential equation(
H − i

d

dt

)
|	(t )〉 = 0, (2.13)

with the initial condition

|	(t = 0)〉 = c†
kN

. . . c†
k1
|0〉. (2.14)

In the noninteracting case (U = 0), the full solution is given
by a product of the time-dependent creation operators of the
RLM [Eq. (2.4)]:

|	0(t )〉 =
(

N∏
j=1

c†
k j

(t )

)
|0〉. (2.15)

The method we introduce is a way of systematically adding a
finite number of correction terms to |	0(t )〉 to form the full
solution |	(t )〉 for arbitrary coupling U . A basic ingredient
in the solution is a set of “crossing states” |
k1...kn (t )〉, which
are called such because they are built from single-particle T
matrices for electrons crossing the origin—both the RLM T
matrix T (k) [Eq. (2.2)] and the T matrix TU for a single elec-
tron scattering off a potential Uδ(x) (though such a potential
is not present in the Hamiltonian). The full solution |	(t )〉 is
built from c†

k (t ) operators acting on crossing states.
We begin by defining two operators that, roughly speaking,

measure the failure of the c†
k (t ) operators to describe the full
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time evolution:

Ak (t ) ≡ [H, c†
k (t )] − i

∂

∂t
c†

k (t ), (2.16a)

Bk1k2 (t ) ≡ {Ak2 (t ), c†
k1

(t )}. (2.16b)

A short calculation yields these operators in explicit form. The
first is

Ak (t ) = 1√
L

Ud†ψ†(0)

[
− iT (k)(e−ikt − e−izt )

×
(

i

v
ψ (0) − 1

2
d

)
− e−ikt d

]
, (2.17)

and the second is the antisymmetrization of a “reduced” oper-
ator

Bk1k2 (t ) = B(red)
k1k2

(t ) − B(red)
k2k1

(t ), (2.18)

where

B(red)
k1k2

(t ) = − U

Lv
T (k1)(e−ik1t − e−izt )e−ik2t d†ψ†(0). (2.19)

The reduced operator is not uniquely defined, since one can
add any symmetric function, but this is a convenient choice.

We note two properties of these operators for later refer-
ence:

(i) Any A(t ) annihilates the empty state:

Ak (t )|0〉 = 0. (2.20)

(ii) Any B(t ) commutes with any momentum creation op-
erator: [

Bk1k2 (t ), c†
k3

(t )
] = 0. (2.21)

The case of N = 1 is noninteracting: With |	0(t )〉 =
c†

k1
(t )|0〉, we have (H − i d

dt )|	0(t )〉 = Ak1 (t )|0〉, which van-
ishes due to (2.20). We present the cases of N = 2, 3, and 4 in
detail, then proceed to general N .

1. Two electrons

For N = 2, the freely-evolving state is |	0(t )〉 =
c†

k2
(t )c†

k1
(t )|0〉. Bringing (H − i d

dt ) past the momentum oper-
ators to annihilate the empty state yields(

H − i
d

dt

)
|	0(t )〉 = Ak2 (t )c†

k1
(t )|0〉 + c†

k2
(t )Ak1 (t )|0〉

(2.22a)

= Bk1k2 (t )|0〉, (2.22b)

where we used Eq. (2.20). The N = 2 problem thus reduces
to constructing a state |
k1k2 (t )〉 which is the “inverse of
Bk1k2 (t )|0〉” in the following precise sense:(

H − i
d

dt

)∣∣
k1k2 (t )
〉 = −Bk1k2 (t )|0〉, (2.23a)∣∣
k1k2 (t = 0)
〉 = 0. (2.23b)

Given such a state (which we explicitly construct below), the
N = 2 solution is immediate:

|	(t )〉 = |	0(t )〉 + |	2(t )〉, (2.24)
where |	2(t )〉 = |
k1k2 (t )〉. The point of these manipulations
is that the state |
k1k2 (t )〉 will appear again in the solution for
larger N .

Recalling Eq. (2.18), we write∣∣
k1k2 (t )
〉 ≡ ∣∣χk1k2 (t )

〉− ∣∣χk2k1 (t )
〉
, (2.25)

where the unsymmetrized crossing state |χk1k2 (t )〉 is required
to vanish at t = 0 and satisfy(

H − i
d

dt

)∣∣χk1k2 (t )
〉 = −B(red)

k1k2
(t )|0〉 (2.26a)

= U

Lv
T (k1)(e−ik1t − e−izt )

× e−ik2t d†ψ†(0)|0〉. (2.26b)

We make the following ansatz for the unsymmetrized
crossing state:∣∣χk1k2 (t )

〉 = 1

L

∫
dx1dx2 Fk1k2 (t, x1, x2)

×
[
�(0 < x2 < x1 < t )ψ†(x2)

+ i

v
δ(x2)�(0 < x1 < t )d†

]
ψ†(x1)|0〉, (2.27)

where we use the notation �(xn < · · · < x1) = �(x1 −
x2) . . . �(xn − xn−1) and where Fk1k2 is a smooth function to
be determined below. Since an ansatz of similar form occurs
throughout our calculations in both the IRL and AIM, we
describe it in some detail.

The state |χk1k2 (t )〉 should vanish outside the forward “light
cone,” seeing as the effect of the quench travels rightward
from the origin at the Fermi velocity (which we have set
to unity). The ordering x2 < x1 is a convenience and no
loss of generality. The state vanishes at t = 0 by construc-
tion; to see this, we note that the overlap of |χk1k2 (t = 0)〉
with any reasonable state yields an integral of the form∫ L/2
−L/2 dx1dx2 �(0 < x2 < x1 < 0)X (x1, x2) with some non-

singular function X , and this integral vanishes. (In other
words, the position space wavefunction of |χk1k2 (t = 0)〉 is
nonsingular and vanishes everywhere except on a set of mea-
sure zero and hence is equivalent to the identically zero
function.)

The only part of Eq. (2.27) remaining that requires expla-
nation is the impurity-electron part of the wavefunction, i.e.,
d†ψ†(x1). This term is chosen so that acting on it with the
tunneling term of H produces an exact cancellation with the
action of the kinetic term minus i d

dt on the Heaviside function
in the electron-electron part, i.e., ψ†(x2)ψ†(x1). In particular,
we have∫

dx1dx2 Fk1k2 (t, x1, x2)

[
− i

(
∂

∂t
+ ∂

∂x1
+ ∂

∂x2

)
�(0 < x2 < x1 < t )

]
ψ†(x2)ψ†(x1)|0〉

+ vψ†(0)d
∫

dx1dx2 Fk1k2 (t, x1, x2)
i

v
δ(x2)�(0 < x1 < t )d†ψ†(x1)|0〉 = 0. (2.28)
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This cancellation is desirable because we want (H − i d
dt )|χk1k2 (t )〉 to be of the form ψ†(0)d†|0〉 in order to match the right-hand

side of Eq. (2.26b). Proceeding, we find(
H − i

d

dt

)
|χk1k2 (t )〉 = 1

L

{∫
dx1dx2

[
−i

(
∂

∂t
+ ∂

∂x1
+ ∂

∂x2

)
Fk1k2 (t, x1, x2)

]
�(0 < x2 < x1 < t )ψ†(x2)ψ†(x1)

+ i

v

∫
dx1

[(
−i

∂

∂t
− i

∂

∂x1
+ z

)
Fk1k2 (t, x1, 0)

]
�(0 < x1 < t )d†ψ†(x1)

+ i

v

(
−i + 1

2
U

)
Fk1k2 (t, 0, 0)d†ψ†(0)

}
|0〉, (2.29)

where the averaging prescription has been used [see the com-
ment below Eq. (2.5)] to replace δ(x2)�(0 < x2 < x1 < t ) →
1
2δ(x2)�(0 < x1 < t ). Comparing to Eq. (2.26b), we see that
it suffices for the function Fk1k2 to satisfy the following three
requirements:(

∂

∂t
+ ∂

∂x1
+ ∂

∂x2

)
Fk1k2 (t, x1, x2) = 0, (2.30a)[

−i

(
∂

∂t
+ ∂

∂x1

)
+ z

]
Fk1k2 (t, x1, 0) = 0, (2.30b)(

1 + i

2
U

)
Fk1k2 (t, 0, 0) = U T (k1)(e−ik1t − e−izt )e−ik2t .

(2.30c)

The first requirement will hold if Fk1k2 is a function of the
coordinate differences only (t − x1, t − x2, x1 − x2), while the
second requirement will hold if Fk1k2 (t, x1, 0) is a function of
t − x1 times e−izx1 . From the third requirement, we can then
read off

Fk1k2 (t, x1, x2) = TUT (k1)(e−ik1(t−x1 ) − e−iz(t−x1 ) )

× e−ik2(t−x1 )e−iz(x1−x2 ), (2.31a)

where

TU = U

1 + iU/2
. (2.31b)

The quantity TU is exactly the T matrix for a single electron,
with linear spectrum, scattering on a potential Uδ(x). Recall-
ing the antisymmetrization in Eq. (2.25), we see that |
k1k2 (t )〉
is built from the free T matrices TU , T (k1), and T (k2). This is
why we refer to |
k1k2 (t )〉 as a “crossing state.”

2. Three electrons

For N = 3, the freely-evolving state is |	0(t )〉 =
c†

k3
(t )c†

k2
(t )c†

k1
(t )|0〉, and we find(

H − i
d

dt

)
|	0(t )〉

= Ak3 (t )c†
k2

(t )c†
k1

(t )|0〉 + c†
k3

(t )Ak2 (t )c†
k1

(t )|0〉
+ c†

k3
(t )c†

k2
(t )Ak1 (t )|0〉 (2.32a)

= c†
k3

(t )Bk1k2 (t ) − c†
k2

(t )Bk1k3 (t )|0〉 + c†
k1

(t )Bk2k3 (t )|0〉,
(2.32b)

where we used Eq. (2.20) and Eq. (2.21). To cancel these
leftover terms, we reuse the same crossing state |
k1k2 (t )〉 that

appeared in the two electron case, defining

|	2(t )〉=c†
k3

(t )
∣∣
k1k2 (t )

〉−c†
k2

(t )
∣∣
k1k3 (t )

〉+c†
k1

(t )
∣∣
k2k3 (t )

〉
.

(2.33)

The point is that, if we bring (H − i d
dt ) to the right of the c†

k (t )
operators in |	2(t )〉, then by the condition Eq. (2.23a) that
the crossing state satisfies, we obtain exactly what we need to
cancel the leftover terms on the right-hand side of Eq. (2.32b).
Bringing (H − i d

dt ) to the right generates new commutators:(
H − i

d

dt

)
(|	0(t )〉 + |	2(t )〉)

= Ak3 (t )
∣∣
k1k2 (t )

〉− Ak2 (t )
∣∣
k1k3 (t )

〉+ Ak1 (t )
∣∣
k2k3 (t )

〉
.

(2.34)

We are thus presented with a new “inverse problem,” namely
to find a state |
k1k2k3 (t )〉 that satisfies(

H−i
d

dt

)∣∣
k1k2k3 (t )
〉 = −

(
Ak3 (t )

∣∣
k1k2 (t )
〉−Ak2 (t )|
k1k3 (t )〉

+ Ak1 (t )
∣∣
k2k3 (t )

〉)
, (2.35a)

∣∣
k1k2k3 (t = 0)
〉 = 0. (2.35b)

Given such a state, the full solution is |	(t )〉 = |	0(t )〉 +
|	2(t )〉 + |	3(t )〉, where |	3(t )〉 = |
k1k2k3 (t )〉. This ex-
hibits the pattern that continues to all N : the states
|	1(t )〉, . . . , |	N−1(t )〉 are built from crossing states that have
been encountered already (up to N − 1), while |	N (t )〉 re-
quires a new crossing state.

It is again convenient to write the new crossing state as an
antisymmetrized sum over permutations:∣∣
k1k2k3 (t )

〉 = ∑
σ∈Sym(3)

(sgn σ )
∣∣χkσ1 kσ2 kσ3

(t )
〉
, (2.36)

where the unsymmetrized crossing state |χk1k2k3 (t )〉 must van-
ish at t = 0 and satisfy [recall Eq. (2.25)](

H − i
d

dt

)
|χk1k2k3 (t )〉

= −Ak3 (t )|χk1k2 (t )〉 (2.37a)

= 1

L3/2

i

v
U
∫

dx1 Fk1k2 (t, x1, 0)

× e−ik3t�(0 < x1 < t )d†ψ†(0)ψ†(x1)|0〉. (2.37b)
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To find the unsymmetrized crossing state, we extend our previous ansatz (2.27) to include another electron:∣∣χk1k2k3 (t )
〉 = 1

L3/2

∫
dx1dx2dx3 Fk1k2k3 (t, x1, x2, x3)

[
�(0 < x3 < x2 < x1 < t )ψ†(x3)

+ i

v
δ(x3)�(0 < x2 < x1 < t )d†

]
ψ†(x2)ψ†(x1)|0〉. (2.38)

We require that Fk1k2k3 (t, x1, x2, x3) is a function of coordinate differences only and that Fk1k2k3 (t, x1, x2, 0) equals e−izx1 times a
function of t − x1 and t − x2; then we obtain (see Appendix C for the full calculation)(

H − i
d

dt

)
|χk1k2k3 (t )〉 = 1

L3/2

i

v

(
−i + 1

2
U

)∫
dx1Fk1k2k3 (t, x1, 0, 0)�(0 < x1 < t )d†ψ†(0)ψ†(x1)|0〉. (2.39)

Thus, Fk1k2k3 must also satisfy (−i + 1
2U

)
Fk1k2k3 (t, x1, 0, 0) = UFk1k2 (t, x1, 0)e−ik3t . (2.40)

We can build a suitable function using the n = 2 solution:

Fk1k2k3 (t, x1, x2, x3) = iTU Fk1k2 (t, x1, x3)e−ik3(t−x2 ). (2.41)

3. Four electrons

This is a sufficient number to illustrate all properties of the general N solution. For N = 4, the freely-evolving state is
|	0(t )〉 = c†

k4
(t )c†

k3
(t )c†

k2
(t )c†

k1
(t )|0〉, and following the same steps as before yields

|	(t )〉 = |	0(t )〉 + |	2(t )〉 + |	3(t )〉 + |	4(t )〉, (2.42)

where

|	2(t )〉 = c†
k4

(t )c†
k3

(t )
∣∣
k1k2 (t )

〉− c†
k4

(t )c†
k2

(t )
∣∣
k1k3 (t )

〉+ c†
k3

(t )c†
k2

(t )
∣∣
k1k4 (t )

〉
+ c†

k4
(t )c†

k1
(t )
∣∣
k2k3 (t )

〉− c†
k3

(t )c†
k1

(t )
∣∣
k2k4 (t )

〉+ c†
k2

(t )c†
k1

(t )
∣∣
k3k4 (t )

〉
, (2.43a)

|	3(t )〉 = c†
k4

(t )
∣∣
k1k2k3 (t )

〉− c†
k3

(t )
∣∣
k1k2k4 (t )

〉+ c†
k2

(t )
∣∣
k1k3k4 (t )

〉− c†
k1

(t )
∣∣
k2k3k4 (t )

〉
, (2.43b)

|	4(t )〉 = ∣∣
k1k2k3k4 (t )
〉
, (2.43c)

where |
k1k2k3k4 (t )〉 is a new crossing state, which must vanish at t = 0 and satisfy(
H − i

d

dt

)
|
k1k2k3k4 (t )〉 = −(Bk3k4 (t )

∣∣
k1k2 (t )
〉− Bk2k4 (t )

∣∣
k1k3 (t )
〉+ Bk2k3 (t )

∣∣
k1k4 (t )
〉

+ Bk1k4 (t )
∣∣
k2k3 (t )

〉− Bk1k3 (t )
∣∣
k2k4 (t )

〉+ Bk1k2 (t )
∣∣
k3k4 (t )

〉)
− (

Ak4 (t )
∣∣
k1k2k3 (t )

〉− Ak3 (t )
∣∣
k1k2k4 (t )

〉+ Ak2 (t )
∣∣
k1k3k4 (t )

〉− Ak1 (t )
∣∣
k2k3k4 (t )

〉)
. (2.44)

There are two types of terms that (H − i d
dt )|
k1k2k3k4 (t )〉 must cancel: the B(t ) terms, which come from bringing H − i d

dt past the
creation operators in |	2(t )〉, and the A(t ) terms, which come from the same process in |	3(t )〉. We deal with these separately
by introducing two types of unsymmetrized crossing states, |χk1k2|k3k4 (t )〉 and |χk1k2k3k4 (t )〉 (the four momenta are either separated
by a vertical line, or not), that are each required to vanish at t = 0. We write the full crossing state as an antisymmetrization:∣∣
k1k2k3k4 (t )

〉 = ∑
σ∈Sym(4)

(sgn σ )
(∣∣χkσ1 kσ2 |kσ3 kσ4

(t )
〉+ ∣∣χkσ1 kσ2 kσ3 kσ4

(t )
〉)
. (2.45)

Then it suffices for the unsymmetrized crossing states to satisfy(
H − i

d

dt

)∣∣χk1k2|k3k4 (t )
〉 = −B(red)

k3k4
(t )
∣∣χk1k2 (t )

〉 = 1

L2

U

v

∫
dx1dx2 Fk1k2 (t, x1, x2)T (k3)(e−ik3t − e−izt )

× e−ik4t�(0 < x2 < x1 < t )d†ψ†(0)ψ†(x2)ψ†(x1)|0〉,
and(

H − i
d

dt

)
|χk1k2k3k4 (t )〉 = −Ak4 (t )|χk1k2k3 (t )〉

= 1

L2

i

v
U
∫

dx1dx2 Fk1k2k3 (t, x1, x2, 0)e−ik4t�(0 < x2 < x1 < t )d†ψ†(0)ψ†(x2)ψ†(x1)|0〉. (2.46)
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Extending Eq. (2.38) to one more electron, we make the following ansatz:∣∣χk1k2|k3k4 (t )
〉 = 1

L2

∫
dx1dx2dx3dx4 Fk1k2|k3k4 (t, x1, x2, x3, x4)

[
�(0 < x4 < x3 < x2 < x1 < t )ψ†(x4)

+ i

v
δ(x4)�(0 < x3 < x2 < x1 < t )d†

]
ψ†(x3)ψ†(x2)ψ†(x1)|0〉, (2.47)

with the same ansatz for |χk1k2k3k4 (t )〉 (with Fk1k2|k3k4 replaced by Fk1k2k3k4 ). We require that each F (t, x1, x2, x3, x4) is a function
of coordinate differences only and that each F (t, x1, x2, x3, 0) is of the form e−izx j times a function of t − x1, t − x2, and t − x3;
then (see Appendix C for the full calculation)(

H − i
d

dt

)
|χ (t )〉 = 1

L2

i

v

(
−i + 1

2
U

)
F (t, x1, x2, 0, 0)�(0 < x2 < x1 < t )d†ψ†(0)ψ†(x2)ψ†(x1)|0〉, (2.48)

where |χ (t )〉 and F each have the subscript (k1, k2|k3, k4) or (k1, k2, k3, k4). Comparing, we see that the two F functions must
satisfy (

1 + i

2
U
)

Fk1k2|k3k4 (t, x1, x2, 0, 0) = UFk1k2 (t, x1, x2)T (k3)(e−ik3t − e−izt )e−ik4t , (2.49)

and (−i + 1
2U

)
Fk1k2k3k4 (t, x1, x2, 0, 0) = UFk1k2k3 (t, x1, x2, 0)e−ik4t . (2.50)

The solutions are

Fk1k2|k3k4 (t, x1, x2, x3, x4) = Fk1k2 (t, x1, x2)Fk3k4 (t, x3, x4), (2.51)

and

Fk1k2k3k3 (t, x1, x2, x3, x4) = (iTU )2Fk1k2 (t, x1, x4)e−ik3(t−x2 )e−ik4(t−x3 ). (2.52)

4. Solution for general N

From the above calculations, the pattern has emerged. The
full wavefunction is a sum over subsets of the initial N mo-
menta; the chosen subset is put into a crossing state, which
is then acted on by a product of c†

k (t ) operators that have
the remaining momenta. Each crossing state |
k1...kn (t )〉 is
the antisymmetrization of unsymmetrized crossing states in
which the n momenta are separated into any number of “cells”
of length two or greater—for instance, |
k1k2k3k4k5k6 (t )〉 would
include |χk1k2k3k4k5k6 (t )〉, |χk1k2|k3k4k5k6 (t )〉, |χk1k2k3k4|k5k6 (t )〉, and
|χk1k2|k3k4|k5k6 (t )〉 (all antisymmetrized). Each new cell is asso-
ciated with a B(red)(t ) operator, while the A(t ) operator extends
the last cell by one. The unsymmetrized crossing states are
given by the n-electron generalization of Eq. (2.47). Each new
cell leads to a Fk1k2 (t, x1, x2)-type term, and any cell can be
extended by changing the second x coordinate of the Fk1k2

function to the last coordinate of the cell and multiplying by a
factor of the form iTU e−ik3(t−x2 ). For example,

Fk1k2k3|k4k5k6k7 (t, x1, x2, x3, x4, x5, x6, x7)

= iTU Fk1k2 (t, x1, x3)e−ik3(t−x2 )

× (iTU )2Fk4k5 (t, x4, x7)e−ik6(t−x5 )e−ik7(t−x6 ). (2.53)

We now present this solution in more detail, leav-
ing the proof to Appendix C. For general N , we
have

|	(t )〉 = |	0(t )〉 +
N∑

n=2

∑
1�m1<···<mn�N

(−1)m1+···+mn+1

×

⎛⎜⎜⎜⎝
N∏

j=1
j 
=m� ∀�

c†
k j

(t )

⎞⎟⎟⎟⎠∣∣
km1 ...kmn
(t )
〉
, (2.54)

where the terms in the summation over n are exactly the
|	2(t )〉, |	3(t )〉, etc. states discussed above. The sign factor
comes from bringing the quantum numbers (km1 , . . . , kmn )
to the left of the full list (k1, . . . , kN ). To define the cross-
ing states, we first write A as a shorthand for complete
antisymmetrization in momenta—i.e., A X (k1, . . . , kn) =∑

σ∈Sym(n)(sgn σ )X (kσ1 , . . . , kσn ) for any function X . Then we
have

∣∣
k1...kn (t )
〉 = A

n/2∑
s=1

∑
2� j1 < . . . < js�n

js=n, each jm+1− jm�2

∣∣χk1...k j1 |...|k js−1+1...kn (t )
〉
, (2.55)

where ∣∣χk1...k j1 |...|k js−1+1...kn (t )
〉 = 1

Ln/2

∫
dx1 . . . dxn Fk1...k j1 |...|k js−1+1...kn (t, x1, . . . , xn)

[
�(0 < xn < · · · < x1 < t )ψ†(xn)

+ i

v
δ(xn)�(0 < xn−1 < · · · < x1 < t )d†

]
ψ†(xn−1) . . . ψ†(x1)|0〉. (2.56)
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Before constructing the function F for a general number of
cells s, we first define it in the special case of s = 1, i.e., a
single cell:

Fk1...kn (t, x1, . . . , xn)

= (iTU )n−2Fk1k2 (t, x1, xn)
n∏

j=2

e−ik j (t−x j−1 ), (2.57)

where Fk1k2 (t, x1, x2) is given in Eq. (2.31b). Then, the func-
tion for general s � 1 is a product of single-celled functions:

Fk1...k j1 |...|k js−1+1...kn (t, x1, . . . , xn)

=
s∏

m=1

Fkjm−1+1...k jm

(
t, x jm−1+1, . . . , x jm

)
, (2.58)

where j0 ≡ 1 and js ≡ n. This completes the construction
of the general crossing state and thus the full many-body
wavefunction.

5. The NESS

In the long-time limit, the time-evolving wavefunc-
tion becomes a NESS: a solution to the time-independent
Schrodinger equation with the boundary condition of incom-
ing plane waves with momenta k1, . . . , kN . As mentioned
above Eq. (2.6b), this long-time limit must be taken in a
pointwise sense, removing a trivial phase factor and rescaling
by L appropriately (see also a similar calculation in the Kondo

model in the previous paper [1])

〈x|	NESS〉 = lim
t → ∞, L→∞

tL

LN/2eiEt 〈x|	(t )〉, (2.59)

where E = k1 + · · · + kN and |x〉 = ψ†(xN ) . . . ψ†(x1)|0〉.
The overlap of the NESS with a basis state with the dot
occupied is obtained similarly. The result of taking this limit
in the IRL wavefunction can essentially be read off by deleting
the factors of L and time-dependent phases, sending t → ∞
in the Heaviside functions, and removing all terms in the F
functions that decay exponentially in time. For completeness,
we now provide the NESS explicitly.

Define the following time-independent version of the basic
function (2.31b) that appeared in the time-dependent solution:

Fk1k2,in(x1, x2) = TUT (k1)ei(k1+k2 )x1 e−iz(x1−x2 ). (2.60)

Then, define the time-independent version of the single-celled
function (2.57):

Fk1...kn,in(x1, . . . , xn)

= (iTU )n−2Fk1k2,in(x1, xn)
n∏

j=2

eik j x j−1 . (2.61)

The time-independent function F for an arbitrary number of
cells is then defined as in Eq. (2.58). We can then write the
NESS wavefunction as follows:

|	NESS〉 =
(

N∏
j=1

c†
k j ,in

)
|0〉 +

N∑
n=2

∑
1�m1<···<mn�N

(−1)m1+···+mn+1

⎛⎜⎜⎝ N∏
j=1

j 
=m� ∀�

c†
k j ,in

⎞⎟⎟⎠∣∣
km1 ...kmn ,in
〉
, (2.62)

with ∣∣
k1...kn,in
〉 = A

n/2∑
s=1

∑
2 � j1 < · · · < js � n
js=n, each jm+1− jm�2

∣∣χk1...k j1 |...|k js−1+1...kn,in
〉
, (2.63)

where ∣∣χk1...k j1 |...|k js−1+1...kn,in
〉 = ∫

dx1 . . . dxn Fk1...k j1 |...|k js−1+1...kn,in(x1, . . . , xn)

[
�(0 < xn < · · · < x1)ψ†(xn)

+ i

v
δ(xn)�(0 < xn−1 < · · · < x1)d†

]
ψ†(xn−1) . . . ψ†(x1)|0〉. (2.64)

Applying the time-independent version of our formalism (see
Sec. II D) confirms that |	NESS〉 is an energy eigenstate
with energy E = k1 + · · · + kN . Alternatively, the time-
independent formalism can be used to find |	NESS〉 directly,
without following the time evolution; the calculation is very
similar to the time-dependent case.

C. General formalism

We now generalize the calculation of the previous section
to a method that can be applied to a broader class of problems.
The key point is to write the many-body wavefunction as a
sum of time-dependent creation operators acting on crossing

states, then to identify the “inverse problems” that the crossing
states must solve in order for the Schrodinger equation to be
satisfied. This takes care of much of the bookkeeping and
isolates the hard part of the interacting problem, namely the
calculation of the crossing states.

We consider a Hilbert space consisting of any states pro-
duced by fermionic “field operators” c†

α acting on an empty
state |0〉 that is annihilated by any field operator. (Note that α

is a label for any quantum numbers; d† in the IRL counts as
a “field operator.”) We wish to find the time evolution of an
initial state with arbitrary quantum numbers α1, . . . , αN :

|	(t )〉 ≡ e−iHt c†
αN

. . . c†
α1

|0〉. (2.65)
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Equivalently, we need to solve the differential equation(
H − i

d

dt

)
|	(t )〉 = 0, (2.66)

with the initial condition

|	(t = 0)〉 =
(

N∏
j=1

c†
α j

)
|0〉. (2.67)

The starting point of the construction is to find the time-
evolving operators that would describe the full time evolution
in the absence of interaction. We take the Hamiltonian to be

H = H (0) + H (1), (2.68)

where the time evolution of the field operators under H (0) is
assumed to be known:

c†
α (t ) ≡ e−iH (0)t c†

αeiH (0)t , (2.69)

and where both H (0) and H (1) annihilate the empty state:

H (0)|0〉 = H (1)|0〉 = 0. (2.70)

Thus, in the noninteracting case (H (1) = 0), the full solution
is given by a product of c†

α (t ) operators:

|	0(t )〉 ≡
(

N∏
j=1

c†
α j

(t )

)
|0〉. (2.71)

The time-evolving state |	0(t )〉 satisfies the initial condition
(2.67); each term that we will add to it in order to reach the
full solution (with H (1) included) will be required to vanish at
t = 0. We define

Aα (t ) ≡ [H, c†
α (t )] − i

∂

∂t
c†
α (t ) = [H (1), c†

α (t )], (2.72a)

Bα1α2 (t ) ≡ {
Aα2 (t ), c†

α1
(t )
}
. (2.72b)

Generalizing from the IRL, we assume that these operators
have the following properties:

(i) Any A(t ) annihilates the empty state:

Aα (t )|0〉 = 0. (2.73)

(ii) Any B(t ) commutes with any field creation operator:[
Bα1α2 (t ), c†

α3
(t )
] = 0. (2.74)

When H (0) is quadratic, the c†
α (t ) operators are linear combi-

nations of field operators; then the above conditions are met
whenever the interaction H (1) is a sum of terms of the form
c†
α1

c†
α2

cα′
1
cα′

2
[since we have, schematically, A(t ) ∼ c†c†c and

B(t ) ∼ c†c†]. Thus, the formalism of this section can in prin-
ciple be applied to a fairly general class of number-conserving
Hamiltonians with a quartic interaction term. In particular, we
have not yet specialized to one-dimensional quantum impurity
problems with linearized spectrum. These additional restric-
tions seem to become necessary when we seek exact solutions
to the differential equations for the crossing states.

It is straightforward to show that Bα1α2 (t ) is antisymmetric
under exchange of the quantum numbers α1 and α2 [15];
hence, it can be written in terms of a “reduced” operator:

Bα1α2 (t ) = B(red)
α1α2

(t ) − B(red)
α2α1

(t ). (2.75)

While B(red)
α1α2

(t ) = 1
2 Bα1α2 (t ) is always an option, it can happen

that the calculation is simpler with a different choice (as we
saw in the IRL).

Our approach will be to bring H past all of the c†
α (t ) oper-

ators to its right at the cost of commutators [Aα (t ) operators],
then to bring each Aα (t ) to the right of the remaining c†

α (t )
operators at the cost of anticommutators [Bα1α2 (t ) operators];
then each B(t ) can be brought to the right due to Eq. (2.74).
The IRL calculation in the previous section provides explicit
examples of these manipulations for N = 2, 3, 4. We now
give a summary of the general N case, leaving the proof to
Appendix B.

We commute H past each c†
α (t ) operator to find(

H − i
d

dt

)
|	0(t )〉 =

N∑
m2=1

c†
αN

(t ) . . .

([
H, c†

αm2
(t )
]− i

∂

∂t
c†
αm2

(t )

)
. . . c†

α1
(t )|0〉 (2.76a)

=
∑

1�m1<m2�N

(−1)m1+m2+1

(
n∏

j=1, j 
=m1,m2

c†
α j

(t )

)
Bαm1 αm2

(t )|0〉. (2.76b)

To cancel this, we define a state |	2(t )〉 as

|	2(t )〉 =
∑

1�m1<m2�N

(−1)m1+m2+1

(
n∏

j=1, j 
=m1,m2

c†
α j

(t )

)∣∣
αm1 αm2
(t )
〉
, (2.77)

where the crossing state |
α1α2 (t )〉 vanishes at t = 0 and sat-
isfies (

H − i
d

dt

)
|
α1α2 (t )〉 = −Bα1α2 (t )|0〉. (2.78)

The point is that if H − i d
dt were to act only on |
α1α2 (t )〉,

then (H − i d
dt )|	 (2)(t )〉 would cancel the right-hand side

of Eq. (2.76b). To reach the |
α1α2 (t )〉 state though, H −
i d

dt must commute past each c†
α (t ) operator; we therefore
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obtain(
H − i

d

dt

)
(|	0(t )〉 + |	2(t )〉)

=
∑

1�m1<m2<m3�N

(−1)m1+m2+m3+1

×

⎛⎜⎜⎜⎝
N∏

j=1
j 
=m1, m2, m3

c†
α j

(t )

⎞⎟⎟⎟⎠(Aαm3
(t )
∣∣
αm1 αm2

(t )
〉

− Aαm2
(t )
∣∣
αm1 αm3

(t )
〉+ Aαm1

(t )
∣∣
αm2 αm3

(t )
〉)
. (2.79)

Note that this equation has a similar structure to Eq. (2.76b),
but with N − 3 of the c†

α (t ) operators appearing instead of
N − 2. To cancel the new leftover terms, we need a new cross-
ing state |
α1α2α3 (t )〉—that vanishes at t = 0 and satisfies
Eq. (2.37a) with each k j replaced by α j—from which we can
construct |	3(t )〉 to cancel the right-hand side of Eq. (2.79).
This results in new terms to cancel, in which at most N − 4
of the c†

α (t ) operators appear in any particular term; we build
|	4(t )〉 from a new crossing state |
α1α2α3α4 (t )〉 and so on.

This process terminates when we reach |	N (t )〉 and all N of
the c†

α (t ) operators are eliminated.
Let us state the general result (proven in Appendix B). The

full time-evolving wavefunction can be written as

|	(t )〉 = |	0(t )〉 +
N∑

n=2

∑
1�m1<···<mn�N

(−1)m1+···+mn+1

×

⎛⎜⎜⎜⎝
N∏

j=1
j 
=m� ∀�

c†
α j

(t )

⎞⎟⎟⎟⎠|
αm1 ...αmn
(t )〉, (2.80)

where the terms in the summation over n are exactly the
|	2(t )〉, |	3(t )〉, etc. states discussed above. The crossing
states are antisymmetrizations of unsymmetrized crossing
states in which the quantum numbers are separated into
cells of length two or greater. Writing A as a shorthand for
complete antisymmetrization of α j quantum numbers—i.e.,
A X (α1, . . . , αn) = ∑

σ∈Sym(n)(sgn σ )X (ασ1 , . . . , ασn ) for any
function X—we claim that the following requirements are
sufficient for Eq. (2.80) to satisfy the time evolution problem:

∣∣
α1...αn (t )
〉 = A

n/2∑
s=1

∑
2� j1<. . .< js�n

js=n, each jm+1− jm�2

∣∣χα1...α j1 |...|α js−1+1...αn (t )
〉
, (2.81)

where (
H − i

d

dt

)∣∣χα1...α j1 |...|α js−1+1...αn (t )
〉 = {−B(red)

αn−1αn
(t )
∣∣χα1...α j1 |...|α js−2+1...αn−2 (t )

〉
js−1 = n − 2

−Aαn (t )
∣∣χα1...α j1 |...|α js−1+1...αn−1 (t )

〉
n � 3 and js−1 � n − 3

(2.82)

and ∣∣χα1...α j1 |...|α js−1+1...αn (t = 0)
〉 = 0. (2.83)

Throughout, j0 ≡ 0 and the sum over s goes over only inte-
ger values. We set |χ (t )〉 ≡ |0〉 so that for n = 2, Eq. (2.82)
recovers Eq. (2.78) after antisymmetrizing. Thus, we have
transformed the original many-body Schrodinger equation
to the problem of finding states that satisfy Eq. (2.82) and
Eq. (2.83).

D. Time-independent formalism

It is convenient in some problems to solve for the infinite
time limit of the wavefunction directly, without following the
detailed time evolution. Here, we present the formalism of the
previous section in a time-independent form. Although it is
not strictly necessary, we formulate the entire discussion in
terms of scattering theory. As in standard scattering theory,
the passage from the time-dependent to the time-independent
picture results in the initial condition in time (at t = 0 in
our setup, usually t = −∞ in scattering theory) becoming a
time-independent boundary condition in space (e.g., incoming
plane waves).

We write the Hamiltonian as H = H (0) + H (1) = h + V ,
where h is the noninteracting Hamiltonian from the point

of view of scattering theory. That is, h describes the prop-
agation of plane waves, not including any tunneling to the
impurity or scattering off a potential. For instance, h =
−i
∫

dx ψ†(x) d
dx ψ (x) in the IRL. (Note that we work in

infinite volume.) We write h = ∫
dα Eαc†

αcα , where the cα

operators are Dirac normalized and where the integral over
α can also include a sum over discrete quantum numbers. The
term H (0) contains h and any other quadratic terms, and H (1)

contains interaction terms.
The Lippmann-Schwinger equation for scattering

“in” states is |	in〉 = |	〉 + 1
h−E+iηV|	in〉, where |	〉 ≡

c†
αN

. . . c†
α1

|0〉 is an eigenstate of h with energy E ≡ Eα1

+ · · · + EαN . This is equivalent to the time-independent
Schrodinger equation

(H − E )|	in〉 = 0, (2.84)

with the boundary condition of incoming plane waves with
quantum numbers α1, . . . , αN .

The noninteracting Hamiltonian H (0), which includes
quadratic terms such as impurity tunneling and potential
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scattering, has a set of scattering operators c†
α,in that satisfy

[H (0), c†
α,in] − Eαc†

α,in = 0 (2.85)

and that create scattering “in” states corresponding to c†
α . [See

Eq. (2.6b) for these operators in the case of the RLM.] The
solution to the Lippman-Schwinger equation in the special
case of no interaction (H (1) = 0) is given by a product of these
operators: ∣∣	0

in

〉 = c†
αN ,in . . . c†

α1,in
|0〉. (2.86)

To include the interaction term H (1), we proceed in much
the same way as in the time-dependent case. The main
point is to isolate the core difficulty of the interacting prob-
lem, which is in this case to find time-independent crossing
states satisfying the appropriate “inverse problems.” We be-
gin by defining time-independent versions of the A and B

operators:

Aα,in = [H, c†
α,in] − Eαc†

α,in, (2.87a)

Bα1α2,in = {
Aα2,in, c†

α1,in

} = B(red)
α1α2,in

− B(red)
α2α1,in

. (2.87b)

As in the time-dependent case, we assume that H (0)|0〉 =
H (1)|0〉 = Aα,in|0〉 = 0 and that Bα1α2,in commutes with any
c†
α,in. The same manipulations yield an exact reformulation

of the Lippmann-Schwinger equation. We have the following
representation of the wavefunction [the time-independent ver-
sion of Eq. (2.80)]∣∣	in

〉 = ∣∣	0
in

〉+ N∑
n=2

∑
1�m1<···<mn�N

(−1)m1+···+mn+1

×

⎛⎜⎜⎜⎝
N∏

j=1
j 
=m� ∀�

c†
α j ,in

⎞⎟⎟⎟⎠∣∣
αm1 ...αmn ,in
〉
, (2.88)

where the crossing states are given by

∣∣
α1...αn,in
〉 = A

n/2∑
s=1

∑
2� j1<. . .< js � n

js=n, each jm+1− jm�2

∣∣χα1...α j1 |...|α js−1+1...αn,in
〉
. (2.89)

The unsymmetrized crossing states must satisfy(
H −

n∑
�=1

Eα�

)∣∣χα1...α j1 |...|α js−1+1...αn,in
〉 = {−B(red)

αn−1αn,in

∣∣χα1...α j1 |...|α js−2+1...αn−2,in
〉

js−1 = n − 2

−Aαn,in

∣∣χα1...α j1 |...|α js−1+1...αn−1,in
〉

n � 3, js−1 � n − 3,
(2.90)

where j0 ≡ 1, |χ,in〉 = |0〉, and the sum over s goes over only
integer values; also, each |χα1...α j1 |...|α js−1+1...αn,in〉 must satisfy
the boundary condition of having no plane waves coming
in from infinity (since the incoming α1, . . . , αN quantum
numbers are already accounted for in |	0

α1...αN ,in〉). This last
condition is the time-independent analog of the initial condi-
tion that crossing states vanish at t = 0 [Eq. (2.83)].

While we have specified incoming boundary conditions,
the entire procedure carries through with any other choice
of boundary conditions (e.g., outgoing). In principle, the for-
malism may even apply to the problem of finding energy
eigenstates in a finite-volume system.

E. Time-evolving wavefunction of the multilead IRL

As another application of our general formalism, we find
the exact time-evolving wavefunction of the simplest version
of the multilead IRL, in which each lead has the same tunnel-
ing and Coulomb interaction with the dot:

H (0) = −i
∫ L/2

−L/2
dx

Nleads∑
γ=1

ψ†
γ (x)

d

dx
ψγ (x) + εd†d

+
[

Nleads∑
γ=1

v√
Nleads

ψ†
γ (0)d + H.c.

]
, (2.91a)

H (1) = U
Nleads∑
γ=1

ψ†
γ (0)ψγ (0)d†d, (2.91b)

H = H (0) + H (1). (2.91c)

Before presenting our results, we recall some prior work
from Nishino et al. [9–11,16,17]. References [9–11] present
the NESS wavefunction in the two-lead case. The results seem
to agree with ours for N = 2, 3 electrons (when we take the
steady-state limit of the wavefunction that we find below);
while Nishino et al. obtained the general N case as well, it
is not written explicitly. Reference [11] allows the tunnelings
and Coulomb interactions to be lead dependent, which is a
more general case than we consider here; also, Refs. [16,17]
present NESS wavefunctions for N = 2, 3 electrons with two
leads and two quantum dots. We expect that our formalism
should also apply to these other variations of the IRL.

We present the exact time evolution of an arbitrary initial
state with the dot unoccupied:

∣∣	γ1k1...γN kN (t )
〉 ≡ e−iHt c†

γN kN
. . . c†

γ1k1
|0〉, (2.92)

where the lead indices γ j and momenta k j are arbitrary. Since
the calculation is similar to the one-lead case (Sec. II B), we
present only the main points (see Ref. [18] for details).
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The A(t ) and B(t ) operators of the multilead model are
found to be

Aγ k (t ) = − U√
L

[
e−ikt d†ψ†

γ (0)d + 1

Nleads
Fk (t )

×
Nleads∑
β=1

d†ψ
†
β (0)

(
1

2
d − i

√
Nleads

v
ψβ (0)

)]
, (2.93)

and

B(red)
γ1k1γ2k2

(t ) = − i√
Nleads

U

Lv
Fk1 (t )e−ik2t d†ψ†

γ2
(0). (2.94)

The conditions that we need in order to apply the general for-
malism [Eqs. (2.70), (2.73), (2.74)] are easily verified. Thus,
the wavefunction takes the general form of Eqs. (2.80) and
(2.81), with the generic quantum number α replaced by γ k,
and we only need to specify the unsymmetrized crossing states
that solve the inverse problems of the model [Eqs. (2.82) and
(2.83)].

As we mentioned in Sec. II A, the noninteracting Hamilto-
nian H (0) separates under rotation into Nleads − 1 free fermion
fields and a single copy of the one-lead RLM. This separa-
tion breaks down once the interaction term H (1) is included.
However, it turns out that some ingredients of the one-lead
solution can be reused. By similar calculations as in the one
lead case, we find that the first unsymmetrized crossing state
is the following generalization of Eq. (2.27)∣∣χγ1k1γ2k2 (t )

〉 = 1

NleadsL

∫
dx1dx2 Fk1k2 (t, x1, x2)

×
[
�(0 < x2 < x1 < t )

Nleads∑
β=1

ψ
†
β (x2)

+ i
√

Nleads

v
δ(x2)�(0<x1<t )d†

]
ψ†

γ2
(x1)|0〉,

(2.95)

where Fk1k2 is the same function as in the one-lead case,
Eq. (2.31b). For the general case—an unsymmetrized crossing
state with n � 2 quantum numbers—we find

|χγ1k1...γ j1 k j1 |...|γ js−1+1k js−1+1...γnkn (t )〉

= 1

Ln/2

∫
dx1 . . . dxn

Nleads∑
β1,...,βn=1

Fβ1...βn

γ1k1...γ j1 k j1 |...|γ js−1+1k js−1+1...γnkn
(t, x1, . . . , xn)

×
[
�(0 < xn < · · · < x1 < t )ψ†

βn
(xn) + i√

Nleadsv
δ(xn)�(0 < xn−1 < · · · < x1 < t )d†

]
ψ

†
βn−1

(xn−1) . . . ψ
†
β1

(x1)|0〉, (2.96)

where the function F , now with lead indices, is defined as
follows. In the simplest case of a single cell (s = 1), we define

Fβ1...βn

γ1k1...γnkn
(t, x1, . . . , xn) = 1

Nleads
Fk1...kn (t, x1, . . . , xn)

n−1∏
�=1

δβ�

γ�+1
,

(2.97)

where F on the right-hand side is as in the one-lead solution
[Eq. (2.57)]. Then the full solution, with an arbitrary number
of cells, is given by a product

Fβ1...βn

γ1k1...γ j1 k j1 |...|γ js−1+1k js−1+1...γnkn
(t, x1, . . . , xn)

=
s∏

m=1

F
β jm−1+1...β jm

γ jm−1+1k jm−1+1...γ jm k jm

(
t, x jm−1+1, . . . , x jm

)
, (2.98)

where j0 ≡ 0 and js ≡ n.

F. NESS of the multilead AIM for small or large U

In this section, we apply the time-independent version of
our formalism (Sec. II D) to the multilead AIM, considered
directly in the infinite volume limit:

H (0) = −i
∫

dx
Nleads∑
γ=1

ψ†
γ a(x)

d

dx
ψγ a(x) + εd†

a da

+
Nleads∑
γ=1

[
v√

Nleads
ψ†

γ a(0)da + H.c.

]
, (2.99a)

H (1) = Un↑n↓, (2.99b)

Hfinite U = H (0) + H (1). (2.99c)

In Ref. [12], Imamura et al. find the two electron NESS in the
one-lead case—a result that we reproduce below and extend
to arbitrary N electrons in the cases of small and large U .

In the limit U → ∞, it is convenient to use the auxil-
iary boson technique [19], according to which we write the
following Hamiltonian:

Hinfinite U = −i
∫

dx
Nleads∑
γ=1

ψ†
γ a(x)

d

dx
ψγ a(x) + εd†

a da

+
Nleads∑
γ=1

[
v√

Nleads
ψ†

γ a(0)b†da + H.c.

]
, (2.100)

which has a conserved charge Q ≡ b†b + d†
a da; working in the

subspace Q = 1 imposes the constraint that the dot cannot be
doubly occupied, which is equivalent to sending U → ∞ in
Hfinite U .

In either case (U finite or infinite), the same unitary trans-
formation as in Sec. II A isolates the interacting sector of the
model:

He,finite U = −i
∫

dx ψ†
ea(x)

d

dx
ψea(x) + εd†

a da

+ [vψ†
ea(0)d + H.c.] + Un↑n↓, (2.101a)
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He,infinite U = −i
∫

dx ψ†
ea(x)

d

dx
ψea(x) + εd†

a da

+ [vψ†
ea(0)b†da + H.c.]. (2.101b)

The model thus decouples into a copy of the one-lead AIM
and N − 1 free fermions. We can use this decoupling to show
that the crossing states that we need for the multilead model
are related to the crossing states of the even sector by simple
prefactors (see our previous paper [1] for a similar calculation
in the Kondo model with Nleads = 2)

∣∣
γ1k1a1...γnknan,in
〉 = (

1

Nleads

)n/2∣∣
ek1a1...eknan,in
〉
. (2.102)

Thus, it suffices to solve the scattering problem with incoming
“even” plane waves. We can then reuse the same crossing
states to read off the solution to the scattering problem with
incoming plane waves in the original multilead basis.

1. Solution for small U

In the finite U case, a short calculation yields

Aeka,in ≡ [He, c†
eka,in] − kc†

eka,in = U

v
T (k)d†

a d†
b db, (2.103)

and

Bek1a1ek2a2,in ≡ {
Aek2a2,in, c†

ek1a1,in

}
(2.104a)

= B(red)
ek1a1ek2a2,in

− B(red)
ek2a2ek1a1,in

, (2.104b)

where

B(red)
ek1a1ek2a2,in

= 1

2v2
UT (k1)T (k2)P b1b2−a1a2

d†
b2

d†
b1

, (2.105)

and where P− = 1
2 (I − P) is the antisymmetric spin projec-

tion operator (Ib1b2
a1a2

≡ δb1
a1

δb2
a2

, Pb1b2
a1a2

≡ δb2
a1

δb1
a2

).

Our task is to find a state |χek1a1ek2a2,in〉 that has no incoming
plane waves and that satisfies:

(H − k1 − k2)|χek1a1ek2a2,in〉
= −B(red)

ek1a1ek2a2,in
|0〉 (2.106a)

= − U

2v2
T (k1)T (k2)P b1b2−a1a2

d†
b2

d†
b1

|0〉. (2.106b)

Given such a state, the solution to the two electron scattering
problem is∣∣	ek1a1ek2a2,in

〉 = c†
ek2a2,in

c†
ek1a1,in

|0〉
+ ∣∣χek1a1ek2a2,in

〉− ∣∣χek2a2ek1a1,in
〉
. (2.107)

We make the ansatz:∣∣χek1a1ek2a2,in
〉 = ∫

dx1dx2 F b1b2
ek1a1ek2a2

(x1, x2)

×
[
�(0 < x2 < x1)ψ†

eb2
(x2)ψ†

eb1
(x1)

+ i

v
δ(x2)�(0 < x1)d†

b2
ψ

†
eb1

(x1)

− 1

2v2
δ(x1)δ(x2)d†

b2
d†

b1

]
|0〉, (2.108)

where Fek1a1ek2a2 is a smooth function that is determined
shortly. By construction, this ansatz vanishes when any po-
sition variable is to the left of the origin; this guarantees that
there are no incoming waves from x = −∞. As the model
contains only right movers, there is no possibility of waves
coming in from x = +∞; hence, this ansatz does not disturb
the scattering boundary condition satisfied by |	0

in〉. Further-
more, this ansatz is chosen so that certain terms that are not
of the form we want (d†

b2
d†

b1
|0〉) cancel automatically when

we act on it with H − k1 − k2 [see Eq. (2.28) for a similar
calculation in the IRL case]. A straightforward calculation
yields

(H − k1 − k2)
∣∣χek1a1ek2a2,in

〉
=
∫

dx1dx2

{[
−i

(
∂

∂x1
+ ∂

∂x2

)
− k1 − k2

]
F b1b2

ek1a1ek2a2
(x1, x2)

}
�(0 < x2 < x1)ψ†

eb2
(x2)ψ†

eb1
(x1)|0〉

+ i

v

∫
dx1

[(
−i

∂

∂x1
− k1 − k2 + z

)
F b1b2

ek1a1ek2a2
(x1, 0)

]
�(0 < x1)d†

b2
ψ

†
eb1

(x1)|0〉

− 1

2v

(
F b1b2

ek1a1ek2a2
(0, 0) + F b2b1

ek1a1ek2a2
(0, 0)

)
�(0 < x1)d†

b2
ψ

†
eb1

(0)|0〉

− 1

2v2
(−k1 − k2 + 2z + U )F b1b2

ek1a1ek2a2
(0, 0)d†

b2
d†

b1
|0〉. (2.109)

To get the desired result (H − k1 − k2)|χek1a1ek2a2,in〉 =
−B(red)

ek1a1ek2a2,in
|0〉, we require that the first three terms

of Eq. (2.109) all vanish and that the fourth matches
Eq. (2.106b); this leads to the following requirements on the
function F :[

−i

(
∂

∂x1
+ ∂

∂x2

)
− k1 − k2

]
F b1b2

ek1a1ek2a2
= 0, (2.110a)

(
−i

∂

∂x1
− k1 − k2 + z

)
F b1b2

ek1a1ek2a2
(x1, 0), (2.110b)

F b1b2
ek1a1ek2a2

(0, 0) + F b2b1
ek1a1ek2a2

(0, 0) = 0, (2.110c)

(−k1 − k2 + 2z + U )F b1b2
ek1a1ek2a2

(0, 0) = UT (k1)T (k2)P b1b2−a1a2
.

(2.110d)
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A function that meets these requirements is

F b1b2
ek1a1ek2a2

(x1, x2) = −T (k1)T (k2)
UT

( k1+k2−U
2

)
4�

× ei(k1+k2 )x1 e−iz(x1−x2 )P b1b2−a1a2
. (2.111)

The Schrodinger equation with the boundary condition (of
incoming plane waves) can be expected to have a unique
solution; hence, this is the answer.

Collecting all terms of the wavefunction, we have exact
agreement with the two electron NESS obtained in Ref. [12].
As another check, we have repeated the calculation in finite
volume with the time-dependent formalism and found ex-
actly this answer in the steady-state and infinite volume limit
[where the limit is taken pointwise, with factors of L and the
free evolution phase factor removed as in Eq. (2.6b)] [18]. In
Eq. (2.111), we see a similar structure as appeared in the IRL

solution: The two electrons are bound together over a distance
scale of order 1/� [compare to Eq. (2.31b)].

2. Solution for U → ∞
We present the final results only; details can be found

in Ref. [18]. We set H ≡ Hinfinite U throughout this section.
Our time-independent formalism (Sec. II D) carries through
straightforwardly with the state b†|0〉 replacing |0〉 and the
scattering “in” operators given by

c†
γ ka,in ≡ c†

γ ka + 1

Nleads

∫
dx Fk,in(x)

[
�(0 < x)

×
Nleads∑
γ=1

ψ†
γ a(x) + i

√
Nleads

v
δ(x)d†

a b

]
. (2.112)

The unsymmetrized crossing states are given by

∣∣χ
ek1a1...ek j1 a j1

∣∣...∣∣ek js−1+1a js−1+1...eknan,in

〉 =∫
dx1 . . . dxn F b1...bn

ek1a1...ek j1 a j1 |...|ek js−1+1a js−1+1...eknan
(x1, . . . , xn)

[
�(0 < xn< . . . <x1)ψ†

ebn
(xn)

+ i

v
δ(xn)�(0 < xn−1 < · · · < x1)d†

bn
b

]
ψ

†
ebn−1

(xn−1) . . . ψ
†
eb1

(x1)b†|0〉, (2.113)

where the function F is now to be specified. First, we define
F in the special case of s = 1, i.e., a single cell:

F b1...b�

ek1a1...ek�a�
(x1, . . . , x�)

= (2i)�−2δc1
a1

δb�

c�
T (k1)eik1x1

×
[

�∏
m=2

T (km)P bm−1cm
−cm−1am

eikmxm−1

]
e−iz(x1−x� ). (2.114)

It is straightforward to check that � = 2 agrees with the
U → ∞ limit of the finite U function, Eq. (2.111). The func-
tion for general s � 1 is a product of single-celled functions:

F b1...bn
ek1a1...ek j1 a j1 |...|ea js−1+1k js−1+1...eknan

(x1, . . . , xn)

=
s∏

m=1

F
bjm−1+1...b jm

ek jm−1+1a jm−1+1...ek jm a jm
(x jm−1+1, . . . , x jm ), (2.115)

where j0 ≡ 1 and js ≡ n. Note that the spin matrices multiply
in the same diagonal manner as in the Kondo wavefunction
found in our previous paper [1]. Note also that we have a fac-
tor of e−iz(x1−x� ), indicating that electrons are bound together
on a distance scale 1/�. The single-celled function describes
� electrons bound together, and the full function with a general
partition has some number of these cells.

III. EVALUATION OF OBSERVABLES

We present some results of using the IRL and AIM wave-
functions to calculate expectation values of observables. We
focus in particular on these expectation values in the steady
state, accessed either by taking the long-time limit after the
quench or by evaluating directly in the NESS.

Though the wavefunctions presented in the previous sec-
tion are exact for any fixed number N of electrons, the number
of terms grows rapidly with N , making the evaluation of ob-
servables in the thermodynamic limit a formidable task. (Note
that taking the thermodynamic limit is essential to obtain
physical results, since we linearized the spectrum.) At present,
we can calculate this limit only by making an expansion in
some parameter. In the IRL, this parameter is the Coulomb
interaction U , while in the AIM, it can either be U or (in the
limit U → ∞) the tunneling parameter �. In each case, we
evaluate an observable to the leading order by keeping just the
|	0〉 and |	2〉 terms of the wavefunction (i.e., putting at most
two quantum numbers into a crossing state), which makes the
thermodynamic limit tractable.

A. Dot occupancy in the multilead IRL

We evaluate the expectation value of the dot occupancy
to the leading order in the interaction strength U . We show
that the steady state occupancy is a universal function of the
external parameter εd (which is defined below in terms of
the bare parameter ε that appears in the Hamiltonian) and
the temperatures and chemical potentials of the leads. This
universal function is parameterized by two RG invariants: U
and an emergent energy scale TK .

We compare our results with the literature and provide a
general discussion of the RG flow of the IRL, emphasizing
universal aspects. We then specialize to the zero temperature
case. We verify that our answer agrees with the equilibrium
Bethe ansatz result for the occupancy as a function of applied
field in the multilead model, and then we present some results
in two steady-state nonequilibrium regimes of the two-lead
model with the leads separated by a bias voltage.
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1. Evaluation

Our task is to evaluate

〈nd〉t ≡ 〈	(t )|d†d|	(t )〉, (3.1)

where |	(t )〉 = e−iHt |	〉 and |	〉 = c†
γN kN

. . . c†
γ1k1

|0〉. Note
that |	〉 is normalized to unity. The initial quantum numbers
are arbitrary for the moment, though we later specialize to the
case of a Fermi sea in each lead.

We begin by expanding the wavefunction to first order
in U :

|	(t )〉 = |	0(t )〉 + |	2(t )〉 + O(U 2), (3.2)

where

|	0(t )〉 =
(

N∏
j=1

c†
γ j k j

(t )

)
|0〉, (3.3a)

|	2(t )〉 =
∑

1�m1<m2�N

(−1)m1+m2+1

⎛⎜⎜⎜⎝
N∏

j=1
j 
=m1, m2

c†
γ j k j

(t )

⎞⎟⎟⎟⎠
×∣∣
γm1 km1 γm2 km2

(t )
〉
. (3.3b)

The occupancy to leading order is therefore

〈nd〉t = 〈nd〉(0)
t + 〈nd〉(1)

t , (3.4)

where 〈nd〉(0)
t = 〈	0(t )|d†d|	0(t )〉 and 〈nd〉(1)

t =
2 Re(〈	0(t )|d†d|	2(t )〉) (where |	2(t )〉 is to be expanded to
first order in U ; we will see that this expansion is simple). The
main tool in the calculation is Wick’s theorem combined with
the fact that the time-evolving field operators have canonical
anticommutation relations: {ck′ (t ), c†

k (t )} = δkk′ . Using these,
we obtain the following for the noninteracting (zeroth order
in U ) part of the answer:

〈nd〉(0)
t =

N∑
j=1

|{d, cγ j k j (t )}|2 (3.5a)

= 1

L

N∑
j=1

∣∣∣∣ i

v
√

Nleads
Fkj (t )

∣∣∣∣2, (3.5b)

where Fk is given by Eq. (2.5).
Next, we specialize to the case of interest (filled Fermi seas

in each lead) and then take the thermodynamic limit. We de-
scribe this step in some detail now, since it occurs again in our
subsequent calculations. Specializing the N initial quantum
numbers to describe filled Fermi seas at zero temperature is
equivalent to the following replacement

N∑
m=1

X (γm, km) =
Nleads∑
γ=1

∑
k∈Kγ

X (γ , k), (3.6)

where Kγ is the set of allowed momenta in lead γ (i.e.,
ranging from −D to μγ ) and X is any function. If the sum∑N

m=1 comes with a prefactor 1/L (as it always will in our
calculations), then the sum over momenta in a given lead γ

becomes an integral
∫ D
−D

dk
2π

�(μγ − k)(. . . ) in the thermo-
dynamic limit. To generalize to arbitrary lead temperatures,
we replace the step function by the Fermi function fγ (k) =
[e(k−μγ )/Tγ + 1]

−1
. All together, the prescription for taking the

thermodynamic limit and including temperature is

1

L

N∑
m=1

X (γm, km)
therm. limit−→

Nleads∑
γ=1

∫ D

−D

dk

2π
fγ (k)X (γ , k). (3.7)

This generalizes to the higher-order summations we
encounter in the interacting case, as well; for instance,
a double sum 1

L2

∑N
m1,m2=1 X (γm1 km1 , γm2 km2 ) becomes∑Nleads

γ1,γ2=1

∫ D
−D

dk1
2π

dk2
2π

fγ1 (k1) fγ2 (k2)X (γ1k1, γ2k2). We have
confirmed the above prescription for generalizing to arbitrary
temperatures by setting up the calculation with an initial
density matrix and verifying that the same result is obtained
[18].

Thus, we obtain the noninteracting contribution to the oc-
cupancy in the thermodynamic limit:

〈nd〉(0)
t

therm. limit−→ 1

Nleads

Nleads∑
γ=1

∫ D

−D

dk

2π
fγ (k)

|Fk (t )|2
2�

. (3.8)

In Ref. [20], 〈nd〉(0)
t is calculated in the one-lead model at

zero temperature; our result agrees in this special case. In the
steady-state (s.s.) limit, we find

〈nd〉(0)
s.s. ≡ lim

t→∞〈nd〉(0)
t (3.9a)

= 1

Nleads

Nleads∑
γ=1

∫ D

−D

dk

2π
fγ (k)

|T (k)|2
2�

(3.9b)

= 1

Nleads

Nleads∑
γ=1

∫ D

−D

dk

2π
fγ (k)

2�

(k − ε)2 + �2
. (3.9c)

In the equilibrium limit (equal temperatures and chemical
potentials in all leads), we recover the standard occupancy of
the RLM. In the two-lead model at zero temperature with a
voltage drop across the leads, our answer agrees with Ref. [7].

We proceed to the leading correction in U . Again using Wick’s theorem and the anticommutation relation, and canceling
some sign factors, we obtain

〈nd〉(1)
t = 2Re

{ ∑
1�m1<m2�N

[{
cγm2 km2

(t ), d†
}〈0|cγm1 km1

(t )d
∣∣
γm1 km1 γm2 km2

(t )
〉− (m1 ↔ m2)

]}
. (3.10)
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It is advantageous to consider the “off-diagonal” case, in which the quantum numbers on either side of the matrix element that
appears in the previous equation are arbitrary. By fermionic antisymmetry, the matrix element must be the antisymmetrization
of some function �(t ; γ ′

1k′
1, γ

′
2k′

2; γ1k1, γ2k2) as follows:{
cγ ′

1k′
1
(t ), d†

}〈0|cγ ′
2k′

2
(t )d

∣∣
γ1k1γ2k2 (t )
〉 = 1

L2

∑
σ,σ ′∈Sym(2)

(sgn σ )(sgn σ ′)�
(
t ; γ ′

σ ′
1
k′
σ ′

1
, γ ′

σ ′
2
k′
σ ′

2
; γσ1 kσ1 , γσ2 kσ2

)
, (3.11)

where the factor of 1/L2 is inserted for the convenience of taking the thermodynamic limit. The key point is that � (which we
write explicitly below) does not depend on L, due to the fact that the crossing state vanishes outside the forward “light cone” in
position space. Relabelling summation variables, we obtain

〈nd〉(1)
t = 1

L2

N∑
m1,m2=1

∑
σ∈Sym(2)

(sgn σ )2Re
[
�
(
t ; γm1 km1 , γm2 km2 ; γσm1

kσm1
, γσm2

kσm2

)]
therm. limit−→

Nleads∑
γ1,γ2=1

∫ D

−D

dk1

2π

dk2

2π
fγ1 (k1) fγ2 (k2)

∑
σ∈Sym(2)

(sgn σ )2Re[�(t ; γ1k1, γ2k2; γσ1 kσ1 , γσ2 kσ2 )]. (3.12)

Recall that the crossing state is given by |
γ1k1γ2k2 (t )〉 = |χγ1k1γ2k2 (t )〉 − |χγ2k2γ1k1 (t )〉, with χ given by Eq. (2.95). Then from
Eq. (3.11) and Eq. (2.4), we can read off

�(t ; γ ′
1k′

1, γ
′
2k′

2; γ1k1, γ2k2) = 1

2Nleads�

∫
dx1 Fk1k2 (t, x1, 0)

[
δ

γ2

γ ′
1
eik′

1(t−x1 ) + 1

Nleads
F ∗

k′
1
(t − x1)

]
F ∗

k′
2
(t )�(0 < x1 < t ), (3.13)

where Fk1k2 is given by Eq. (2.31b) with TU → U (since we work to leading order in U ).
We focus on the steady-state limit. Including the zeroth order answer (3.9b), we find the following result for the occupancy

to first order in U (see Sec. D 1 in the Appendix for details):

〈nd〉s.s. ≡ lim
t→∞〈nd〉t (3.14a)

= 〈nd〉(0)
s.s. +

U

2Nleads�

{[
1

2π�

Nleads∑
γ1=1

(
D + μγ1

)− 〈nd〉(0)
s.s.

]
Nleads∑
γ2=1

∫ D

−D

dk2

2π
fγ2 (k2)|T (k2)|2Re[T (k2)]

− 1

�

Nleads∑
γ1,γ2=1

∫ D

−D

dk1

2π

dk2

2π
fγ1 (k1) fγ2 (k2)Re[T (k1)]|T (k2)|2

(
δγ2
γ1

− 1

2Nleads
|T (k2)|2

)}
+ O(U 2), (3.14b)

where error terms exponentially small in bandwidth,

O(e− D−|μγ |
T ), have been dropped.

As usual in a field theory calculation, this answer diverges
as the bandwidth is sent to infinity. In this case, there is both
a linear and a logarithmic divergence. In the next section,
we perform the necessary steps—re-expressing the answer in
terms of physical parameters rather than bare parameters—to
get a meaningful result.

2. Universality in and out of equilibrium

To obtain universal results, we take the scaling limit, in
which all energy scales are much smaller than the bandwidth.
We replace the bare parameter ε by a physical parameter εd

by making the following shift:

ε = εd − U
Nleads∑
γ=1

(D + μγ )/(2π ) + U�/2. (3.15)

To explain this, we recall that the interaction term of the IRL
would usually take the normal ordered form H (1)

conventional =∑Nleads
γ=1 U : ψ†

γ (0)ψγ (0) : (d†d − 1/2), which corresponds to

half filling in the lattice model. Relative to our H (1)

[Eq. (2.91b)], this shifts the dot energy by U
∑Nleads

γ=1 (D +
μγ )/(2π ) and introduces a potential scattering term
− 1

2Uψ†(0)ψ (0) (there is also an overall energy shift that has
no effect). The point is that with H (1)

conventional as the interaction
term, the equilibrium resonance is at εconventional = 0. Though
we can shift our ε easily enough, our calculation does not
include the potential scattering term. We find, however, that at
least to the leading order in U , the equilibrium resonance can
be fixed at εd = 0 by including another shift: the �-dependent
term in Eq. (3.15).

In the above argument, we assumed that the normal or-
dering in H (1)

conventional was done relative to the initial state
of the quench (free Fermi seas in each lead with arbitrary
chemical potentials), so that ψ†

γ (0)ψγ (0)− : ψ†
γ (0)ψγ (0) : =

1
2π

∑Nleads
γ=1 (D + μγ ). Had we instead done normal ordering

relative to the noninteracting equilibrium ground state, then
all μγ would be set to zero in Eq. (3.15) and our answers
below would be modified. We suggest that the prescription we
use is the appropriate generalization beyond the equilibrium
case.
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Working to first order in U and using Eq. (3.9b) and the identity ∂
∂ε

|T (k)|2 = 1
�

|T (k)|2Re T (k), we obtain

〈nd〉s.s. = 〈nd〉(0)
s.s. +

U

2Nleads�

[(
1

2
− 〈nd〉(0)

s.s.

) Nleads∑
γ=1

∫ D

−D

dk

2π
fγ (k)|T (k)|2Re[T (k)]

− 1

�

Nleads∑
γ1,γ2=1

∫ D

−D

dk1

2π

dk2

2π
fγ1 (k1) fγ2 (k2)Re[T (k1)]|T (k2)|2

(
δγ2
γ1

− 1

2Nleads
|T (k2)|2

)]
+ O(U 2), (3.16)

where each T matrix is now evaluated with εd instead of the
original ε [i.e., T (k) = 2�(k − εd + i�)−1], including in the
free occupancy 〈nd〉(0)

s.s as given in Eq. (3.9b).
Since T (k) ∼ 1/k for large k, the second line of (3.16)

diverges logarithmically for large D. This encodes the emer-
gence of a universal scale through the Callan-Symanzik
equation:(

D
∂

∂D
+ β��

∂

∂�

)
〈nd〉s.s. = O(1/D), (3.17a)

where

β� = −U

π
+ O(U 2). (3.17b)

To see that the Callan-Symanzik equation holds, we note

D
∂

∂D
〈nd〉s.s.

D→∞−→ U

2πNleads�

Nleads∑
γ2=1

∫ ∞

−∞

dk2

2π
fγ2 (k)

× |T (k2)|2
(

1 − 1

2
|T (k2)|2

)
, (3.18)

which follows from DT (±D)
D→∞−→ ±2� and simple prop-

erties of the Fermi function. Then we obtain the beta
function as in Eq. (3.17b) from Eq. (3.9b) and the identity
� ∂

∂�
( 1
�

|T (k)|2) = 1
�

|T (k)|2(1 − 1
2 |T (k)|2).

Now that we are focusing on the large bandwidth regime,
we can confirm that εd = 0 is the location of the equilibrium
resonance in Eq. (3.16). Setting all fγ (k) = f (k) (i.e., all
chemical potentials μγ set to 0) and εd = 0, we have 〈nd〉(0)

s.s. =
1/2 + O(1/D) and

∫ D
−D dk f (k)|T (k)|2(1 − 1

2 |T (k)|2) =
O(1/D) (shown numerically), so that 〈nd〉s.s. = 1/2.

The Callan-Symanzik equation encodes the fact that for
large bandwidth, 〈nd〉s.s. takes a universal form, depending
only on the external parameters (εd and the temperatures and
chemical potentials of the leads) and on two scaling invariants.
The first invariant is an emergent energy scale

TK =
(

1 − U

π

)
D

(
�

D

) 1
1+U/π

. (3.19)

It can be verified that (D ∂
∂D + β�� ∂

∂�
)TK = 0 and that TK =

� for U = 0. The U -dependent overall scale of TK is arbitrary
(as we discuss in more detail below), and we have chosen it
so that the equilibrium susceptibility of the dot at εd = 0 takes
the form [7,21] − ∂

∂εd
|T =εd =0〈nd〉s.s. = 1/(πTK ). The second

scaling invariant is the coupling constant U (or equivalently,
the parameter α defined below). Thus, staying always in the
large bandwidth regime from now on, we can write

〈nd〉s.s. = funiversal

(
U ;

{
Tγ

TK

}
;

{
μγ

TK

}
;
εd

TK

)
, (3.20)

where the brackets indicate all the channels: { Tγ

TK
} =

(T1/TK , . . . , TNleads/TK ), {μγ

TK
} = (μ1/TK , . . . , μNleads/TK ). Be-

low, we evaluate this universal function to leading order in
U in a few regimes at zero temperature. First, we make some
general comments on the RG flow of the model and compare
our results with the literature.

3. RG discussion

The RG flow of the model is the following:

∂U

∂ ln D
= 0, (3.21a)

∂ ln �

∂ ln D
= β�(U ) = −U

π
+ O(U 2). (3.21b)

The U parameter, which does not flow, determines the direc-
tion of flow of � through the beta function β�(U ). If β�(U )
is negative, then � increases as the bandwidth D is reduced.
While our calculation is only to first order in U , it is known to
all orders that D ∂U

∂D = 0, i.e., U does not flow.
While the RG flow of the IRL has been studied by many

methods, the most direct comparison we can make to the
literature is to other works that have found the flow from the
evaluation of an expectation value to leading order in U . In
particular, previous work on the two-lead IRL driven by bias
has found linear and logarithmic divergences in the charge
current. In Ref. [4], the linear divergences are removed by a
redefinition of ε which we expect to be equivalent to what we
did above (although an equation is not given). In Ref. [10],
these divergences are removed by the same shift of ε that we
used above (in the special case Nleads = 2), albeit without the
additional shift that we included to put the resonance at εd =
0. In either case, the logarithmic divergences are accounted
for by the Callan-Symanzik equation, as we did above, with
the same result (3.17b) for the beta function at leading order.

For further comparison with the literature, let us rewrite
our equation for TK [Eq. (3.19)] in another form:

TK =
(

1 − U

π

)
D

(
�

D

)α/2

, (3.22a)

where: α = 2

1 + U/π
. (3.22b)

The exponent α in the RG invariant TK [Eq. (3.19)] has
been much discussed in the literature. Various answers for
α as a function of U [or as a function of the single particle
phase shift, which is δU = arctan(U/2) in our case] have
been found. Our answer, Eq. (3.22b), agrees with some Bethe
ansatz calculations, but not all, and a different answer has been
obtained by bosonization. See Table I in Ref. [21] for a sum-
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mary of the literature. While all calculations agree that α = 2
for zero coupling (or zero phase shift), there is disagreement
already at the first order correction.

For the purpose of calculating universal quantities, the
precise dependence of α on the coupling constant is only
meaningful within a particular cutoff scheme. This theory has
two RG invariants, which we choose as TK and U , and they
determine results by values assigned to them. The final out-
puts of a field theory calculation are functions such as funiversal

that have RG invariants as inputs. The numerical values of the
RG invariants are not themselves calculable in field theory.
Instead, one fixes the value of the RG invariants by fitting
universal functions to data. One of the advantages of doing a
field theory calculation (on what is ultimately a lattice system)
is that one has a great freedom to choose a cutoff scheme that
makes the calculation of universal functions more convenient;
the price one pays is that only these universal functions can be
compared meaningfully with a lattice system.

One technical caveat is that the functional form of α does
matter insofar as it determines the possible values α can take.
This point does not seem to arise in the IRL, seeing as all of
the forms of α in the literature permit α to range from −∞ to
∞ given U ranging from −∞ to ∞. Note that our calculation
in this paper is only consistent for α in a narrow range around
α = 2, since we took U to be small; however, the Bethe ansatz
result for α is given by the same Eq. (3.22b) with no restriction
on U .

In Ref. [21], Camacho et al. use bosonization and hence
have a different functional form of α in terms of U . They
emphasize, however, that their final answer for 〈nd〉equilibrium

at zero temperature agrees exactly with the Bethe ansatz an-
swer once both are expressed as functions of α and εd/TK .
This agrees with our discussion in the previous paragraph. To
disprove our claim, it would be necessary to find another uni-
versal function whose form differs between the bosonization

and Bethe ansatz calculations, even after the invariants α and
Tk are fixed by matching the answers for, e.g., 〈nd〉equilibrium.

A stronger claim of Camacho in Ref. [22] is that the for-
mula for α in terms of U (or rather, in terms of the phase
shift δU ) is scheme independent, contrary to what we find
in Eq. (3.22b). Though we have not examined the argument
in detail, we wonder if the unconventional cutoff schemes
employed in this paper and in the Bethe ansatz might some-
how be outside the range of cutoff schemes considered in the
bosonization calculation of Ref. [22]. (These cutoff schemes
are unconventional in that the Hamiltonian formally has all
energies.) Similar comments apply to the U -dependent pref-
actor in TK —its precise dependence on U can differ between
schemes.

4. Evaluation at zero temperature

We evaluate the steady-state occupancy (3.16) at zero
temperature. We then use RG improvement to extract the
universal function (3.20) in a few specific regimes.

The standard method for finding a universal function from
a perturbative result is RG improvement: One changes the
original parameters (D,�) to new parameters (D′,�′) with
the same value of TK , where D′ is chosen so as to eliminate
large logarithms in the perturbation series. The net effect
is to delete these large logarithms and to replace � by the
“running” coupling constant �′. Note that this replacement is
only valid on the part of the answer that satisfies the Callan-
Symanzik equation—thus, one must first take D to be large
before applying RG improvement.

In the zero temperature limit, the momentum integrals in
Eq. (3.16) can all be carried out analytically to yield

〈nd〉(0)
s.s. = 1

2
− 1

Nleadsπ

Nleads∑
γ=1

arctan
εd − μγ

�
, (3.23)

and:

〈nd〉s.s. = 〈nd〉(0)
s.s. +

U

Nleadsπ

[
− 1

4

(
1

2
− 〈nd〉(0)

s.s.

) Nleads∑
γ=1

|T (μγ )|2 +
Nleads∑
γ1=1

(
1

πNleads

Nleads∑
γ2=1

εd − μγ2

�

∣∣T (μγ2

)∣∣2
+ 1

2
− 1

π
arctan

εd − μγ1

�
− 〈nd〉(0)

s.s.

)
ln

D√(
εd − μγ1

)2 + �2

]
. (3.24)

Note that there are large logarithms with many different
scales involved, so that there is no one choice of D′ that will
eliminate all of them in the general case (arbitrary chemical
potentials μγ ). We proceed to specialize to some specific
regimes in which there are just one or two different large logs
to be eliminated.

a. Equilibrium. Setting all chemical potentials to zero, we
find

〈nd〉s.s. = 1

2
− 1

π
arctan

εd

�
+ U

π2

�

ε2
d + �2

×
⎡⎣εd ln

D√
ε2

d + �2
− � arctan

εd

�

⎤⎦. (3.25)

The large logarithm is to be eliminated by the self-consistent
choice D′ =

√
ε2

d + (�′)2, which determines the running cou-
pling:

�′ =
{

1 + U

π

[
1 − 1

2
ln

(
1 + ε2

d

T 2
K

)]}
TK . (3.26)

We thus obtain a universal answer, valid to leading order in U :

〈nd〉s.s. = 1

2
− 1

π
arctan

εd

TK
+ U

2π2
(
1 + ε2

d/T 2
K

)
×
[

2
( εd

TK
− arctan

εd

TK

)
− εd

TK
ln

(
1 + ε2

d

T 2
K

)]
,

(3.27)
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FIG. 1. Left: the steady-state occupancy nd ≡ 〈nd 〉s.s. at zero temperature in the two-lead IRL, either as a function of dot potential εd or
voltage V . The leads are held at chemical potentials μ1 = 0 and μ2 = −V . The equilibrium (V = 0) curves are given by Eq. (3.27) and in
fact are independent of the number of leads, in agreement with the Bethe ansatz answer from the literature (Appendix E). The nonequilibrium
(V 
= 0) curves are given by Eq. (3.28). In both cases, we compare the noninteracting occupancy (ρU = 0) with the weakly interacting
occupancy (first order in ρU = 0.1), where ρ = 1/(2π ) is the density of states per unit length. Right: the weakly interacting case with the
noninteracting occupancy subtracted, i.e., δnd ≡ nd − nd |U=0. In equilibrium, δnd reaches finite limits as εd/TK → ±∞. Out of equilibrium,
|δnd | grows logarithmically as V/TK → ±∞, indicating that some resummation of the series in ρU is needed to make sense of the extremely
large voltage regime.

which agrees with the leading order expansion of the exact
equilibrium result from Bethe ansatz [23] (see Appendix E).
This confirms, at least in the zero temperature limit and to this
order, that in the long-time limit following the quench, the
occupancy thermalizes.

We emphasize that the output of our field theory calcula-
tion is a two-parameter family of functions of the physical
quantity εd , parameterized by U and TK . Redefinitions of U
and TK can change the details of the parametrization, but not
the full family of functions that is obtained by letting U and
TK range over all allowed values. We brought our answer
to the form (3.27) as a convenient way of showing that the
full family of functions agrees with the Bethe ansatz result in
the parameter range we consider: U small (or equivalently, α

close to 2) and TK arbitrary.
In the U -dependent part of Eq. (3.27), only the coeffi-

cients of the arctangent and logarithm terms have universal
meaning. Replacing the term U�/2 by aU (with a varying
parameter a) in the shift (3.15) controls a term proportional
to 1/(1 + ε2

d/T 2
K ); we took a = 1/2 to eliminate this term,

putting the resonance at εd = 0. [This choice also puts the
resonance at εd = 0 for arbitrary temperature, as we showed
below Eq. (3.18).] Similarly, we can adjust the coefficient
of the (εd/TK )/(1 + ε2

d/T 2
K ) term in Eq. (3.27) by varying a

parameter b in TK = [1 + bU ]D(�/D)2α; this term controls
the dot susceptibility at εd = 0, and our choice of b = −1/π

normalizes TK according to T −1
K = −π ∂

∂εd
|T =εd =0〈nd〉s.s.

b. Out of equilibrium—two leads at εd = 0. Consider the
two-lead model with the leads separated by a bias voltage
V and with the dot potential set to zero—that is, Nleads = 2,
μ1 = 0, μ2 = −V , and εd = 0. (The case of arbitrary εd is
also possible but messier.) The occupancy (3.24) contains
two large logarithms, ln D

�
and ln D√

�2+V 2 ; we can choose D′

to cancel either one, with the same final result (see Fig. 1

as well):

〈nd〉s.s. = 1

2
− arctan V

TK

2π
+ U

2π2

{ V 2

T 2
K

arctan V
TK

2
(
1 + V 2

T 2
K

)
−
(

arctan
V

TK
−

V
TK

1 + V 2

T 2
K

)[
1 − 1

4
ln

(
1+V 2

T 2
K

)]}
.

(3.28)

The particular numbers that appear in this answer become
meaningful once the values of U and TK are fixed by, e.g.,
matching the equilibrium answer (3.27) with data. Note that
the contribution of the interaction begins at order V 2, beyond
linear response.

The leading correction in U in Eq. (3.28) grows logarith-
mically with voltage as V/TK → ±∞; this is a consequence
of the fact that no choice of D′ can cancel both of the large
logarithms. This implies that some resummation of the series
in U is needed to make sense of the regime of very large
voltage. We can characterize the scale at which the U series
breaks down out of equilibrium as the voltage V0 for which
the U correction term (δnd in Fig. 1) equals 1/2; the result is
V0 ∼ TK e2/(ρU ), where ρ = 1/(2π ) is the density of states per
unit length in our convention. The number 2 in the exponent is
not sharply defined, since we had to make an arbitrary choice
for what value of the U correction is large enough to say
that the series breaks down. Though our calculation sends the
bandwidth D → ∞, we suggest that this scale V0 could also
be significant in the lattice model if it lies in the universal
regime, i.e., if V0  Dlattice. The scale V0 may be connected to
the power law dependence on U seen in Ref. [7].

c. Out of equilibrium—two leads close to the particle-hole
symmetric point. We again consider the two-lead model with
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the leads separated by a bias voltage V , this time with εd close
to halfway between the two chemical potentials. That is, we
set μ1 = εd + V/2 and μ2 = εd − V/2 − δV . For δV = 0, the
steady-state occupancy is its free value, 1/2. Self-consistently
setting D′ =

√
(�′)2 + V 2/4, we obtain the following correc-

tion for small δV :

〈nd〉s.s. = 1

2
− 1

2π
(

1 + V 2

4T 2
K

){1 + U

π

×
[ V 2

4T 2
K

+ 1
2

(
1 − V 2

4T 2
K

)
ln
(
1 + V 2

4T 2
K

)
1 + V 2

4T 2
K

− V

2TK
arctan

V

2TK

]}
δV

TK
. (3.29)

As before, this expression is valid for V  TK e1/(2U ) (in addi-
tion to requiring U and δV/TK to be small).

B. Steady state current in the two-lead AIM

We evaluate the steady state current in the two-lead AIM
in the approximation that no more than two quantum numbers
can be in a crossing state. We see below that this approxima-
tion encompasses both the regime of weak coupling (small
U/�) and strong coupling with weak tunneling (U → ∞
with small �/|ε − μγ |). Our result for small U agrees with
a calculation that we did using Keldysh perturbation theory
(see Appendix F), and our result for large U reproduces a
well-known scaling law.

Throughout this section, H = Hfinite U is the two-lead AIM
given by Eq. (2.99c) (with Nleads = 2). We work directly in the
steady state limit, which means in particular that the system
size is infinite. We therefore use Dirac normalized operators:
c†
γ ka = ∫∞

−∞ dx eikxψ†
γ a(x).

1. Setup and reduction to an overlap

The current operator in the AIM for electrons leaving lead
γ (with γ = 1, 2) is well known to be Îγ ≡ iv√

2
ψ†

γ a(0)da +
H.c. (see, e.g., Ref. [24]). Since the two currents are equal and
opposite in the steady state (I1 = −I2), we can consider the
symmetrized operator

ÎSym = i

2
√

2
v
(
ψ

†
1a(0) − ψ

†
2a(0)

)
da + H.c. (3.30)

Our task is to evaluate this operator in the nonequilibrium
steady state. That is, we wish to evaluate

〈ÎSym〉 ≡ N−1〈	in |̂ISym|	in〉, (3.31)

where the normalization factor N ≡ 〈	|	〉 is discussed
in more detail below and where |	in〉 is the Lippmann-
Schwinger “in” state corresponding to two Fermi seas. That
is,

|	in〉 = |	〉 + 1

E − h + iη
V|	in〉, (3.32a)

where: |	〉 = c†
γN kN aN

. . . c†
γ1k1a1

|0〉, (3.32b)

h = −i
∫

dx
∑

γ=1,2

ψ†
γ a(x)

d

dx
ψγ a(x), (3.32c)

V = H − h. (3.32d)

The quantum numbers (γ j, k j, a j ) are arbitrary for the mo-
ment; they will later be specialized to describe two Fermi seas
with an applied bias voltage appearing as the difference of the
chemical potentials.

To simplify the calculation, we now write the expectation
value of the current operator (i.e., a matrix element) as the
derivative of an overlap, using an approach that we have
presented in more generality in Ref. [18]. The idea is to add
the current operator ÎSym to the Hamiltonian as a source term
in such a way that we can read off the wavefunction for the
Hamiltonian (with source) from our previous results.

Let φ be a real variable (the bar is a label and does not
signify complex conjugation) and consider the following φ-
dependent Hamiltonian

H = H +
[

v√
2

(
ei 1

2 φ − 1
)
ψ

†
1a(0)da

+ v√
2

(
e−i 1

2 φ − 1
)
ψ

†
2a(0)da + H.c.

]
. (3.33)

Note that setting φ = 0 recovers the original Hamiltonian.
From here on, an overbar means that a quantity depends on
φ, and removing the bar corresponds to setting φ = φ ≡ 0.

We are interested in the expectation value of ÎSym in some
eigenstate |	(E )〉 of H with energy E . Since we work in
infinite volume, the energy varies continuously, so there is
also a family of eigenstates |	(E ′)〉 with varying energy E ′.
Let |	(E )〉 be any φ-dependent family of eigenstates of H
(with energy E ) such that |	(E )〉|φ=0 = |	(E )〉 (a condition
that is built-in to our notation). Then we have the following
expression for the unnormalized expectation value

〈	(E )|̂ISym|	(E )〉 = lim
E ′→E

(E − E ′)
∂

∂φ

∣∣∣∣
φ=0

〈	(E ′)|	(E )〉.

(3.34)

Naively, the right-hand side appears to be zero; however, we
find in practice that the φ derivative produces a 1/(E − E ′)
pole that cancels the prefactor.

The proof of Eq. (3.34) follows from noting that
ÎSym = ∂

∂φ
|φ=0(H − H ) and dropping the term 〈	(E ′)|(H −

H ) ∂

∂φ
|	(E )〉|φ=0. In principle, it must be checked that

∂

∂φ
|	(E )〉 is not too singular as φ → 0; this is not an issue

in our calculation below, since the dependence on φ will be
analytic. To avoid any possible issues with order of limits, we
will apply Eq. (3.34) before taking the thermodynamic limit.

The eigenstate of interest is |	(E )〉 = |	in〉, which has en-
ergy E = ∑N

j=1 k j . A convenient choice for the E ′-dependent
states |	(E ′)〉 is to simply let the momenta vary; thus, we
write |	 ′

in〉 for same Lippmann-Schwinger state (3.32a) with
momenta k1, . . . , kN replaced by k′

1, . . . , k′
N . Then the energy

E ′ = ∑N
j=1 k′

j varies continuously.
We have a considerable freedom in constructing the

φ-dependent states |	(E )〉. It is convenient to bring the φ-
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dependent Hamiltonian (3.33) to the same form as the original
Hamiltonian, allowing us to use the wavefunction already ob-
tained. To do this, we define a convenient set of φ-dependent
fields by a unitary transformation:(

c1ka

c2ka

)
= U†U

(
c1ka

c2ka

)
, (3.35a)

where: U = 1√
2

(
e−i 1

2 φ −ei 1
2 φ

e−i 1
2 φ ei 1

2 φ

)
, (3.35b)

which implies: U = 1√
2

(
1 −1
1 1

)
. (3.35c)

Then we have

H = − i
∫ L/2

−L/2
dx

∑
γ=1,2

ψ
†
γ a(x)

d

dx
ψγ a(x) + εd†

a da

+
[∑

γ=1,2

v√
2
ψ

†
γ a(0)da + H.c.

]
+ Un↑n↓, (3.36)

which is the same Hamiltonian already considered, with each
unbarred electron field replaced by the corresponding barred
field. We know the “in” states of this Hamiltonian provided
that the incoming plane waves are in the barred basis. Hence,
it is convenient to let the φ-dependent family of eigenstates be
as in Eqs. (3.32a)–(3.32d), with a bar over everything:

|	(E )〉 ≡ |	 in〉 = |	〉 + 1

E − h + iη
V|	 in〉, (3.37a)

where

|	〉 = c†
γN kN aN

. . . c†
γ1k1a1

|0〉, (3.37b)

h = −i
∫

dx
∑

γ=1,2

ψ
†
γ a(x)

d

dx
ψγ a(x),

(3.37c)

V = H − h. (3.37d)

By construction, these states satisfy the required condition,
namely they reduce to the original state of interest (3.32a) at
φ = 0. Eq. (3.34) then yields

〈ÎSym〉 = N−1 lim
all k′

j→k j

(E − E ′)
∂

∂φ

∣∣∣∣
φ=0

〈	 ′
in|	 in〉. (3.38)

Thus, the calculation reduces to finding the overlap 〈	 ′
in|	 in〉

for φ near 0 and E ′ near E .
In the expectation value (3.31), one may have expected the

normalization factor N to be 〈	in|	in〉; however, compari-
son with the time-dependent version of the calculation shows
that the correct normalization is N = [2πδ(0)]N = 〈	|	〉.
The full overlap 〈	in|	in〉 seems to contain additional delta
function terms beyond the noninteracting norm [2πδ(0)]N

(though it could be that these terms have no effect in the
thermodynamic limit).

2. Evaluation

We evaluate the right-hand side of Eq. (3.38) with the
wavefunction truncated so that no more than two quantum
numbers can be assigned to a crossing state—that is, |	 in〉 =

|	0
in〉 + |	2

in〉 and in〈	 ′| = in〈	 ′0| + in〈	 ′2|. We work to first
order in the crossing state, i.e.,

〈ÎSym〉 = 〈ÎSym〉(0,0) + 〈ÎSym〉(0,2) + 〈ÎSym〉(2,0), (3.39)

where

〈ÎSym〉(�1,�2 ) = [〈	|	〉]−1 lim
all k′

j→k j

(E − E ′)

× ∂

∂φ

∣∣∣∣
φ=0

〈
	

′�1
in

∣∣	�2

in

〉
. (3.40)

The term 〈ÎSym〉(2,2) is not kept as it involves the product of two
crossing states. We will see below that in the small U regime,
expanding in crossings amounts to expanding in U , and our
calculation is to first order [25]. For U → ∞, the expansion
in crossings appears to be an expansion in powers of �.

The terms of the wavefunction that we need are∣∣	0
in

〉 = (
N∏

j=1

c†
γ j k j a j ,in

)
|0〉, (3.41)

and∣∣	2
in

〉 = 1

2

∑
1�m1<m2�N

(−1)m1+m2+1

×

⎛⎜⎜⎜⎝
N∏

j=1
j 
=m1, m2

c†
γ j k j a j ,in

⎞⎟⎟⎟⎠∣∣
ekm1 am1 ekm2 am2 ,in
〉
. (3.42)

We can take the adjoint, remove the bar, and relabel each k j →
k′

j to get 〈	 ′
in| = 〈	 ′0

in | + 〈	 ′2
in |.

The first contribution to the current, 〈ÎSym〉(0,0), is the non-
interacting part, and we find that it agrees with the standard
RLM answer. For N electrons, we obtain (see Appendix D 2)

〈ÎSym〉(0,0) = 1

2πδ(0)

N∑
m=1

1

4
(−1)γm−1|T (km)|2. (3.43)

The Dirac delta term comes from the overlap of two plane
waves of equal momenta (e.g., {c1k′↑, c†

1k↑} with k′ = k); we
should thus identify 2πδ(0) with the system size L (which is
formally infinite). Taking the arbitrary N quantum numbers to
describe two filled Fermi seas replaces

N∑
m=1

X (γm, km, am) →
∑

γ=1,2

∑
k∈Kγ

∑
a

X (γ , k, a), (3.44)

where X is any function and Kγ is the set of momenta in the
Fermi sea of lead γ [spaced by δk ↔ 1/δ(0) and cut off by
|k| < D]. We can then generalize to include temperature, see
Eq. (3.6) and the comments below. We thus obtain

〈ÎSym〉(0,0) therm. limit−→
∫ D

−D

dk

2π
[ f1(k) − f2(k)]

1

2
|T (k)|2,

(3.45)
which is twice the standard spinless RLM answer, as expected
from spin degeneracy.

The same identification 1/δ(0) ↔ δk was used by Nishino
et al. For further justification, we have repeated the calculation
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in our time-dependent formalism, which permits us to work in
a finite system size L before sending L → ∞; the final result
for the current is the same in the steady-state limit. This is
similar to how calculations with non-normalizable states in
single-particle scattering theory are justified by considering
the long-time limit of time-evolving wave packets.

We proceed to calculate the contribution from the
first crossing. We show only the main steps here, leav-
ing many details in Appendix D 2. We only need to
calculate 〈ÎSym〉(0,2), since 〈ÎSym〉(2,0) turns out to be the
complex conjugate. Using Wick’s theorem and noting that
〈	|	〉 = [2πδ(0)]N , we obtain the following after some
calculation:

〈ÎSym〉(0,2) = [2πδ(0)]−2 1

4

N∑
m1,m2=1

lim
k′

m1
→km1

k′
m2

→km2

(
km1 + km2 − k′

m1
− k′

m2

) ∂

∂φ

∣∣∣∣
φ=0

〈0|cγm1 k′
m1

am1 ,incγm2 k′
m2

am2 ,in|
ekm1 am1 ekm2 am2 ,in〉,

(3.46)

where we have used the antisymmetry of the operators and crossing state to replace the original sum over m1 < m2 with an
unrestricted sum with an extra factor of 1/2. After taking the limits k′

m1
→ km1 and k′

m2
→ km2 , we again have a summation in

which it is clear how to take the thermodynamic limit using (3.44) and the identification δk ↔ 1/δ(0). Collecting terms, we find
the following answer for the current:

〈ÎSym〉 =
∫ D

−D

dk

2π
[ f1(k) − f2(k)]

1

2
|T (k)|2 − 1

16�2

∫ D

−D

dk1

2π

dk2

2π
[ f1(k1) + f2(k1)][ f1(k2) − f2(k2)]

× Im

{
UT

(
k1 + k2 − U

2

)
T ∗(k1)T (k2)[T (k1) + T (k2)]

}
+ (higher crossings). (3.47)

What does this “expansion in crossings” really mean? While
we cannot give a general answer, we can at least understand
this result for the current by examining the limits of small and
large U .

3. Small U regime

Expanding to first order in U replaces
UT [(k1 + k2 − U )/2] → UT [(k1 + k2)/2]. Then, using
the simple identities T [(k1 + k2)/2][T (k1) + T (k2)] =
2T (k1)T (k2) and Im[T (k)2] = |T (k)|2Re[T (k)], we obtain

〈ÎSym〉 =
∫ D

−D

dk

2π
[ f1(k) − f2(k)]

1

2
|T (k)|2 + U

8�2

×
∫ D

−D

dk1

2π

dk2

2π
[ f1(k1) + f2(k1)][ f1(k2) − f2(k2)]

× |T (k1)|2|T (k2)|2Re[T (k2)] + O(U 2). (3.48)

This calculation mainly serves as a check on our formalism.
We have verified Eq. (3.48) by calculating the steady state
current with Keldysh perturbation theory (see Appendix F).
Indeed, the agreement also holds if we allow a magnetic
field on the dot, i.e., a spin-dependent dot energy εa (which
modifies the crossing state [18]).

We note that the small U expansion of the AIM has been
used in the literature to explore the neighborhood of the strong
coupling fixed point of the Kondo model both in and out of
equilibrium. This proceeds by, e.g., assuming the impurity
is in a singlet state by a choice of Green’s function [26],
expanding about the Hartree-Fock solution [27], or using a
Fermi liquid theory approach [28]. In contrast, our result
(3.48) describes the AIM itself in the regime of small U/�.

Since T (k) ∼ 1/k for large |k|, there are no divergences
in Eq. (3.48) as the bandwidth D is sent to infinity. This is
consistent with prior work on the AIM (see, e.g., Ref. [29]).

4. Infinite U regime: Expansion in tunneling

If we instead send U → ∞, then UT [(k1 + k2 − U )/2] →
−4�, leaving

〈ÎSym〉 =
∫ D

−D

dk

2π
[ f1(k) − f2(k)]

1

2
|T (k)|2

+ 1

4�

∫ D

−D

dk1

2π

dk2

2π

× [ f1(k1) + f2(k1)][ f1(k2) − f2(k2)]

× Im{T ∗(k1)T (k2)[T (k1) + T (k2)]}
+ (2 or more crossings). (3.49)

This expansion in crossings appears to capture the regime of
small �. We note first that Eq. (3.49) satisfies the following
Callan-Symanzik equation:(

D
∂

∂D
+ βεε

∂

∂ε

)
〈ÎSym〉 = O(1/D), (3.50a)

where

βε = − �

πε
+ O

(
�2

ε2

)
. (3.50b)

To show this, we proceed similarly as in the multilead IRL
calculation [see Eq. (3.18) and below]. Under D ∂

∂D , the only
terms that survive for large bandwidth are those with k1 inte-
grated (since the k2 Fermi functions cancel at k2 = −∞) and a
single T matrix in k1 [since T (k) ∼ 2�/k for large |k|]. Thus,
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we obtain

D
∂

∂D
〈ÎSym〉 D→∞−→ − 1

2π

∫ ∞

−∞

dk2

2π
[ f1(k2) − f2(k2)]

× Im[T (k2)2]. (3.51)

Then (3.50b) follows from the identity ∂
∂ε

|T (k)|2 =
1
�

|T (k)|2Re T (k) = − 1
�

Im[T (k)2]. The associated scaling
invariants are � and

εd ≡ ε + �

π
ln

D

�
, (3.52)

which is the standard result [30,31].
To clarify the meaning of the expansion in crossings, we

consider the zero temperature limit with a voltage drop across
the leads: μ1 = 0 and μ2 = −V . Then the conductance is
given by

dI

dV
= 1

π

�2

(ε + V )2 + �2

[
1 − �(ε + V )

π2(ε + V )2 + �2

×
(

ln
D√

(ε + V )2 + �2
+ ln

D√
ε2 + �2

+ finite

)]
,

(3.53)

where the omitted terms are finite as D → ∞ (or involve
additional crossings). It is seen here that the contribution from
the first crossing (i.e., two quantum numbers in the crossing
state) starts at the third order in �, while the RLM contribu-
tion is second order. By further calculation, we find that the
next contribution (allowing three quantum numbers to be in
crossing states) starts at another order higher (�4).

Strictly speaking, our result should be interpreted as a
power series in �, meaning that we should keep only up to
order �3. It is interesting to note, however, that when 〈ÎSym〉 is
calculated to the leading order in crossings (as we did above),
the Callan-Symanzik equation (3.50a) holds to all orders in �.
Our demonstration of the Callan-Symanzik equation did not
expand in �. The expansion in crossings can be thought of as
a particular resummation of terms of the � expansion; the fact
that the Callan-Symanzik equation holds exactly suggests that
this resummation may be a useful one.

While much work has been done on the infinite-U AIM,
the most direct comparison we can make to the literature is to
Ref. [32], in which the current is calculated analytically for
U → ∞ up to order �3. Our result here disagrees beyond
the first order in �. In particular, Ref. [32] finds a small
Kondo peak beginning to develop at zero bias, which we do
not. However, a true comparison can only be made once both
answers are expressed in terms of RG invariants, and the result
of Ref. [32] does not seem to have the standard quantity given
in Eq. (3.52) as a scaling invariant.

IV. CONCLUSION AND OUTLOOK

In this paper, we presented a method for calculating many-
body wavefunctions. We applied the time-dependent version
of the method to find the time-evolving wavefunction for the
interacting resonant level model with any number of leads.
We also applied the time-independent version to find the
nonequilibrium steady state wavefunction of the Anderson
impurity model in the two limits of small U and infinite U .

The methods of Bethe ansatz and the integrability properties
of the models studied made no obvious appearance in the
calculations.

As a preliminary application of these wavefunctions to the
evaluation of observables, we found the steady-state occu-
pancy of the multilead IRL to leading order in the interaction
U . We demonstrated universality in and out of equilibrium,
verified our answer in the zero temperature equilibrium limit
by comparison with the literature, and presented results out of
equilibrium. In the two-lead AIM, we used the NESS wave-
function to evaluate the steady state current first for small U ,
then for infinite U with small �. This provided an example
of how we can calculate observables directly in steady state
nonequilibrium without following the time evolution. Our IRL
results can also be obtained this way.

It is our hope that further technology for the evaluation
of observables using these wavefunctions can be developed
so that some nonperturbative results can be found in the
thermodynamic limit. Also, the general reformulation of the
many-body Schrodinger equation that we presented could be
of wider use, beyond exact solutions of quantum impurity
models.
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APPENDIX A: NOTATION FOR CALCULATIONS

Throughout the appendices, we use a compressed nota-
tion for manipulating lists of indices—see Appendix A of
the previous paper [1] for details. The main points are: (1)
boldface letters indicate lists of indices, e.g., m = (1, 3, 6, 7);
(2) I j (m) indicates the set of all increasing lists of length
j chosen from m; (3) given � ∈ I j (m), ←−sgn � indicates the
sign of the permutation that maps m → � m/�, i.e., brings the
entries of � to the left of the list while leaving the remaining
entries in order. We define −→sgn � similarly (bring � to the right,
instead).

It is also convenient to have a notation for a list divided
into smaller parts (“cells”) in various ways. Given a list m, we
define a partition of m to be a separation of the list elements
into cells of length 2 or greater. Partitions are denoted by
underlined, boldface letters (typically the letter p, as in p).
Take m = (1, 3, 6, 7) as an example; the two partitions of m
are p = (1, 3, 6, 7) (one cell) and p = (1, 3|6, 7) (two cells).

A partition with s cells can be written as p = (p1| . . . |ps),
where each p j is a list. Elements of these lists are written as
p j (�) = p j� = p( j�). The set of all partitions of a list m is
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written as P (m)

P (m) = {p ≡ (p1| . . . |ps)|1 � s � |m|/2, (p1, . . . , ps)

= m, |p j | � 2 for all j}. (A1)

The set of partitions whose last cell has length q is denoted
with a subscript q

Pq(m) = {p ≡ (p1| . . . |ps) ∈ P (m) | |ps| = q}. (A2)

APPENDIX B: PROOF OF GENERAL FORMALISM

We show that the wavefunction construction in Sec. II C satisfies the time-dependent Schrodinger equation. The demonstration
that the time-independent version (Sec. II D) satisfies the time-independent Schrodinger equation can be obtained by simple
adjustments.

The wavefunction construction [Eq. (2.80)] can be written in our compressed notation as

|	(t )〉 =
N∑

n=0

|	n(t )〉,

where

|	n(t )〉 =
∑

m∈In(N)

(←−sgn m)c†
αN/m

(t )|
αm (t )〉, (B1)

where |
(t )〉 ≡ |0〉 [so that the n = 0 term of the sum agrees with the earlier definition Eq. (2.71)]) and where |
α1 (t )〉 ≡ 0 for
any α1 (so that the n = 1 term of the sum vanishes). The crossing states [Eq. (2.81)] become∣∣
αm (t )

〉 = ∑
σ∈Sym(n)

(sgn σ )
∑

p∈P (m)

∣∣χαp◦σ
(t )
〉
, (B2)

where the unsymmetrized crossing states satisfy [see Eqs. (2.82) and (2.83) and comments below](
H − i

d

dt

)∣∣χαp (t )
〉 = {−B(red)

αn−1αn
(t )|χαp/(n−1,n) (t )〉 q = 2

−Aαn (t )|χαp/n (t )〉 3 � q � n,
(B3a)

∣∣χαp (t = 0)
〉 = 0, (B3b)

as well as |χ (t )〉 = |0〉 and |χα1 (t )〉 ≡ 0. We wish to show that (H − i d
dt )|	(t )〉 = 0. Our first task is to show that the crossing

states satisfy the following condition:(
H − i

d

dt

)∣∣
αm (t )
〉 = −

∑
�∈I1(m)

(−→sgn �)Aα�1
(t )
∣∣
αm/�

(t )
〉− ∑

�∈I2(m)

(−→sgn �)Bα�1 α�2
(t )
∣∣
αm/�

(t )
〉
. (B4)

To show this, we note that the sum over all partitions can be separated into sums over partitions with specified length q of the
last cell, i.e.,

∑
p∈P (m) = ∑n

q=2

∑
p∈Pq (m). Separating the q = 2 term from the others and using Eq. (B3a), we obtain(

H − i
d

dt

)
|
αm (t )〉 = −

∑
σ∈Sym(n)

(sgn σ )
∑

p∈P2(m)

B(red)
αp(σn−1 )αp(σn )

(t )
∣∣χαp/(p(σn−1 ),p(σn )) (t )

〉

−
∑

σ∈Sym(n)

(sgn σ )
n∑

q=3

∑
p∈Pq (m)

Aαp(σn ) (t )
∣∣χαp/p(σn ) (t )

〉
. (B5)

The two terms on the right-hand side will now be massaged separately. Relabelling σn−1 → �1 and σn → �2, we obtain

first term of (B5) = −
∑

�∈I2(m)

(−→sgn �)
(
B(red)

α�1 α�2
(t ) − B(red)

α�2 α�1
(t )
) ∑

σ∈Sym(n−2)

(sgn σ )
∑

p∈P (m/�)

|χαp◦σ
(t )〉 (B6a)

= −
∑

�∈I2(m)

(−→sgn �
)
Bα�1 α�2

(t )|
αm/�
(t )〉. (B6b)

In the second term, relabelling σn → �1 and q → q + 1 yields:

second term of (B5) = −
∑

�∈I1(m)

(−→sgn �)Aα�1
(t )

∑
σ∈Sym(n−1)

(sgn σ )
n−1∑
q=2

∑
p∈Pq (m/�)

∣∣χαp◦σ
(t )
〉

(B7a)

= −
∑

�∈I1(m)

(−→sgn �)Aα�1
(t )
∣∣
αm/�

(t )
〉
. (B7b)

This completes the proof of Eq. (B4).
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The next step is to write down a formula for the action of H − i d
dt on a product of c†

α (t ) operators. If |X (t )〉 is any time-
dependent state and m is any list of indices, then we have(

H − i
d

dt

)
c†
αm

(t )|X (t )〉 =
∑

�∈I1(m)

(←−sgn �)c†
αm/�

(t )Aα�1
(t )|X (t )〉 +

∑
�∈I2(m)

(←−sgn �)c†
αm/�(t )Bα�1 α�2

(t )|X (t )〉

+ c†
αm

(t )

(
H − i

d

dt

)
|X (t )〉. (B8)

Note that we have used the assumption that any B(t ) commutes with any c†
α (t ) [Eq. (2.74)]. Applying Eq. (B8), we then find(

H − i
d

dt

)
|	(t )〉 =

N∑
n=0

∑
m∈In(N)

(←−sgn m)

(
H − i

d

dt

)
c†
αN/m

(t )
∣∣
αm (t )

〉
(B9a)

=
N−1∑
n=1

∑
m∈In(N)

(←−sgn m)
∑

�∈I1(N/m)

(←−sgn �
)
c†
αN/m/�

(t )Aα�1
(t )
∣∣
αm (t )

〉

+
N−2∑
n=0

∑
m∈In(N)

(←−sgn m)
∑

�∈I2(N/m)

(←−sgn �)c†
αN/m/�

(t )Bα�1 α�2
(t )
∣∣
αm (t )

〉

+
N∑

n=2

∑
m∈In(N)

(←−sgn m)c†
αN/m

(t )

(
H − i

d

dt

)∣∣
αm (t )
〉
. (B9b)

Note that in the first term, we dropped the n = N part of the sum, since it is zero—if all quantum numbers are chosen to be put
into a crossing state, then there are no c†

α (t ) operators to commute with, so no A(t ) is generated. We also dropped the n = 0 part
because Aα j (t )|
(t )〉 = Aα j (t )|0〉 = 0 by assumption [Eq. (2.73)]. In the second term, we dropped the n = N − 1 and n = N
parts of the sum, since there must be at least two c†

α (t ) operators in order to produce a B(t ) operator. In the third term we dropped
the n = 0 part, since (H − i d

dt )|
(t )〉 = (H − i d
dt )|0〉 = 0 [recall from Eq. (2.70) that H annihilates the empty state], and the

n = 1 part, since |
α j (t )〉 = 0. [We could have dropped the |
α j (t )〉 contributions to the first two terms of (B9b) but have left
them in to simplify the notation.]

We now relabel the summation variables in the first two terms of (B9b) to find

first term of (B9b) =
N−1∑
n=1

∑
m∈In+1(N)

(←−sgn m)
∑

�∈I1(m)

(−→sgn �)c†
αN/m

(t )Aα�1
(t )
∣∣
αm/�

(t )
〉

(B10a)

=
N∑

n=2

∑
m∈In (N)

(←−sgn m)c†
αN/m

(t )
∑

�∈I1(m)

(−→sgn �)Aα�1
(t )
∣∣
αm/�

(t )
〉

(B10b)

and

second term of (B9b) =
N−2∑
n=0

∑
m∈In+2(N)

(←−sgn m)
∑

�∈I2(m)

(−→sgn �)c†
αN/m

(t )Bα�1 α�2
(t )
∣∣
αm/�

(t )
〉

(B11a)

=
N∑

n=2

∑
m∈In(N)

(←−sgn m)c†
αN/m

(t )
∑

�∈I2(m)

(−→sgn �)Bα�1 α�2
(t )
∣∣
αm/�

(t )
〉
. (B11b)

It is then clear from Eq. (B4) that the first two terms of (B9b) exactly cancel the third. This completes the proof.

APPENDIX C: FULL CALCULATION OF nTH CROSSING STATE

We provide the detailed proof of our solution to the time-dependent Schrodinger equation of the one-lead IRL by verifying
that the crossing states satisfy the appropriate inverse problems. The crossing states for the multilead IRL and infinite-U AIM
that are stated in the main text can be verified similarly; see Ref. [18] for details.

We prove that the unsymmetrized crossing states of the one-lead IRL [defined by Eqs. (2.56), (2.57), and (2.58)] satisfy the
appropriate family of inverse problems, namely [given p ∈ Pq(n)](

H − i
d

dt

)∣∣χkp (t )
〉 = {

−B(red)
kn−1kn

(t )|χkp/(n,n−1) (t )〉 q = 2

−Akn (t )|χkp/n (t )〉 3 � q � n,
(C1a)

∣∣χkp (t = 0)
〉 = 0, (C1b)∣∣χkp (t )
〉 = |0〉 when p is the empty list. (C1c)
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Throughout, we reduce clutter by using the notation n − 1 = (1, . . . , n − 1), n − 2 = (1, . . . , n − 2), and n − q = (1, . . . , n −
q) (note that the minus sign does not mean removing an element from the list).

In the compressed notation of Appendix A, the crossing state ansatz (2.56) reads∣∣χkp (t )
〉 = 1

Ln/2

∫
dxn Fkp (t, xn)

[
�(0 < xn < · · · < x1 < t )ψ†(xn) + i

v
δ(xn)�(0 < xn−1 < · · · < x1 < t )d†

]
ψ†(xn/n)|0〉.

(C2)

This state vanishes at t = 0 by construction [see the discussion below (2.27)]. The main task is to confirm Eq. (C1a).
A straightforward calculation yields(
H − i

d

dt

)∣∣χkp (t )
〉 = 1

Ln/2

{∫
dxn

[
−i

(
∂

∂t
+

n∑
j=1

∂

∂x j

)
Fkp (t, xn )

]
�(0 < xn < · · · < x1 < t )ψ†(xn)

+ i

v

∫
dxn−1

[(
−i

∂

∂t
− i

n−1∑
j=1

∂

∂x j
+ z

)
Fkp (t, xn−1, 0)

]
�(0 < xn−1 < · · · < x1 < t )d†ψ†(xn−1)

+ i

v

(
−i + 1

2
U

)∫
dxn−2 Fkp (t, xn−2, 0, 0)�(0 < xn−2 < · · · < x1 < t )d†ψ†(0)ψ†(xn−2)

}
|0〉. (C3)

To derive this, we have noted(
∂

∂t
+

n∑
j=1

∂

∂x j

)
�(0 < xn < · · · < x1 < t ) = δ(xn)�(0 < xn−1 < · · · < x1 < t ), (C4)

which leads to a cancellation of unwanted impurity-electron terms [see Eq. (2.28) for the n = 2 case]. We have also used the
averaging prescription to make the following replacement:

δ(xn)�(0 < xn < · · · < x1 < t ) → 1
2δ(xn)�(0 < xn−1 < · · · < x1 < t ). (C5)

The first in Eq. (C3) term vanishes because Fkp (t, xn ) is a function of coordinate differences only. The second term vanishes
because Fkp (t, xn−1, 0) is e−izxn−q+1 times a function of coordinate differences. Thus, we are left with(

H − i
d

dt

)∣∣χkp (t )
〉 = 1

Ln/2

i

v

(
−i + 1

2
U

)∫
dxn−2 Fkp/p(s) (t, xn−q)

× Fkp(s) (t, xn−q+1, . . . , xn−2, 0, 0)�(0 < xn−2 < · · · < x1 < t )d†ψ†(0)ψ†(xn−2)|0〉, (C6)

where we used the product form of F [Eq. (2.58)]. Let us compare this to the terms we are trying to cancel. If q = 2 [i.e.,
p(s) = (n − 1, n)], we have

−B(red)
kn−1kn

(t )
∣∣χkp/(n−1,n) (t )

〉 = 1

Ln/2

U

v

∫
dxn−2 Fkp/p(s) (t, xn−2)

× T (kn−1)(e−ikn−1t − e−izt )e−iknt�(0 < xn−2 < · · · < x1 < t )d†ψ†(0)ψ†(xn−2)|0〉, (C7)

and so the condition (C1a) holds if we have(
1 + i

1

2
U

)
Fkn−1kn (t, 0, 0) = UT (kn−1)(e−ikn−1t − e−izt )e−iknt , (C8)

which has already been shown in the n = 2 calculation [see Eq. (2.30c)]. If instead q � 3, we have [again using Eq. (2.58)]

−Akn (t )
∣∣χkp/n (t )

〉 = 1

Ln/2

i

v
U
∫

dxn−1 Fkp/n (t, xn−2, 0)e−iknt�(0 < xn−2 < · · · < x1 < t )d†ψ†(0)ψ†(xn−2)|0〉

= 1

Ln/2

i

v
U
∫

dxn−1 Fkp/p(s) (t, xn−q)Fkp(s)/n (t, xn−q+1, . . . , xn−2, 0, 0)

× e−iknt�(0 < xn−2 < · · · < x1 < t )d†ψ†(0)ψ†(xn−2)|0〉, (C9)

and so the condition (C1a) holds if we have(
1 + i

1

2
U

)
Fkp(s) (t, xn−q+1, . . . , xn−2, 0, 0) = iUFkp(s)/n (t, xn−q+1, . . . , xn−2, 0, 0)e−iknt . (C10)

This holds due to the definition (2.57) of the function F for single-celled partitions. We have thus verified Eq. (C1a), completing
the solution.
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APPENDIX D: FURTHER DETAILS IN THE EVALUATION OF OBSERVABLES

1. Dot occupancy in the multilead IRL

We fill in the gap between Eq. (3.12) (the leading order correction to the occupancy at arbitrary time) and Eq. (3.14b) (the
steady-state limit). To do this, we need to evaluate the long-time limit of Re �[t ; γ ′

1k′
1, γ

′
2k′

2; γ1k1, γ2k2], where � is given by
Eq. (3.13).

Written in full, Eq. (3.13) from the main text reads

�(t ; γ ′
1k′

1, γ
′
2k′

2; γ1k1, γ2k2) = 1

2Nleads�

∫ t

0
dx1 TUT (k1)(e−ik1(t−x1 ) − e−iz(t−x1 ) )e−ik2(t−x1 )e−izx1

×
[
δ

γ2

γ ′
1
eik′

1(t−x1 ) + 1

Nleads
iT ∗(k′

1)(eik′
1(t−x1 ) − eiz∗(t−x1 ) )

]
iT ∗(k′

2)(eik′
2t − eiz∗t ), (D1)

where we can replace TU → U to get the first order expansion. We can assume k′
1 + k′

2 = k1 + k2, since this is the only case we
need for evaluating (3.12).

Recalling that Im z = −� < 0, we see that there are several terms in the integrand that decay as e−�t for large time; they can
all be dropped in the limit. The terms e−iz(t−x1 ) and eiz∗(t−x1 ), which each have absolute value e−�(t−x1 ), cannot immediately be
neglected, since they are of order one when x1 ∼ t ; however, the factor of e−izx1 can combine with either one of these terms to
yield the absolute value e−�t , which then can be neglected. The remaining time-dependent terms are all phases and cancel by
assumption (e−i(k1+k2−k′

1−k′
2 )t = 1), leaving

lim
t→∞ �(t ; γ ′

1k′
1, γ

′
2k′

2; γ1k1, γ2k2) = 1

2Nleads�

∫ ∞

0
dx1 TUT (k1)ei(k1+k2−k′

1−z)x1

[
δ

γ2

γ ′
1
+ 1

Nleads
iT ∗(k′

1)

]
iT ∗(k′

2) (D2a)

= − 1

4Nleads�2
TUT (k1)|T (k′

2)|2
[
δ

γ2

γ ′
1
+ 1

Nleads
iT ∗(k′

1)

]
. (D2b)

We thus obtain

lim
t→∞

∑
σ∈Sym(2)

(sgn σ )2Re
[
�
(
t ; γ1k1, γ2k2; γσ1 kσ1 , γσ2 kσ2

)]
= − |T (k2)|2

2Nleads�2
Re

{
TU

[(
1 + i

Nleads
T ∗(k1)

)
(T (k1) − T (k2) − (

1 − δγ2
γ1

)
T (k1)

]}
. (D3)

Since the S matrix S (k) = 1 − iT (k) is a pure phase, T (k) satisfies a version of the optical theorem

2Im[T (k)] + |T (k)|2 = 0. (D4)

Repeated use of this identity simplifies (D3) further; to leading order in U , we find

(D3) = U

2Nleads�2

{(
1 − 1

2Nleads
|T (k1)|2

)
|T (k2)|2Re[T (k2)] − Re[T (k1)]|T (k2)|2

(
δγ2
γ1

− 1

2Nleads
|T (k2)|2

)}
. (D5)

Note that we have a term independent of k1; this leads to a linear divergence in bandwidth. Equation (3.14b) in the main
text follows from noting that

∫ D
−D

dk1
2π

f (k1) = (D + μ)/(2π ) + O(e− D−|μ|
T ) [for a Fermi function f (k) with temperature T and

chemical potential μ] and recalling the expression (3.9b) for the noninteracting steady state occupancy 〈nd〉(0)
s.s..

2. The current in the two-lead AIM

a. Noninteracting contribution to the current. Here, we derive Eq. (3.43) in the main text (the contribution to the current that
does not involve any crossing states). From Eq. (3.41), we obtain

〈ÎSym〉(0,0) = 1

[2πδ(0)]N
lim

all k′
j→k j

(E − E ′)
∂

∂φ

∣∣∣∣
φ=0

∑
σ∈Sym(N )

(sgn σ )
N∏

m=1

{
cγσm k′

σm aσm ,in, c†
γmkmam,in

}
(D6a)

= 1

2πδ(0)

N∑
m=1

lim
k′

m→km

(km − k′
m)

∂

∂φ

∣∣∣∣
φ=0

{
cγmk′

mam,in, c†
γmkmam,in

}
, (D6b)

where we have noted that the “in” operators are Dirac normalized. If any permutation other than the identity is chosen, then the
result is zero in the limit of all k′

j → k j .
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To evaluate (D6b), we note that the even sector “in” operator is given by Eq. (2.6b) (with barred fields and a spin index), and
the odd sector “in” operator is a simple plane wave. Thus

c†
oka,in = c†

oka, c†
eka,in = c†

eka +
∫

dx Fk,in(x)

[
�(0 < x)ψ

†
ea(x) + i

v
δ(x)d†

a

]
. (D7)

We then obtain the “in” operators in the lead 1/lead 2 basis by rotation:(
c1ka,in

c2ka,in

)
= U†

(
coka,in

ceka,in

)
. (D8)

In particular, we have

cγ ka,in =
∑
γ̇=o,e

U†
γ γ̇ cγ̇ ka, c†

γ ka,in =
∑
γ̇=o,e

c†
γ̇ ka,inUγ̇ γ (γ = 1, 2), (D9)

which yields

{cγ k′a′,in, c†
γ ka,in} =

∑
γ̇ ,γ̇ ′=o,e

U∗
γ̇ ′γUγ̇ γ {cγ̇ ′k′a′,in, cγ̇ ka,in} (γ = 1, 2) (D10a)

= 1

2

[∑
γ̇=o,e

{cγ̇ k′a′,in, cγ̇ ka,in} + (−1)γ−1({cok′a′,in, ceka,in} + {cek′a′,in, coka,in})

]
. (D10b)

We proceed to evaluate the necessary anticommutators in the odd/even basis. We note(
coka

ceka

)
= UU†

(
coka

ceka

)
=
(

cos(φ/2) −i sin(φ/2)
−i sin(φ/2) cos(φ/2)

)(
coka

ceka

)
, (D11a)

hence:
∂

∂φ

∣∣∣∣
φ=0

(
coka

ceka

)
= − i

2

(
0 1
1 0

)(
coka

ceka

)
= − i

2

(
ceka

coka

)
, (D11b)

and:
∂

∂φ

∣∣∣∣
φ=0

ψea(x) = − i

2
ψoa(x). (D11c)

Applying these to Eq. (D7) yields

∂

∂φ

∣∣∣∣
φ=0

coka,in = − i

2
ceka, (D12a)

∂

∂φ

∣∣∣∣
φ=0

ceka,in = − i

2

[
coka +

∫
dx F ∗

k,in(x)�(0 < x)ψoa(x)

]
. (D12b)

We have ∂

∂φ
|φ=0{cγ̇ k′a′,in, c†

γ̇ ka,in} = 0 (for γ̇ = o or e), since {cok′a′ , c†
eka} = {cek′a′ , c†

oka} = 0. Thus, the odd-odd and even-even

contributions to Eq. (D10b) vanish; the nonvanishing anticommutators under the φ derivative are the odd-even and even-odd
combinations. For odd-even, we find

∂

∂φ

∣∣∣∣
φ=0

{cok′a′,in, c†
eka,in} = i

2

(
{cok′a′ , c†

oka} +
∫

dx Fk,in(x)�(0 < x){cok′a′ , ψ†
o (x)}

)
(D13a)

= i

2

[
2πδ(k − k′) − iT (k)

(
πδ(k − k′) + P.V.

i

k − k′
)]

δaa′ , (D13b)

where we have recalled that Fk,in(x) = −iT (k)eikx; P.V. indicates the principal value. Only the pole in k − k′ survives in the
k′ → k limit:

lim
k′→k

(k − k′)
∂

∂φ

∣∣∣∣
φ=0

{cok′a′,in, c†
eka,in} = i

2
T (k)δaa′ . (D14)

The even-odd contribution is found similarly:

lim
k′→k

(k − k′)
∂

∂φ

∣∣∣∣
φ=0

{cek′a′,in, c†
oka,in} = lim

k′→k
(k − k′)

i

2

(
{cek′a′ , c†

eka} +
∫

dx F ∗
k′,in(x)�(0 < x){ψea′ (x), c†

eka}
)

(D15a)

= − i

2
T ∗(k)δaa′ . (D15b)
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From Eq. (D10b), we thus find (still for γ = 1, 2)

lim
k′→k

(k − k′)
∂

∂φ

∣∣∣∣
φ=0

{cγ k′a′,in, c†
γ ka,in} = 1

2
(−1)γ−1

( i

2
T (k) − i

2
T ∗(k)

)
δaa′ (D16a)

= 1

4
(−1)γ−1|T (k)|2δaa′ , (D16b)

where we have used the optical identity (D4). Equation (D6b) then yields Eq. (3.43) in the main text.
b. Contribution from the first crossing state. We derive Eq. (3.47) in the main text. First, we set up the calculation in the

compact notation of Appendix A. We write the Lippmann-Schwinger “in” state as

|	 in〉 ≡ |	γNkNaN,in〉, (D17)

where γNkNaN are the N arbitrary quantum numbers characterizing the incoming plane waves. In this notation, Eq. (3.38) from
the main text becomes

〈ÎSym〉 = N−1 lim
all k′

j→k j

(E − E ′)
∂

∂φ

∣∣∣∣
φ=0

〈
	γNk′

NaN,in

∣∣	γNkNaN,in
〉
, (D18)

and we wish to evaluate the right-hand side to the leading order in an expansion in crossings. For the calculation, it is convenient
to define the overlap of states with two electrons, arbitrary quantum numbers on both sides, and the zero crossing part subtracted
off:

�[γ ′
1k′

1a′
1, γ

′
2k′

2a′
2; γ1k1a1, γ2k2a2] ≡ 〈

	γ ′
1k′

1a′
1γ

′
2k′

2a′
2,in

∣∣	γ1k1a1γ2k2a2,in
〉− 〈0|cγ ′

1k′
1a′

1,incγ ′
2k′

2a′
2,inc†

γ2k2a2,in
c†
γ1k1a1,in

|0〉 (D19a)

= 1
2�(0,2)[γ

′
1k′

1a′
1, γ

′
2k′

2a′
2; ek1a1, ek2a2] + 1

2�(2,0)[ek′
1a′

1, ek′
2a′

2; γ1k1a1, γ2k2a2]

+ 1
4�(2,2)[ek′

1a′
1, ek′

2a′
2; ek1a1, ek2a2], (D19b)

where

�(0,2)[γ
′
1k′

1a′
1, γ

′
2k′

2a′
2; ek1a1, ek2a2] = 〈0|cγ ′

1k′
1a′

1,incγ ′
2k′

2a′
2,in

∣∣
ek1a1ek2a2,in
〉
, (D20a)

�(2,0)[ek′
1a′

1, ek′
2a′

2; γ1k1a1, γ2k2a2] = 〈

ek′

1a′
1ek′

2a′
2,in

∣∣c†
γ2k2a2,in

c†
γ1k1a1,in

|0〉, (D20b)

�(2,2)[ek′
1a′

1, ek′
2a′

2; ek1a1, ek2a2] = 〈

ek′

1a′
1ek′

2a′
2,in

∣∣
ek1a1ek2a2,in
〉
. (D20c)

The term �(2,2) contains a product of two crossing states (one from each wavefunction) and so will be dropped later, but it is
convenient to keep it for the moment. A short calculation shows the identity

lim
k′

1→k1
k′

2→k2

(k1 + k2 − k′
1 − k′

2)�[γ ′
1k′

1a′
1, γ

′
2k′

2a′
2; γ1q1a1, γ2q2a2] = 0, (D21)

where the momenta k1, k2, q1, and q2 are arbitrary (and also the spins and lead indices). Note that the bar has been
removed [33].

Next, we apply Wick’s theorem to the overlap of interest, with the wavefunction on each side truncated so that at
most two quantum numbers can be in a crossing state. We use the notation α j ≡ γ jk ja j , α′

j ≡ γ jk′
ja j to reduce clutter,

finding〈
	α′

N,in

∣∣	αN,in
〉 = 〈

	0
α′

N,in

∣∣	0
αN,in

〉+ ∑
m,m′∈I2(N)

(←−sgn m)(←−sgn m′)
∑

σ∈Sym(2)

(sgn σ )

(
N−2∏
j=1

{cα′
(N/m′ )σ j

,in, c†
α(N/m) j ,in

}
)

�[α′
m′ ; αm]. (D22)

The first term on the right-hand side, with zero crossings, has already been dealt with. To get the current, we apply
N−1 limall k′

j→k j (E − E ′) ∂

∂φ
|φ=0 to both sides. If the φ derivative acts on one of the anticommutators, then we get zero due

to the identity (D21) (since � gets replaced by �). Thus, we have to act the derivative on �; this removes the bar from all of the
anticommutators, diagonalizing the sum (m′ = m and σ =identity) and yielding

〈ÎSym〉 = 〈ÎSym〉(0,0) + N−1
∑

m∈I2(N)

[2πδ(0)]N−2 lim
k′

m1
→km1

k′
m2

→km2

(
km1 + km2 − k′

m1
− k′

m2

) ∂

∂φ

∣∣∣∣
φ=0

�[α′
m; αm]

= 〈ÎSym〉(0,0) + [2πδ(0)]−2
∑

1�m1<m2�N

lim
k′

m1
→km1

k′
m2

→km2

(
km1 + km2 − k′

m1
− k′

m2

)

× ∂

∂φ

∣∣∣∣
φ=0

�
[
γm1 k′

m1
am1 , γm2 k′

m2
am2 ; γm1 km1 am1 , γm2 km2 am2

]
, (D23)
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where we have written the compact notation in full and recalled that N = [2πδ(0)]N . From the definition, � satisfies a symmetry
property in its quantum numbers that allows us to replace the sum over m1 < m2 by an unrestricted sum with an extra factor of
1/2. Comparing to Eqs. (3.39) and (D19b), we can then read off

〈ÎSym〉(�1,�2 ) = [2πδ(0)]−2 1

4

N∑
m1,m2=1

lim
k′

m1
→km1

k′
m2

→km2

(
km1 + km2 − k′

m1
− k′

m2

) ∂

∂φ

∣∣∣∣
φ=0

�(�1,�2 )
[
γm1 k′

m1
am1 , γm2 k′

m2
am2 ; ekm1 am1 , ekm2 am2

]
,

(D24)

where (�1, �2) is (0,2) or (2,0). The (0,2) case is Eq. (3.46) from the main text. It suffices to calculate the (0,2) term, since the
(2,0) term is the complex conjugate. We ignore the (2,2) term, involving �(2,2), since it involves a product of two crossings.

By antisymmetry, the overlap �(0,2) can be written as the antisymmetrization of some “reduced” overlap �
(red)
(0,2) as follows:

�(0,2)[γ
′
1k′

1a′
1, γ

′
2k′

2a′
2; ek1a1, ek2a2] =

∑
σ,σ ′∈Sym(2)

(sgn σ )(sgn σ ′)�
(red)
(0,2)

[
γ ′

σ ′
1
k′
σ ′

1
a′

σ ′
1
, γ ′

σ ′
2
k′
σ ′

2
a′

σ ′
2
; ekσ1 aσ1 , ekσ2 aσ2

]
, (D25)

where �
(red)
(0,2) is only defined modulo antisymmetrization. To specialize the quantum numbers γNkNaN to the case of two filled

Fermi seas, we replace the sums over quantum numbers according to Eq. (3.44). Relabelling summation indices, we then obtain

〈ÎSym〉(0,2) = [2πδ(0)]−2 1

2

∑
γ1,γ2=1,2

∑
k1∈Kγ1
k2∈Kγ2

∑
a1,a2

∑
σ∈Sym(2)

(sgn σ ) lim
k′

1→k1
k′

2→k2

(k1 + k2 − k′
1 − k′

2)

× ∂

∂φ

∣∣∣∣
φ=0

�
(red)
(0,2)[γ1k′

1a1, γ2k′
2a2; ekσ1 aσ1 , ekσ2 aσ2 ] (D26a)

therm. limit−→ 1

2

∑
γ1,γ2=1,2

∫ D

−D

dk1

2π

dk2

2π
fγ1 (k1) fγ2 (k2)

∑
a1,a2

∑
σ∈Sym(2)

(sgn σ )

× lim
k′

1→k1
k′

2→k2

(k1 + k2 − k′
1 − k′

2)
∂

∂φ

∣∣∣∣
φ=0

�
(red)
(0,2)[γ1k′

1a1, γ2k′
2a2; ekσ1 aσ1 , ekσ2 aσ2 ]. (D26b)

We recall that the two electron crossing state is given by∣∣
ek1a1ek2a2,in
〉 = ∣∣χ ek1a1ek2a2,in

〉− ∣∣χ ek2a2ek1a1,in

〉
, (D27)

where the unsymmetrized crossing state is given by Eq. (2.108) with a bar over the electron fields:∣∣χ ek2a2ek1a1,in

〉 = ∫
dx1dx2 F b1b2

ek1a1ek2a2
(x1, x2)

[
�(0 < x2 < x1)ψ

†
eb2

(x2)ψ
†
eb1

(x1)

+ i

v
δ(x2)�(0 < x1)d†

b2
ψ

†
eb1

(x1) − 1

2v2
δ(x1)δ(x2)d†

b2
d†

b1

]
|0〉, (D28)

where the function F is given in Eq. (2.111).

We proceed to evaluate the reduced function �
(red)
(0,2). Any terms that are finite in the limit of equal momenta (k′

j → k j) can be
dropped; we are looking for a real pole, such as 1/(k1 + k2 − k′

1 − k′
2) (as opposed to a pole off the real axis). Such a pole is not

present in the T matrix prefactors that appear explicitly in the “in” operators and crossing state (since Im z = −� 
= 0), so it
can only be produced by the position integral in the overlap itself (see below). From Eqs. (D25) and (D20a) and the form of the
crossing state, we can read off

�
(red)
(0,2)[γ

′
1k′

1a′
1, γ

′
2k′

2a′
2; ek1a1, ek2a2] =

∫
dx1dx2 F b1b2

ek1a1ek2a2
(x1, x2)�(0 < x2 < x1)

× {
cγ ′

1k′
1a′

1,in, 	
†
eb1

(x1)
}{

cγ ′
2k′

2a′
2,in, 	

†
eb2

(x2)
}+ (regular), (D29)

where “regular” indicates omitted terms that are finite in the limit of equal momenta. These are the terms involving the

anticommutators {cγ ′
1k′

1a′
1,in, 	

†
eb1

(x1)}{cγ ′
2k′

2a′
2,in, d†

b2
} and {cγ ′

1k′
1a′

1,in, d†
b1

}{cγ ′
2k′

2a′
2,in, d†

b2
}. In the former case, we get a single integral

over x1 involving F (x1, 0), which (due to the factor of z in the exponent in F ) produces a momentum denominator with a complex
pole; in the latter case, we just get a constant again with complex poles.

To take the φ derivative, we recall that ∂

∂φ
|φ=0ψ

†
eb(x) = i

2ψ
†
ob(x). This derivative can act on either one of the anticommutators,

setting ψ
†
eb = ψ

†
eb in the other one. In the calculation that follows, we do this derivative, then relabel variables in one term

(using the fact that �
(red)
(0,2) is only defined up to antisymmetrization), then recall the anticommutators {cγ ′k′a′,in, ψ

†
eb(x)} =
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1√
2
S∗(k′)δba′e−ik′x [where S (k) = 1 − iT (k) is the S matrix] and {cγ ′k′a′,in, ψ

†
ob(x)} = 1√

2
(−1)γ

′−1δba′e−ik′x, then put in the
explicit form of F . The “regular” part is dropped throughout. Following these steps, we find

∂

∂φ

∣∣∣∣
φ=0

�
(red)
(0,2)[γ

′
1k′

1a′
1, γ

′
2k′

2a′
2; ek1a1, ek2a2]

= i

2

∫
dx1dx2 F b1b2

ek1a1ek2a2
(x1, x2)�(0 < x2 < x1)

[{
cγ ′

1k′
1a′

1,in, 	
†
eb1

(x1)
}{

cγ ′
2k′

2a′
2,in, 	

†
ob2

(x2)
}+ (o ↔ e)

]
(D30a)

up to antisymm.= i

2

∫
dx1dx2 F b1b2

ek1a1ek2a2
(x1, x2)�(0 < x2 < x1)

[{
cγ ′

1k′
1a′

1,in, 	
†
eb1

(x1)
}{

cγ ′
2k′

2a′
2,in, 	

†
ob2

(x2)
}− (b1 ↔ b2, x1 ↔ x2)

]
(D30b)

= i

2

∫
dx1dx2 F b1b2

ek1a1ek2a2
(x1, x2)�(0 < x2 < x1)

1√
2
S∗(k′

1)
1√
2

(−1)γ
′
2−1

[
δb1a′

1
δb2a′

2
e−ik′

1x1 e−ik′
2x2 − (b1 ↔ b2, x1 ↔ x2)

]
(D30c)

= i

2

∫
dx1dx2

[
−T (k1)T (k2)

UT [(k1 + k2 − U )/2]

4�

]
ei(k1+k2 )x1 e−iz(x1−x2 )

×P
a′

1a′
2−a1a2
�(0 < x2 < x1)

1

2
S∗(k′

1)(−1)γ
′
2−1(e−ik′

1x1 e−ik′
2x2 + e−ik′

2x1 e−ik′
1x2 ). (D30d)

The integration over position yields a real pole:∫
dx1dx2 ei(k1+k2−k′

1−z)x1 ei(z−k′
2 )x2�(0 < x2 < x1) = −T (k′

2)

2�
P.V.

1

k1 + k2 − k′
1 − k′

2

. (D31)

Thus, we obtain

lim
k′

1→k1
k′

2→k2

(k1 + k2 − k′
1 − k′

2)
∂

∂φ

∣∣∣∣
φ=0

�
(red)
(0,2)[γ

′
1k′

1a′
1, γ

′
2k′

2a′
2; ek1a1, ek2a2]

= i

32�2
(−1)γ

′
2−1T (k1)T (k2)UT [(k1 + k2 − U )/2]S∗(k′

1)[T (k′
1) + T (k′

2)]P a′
1a′

2−a1a2
, (D32)

and then Eq. (D26b) yields [using S∗(k) = T ∗(k)/T (k) and the spin sums P a1a2−a1a2
= 1 and P a2a1−a1a2

= −1]

〈ÎSym〉(0,2) therm. limit−→ i

32�2

∫ D

−D

dk1

2π

dk2

2π
[ f1(k1) + f2(k1)][ f1(k2) − f2(k2)]

× T ∗(k1)T (k2)UT [(k1 + k2 − U )/2](T (k1) + T (k2)). (D33)

By taking the adjoint and relabelling, we can read off that 〈ÎSym〉(2,0) = 〈ÎSym〉(0,2)∗. We thus obtain Eq. (3.47) in the main
text.

APPENDIX E: EQUILIBRIUM OCCUPANCY OF THE IRL FROM THE LITERATURE

From Bethe ansatz, a series form is known for the occupancy 〈nd〉equilibrium at zero temperature as a function of εd in the
multilead IRL. We show here that the leading order of this series agrees with our result for the leading order equilibrium
occupancy reached as the long-time limit following a quench [Eq. (3.27)].

It turns out that in the universal regime, the number of leads does not appear in the answer. The calculation was first done by
Ponomarenko [23]. In the one-lead case, Rylands and Andrei [34] calculated the occupancy including a Luttinger interaction,
and Camacho et al. [21] have verified that setting the Luttinger interaction to zero (which recovers the one-lead IRL) results
in exact agreement between the answers of Ref. [23] and Ref. [34]. We transcribe the result from Ref. [21] with some minor
changes in notation:

〈nd〉equilibrium ≡ nd (xd ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 −∑∞

n=0 h<
n (α)

( xd
πh<

n=0(α)

)2n+1
0 � xd < 1∑∞

n=1 h>
n (α)

( xd
πh<

n=0(α)

)− 2n
α xd � 1

1 − nd (−xd ) xd < 0,

(E1)
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where xd = εd/TK (note that ε0 in Ref. [21] is our εd ) and

h<
n (α) = 1√

π

(−1)n

n!

�(1 + α
2 (2n + 1)

�(1 + α−1
2 (2n + 1))

, (E2a)

h>
n (α) = 1

2
√

π

(−1)n+1

n!

�(1/2 + n/α)

�(1 − α−1
α

n)
. (E2b)

The quantity α is an RG invariant, with α = 2 in the noninteracting case (U = 0). In principle the Bethe ansatz α could differ
from our formula (3.22b) for α in the main text, but we find that they are the same (at least to leading order in U ). To compare
with our answer for the occupancy in the main text, we expand to linear order about α − 2. For |xd | < 1, we obtain

nd (xd ) = 1

2
−

∞∑
n=0

{
(−1)n

π (1 + 2n)
+ (α − 2)

(−1)n

2π
[1 − 2 ln 2 + ψ (2 + 2n) − ψ (3/2 + n)] + O

(
(α − 2)2

)}
x2n+1

d , (E3)

where ψ = �′ is the digamma. This sum yields (3.27) in the main text once we identify α − 2 = − 2U
π

at leading order [in
agreement with Eq. (3.22b)]. For xd > 1, we obtain

nd (xd ) =
∑

n=1,3,...

{
(−1)(n−1)/2

πn
+ (α − 2)

(−1)(n−1)/2

2π

[
1 − ln 2 − ln xd + ψ (1/2 + n/2) − ψ (1 + n/2)

]
+ O

(
(α − 2)2

)}
x−n

d

+
∑

n=2,4,...

{
(α − 2)

(−1)n/2−1

4
+ O

(
(α − 2)2

)}
x−n

d . (E4)

The sum over the α = 2 part yields the standard noninteracting result 1/2 − (1/π ) arctan xd . Numerical evaluation of the α − 2
correction term again agrees with Eq. (3.27) in the main text.

APPENDIX F: PERTURBATIVE CHECK: THE CURRENT IN THE ANDERSON MODEL

We calculate the steady-state current in the Anderson model to leading order in U using Keldysh perturbation theory,
confirming the result (3.48) from the main text. Rather than evaluate the current operator directly, we find it more convenient to
use the Meir-Wingreen formula [24], which relates the steady state current to an impurity-impurity Green’s function.

For this calculation, we allow a magnetic field on the dot; that is, the dot energy can be spin dependent:

H (0) = −i
∫ L/2

−L/2
dx

∑
γ=1, 2

a

ψ†
γ a(x)

d

dx
ψγ a(x) +

∑
a

εad†
a da +

∑
γ=1,2

a

[
v√
2
ψ†

γ a(0)da + H.c.

]
, (F1a)

H (1) = Un↑n↓, (F1b)

H = H (0) + H (1). (F1c)

Our conventions in this Appendix depart in two ways from the rest of the paper. First, all time-dependent operators are in either
the Heisenberg picture (subscript H) or the interaction picture (no subscript), with the usual sign (i.e., eiHt or eiH (0)t on the left,
respectively). Second, repeated spin indices are not summed in the absence of a summation sign.

Let ρ be the density matrix describing the two leads each separately in thermal equilibrium, with no tunneling:

ρ = exp

⎡⎢⎢⎣− 1

T1

∑
|k|<D

a

(k − μ1)c†
1kac1ka

⎤⎥⎥⎦⊗ exp

⎡⎢⎢⎣− 1

T2

∑
|k|<D

a

(k − μ2)c†
2kac2ka

⎤⎥⎥⎦. (F2)

The Fermi functions of the leads are fγ (k) = [e(k−μγ )/Tγ + 1]−1 (γ = 1, 2).
The retarded Green’s function with respect to the time-evolving density matrix ρ(t ) ≡ e−iHtρeiHt is given by

GR
a,a(t ; t1, t2) ≡ −i�(t1 − t2)Tr

[
ρ(t ){daH (t1), d†

aH (t2)}]/Trρ. (F3)

This Green’s function, and all others introduced below, is implicitly in the thermodynamic limit (L → ∞ with fixed bandwidth
D; note in particular that the system size goes to infinity before the evolution time t). In the steady state, we get a function of the
time difference only [35]:

lim
t→∞GR

a,a(t ; t1, t2) ≡ GR
a,a(t1 − t2). (F4)
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The Meir-Wingreen formula, specialized to the Hamiltonian we consider here, is the following expression for the steady-state
current:

lim
t→∞ ISym(t ) = −�

∑
a

∫ D

−D

dw

2π
[ f1(w) − f2(w)]Im

[
G̃R

a,a(w)
]
, (F5)

where ISym(t ) = Tr[ρ(t )̂ISym]/Trρ, ÎSym = i
2
√

2
v(ψ†

1a(0) − ψ
†
2a(0))da + H.c., and G̃R

a,a(w) ≡ ∫
dt ′ eiwt ′GR

a,a(t ′). The derivation
[24] proceeds by applying Keldysh identities to Dyson equations for Green’s functions [36].

Equation (F3) is more conveniently written as

GR
a,a(t ; t1, t2) = GR

a,a(t + t1, t + t2), (F6)

where GR
a,a(t1, t2) = −i�(t1 − t2)Tr[ρ {daH (t1), d†

aH (t2)}]/Trρ is the retarded Green’s function defined relative to the initial
density matrix ρ (rather than the time-evolving density matrix). For perturbative evaluation of GR

a,a(t1, t2) (with 0 < t2 < t1
and with t1 and t2 later to be shifted by t), we introduce a Keldysh contour C that runs from 0 to t1 (the + branch) and back (the
− branch). The Keldysh Green’s functions with respect to ρ are defined by

Gα1α2
a,a (t1, t2) = −iTr

[
ρ TC daH

(
t (α1 )
1

)
d†

aH

(
t (α2 )
2

)]
/Trρ, (F7)

where α1 and α2 are branch indices (±) and TC is the path-ordering symbol. The retarded Green’s function is given by GR
a,a =

GT
a,a − G<

a,a, where GT
a,a = G++

a,a and G<
a,a = G+−

a,a . By some standard manipulations, we obtain another form more suitable for
perturbation theory:

Gα1α2
a,a (t1, t2) = −iTr

[
ρ TC UCda

(
t (α1 )
1

)
d†

a

(
t (α2 )
2

)]
/Trρ, (F8)

where the impurity operators evolve in the interaction picture and UC is the interaction picture propagator:

UC = TC exp

[
−i
∫

C
dt ′ H (1)(t ′)

]
. (F9)

Our first task is to expand Ga,a to first order in U in terms of the Keldysh Green’s functions of the two-lead RLM, which are
defined as follows:

G(0)α1α2
a,a (t1, t2) = −iTr

[
ρ TC da

(
t (α1 )
1

)
d†

a

(
t (α2 )
2

)]
/Trρ. (F10)

We write the interaction term in the Hamiltonian as H (1) = Ud†
a dad†

a da, where a is the opposite spin to a (a= ↓ if a = ↑ and
vice versa). In the first order correction to the Green’s function, the a impurity operators contract with each other, yielding a
factor of −iG(0)<

a,a (t ′, t ′). We find

Ga,a(t1, t2) = G(0)
a,a(t1, t2) − iU

∫
C

dt ′ G(0)<
a,a (t ′, t ′)G(0)

a,a(t1, t ′)G(0)
a,a(t ′, t2) + O(U 2), (F11)

where Keldysh branch indices have been suppressed. We specialize the left-hand side to the retarded Green’s function, then use
a Langreth rule to obtain

GR
a,a(t1, t2) = G(0)R

a,a (t1, t2) − iU
∫

dt ′ G(0)<
ā,ā (t ′, t ′)G(0)R

a,a (t1, t ′)G(0)R
a,a (t ′, t2). (F12)

Note that we have replaced
∫ t1

0 dt ′ → ∫∞
−∞ dt ′ ≡ ∫

dt ′, since the retarded Green’s functions restrict t ′ to the interval 0 < t2 <

t ′ < t1. The retarded Green’s function of the RLM depends only on the difference of times (see below), so we find

GR
a,a(t1 − t2) = lim

t→∞

[
G(0)R

a,a (t + t1, t + t2) − iU
∫

dt ′ G(0)<
ā,ā (t ′, t ′)G(0)R

a,a (t + t1, t ′)G(0)R
a,a (t ′, t + t2)

]
(F13a)

= G(0)R
a,a (t1 − t2) − iU

[
lim

t→∞ G(0)<
ā,ā (t, t )

] ∫
dt ′ G(0)R

a,a (t1 − t ′)G(0)R
a,a (t ′ − t2). (F13b)

The time integral is a convolution, so the Fourier transform yields

G̃R
a,a(w) = G̃(0)R

a,a (w) − iU
[

lim
t→∞ G(0)<

ā,ā (t, t )
][

G̃(0)R
a,a (w)

]2
. (F14)

Thus, the only Green’s functions that we need from the two-lead RLM are the following:

G(0)R
a,a (t1, t2) = −i�(t1 − t2)e−iza (t1−t2 ) ≡ G(0)R

a,a (t1 − t2), (F15a)

G̃(0)R
a,a (w) = 1

w − za
= Ta(w)

2�
, (F15b)
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−i
[

lim
t→∞ G(0)<

ā,ā (t, t )
] = lim

t→∞ Tr
[
ρ eiH (0)t d†

ā dāe−iH (0)t
]
/Trρ (F15c)

= 1

2

∫ D

−D

dk

2π
[ f1(k) + f2(k)]

|Tā(k)|2
2�

, (F15d)

where za = εa − i� and Ta(k) = 2�/(k − za). These Green’s functions can be found by conventional means or by using the
time-dependent operators of Sec. II A. Equation (F15d) is the two-lead case of the more general Eq. (3.9b) from the main text.

Using the “optical” identity (D4), we then obtain

Im
[
G̃R

a,a(w)
] = −|Ta(w)|2

4�
− U

16�3

∫ D

−D

dk

2π
[ f1(k) − f2(k)]|Tā(k)|2|Ta(w)|2Re[Ta(w)]. (F16)

Then from (F5), we find the steady-state current to first order in U :

lim
t→∞ ISym(t ) =

∫ D

−D

dw

2π
[ f1(w) − f2(w)]

∑
a

1

4
|Ta(w)|2 + U

16�2

∫ D

−D

dk

2π

dw

2π
[ f1(k) + f2(k)][ f1(w) − f2(w)]

×
∑

a

|Tā(k)|2|Ta(w)|2Re[Ta(w)]. (F17)

This agrees with Eq. (3.48) from the main text once we take the dot energy to be spin independent [εa = ε, hence Ta(k) = T (k)].
As stated in the main text, we can also obtain the answer with spin dependence using the wavefunction method.
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