
PHYSICAL REVIEW B 103, 195106 (2021)

Many-body wavefunctions for quantum impurities out of equilibrium.
I. The nonequilibrium Kondo model
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We present here the details of a method [A. B. Culver and N. Andrei, Many-body wavefunctions for quantum
impurities out of equilibrium, Phys. Rev. B 103, L201103 (2021)] for calculating the time-dependent many-body
wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kondo
model to find the exact time-evolving wavefunction following a quench where the dot is suddenly attached to the
leads at t = 0. The method, which does not use Bethe ansatz, also works in other quantum impurity models and
may be of wider applicability. We show that the long-time limit (with the system size taken to infinity first) of the
time-evolving wavefunction of the Kondo model is a current-carrying nonequilibrium steady state that satisfies
the Lippmann-Schwinger equation. We show that the electric current in the time-evolving wavefunction is given
by a series expression that can be expanded either in weak coupling or in strong coupling, converging to all orders
in the steady-state limit in either case. The series agrees to leading order with known results in the well-studied
regime of weak antiferromagnetic coupling and also reveals a universal regime of strong ferromagnetic coupling

with Kondo temperature T (F )
K = De− 3π2

8 ρ|J| (J < 0, ρ|J| → ∞). In this regime, the differential conductance
dI/dV reaches the unitarity limit 2e2/h asymptotically at large voltage or temperature.

DOI: 10.1103/PhysRevB.103.195106

I. INTRODUCTION

In a quantum quench, the ground state of an initial Hamil-
tonian Hi is evolved in time by a final Hamiltonian Hf

following a sudden change of parameters. As this time evo-
lution is unitary, quench calculations are usually applied to
closed systems; however, the quench formalism can also be
used to make predictions for open, driven systems. In the case
of a sudden and spatially localized quench, the long-time limit
(with the system size always large enough so that the effect
of the quench does not reach the boundaries) may yield a
nonequilibrium steady state (NESS) that carries current and
generates entropy. The study of quenches that result in a NESS
is a promising direction for gaining insights into nonequilib-
rium phenomena.

A simple physical quantity to characterize a quench
is the expectation value of an observable: O(t ) =
〈�|eiHt Ôe−iHt |�〉, where |�〉 is the initial state and
H = Hf is the Hamiltonian that is switched on suddenly
at t = 0. Some basic questions arise: Does O(t ) reach a
limit as t → ∞? If so, does this limit coincide with the
expectation value in the NESS state, that is, do we have
limt→∞ O(t ) = 〈�NESS|Ô|�NESS〉? In the case of the electric
current in the Kondo model, we answer both questions with
“yes.” The methods of calculation that we introduce to arrive
at these answers could be of wider use.
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In the nonequilibrium Kondo model, a localized quantum
impurity (the dot) is coupled via spin exchange to two reser-
voirs of electrons (the leads). Experimentally, this system is
realized in quantum dot systems, in which electrons are con-
fined to a nanoscale region and a single unpaired electron acts
as the impurity in the Coulomb blockade regime [1–4].

The universal antiferromagnetic regime of the nonequi-
librium Kondo model has been studied theoretically by a
variety of approaches, including Keldysh perturbation the-
ory [5–7], flow equations [8], the real-time renormalization
group [9,10], and the variational principle [11]; the Kondo
regime has also been studied in the Anderson model using
perturbation theory [12], Fermi-liquid theory [13], integra-
bility [14], time-dependent density matrix renormalization
group [15,16], scattering Bethe ansatz [17], dynamical mean
field theory [18], quantum Monte Carlo [19], and numerical
renormalization group combined with time-dependent density
matrix renormalization group [20]. A much more complete
list of theoretical works on this subject is found in the ref-
erences in [11]. The strong ferromagnetic regime that we
explore with our method (and show the universality of) has
received little attention [21].

We consider a quench setup in which the uncoupled system
consists of Fermi seas in each lead; the difference in chemical
potentials represents an externally imposed bias voltage. The
quench at t = 0 consists of switching on the coupling to the
dot, after which the system evolves by the full Kondo Hamil-
tonian and an electric current develops (see Fig. 1).

In this paper, we present a method [22] for calculating the
wavefunction following a local quench, which also applies to
other quantum dot problems and may have wider applicability.
We calculate the exact many-body wavefunction following the
quench described above, then use it to find a series expression

2469-9950/2021/103(19)/195106(39) 195106-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8587-5177
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.195106&domain=pdf&date_stamp=2021-05-04
https://doi.org/10.1103/PhysRevB.103.L201103
https://doi.org/10.1103/PhysRevB.103.195106


ADRIAN B. CULVER AND NATAN ANDREI PHYSICAL REVIEW B 103, 195106 (2021)

FIG. 1. Schematic of the quench process. Prior to t = 0, the
leads are filled with free electrons, with no tunneling to the dot
allowed. From t = 0 onward, the system evolves with the many-body
Hamiltonian HKondo, with tunneling to and from the leads resulting in
an electric current.

for the electric current as a function of time. We concentrate
on the steady-state current measured at energy scales much
smaller than the bandwidth, where it is a universal func-
tion governed by an emergent scale: the Kondo temperature
TK . We compare with prior work in the much-studied weak
coupling antiferromagnetic regime, then proceed to identify
another universal regime: strong ferromagnetic coupling, with
its own scale T (F)

K .
With universality in mind, we study the two-lead Kondo

model in the wide-band limit [7]:

HKondo = −i
∫ L/2

−L/2
dx

∑
γ=1,2

ψ†
γ a(x)

d

dx
ψγ a(x)

+
∑

γ ,γ ′=1,2

1

2
Jψ†

γ a(0)σaa′ψγ ′a′ (0) · S − BSz. (1.1)

This one-dimensional Hamiltonian [24] captures the univer-
sal low-energy physics of more realistic models, and can be
obtained by following the standard steps of linearizing the
energy spectrum about the Fermi level and unfolding to obtain
right-moving electrons. We have taken the coupling of the
dot to the leads to be symmetric, and put a magnetic field
Bẑ on the dot. The Kondo coupling J is dimensionless in our
convention; we can make contact with the usual convention
by expressing our final results in terms of the usual quantity
g ≡ ρJ (where ρ = 1

2π
is the density of states per unit length

in our convention.)
Prior to the quench, we assume that the bias voltage

is applied but the tunneling to the dot is blocked. That is,
the initial density matrix is a product ρ = exp[− 1

T1

∑
|k|<D

(k − μ1)c†
1kac1ka] ⊗ exp [− 1

T2

∑
|k|<D(k − μ2)c†

2kac2ka] of
filled Fermi seas in each lead (cut off by the bandwidth D),
with the bias voltage appearing as V = μ1 − μ2. At t = 0, we
turn on the Kondo coupling J and the system evolves via the
many-body Hamiltonian H , with the time-evolving density
matrix ρ(t ) = e−iHtρeiHt . Since the total number of electrons
in the system is conserved, the (average) electric current at
time t is the time derivative of the number of electrons in one
of the leads:

I (t ) ≡ − d

dt
Tr[ρ(t )N̂1]/Trρ, (1.2)

where N̂1 = ∫ L/2
−L/2 dx ψ

†
1a(x)ψ1a(x). (We note here that al-

though we focus on the current, our formalism can also be
used to calculate other quantities.) Since we have linearized
the spectrum, the answers we obtain for small numbers of

electrons have no physical meaning. Rather than evaluate our
results for a large but finite number of electrons, we find it
more convenient to take the thermodynamic limit: the system
size L → ∞ with fixed density. In this limit, the time t is held
fixed. This guarantees that the effects of the quench, which
travel at the Fermi velocity, never reach the (artificial) periodic
boundaries of the system. As shown in more detail in Ref. [7],
this order of limits permits us to describe what is physically
an open, driven system using a formalism of unitary time
evolution.

One of the main results of this paper is the exact solution of
the many-body density matrix ρ(t ). The method we introduce
allows us to find the exact time-evolving wavefunction start-
ing from any number of electrons with arbitrary lead indices,
momenta, and spins; this suffices to construct the density
matrix. We show that in the long-time limit, with the system
size always larger, the time-evolving wavefunction becomes a
Lippmann-Schwinger “in” state, that is, an eigenstate of the
Hamiltonian that satisfies the incoming boundary condition
of N plane waves with the specified quantum numbers. This
provides an exact and explicit example of a nonequilibrium
steady state (NESS) in a many-body problem. We can also
solve for this NESS directly using a time-independent version
of our formalism.

With the many-body wavefunction in hand, we turn to the
calculation of the current at time t following the quench.
A lengthy calculation based on Wick’s theorem brings the
current to a form in which is suitable for taking the ther-
modynamic limit; this limit yields a series expression for the
current. This series has the interesting property that it really
yields two series: one in powers of J for small J , and one in
powers of 1/J for large |J|.

We use the series to answer the two basic questions raised
earlier in this Introduction. We show that our series expression
for the current reaches a long-time limit to all orders (in either
J or 1/J), and that this limit agrees with the expectation value
of the current operator in the NESS. We then evaluate the
first several terms of the series, focusing on both the usual
universal regime of weak antiferromagnetic coupling and a
universal regime of strong ferromagnetic coupling. In each
regime, we allow the external parameters T1, T2, and V to be
arbitrary in order to investigate the scaling properties of the
steady-state current using the Callan-Symanzik equation. We
find the standard scaling at leading order for weak antiferro-
magnetic coupling, and a Kondo temperature T (F )

K for strong
ferromagnetic coupling.

This paper is organized as follows. In Sec. II, we present a
formalism for quench dynamics and apply it to the two-lead
Kondo model. We take the long-time limit to find the NESS. In
Sec. III, we use the time-evolving wavefunction to find a series
expression for the current following the quench. We discuss
the power counting for J → 0 and |J| → ∞, then consider
the steady-state limit.

A considerable amount of technical material is deferred to
the Appendices, in which we develop a number of techniques
for manipulating the many-body wavefunction and calculating
its matrix elements. The efficient notation we introduce in
Appendix A is essential for comprehending the remaining
appendices. Further details on the work presented in this paper
are available in Ref. [25].
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II. TIME-DEPENDENT MANY-BODY WAVEFUNCTION

We present the exact wavefunction e−iHt |�〉 of the two-
lead Kondo model given an initial state |�〉 built from an
arbitrary number of momentum creation operators. We show
that the wavefunction goes to a NESS at large time (with
the system size taken to infinity first) and present the NESS
explicitly. The general formalism we develop for finding the
wavefunction may be of wider use, though we have so far only
applied it to quantum impurity models with linearized leads.

We begin in Sec. II A with the general formalism, using
the Kondo model as an example. The formalism replaces the
many-body Schrödinger by an equivalent set of differential
equations. With minor adjustments, this formalism can also
be applied to finding NESS wave functions directly, without
following the full time evolution. In Sec. II B, we show that the
differential equations we need to solve in the two-lead Kondo
model reduce to those of the one-lead Kondo model; we then
solve these equations in Sec. II C, completing the solution. In
Sec. II D, we present the same solution in an alternate basis
that makes the physics of large coupling more transparent. In
Sec. II E, we find the NESS explicitly as the long-time limit
of the time-evolving wavefunction.

A. TIME EVOLUTION: GENERAL FORMALISM

The general formalism we now set up is a way of re-
ducing the original many-body Schrödinger equation to an
infinite family of differential equations that we call “inverse
problems.” For a generic Hamiltonian, this family of inverse
problems may be just as intractable as the Schrödinger equa-
tion; however, they can be solved in closed form in the Kondo
model. The extension of the formalism to models with charge
fluctuations is deferred to our next paper.

We first illustrate the idea by considering the simple
case of a quench of two electrons (N = 2) in the Kondo
model (1.1). Suppressing spin and lead indices and ignoring
antisymmetrization for the moment, we write the two-electron
wavefunction in position space as a function φ(t, x1, x2).
Since the quench occurs precisely at x = 0, and since the
electrons of the model travel rightward at the Fermi velocity
(which has been set to unity), the effect of the quench is
contained in the “light cone” from x = 0 to t . Thus, if both x1

and x2 are inside the light cone, then the function φ(t, x1, x2) is
complicated; if both are outside, then the function is simple;
and if one is inside and the other outside, then the function
is a product of a simple function and a complicated function
(each of t and of one position one variable). This discussion
generalizes to the N-particle case. Our method is an exact
reformulation of the many-body Schrödinger equation which
takes care of all the simple parts of the problem (outside of the
light cone) and isolates the hard part of the problem, namely,
the differential equations for the complicated functions inside
the light cone. We note here that the discussion above applies
to the linearized models we consider since there is a light
cone and the noninteracting problem is simple; however, the
reformulation we present below is more general, and could
potentially be of use in a wider class of problems.

We begin with the Kondo Hamiltonian, separated into non-
interacting and interacting parts:

H (0) = −i
∫ L/2

−L/2
dx

∑
γ=1,2

ψ†
γ a(x)

d

dx
ψγ a(x) − BSz, (2.1a)

H (1) =
∑

γ ,γ ′=1,2

1

2
Jψ†

γ a(0)σaa′ψγ ′a′ (0) · S, (2.1b)

H = H (0) + H (1). (2.1c)

The problem is to calculate the time evolution of an initial
state with arbitrary quantum numbers γ1k1a1, . . . , γN kN aN for
the leads and a0 for the impurity:

|�(t )〉 ≡ e−iHt c†
γN kN aN

. . . c†
γ1k1a1

|a0〉, (2.2)

where c†
γ ka ≡ 1√

L

∫ L/2
−L/2 dx eikxψ†

γ a(x) and where the impurity

state |a0〉 = | ± 1
2 〉 implicitly includes a tensor product with

the vacua of the leads (i.e., we have cγ ka|a0〉 = 0). Equiva-
lently, we need to solve the differential equation(

H − i
d

dt

)
|�(t )〉 = 0, (2.3)

with the initial condition

|�(t = 0)〉 =
(

N∏
j=1

c†
γ j k j a j

)
|a0〉. (2.4)

To begin our construction of the solution, we define time-
evolving impurity states that evolve by H (0) only:

|a0(t )〉 = e−iH (0)t |a0〉 = eia0Bt |a0〉, (2.5)

and we also define a set of time-dependent operators c†
γ ka(t )

that describe the free evolution of the electron quantum num-
bers:

c†
γ ka(t ) = e−iH (0)t c†

γ kaeiH (0)t = e−ikt c†
γ ka. (2.6)

Note that the signs in the exponents are the opposite from the
interaction picture. The motivation for these definitions is that
in the simplest case J = 0 (no interaction), the full solution
for the time evolution is

|�0(t )〉 ≡
(

N∏
j=1

c†
γ j k j a j

(t )

)
|a0(t )〉, (2.7)

as can be seen by canceling each factor of 1 = eiH (0)t e−iH (0)t .
So far, this is essentially the approach used by Gurvitz to
study transport in noninteracting Floquet models [26]. To
allow interactions, we will systematically add a finite num-
ber of correction terms to |�0(t )〉 to arrive at the full, exact
solution |�(t )〉.

We define an operator Aγ ka(t ) that plays a large role in the
following calculations. The idea is that it measures the amount
by which the c†

γ ka(t ) operators fail to describe the full time
evolution:

Aγ ka(t ) ≡ [H, c†
γ ka(t )] − i

∂

∂t
c†
γ ka(t ) (2.8a)

= 1

2
√

L
Je−ikt (ψ†

1b(0) + ψ
†
2b(0))σba · S. (2.8b)
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Using this operator, we proceed to show the equivalence of
the many-body Schrödinger equation to a set of “inverse prob-
lems.” We present the exact solution of these inverse problems
in the Kondo model in the next section; the equivalence,
though, can be better seen by working in a more general
setting, without yet using some of the more specific details
of the Kondo model. We thus consider a model in which the
Hilbert space consists of “impurity states” |β〉 (for simplicity
β ranges over a finite set) and any states produced by “field
operators” c†

α acting on impurity states, where α may stand
for any quantum numbers. We assume that the impurity states
are vacua of the field operators (i.e., cα|β〉 = 0). In the Kondo
model (2.1c), the impurity states are the two possible config-
urations of the impurity spin along the z axis (β ≡ a0 = ± 1

2 ),
and the field operators are the electron creation operators for
the leads (α ≡ γ ka, c†

α ≡ c†
γ ka).

Given initial quantum numbers α1, . . . , αN and β, we wish
to solve the Schrödinger equation:(

H − i
d

dt

)
|�(t )〉 = 0, (2.9)

with the initial condition

|�(t = 0)〉 = c†
αN

. . . c†
α1

|β〉. (2.10)

We write the Hamiltonian as H = H (0) + H (1) and define
time-dependent impurity states |β(t )〉 ≡ e−iH (0)t |β〉, time-
dependent field operators c†

α (t ) ≡ e−iH (0)t c†
αeiH (0)t , and opera-

tors Aα (t ) ≡ [H, c†
α (t )] − i ∂

∂t c†
α (t ). The key conditions for our

formalism are the following (all of which are easily verified in
the Kondo model):

(i) H (0) maps any impurity state into some linear combi-
nation of impurity states:

H (0)|β〉 =
∑
β ′

uββ ′ |β ′〉. (2.11)

(ii) H (1) annihilates any impurity state:

H (1)|β〉 = 0. (2.12)

(iii) Any A(t ) anticommutes with any c†(t ):{
Aα2 (t ), c†

α1
(t )
} = 0. (2.13)

The third condition effectively restricts this paper to models in
which the interaction term H (1) is quadratic in field operators.
(Note that the model can still be interacting if there are non-
commuting operators acting on impurity states, as occurs with
the Pauli matrices in the Kondo model.) In quantum impurity
models, this means that only spin fluctuations are allowed. In
our next paper, we present a version of our formalism that ap-
plies to models with a number-conserving quartic interaction
term, thus allowing us to explore charge fluctuations, as well.

In the special case of no interaction (H (1) = 0), the solution
is a product of time-evolving field operators acting on the
time-evolving impurity state:

|�0(t )〉 = c†
αN

(t ) . . . c†
α1

(t )|β(t )〉. (2.14)

Our main result of this section, the reformulation of the many-
body Schrödinger equation in the interacting case, is stated

FIG. 2. The wavefunction |�(t )〉 = |�0(t )〉 + · · · + |�N (t )〉 for
N = 1, 2, and 3. Each line represents a quantum number α j of the
initial state ( j = 1, . . . , N ). Ordinary lines represent c†

α (t ) operators,
while each line that ends on a circle represents a quantum number
assigned to a “crossing state” (see main text). Sign factors, antisym-
metrizations, and dependence on the time t (and on the impurity
quantum number β) are all implicit.

below in Eqs. (2.30), (2.31a), and (2.31b). We proceed to build
up to this result by presenting several special cases.

The next step is to see “by how much” the freely evolv-
ing state |�0(t )〉 fails to satisfy the Schrödinger equation;
that is, to compute (H − i d

dt )|�0(t )〉. Note that due to con-
ditions (2.11) and (2.12), the state |β(t )〉 is annihilated by
H − i d

dt . Our approach will be to bring H past all of the c†
α (t )

operators to its right at the cost of commutators [Aα (t ) op-
erators]. We then find differential equations that characterize
a finite number of terms |�1(t )〉, . . . , |�N (t )〉 that are to be
added to |�0(t )〉 to obtain the full wavefunction. The state
|�0(t )〉 already satisfies the correct initial condition (2.10), so
each of the added terms will be required to vanish at t = 0.
We present the cases of N = 1, 2, and 3 as a warmup (see
Fig. 2 for illustration), then proceed to general N .

1. N = 1

In this case, the freely evolving state is |�0(t )〉 =
c†
α1

(t )|β(t )〉. Bringing (H − i d
dt ) past the c†

α1
(t ) operator to

annihilate |β(t )〉 yields(
H − i

d

dt

)
|�0(t )〉 = Aα1 (t )|β(t )〉. (2.15)

Let us suppose we can construct a state |χα1,β (t )〉 which
is the “inverse of Aα1 (t )|β(t )〉” in the following precise

195106-4



MANY-BODY WAVEFUNCTIONS FOR QUANTUM … PHYSICAL REVIEW B 103, 195106 (2021)

sense: (
H − i

d

dt

)∣∣χα1,β (t )
〉 = −Aα1 (t )|β(t )〉, (2.16a)∣∣χα1,β (t = 0)
〉 = 0. (2.16b)

Given such a state (which we explicitly construct in the Kondo
model in Sec. II C), the full solution is immediate:

|�(t )〉 = |�0(t )〉 + |�1(t )〉, (2.17)

where |�1(t )〉 = |χα1,β (t )〉. The point of these manipulations
is that the state |χα1,β (t )〉 appears again in the solution for
larger N . For reasons that become clear once we find explicit
expressions in the Kondo model, we refer to |χα1,β (t )〉 as a
“crossing state.”

2. N = 2

The freely evolving state is |�0(t )〉 = c†
α2

(t )c†
α1

(t )|β(t )〉,
and we find(

H − i
d

dt

)
|�0(t )〉

= Aα2 (t )c†
α1

(t )|β(t )〉 + c†
α2

(t )Aα1 (t )|β(t )〉 (2.18a)

= c†
α2

(t )Aα1 (t )|β(t )〉 − c†
α1

(t )Aα2 (t )|β(t )〉, (2.18b)

where we used the third condition above [Eq. (2.13)]. To
cancel these leftover terms, we reuse the same crossing state
|χα1,β (t )〉 that appeared in the N = 1 case, defining

|�1(t )〉 = c†
α2

(t )
∣∣χα1,β (t )

〉− c†
α1

(t )
∣∣χα2,β (t )

〉
. (2.19)

The point is that, if we bring (H − i d
dt ) to the right of the

c†
α (t ) operators in |�1(t )〉, then by the condition (2.16a) that

the crossing state satisfies, we obtain exactly what we need to
cancel the leftover terms on the right-hand side of Eq. (2.18b).
Bringing (H − i d

dt ) to the right generates new commutators:(
H − i

d

dt

)
(|�0(t )〉 + |�1(t )〉)

= Aα2 (t )
∣∣χα1,β (t )

〉− Aα1 (t )
∣∣χα2,β (t )

〉
. (2.20)

We are presented with a new “inverse problem,” namely, to
find a state |χα1α2,β (t )〉 that satisfies(

H − i
d

dt

)∣∣χα1α2,β (t )
〉 = −Aα2 (t )

∣∣χα1,β (t )
〉
, (2.21a)∣∣χα1α2,β (t = 0)

〉 = 0. (2.21b)

Given such a state, the full solution is |�(t )〉 = |�0(t )〉 +
|�1(t )〉 + |�2(t )〉, where

|�2(t )〉 = ∣∣χα1α2,β (t )
〉− ∣∣χα2α1,β (t )

〉
. (2.22)

This exhibits the pattern that continues to all N : the states
|�1(t )〉, . . . , |�N−1(t )〉 are built from crossing states that have
been encountered already (up to N − 1), while |�N (t )〉 re-
quires a new crossing state.

3. N = 3

Following the same steps for |�0(t )〉 =
c†
α3

(t )c†
α2

(t )c†
α1

(t )|β(t )〉, we obtain

|�(t )〉 = |�1(t )〉 + |�2(t )〉 + |�3(t )〉, (2.23)

where

|�1(t )〉 = c†
α3

(t )c†
α2

(t )
∣∣χα1,β (t )

〉− c†
α3

(t )c†
α1

(t )
∣∣χα2,β (t )

〉+ c†
α2

(t )c†
α1

(t )
∣∣χα3,β (t )

〉
, (2.24a)

|�2(t )〉 = c†
α3

(t )
[∣∣χα1α2,β (t )

〉− ∣∣χα2α1,β (t )
〉]− c†

α2
(t )
[∣∣χα1α3,β (t )

〉− ∣∣χα3α1,β (t )
〉]

+ c†
α1

(t )
[∣∣χα2α3,β (t )

〉− ∣∣χα3α2,β (t )
〉]
, (2.24b)

|�3(t )〉 = ∣∣χα1α2α3,β (t )
〉± (5 permutations), (2.24c)

where |χα1α2α3,β (t )〉 is a new crossing state we must construct,
satisfying

(
H − i

d

dt

)∣∣χα1α2α3,β (t )
〉 = −Aα3 (t )

∣∣χα1α2,β (t )
〉
, (2.25a)∣∣χα1α2α3,β (t = 0)

〉 = 0. (2.25b)

4. General N

Evidently, there are many sums and permutations to keep
track of in the case of general N . For this purpose, we have
developed a compact notation (see Appendix A) which allows
us to do the calculation for general N in a few lines (see
Appendix B). Here, we give an overview of the general N
case in conventional notation.

We commute H past each c†
α (t ) operator to find

(
H − i

d

dt

)
|�0(t )〉

=
N∑

m=1

c†
αN

(t ) . . .

([
H, c†

αm
(t )
]− i

∂

∂t
c†
αm

(t )

)
. . . c†

α1
(t )|β(t )〉

(2.26a)

=
N∑

m=1

(−1)m−1

(
N∏

j=1, j 
=m

c†
α j

(t )

)
Aαm (t )|β(t )〉, (2.26b)

where the second equation follows from the condition (2.13),
which permits us to bring Aαm (t ) past all of the field operators
to its right at the cost of a sign factor. We then define a state
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|�1(t )〉 as

|�1(t )〉 =
N∑

m=1

(−1)m−1

(
N∏

j=1, j 
=m

c†
α j

(t )

)∣∣χαm,β (t )
〉
, (2.27)

where the crossing state |χα,β (t )〉 is as in the N = 1 case.
The point is that if H − i d

dt were to act only on the crossing
state, then (H − i d

dt )|� (1)(t )〉 would exactly cancel the right-
hand side of Eq. (2.26b). To reach the crossing state, though,
H − i d

dt must commute past each c†
α (t ) operator; we therefore

obtain(
H − i

d

dt

)[|�0(t )〉 + |�1(t )〉]

=
∑

1�m1<m2�N

(−1)m1+m2−1

⎛⎜⎜⎜⎜⎝
N∏

j=1
j 
=m1,m2

c†
α j

(t )

⎞⎟⎟⎟⎟⎠
× (Aαm2

(t )
∣∣χαm1 ,β (t )

〉− (m1 ↔ m2)
)
. (2.28)

Note that this equation has a similar structure to Eq. (2.26b),
but with N − 2 of the c†

α (t ) operators appearing instead of N −
1. To cancel the new leftover terms, we use the crossing state
|χα1α2,β (t )〉 that appeared in the N = 2 case, defining

|�2(t )〉 =
∑

1�m1<m2�N

(−1)m1+m2−1

⎛⎜⎜⎜⎜⎝
N∏

j=1
j 
=m1,m2

c†
α j

(t )

⎞⎟⎟⎟⎟⎠
× (∣∣χαm1 αm2 ,β (t )

〉− (m1 ↔ m2)
)
. (2.29)

The action of H − i d
dt on |�2(t )〉 then cancels the right-hand

side of Eq. (2.28), leaving an expression of a similar form
but with N − 3 field operators instead of N − 2. The new
leftover terms are canceled by |�3(t )〉 which is built from per-
mutations of the crossing state |χα1α2α3,β (t )〉, and so on. This
process terminates when all N field operators are eliminated.

In Appendix B, we prove that the full time-evolving wave-
function can be written as

|�(t )〉 = |�0(t )〉 +
N∑

n=1

∑
1�m1<···<mn�N

× (−1)m1+···+mn+1

⎛⎜⎜⎜⎜⎝
N∏

j=1
j 
=m� ∀�

c†
α j

(t )

⎞⎟⎟⎟⎟⎠
×

∑
σ∈Sym(n)

(sgn σ )
∣∣χαmσ1

...αmσn ,β (t )
〉
, (2.30)

where the terms in the summation over n are exactly the
|�1(t )〉, |�2(t )〉, etc. states discussed above, and where each

crossing state satisfies the appropriate inverse problem:(
H − i

d

dt

)∣∣χα1...αn,β (t )
〉 = −Aαn (t )

∣∣χα1...αn−1,β (t ), (2.31a)∣∣χα1...αn,β (t = 0)
〉 = 0, (2.31b)

with |χ,β (t ) ≡ |β(t )〉 [so that setting n = 1 in Eq. (2.31a) re-
produces Eq. (2.16a)]. We emphasize that this representation
of the many-body wavefunction is exact given only the three
conditions (2.11), (2.12), and (2.13).

We have thus transformed the original many-body
Schrödinger equation to the problem of finding crossing states
satisfying Eqs. (2.31a) and (2.31b). We turn next to the ex-
plicit solution for these crossing states in the Kondo model.

B. Two-lead Kondo model: Reduction to the one-lead case

We return to the particular case of the two-lead Kondo
Hamiltonian given in Eqs. (2.1a)–(2.1c). Our task in this sec-
tion is to show that the crossing states of the two-lead model
are related in a simple way to those of the one-lead model. We
find the crossing states of the one-lead in model in the next
section, completing the solution for the wavefunction.

We make the usual transition from the lead 1/lead 2 basis
to the odd/even (o/e) basis:(

ψoa

ψea

)
= 1√

2

(
1 −1
1 1

)(
ψ1a

ψ2a

)
. (2.32)

Then, the odd sector is noninteracting, and the even sector is
a copy of the one-lead model:

Ho = −i
∫ L/2

−L/2
ψ†

oa(x)
d

dx
ψoa(x), (2.33a)

H (0)
e = −i

∫ L/2

−L/2
ψ†

ea(x)
d

dx
ψea(x) − BSz, (2.33b)

H (1)
e = Jψ†

ea(0)σaa′ψea′ (0) · S, (2.33c)

He = H (0)
e + H (1)

e , (2.33d)

H (0) = Ho + H (0)
e , H (1) = H (1)

e . (2.33e)

In either basis, the time-dependent field operators evolve by
phases:

c†
γ ka(t ) = e−ikt c†

γ ka (γ = 1, 2, o, or e). (2.34)

It is then straightforward to calculate the A(t ) operators in
either basis:

Aγ ka(t ) =

⎧⎪⎨⎪⎩
1√
L

Je−iktψ
†
eb(0)σba · S γ = e,

1√
2
Aeka(t ) γ = 1, 2,

0 γ = o.

(2.35)

From the previous section, we know that the solution for
the many-body wavefunction follows immediately from the
construction of crossing states that satisfy Eqs. (2.31a)
and (2.31b). Our primary interest is in the time evolution of
two Fermi seas, in particular, a state with quantum numbers in
the original lead 1/lead 2 basis. As the interaction is entirely
in the even sector, one way to proceed would be to write the
original state as a linear combination of states in the odd/even
basis, solve the time-evolution problem for states with even
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FIG. 3. The N-body wavefunction of the two-lead Kondo model,
either at arbitrary time [Eq. (2.39)] or the NESS [Eq. (2.61)] that is
reached at long time with the system size taken to infinity first. Lines
represent the momenta and spin quantum numbers of electrons in
each lead. Any number of electrons, from lead 1 or lead 2, can be put
into a crossing state (indicated by connecting lines), which is built
from even sector operators only. For a fixed number N of electrons,
the wavefunction is a finite sum.

quantum numbers, and then add the noninteracting odd parts
that evolve by phases only. We instead take a more efficient
route: we solve the time-evolution problem for a state with
even quantum numbers, then we reuse the same crossing states
to construct the lead 1/lead 2 solution directly. The essential
point is that the crossing states for the lead 1/lead 2 problem
are related to the crossing states for the even problem in a
simple way.

If the quantum numbers of the initial state are all in the
even sector, then the family of inverse problems [Eqs. (2.31a)

and (2.31b)] is(
H − i

d

dt

)∣∣χek1a1...eknan,a0 (t )
〉

= −Aeknan (t )|χek1a1...ekn−1an−1,a0 (t ), (2.36)

where each |χe(t )〉 state must vanish at t = 0. If instead the
quantum numbers of the initial state are in the lead 1/lead 2
basis, then the family of inverse problems is(

H − i
d

dt

)∣∣χγ1k1a1...γnknan,a0 (t )
〉

= − 1√
2

Aeknan (t )|χγ1k1a1...γn−1kn−1an−1,a0 (t ), (2.37)

where we have used the relation (2.35) between the A(t )
operators in the two bases. It follows that the crossing states
in this case are related to those in the even case by simple
numerical prefactors:∣∣χγ1k1a1...γnknan,a0 (t )

〉 = 2−n/2
∣∣χek1a1...eknan,a0 (t )

〉
. (2.38)

We have therefore reduced the time-evolution problem of the
two-lead model to the construction of the |χe(t )〉 states that
solve Eq. (2.36). For completeness, we write the full wave-
function starting from quantum numbers in the lead 1/lead 2
basis (see Fig. 3):

e−iHt

(
N∏

j=1

c†
γ j k j a j

)
|a0〉 = |�0(t )〉 +

N∑
n=1

2−n/2
∑

1�m1<···<mn�N

(−1)m1+···+mn+1

⎛⎜⎜⎜⎜⎝
N∏

j=1
j 
=m� ∀�

c†
γ j k j a j

(t )

⎞⎟⎟⎟⎟⎠
×

∑
σ∈Sym(n)

(sgn σ )
∣∣χekmσ1

amσ1
...ekmσn amσn ,a0 (t )

〉
. (2.39)

To complete the solution of the wavefunction, we have to con-
struct the crossing states |χek1a1...eknan,a0 (t )〉 of the even sector.
This is the core difficulty of the problem, and is presented in
the following section.

C. Crossing states of the Kondo model

We present the crossing states of the Kondo model. We
find that they are built from products of the single-particle T
matrix for an electron crossing the impurity (hence the name
“crossing”). We show the calculation in detail for the simplest
case n = 1. We then state the result for arbitrary n � 1 and
refer the reader to Appendix C for the proof (which is similar
to the n = 1 calculation).

Taking n = 1 in Eq. (2.36), we see that the first “inverse
problem” is to find a state |χek1a1,a0 (t )〉 satisfying(

H − i
d

dt

)∣∣χek1a1,a0 (t )
〉 = −Aek1a1 (t )|a0〉, (2.40)

with the initial condition∣∣χek1a1,a0 (t = 0)
〉 = 0. (2.41)

We make the following ansatz:

∣∣χek1a1,a0 (t )
〉 = 1√

L

∫ L/2

−L/2
dx1F b1,b0

k1a1,a0
(t − x1)

×�(0 < x1 < t )ψ†
eb1

(x1)eib0Bt |b0〉, (2.42)

where F is a smooth function that we soon determine, �(0 <

x1 < t ) = �(x1)�(t − x1), and 0 � t < L/2. Evolution to
later times is unnecessary, seeing as the regime of interest is
t � L (so that the effect of the quench does not explore the
boundaries of the system); we may as well restrict to t < L/2
to avoid the “coordinate singularity” at x = ±L/2.

The state (2.42) vanishes at t = 0 by construction [27], so
the initial condition (2.41) is satisfied. A short computation
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yields (
H − i

d

dt

)∣∣χek1a1,a0 (t )
〉

= 1√
L

(
−iIb1b0

d1d0
+ 1

4
Jσb1d1 · σb0d0

)
× F d1,d0

k1a1,a0
(t )eid0Bt�(t )ψ†

eb1
(0)|b0〉, (2.43)

where we have made the following replacement:

δ(x1)�(0 < x1 < t ) = 1
2δ(x1)�(t ). (2.44)

Equation (2.44) is equivalent to the regularization δ(x)�(x) =
1
2δ(x) that has been used in Bethe ansatz calculations in the
equilibrium case [28]; it corresponds to averaging the limits
as x → 0± of a function (discontinuous at x = 0) that is mul-
tiplied by δ(x).

From Eq. (2.35), we see

Aek1a1 (t )|a0(t )〉 = 1√
L

1

2
Je−ik1t eia0Bt

× σb1a1 · σb0a0ψ
†
eb1

(0)|b0〉. (2.45)

Thus, the differential equation (2.40) is satisfied for 0 < t <

L/2 provided that(− iIb1b0
d1d0

+ 1
4 Jσb1d1 · σb0d0

)
F d1,d0

k1a1,a0
(t )eid0Bt

= − 1
2 Je−ik1t eia0Btσb1a1 · σb0a0 . (2.46)

To remove any concern about the differential equation (2.40)
strictly at t = 0, we consider evolution to arbitrary time t
(with |t | < L/2) in Appendix C, and we find that the condi-
tion (2.46) is correct and sufficient.

Our subsequent calculations refer to the identity and spin-
flip tensors, defined as

Ib1b0
a1a0

= δb1
a1

δb0
a0

, Pb1b0
a1a0

= δb0
a1

δb1
a0

. (2.47)

Using the identity σb0a0 · σb1a1 = 2Pa1a0
b1b0

− Ia1a0
b1b0

and some ma-
trix inversion, we find the following answer:

F b1,b0
k1a1,a0

(t ) = e−i[k1+(b0−a0 )B]t
(− iT b1b0

a1a0

)
, (2.48)

where we have introduced the bare single-particle T matrix:

T =
1
2 J

1 − i 1
2 J + 3

16 J2

[
−
(

1 + i
3

4
J

)
I + 2P

]
. (2.49)

As a check, we note that the corresponding bare S matrix,

S = I − iT , (2.50)

agrees precisely with the bare S matrix that appears in the
Bethe ansatz solution for the stationary states of the one-lead
model (see [29], for example).

The generalization of the n = 1 crossing state (2.42) to
general n � 1 is∣∣χek1a1...eknan,a0 (t )

〉
= L−n/2δc0

a0
δb0

cn

∫ t

0
dx1 . . . dxn

(
n∏

j=1

F
bj ,c j

k j a j ,c j−1
(t − x j )ψ

†
eb j

(x j )

)
× �(xn < · · · < x1)eib0Bt |b0〉. (2.51)

In Appendix C, we show that the construction (2.51) satisfies
the appropriate inverse problem, Eq. (2.36); the calculation
reduces to the same condition (2.46). This completes the so-
lution.

We can use the same |χe(t )〉 crossing states given in
Eq. (2.51) to write the exact wavefunction for initial quantum
numbers in the even sector; this is the exact time-evolving
wavefunction for the one-lead model. For the case of
zero magnetic field, this wavefunction was first found by
Tourani [30] using the Yudson contour method [31]; our result
here agrees exactly.

It is interesting to note that the integrability of the Kondo
model (i.e., the factorization of scattering amplitudes via the
Yang-Baxter equation) does not make any obvious appearance
in our calculation.

D. Solution in an alternate basis

Above, we have written the exact wavefunction |�(t )〉 for
the Kondo model starting from field operators that evolve by
the free Hamiltonion H (0); we refer to this as the solution in
the J = 0 basis. It is interesting to note (though not essential
for obtaining the results we present later in the paper) that
|�(t )〉 can be written in a |J| → ∞ basis that is more suited
to the strong coupling limit.

If the Kondo coupling is sent to infinity (with either sign),
then the spin-flip term in the T matrix (2.49) vanishes:

lim
|J|→∞

T b1b0
a1a0

= −2iIb1b0
a1a0

. (2.52)

In this limit, we have an essentially single-particle problem.
The free particles are not the original electrons with zero
phase shift as they cross the impurity, but quasiparticles with a
π/2 phase shift. The same phase shift is obtained if the Kondo
interaction term is replaced by a potential scattering term of
infinite strength.

With this motivation, we make an alternate definition of the
c†
γ ka(t ) operators; instead of evolving them by the free (J = 0)

Hamiltonian, we evolve them by the free Hamiltonian plus a
potential scattering term of infinite strength:

c†
γ ka(t ) = lim

|J ′|→∞
e−iH (0)

J′ t c†
γ kaeiH (0)

J′ t , (2.53)

where

H (0)
J ′ = H (0) + J ′ψ†

eb(0)ψeb(0). (2.54)

We can think of this as an alternate choice of what we call
H (0) and H (1), or we can note that the calculations we have
done so far also work for any time-evolving c†

α (t ) operators
that agree with c†

α at t = 0, as long as they anticommute with
the resulting Aα (t ) operators [the condition (2.13)].

We then find that the odd sector operators evolve by phases,
as before [c†

oka(t ) = e−ikt c†
oka], while the even operators in-

clude a phase shift of π/2 for crossing the impurity:

c†
eka(t ) = 1√

L

∫ L/2

−L/2
dx e−ik(t−x)

× [1 − 2�(0 < x < t )]ψ†
ea(x), (2.55)

where we have taken 0 � t < L/2.
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Proceeding with the method, we find

Aeka(t ) = 1√
L

2ie−iktψ†
ea(0). (2.56)

This in turn leads to a different requirement on the function
F ; Eq. (2.46) is replaced by(− iIb1b0

d1d0
+ 1

4 Jσb1d1 · σb0d0

)
F d1,d0

k1a1,a0
(t )eid0Bt

= −2ie−ik1t eia0Bt Ib1b0
a1a0

, (2.57)

which has the solution

F b1,b0
k1a1,a0

(t ) = e−i[k1+(b0−a0 )B]t iT b1b0
a1a0

, (2.58a)

T =
1
2 J̃

1 + i 1
2 J̃ + 3

16 J̃2

[(
1 − i

3

4
J̃

)
I + 2P

]
, (2.58b)

where J̃ ≡ − 16
3J . The difference in sign compared to Eq. (2.48)

is due to the π/2 phase shift; it can be verified that T as
defined here leads to a unitary S matrix (while −T does not).

We emphasize that |�(t )〉 is the same state vector as be-
fore; we are just writing it differently. The T matrix in this
basis describes the scattering of a single quasiparticle off the

impurity. The electron T matrix (2.49) found earlier is linear
in J for small J , while the quasiparticle T matrix is linear in
1/J for large |J|; this explains why we find (below) a series
for the electric current either in powers of J or of 1/J . Either
basis can be used for the calculation: the J = 0 basis makes
the J series more manifest and the 1/J series less so, while
the |J| = ∞ basis does the opposite. We use the J = 0 basis
in the rest of the main text.

E. Nonequilibrium steady state

In the long-time limit, with the system size taken to infinity
first, the time-evolving wavefunction of the Kondo model
reaches a nonequilibrium steady state (NESS), as we show in
this section. The NESS can also be solved for directly using
a time-independent version of our formalism: one replaces
H − i d

dt by H − E and uses time-independent scattering op-
erators that are closely related to the time-dependent field
operators.

We begin by writing the exact wavefunction (2.39) in a
form that makes the time dependence more clear. Substituting
in the explicit construction (2.51) of the crossing states and
collecting all phase factors that depend on time, we obtain

|�(t )〉 = e−iEt

⎡⎣|�(t = 0)〉 +
N∑

n=1

(2L)−n/2
∑

1�m1<···<mn�N

(−1)m1+···+mn+1

(
N∏

j=1, j 
=m� ∀ �

c†
γ j k j a j

)

×
∑

σ∈Sym(n)

(sgn σ )δc0
a0

δb0
cn

∫ t

0

(
n∏

j=1

F
bj ,c j

kmσ j
amσ j

,c j−1
(−x j )ψ

†
eb j

(x j )dx j

)
�(xn < · · · < x1)|b0〉

⎤⎦, (2.59)

where E = −a0B +∑N
j=1 k j is the energy of the initial state. The time dependence of the wavefunction appears only in the

phase factor e−iEt and in the upper limit of x integration.
In the language of wave functions, the open system limit [32] corresponds to the pointwise limit: that is, we take the long-time

limit of the wavefunction at each point x (or more generally, x1, . . . , xN ) without requiring that the limit is reached uniformly for
all x. Schematically, letting |x〉 stand for an N-body position state, we have

〈x|�NESS〉 = lim
t→∞,L→∞

t�L

LN/2eiEt 〈x|�(t )〉. (2.60)

The phase factor removes the effect of free time evolution (formally, an “in” state in scattering theory is the long-time limit
of e−iHt eiH (0)t |�〉), while the factor of LN/2 is a conversion from Kronecker delta normalization to Dirac delta normalization.
Applying this to the time-evolving wavefunction (2.59), we obtain

|�NESS〉 =
(

N∏
j=1

c†
γ j k j a j

)
|a0〉 +

N∑
n=1

2−n/2
∑

1�m1<···<mn�N

(−1)m1+···+mn+1

(
N∏

j=1, j 
=m� ∀�

c†
γ j k j a j

)

×
∑

σ∈Sym(n)

(sgn σ )δc0
a0

δb0
cn

∫ ∞

0

(
n∏

j=1

F
bj ,c j

kmσ j
amσ j

,c j−1
(−x j )ψ

†
eb j

(x j )dx j

)
�(xn < · · · < x1)|b0〉, (2.61)

where the c†
γ ka operators are, in this equation only, Dirac

delta normalized [i.e., c†
γ ka = ∫

dx eikxψ†
γ a(x)]. This is pre-

cisely the form of the Lippmann-Schwinger equation, with
(
∏N

j=1 c†
γ j k j a j

)|a0〉 being the free scattering state that encodes
the boundary condition of N incoming plane waves. The ini-

tial condition of |�(t = 0)〉 = |�〉 in the time-dependent view
has become a boundary condition (see Fig. 4). The NESS
given by (2.61) is a many-body scattering state. Its structure
is very similar to the full solution |�(t )〉, and it has the same
interpretation in terms of free electrons and crossing states.
We can solve for the NESS directly, without following the
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full time evolution, by using a time-independent version of
the formalism of Sec. II A.

While it is not necessary for understanding our results, we
would like to mention the origin of our formalism. We applied
Yudson’s contour method [31] to calculate the time-evolving
wavefunction and NESS for two electrons (N = 2) in the
infinite-U Anderson impurity model (we later became aware
of Ref. [33], which finds the N = 2 NESS for arbitrary U );
the form of the NESS was an invaluable clue for us to develop
a more general approach.

III. ELECTRIC CURRENT IN THE KONDO MODEL

When the full Kondo Hamiltonian H is turned on at t = 0,
electrons begin to tunnel back and forth from the leads to the
dot, and an electric current I (t ) develops over time. Our task
in this section is to calculate a series expression for I (t ), then
to focus in particular on the steady-state limit. This calculation
provides a road map for the evaluation of other observables.

Since the wavefunction is a sum over subsets of the initial
N quantum numbers, one would expect an expectation value
such as the current to be a double sum over subsets; we
show that the double sum diagonalizes to a single sum (over
subsets). The terms in the sum are normal-ordered overlaps
(normal ordering is defined below) that can be computed
using only the even sector of the model. We find that n-fold
sums over momenta have precisely the right 1/Ln prefactor so
that it is clear how to take the thermodynamic limit, turning
sums into integrals. We arrive at a series answer for the time-
evolving current, and we show that it encompasses both a
series in J as J → 0 and a series in 1/J as |J| → ∞. We show
that all orders of either series converge in the steady-state
limit. We then examine the steady-state current in two univer-
sal regimes (weak antiferromagnetic and strong ferromagnetic
coupling) and two nonuniversal regimes (weak ferromagnetic
and strong antiferromagnetic), with our main focus being on
the universal regimes.

Although we have solved for the wavefunction in the pres-
ence of an arbitrary magnetic field on the dot, we set the
magnetic field to zero in the following calculations. A nonzero
magnetic field introduces infrared difficulties in this model, as
noted in Refs. [6,34]. We return to this topic in the concluding
section.

In Sec. III A, we set up the calculation of the electric
current for N electrons and present the reduction to a sum of

FIG. 4. Schematic of the NESS obtained by taking the steady-
state limit of e−iHt eiH (0)t |�〉. The initial condition at t = 0 becomes a
boundary condition of two incoming Fermi seas, with a complicated
result following the scattering off the dot.

normal-ordered overlaps. The essential tool is Wick’s theo-
rem. In Sec. III B, we take the thermodynamic limit to arrive
at our series answer. In Sec. III C, we consider the steady-state
limit of the series. In Sec. III D, we calculate the current for
small J , focusing on the antiferromagnetic case. In Sec. III E,
we calculate the current for large |J|, focusing on the ferro-
magnetic case. In Sec. III F, we discuss the renormalization
group (RG) flow of the model.

A. Current for N electrons

We set up the calculation at zero temperature, then later
generalize to allow arbitrary temperatures in the leads. We
have verified that starting with arbitrary temperatures from the
beginning results in the same answer for the current [25].

Since the total number of electrons is constant, the average
electric current from lead 1 to lead 2 is the time derivative of
the number of electrons in lead 1:

I (t ) = − d

dt
〈�(t )|N̂1|�(t )〉, (3.1)

where N̂1 = ∫ L/2
−L/2 dx ψ

†
1a(x)ψ1a(x). Let us first show that I (t )

reduces to the evaluation of the expectation value of the
bilinear ψ†

oa(x)ψea(x). We write the number operator in the
odd/even basis,

N̂1 = 1

2
N̂ + 1

2

(∫ L/2

−L/2
dx ψ†

oa(x)ψea(x) + H.c.

)
, (3.2)

then use the fact that N̂ ≡ N̂1 + N̂2 is conserved to obtain

I (t ) = −Re

[
d

dt

∫ L/2

−L/2
dx〈�(t )|ψ†

oa(x)ψea(x)|�(t )〉
]
. (3.3)

Although we have the many-body wavefunction for arbitrary
initial quantum numbers, we are ultimately interested in tak-
ing these quantum numbers to describe two filled Fermi seas.
One might think that it would be simplest to specialize to
this case immediately. However, we find it more convenient to
work with arbitrary quantum numbers because the expectation
value turns out to be a sum of matrix elements having every
possible subset of the quantum numbers of the originally given
state.

The expectation value of ψ†
oa(x)ψea(x) is a sum of terms of

the form (schematically)

〈χ (t )|
(∏

c(t )

)
ψ†

oa(x)ψea(x)

(∏
c†(t )

)
|χ (t )〉, (3.4)

where the time-evolving operators and crossing states have
various quantum numbers (not necessarily the same assign-
ment on both sides). It is convenient to anticommute the
annihilation operators past the creation operators. To do this
with Wick’s theorem, we introduce the normal ordering sym-
bol : X : that moves every c(t ) operator (in any expression
X ) to the right of every c†(t ) operator, with the appropriate
fermionic sign factors. By definition, the crossing states are
unaffected; in other words, this is normal ordering relative to
the impurity state |a0〉 (not relative to a filled Fermi sea), and it
only affects the time-dependent single-particle operators (not
the ψ†

e and ψe operators found inside the crossing states).
When we compute the expectation value of ψ†

oa(x)ψea(x), we
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declare that these two “external” operators behave the same
way as c†(t ) and c(t ) do under the normal ordering symbol.

By Wick’s theorem, the product
∏

c(t )
∏

c†(t ) is equal
to the normal-ordered sum of all contractions, where the
contraction of two operators is defined as the product in the
original order minus the normal-ordered product (and hence
is either the anticommutator, or zero). It is these contractions
that diagonalize the double sum over subsets to a single sum.

As a warmup to the calculation for general N , we consider
the quench problem starting with one or two electrons:

e−iHt c†
γ1k1a1

|a0〉 ≡ |�1〉, (3.5)

e−iHt c†
γ2k2a2

c†
γ1k1a1

|a0〉 ≡ |�12〉, (3.6)

where dependence on t is suppressed, and where the numbers
1 and 2 on the right-hand side are not lead indices, but instead
stand for the quantum numbers γ1k1a1 and γ2k2a2. (After
these warmup examples, we do not use this shorthand again.)
In terms of time-evolving operators and crossing states, these
wave functions are given by

|�1〉 = c†
1|a0〉 + |χ1〉, (3.7)

|�12〉 = c†
2c†

1|a0〉 + (c†
2|χ1〉 + |χ12〉 − (1 ↔ 2)). (3.8)

The overlap of single-electron states [we include the operator
insertion ψ†

oa(x)ψea(x) later] can be written as

〈�1′ |�1〉 = 〈
�0

1′
∣∣�0

1

〉+ : 〈�1′ |�1〉 :, (3.9)

where 1′ stands for another distinct set of quantum numbers
γ ′

1k′
1a′

1, and where |�0
1 〉 = c†

1|a0〉. In : 〈�1′ |�1〉 :, we must ex-
pand the product 〈�1′ |�1〉 to four terms using Eq. (3.7), then
move every c operator to the right of every c† operator (with
appropriate minus signs). In this simple case, the normal-
ordering symbol guarantees that : 〈a′

0|c1′c†
1|a0〉 : = 0, and this

is exactly compensated by the first term on the right-hand side
of Eq. (3.9).

A less trivial example is the overlap of states with two
electrons. A straightforward calculation shows

〈�1′2′ |�12〉
= 〈

�0
1′2′
∣∣�0

12

〉+ [{c2′ , c2} : 〈�1′ |�1〉 : −(1 ↔ 2)

− (1′ ↔ 2′) + (1 ↔ 2, 1′ ↔ 2′)]+ : 〈�1′2′ |�12〉 :,
(3.10)

where |�0
12〉 = c†

2c†
1|a0〉. This is now a large enough number

of electrons to illustrate all features of a general result which
is stated and proven in the Appendix [Eq. (D5)]. The result
is that the overlap of two states evolving from any quantum
numbers can be written as a sum of normal-ordered terms
multiplied by contractions of the c and c† operators. The
normal-ordered terms are overlaps between time-evolving

states with any possible subset of the original quantum num-
bers.

A similar result is true if one inserts operators in-between
the two states; we have calculated it explicitly in the case
of a bilinear insertion, which suffices for the evaluation of
the current. To state the precise result, we first introduce the
following notation for the time evolution of an initial state
with arbitrary quantum numbers:∣∣�γ1k1a1...γnknan,a0 (t )

〉 ≡ e−iHt c†
γnknan

. . . c†
γ1k1a1

|a0〉. (3.11)

Inside the normal-ordering symbol, it is understood that any
|�(t )〉 as just defined is to be written in terms of time-evolving
field operators and crossing states before the normal ordering
is applied. Then, with the quantum numbers written as α ≡
γ ka, we have (see Appendix D for proof)〈

�α1...αN ,a0 (t )
∣∣ψ†

oa(x)ψea(x)
∣∣�α1...αN ,a0 (t )

〉
=

N∑
n=1

1

(n − 1)!

N∑
m1,...,mn=1

{
cαmn

(t ), ψ†
oa(x)

}
× :

〈
�αm1 ...αmn−1 ,a0 (t )

∣∣ψea(x)
∣∣�αm1 ...αmn ,a0 (t )

〉
:

+
N∑

j=1

{
cα j (t ), ψ†

oa(x)
}{

ψea(x), c†
α j

(t )
}
. (3.12)

The second term is independent of t and so does not contribute
to the current. Notice that in the first term, there is only a sin-
gle sum over subsets (i.e., the mj variables); the contractions
in Wick’s theorem became Kronecker deltas that diagonalized
the double sum over subsets to a single sum.

An advantage of using normal-ordered overlaps is that they
can be written in terms of the even sector only. To see this,
write the free electron operators in the odd/even basis:

c†
γ ka(t ) = e−ikt 1√

2
[(−1)γ−1c†

oka + c†
eka] (3.13a)

= 1√
2

[(−1)γ−1c†
oka(t ) + c†

eka(t )]. (3.13b)

Inside the normal-ordering symbol, every c†
γ ka(t ) must eventu-

ally contract with some ψeb(x) operator inside some crossing
state; hence, every c†

γ ka(t ) can be replaced by 1√
2
c†

eka(t ). The
same argument holds for the annihilation operators, and so we
obtain (after a short calculation):

:
〈
�α1...αn−1,a0 (t )

∣∣ψea(0)
∣∣�α1...αn,a0 (t )

〉
= 2−n+1/2 :

〈
�ek1a1...ekn−1an−1,a0 (t )

∣∣ψea(0)

× ∣∣�ek1a1...eknan,a0 (t )
〉

: . (3.14)

Substituting this into Eq. (3.12), and noting that the x integral
in Eq. (3.3) commutes with the normal-ordering symbol, we

obtain

I (t ) = Re

[
− d

dt

N∑
n=1

2−n 1

(n − 1)!

1

Ln

N∑
m1,...,mn=1

(−1)γmn −1�n,a0 (t ; km1 am1 , . . . , kmn amn )

]
, (3.15)
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where

�n,a0 (t ; k1a1, . . . , knan) = Ln :
〈
�ek1a1...ekn−1an−1,a0 (t )

∣∣ceknan (t )
∣∣�ek1a1...eknan,a0 (t )

〉
: . (3.16)

(The powers of L are chosen this way so that �n,a0 is L
independent, as shown below. In the first equation, the mo-
menta and spins being summed are chosen from the full list
of N initial quantum numbers; the second equation defines
the function �n,a0 on arbitrary momenta and spins.) This
is the expectation value of the current in the time-evolving
state |�γ1k1a1...γN kN aN ,a0 (t )〉, with any initial quantum numbers
in the lead 1/lead 2 basis. The normal-ordered overlap on the
right-hand side involves the even sector only; the dependence
on the lead indices appears in the sign factor (−1)γmn −1. This
reflects the fact that the interaction term of the model is in the
even sector only.

B. Current in the thermodynamic limit

While Eq. (3.15) is valid for arbitrary quantum numbers
of the initial state, we are particularly interested in quantum
numbers describing two Fermi seas. A Fermi sea containing
a small number of electrons is not meaningful since we lin-
earized the spectrum about the Fermi level. We therefore take
the thermodynamic limit, which turns sums into integrals.

The nth term in the sum on the right-hand side of Eq. (3.15)
is a sum over all choices of n quantum numbers; this includes
a sum over all choices of n momenta, which becomes an n-
dimensional integral in the thermodynamic limit. We can then
allow the leads to have arbitrary temperatures T1 and T2 by
generalizing these integrals to include Fermi functions:

fγ (k) ≡ f (Tγ , μγ , k) ≡ 1

e(k−μγ )/Tγ + 1
, (3.17)

where γ = 1, 2. We have verified that starting the calcula-
tion with a density matrix with arbitrary temperatures and
chemical potentials leads to the same results as making the
natural generalization (which we describe below) from the
zero-temperature case [25].

The generalization from the zero-temperature case pro-
ceeds as follows. Write Kγ for the set of allowed momenta
in lead γ = 1, 2 (i.e., ranging from −D to μγ and spaced by
2π/L). Then, the following example illustrates the idea:

1

L2

∑
k1,k2∈K1

1

L

∑
k3∈K2

therm. limit→
∫ μ1

−D

dk1

2π

dk2

2π

∫ μ2

−D

dk3

2π

T1,T2→
∫ D

−D

dk1

2π

dk2

2π

dk3

2π
f1(k1) f1(k2) f2(k3), (3.18)

where the first arrow represents the thermodynamic limit at
zero temperature, and the second arrow represents the gener-
alization to allow the two-leads to have arbitrary temperatures.
It is essential that whatever function of k1, k2, and k3 that is
being summed here does not grow with L.

The generalization of the above example is

1

Ln

N∑
m1,...,mn=1

= 1

Ln

∑
γ1,...,γn=1,2

∑
k j∈Kγ j
1� j�n

∑
a1...an

(3.19a)

→
∑

γ1,...,γn=1,2

∫ D

−D

[
n∏

j=1

dk j

2π
fγ j (k j )

] ∑
a1...an

,

(3.19b)

where we have first written the sum over abstract quantum
numbers as a sum over lead indices, momenta, and spins,
and then taken the thermodynamic limit, going directly to the
generalization to arbitrary temperatures in the leads.

The function �n,a0 being summed in Eq. (3.15) involves
the even sector only, so it is independent of the lead indices
being summed. We can therefore do the sum over lead indices
explicitly, finding the following in the thermodynamic limit:

I (t ) → Re

{
− d

dt

∞∑
n=1

2−n 1

(n − 1)!

×
∫ D

−D

[
n−1∏
j=1

dk j

2π
[ f1(k j ) + f2(k j )]

]
dkn

2π
[ f1(kn) − f2(kn)]

×
∑

a1...an

�n,a0 (t ; k1a1, . . . , knan)

}
. (3.20)

Explicit evaluation of the function �n,a0 (see Appendix E)
shows that it is an antisymmetrization of another function
�

(off-diag)
n,a0 :

�n,a0 (t ; k1a1, . . . , knan)

=
∑

σ,σ ′∈Sym(n)
σ ′(n)=n

(sgn σ )(sgn σ ′)

× �(off-diag)
n,a0

(
t ; kσ ′

1
aσ ′

1
, . . . , kσ ′

n
aσ ′

n
; kσ1 aσ1 , . . . , kσn aσn

)
,

(3.21)

where the function �
(off-diag)
n,a0 is given by

�(off-diag)
n,a0

(t ; k′
1a′

1, . . . , k′
na′

n; k1a1, . . . , knan)

= �n[a′
1 . . . a′

n−1; a1 . . . an−1]b0cn−1
a0a0

(−iT )a′
nb0

ancn−1

×
∫ t

0

[
n∏

�=1

dx� e−i(k�−k′
� )(t−x� )

]
�(xn < · · · < x1),

(3.22)

with the tensor �n defined as

�n[a′
1 . . . a′

n; a1 . . . an]c′
ncn

c′c = δ
c′

0
c′ δ

c0
c

n∏
j=1

(
S∗b j c′

j

a′
j c

′
j−1
Sb j c j

a j c j−1 − I
b j c′

j

a′
j c

′
j−1

I
b j c j
a j c j−1

)
, (3.23)
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where S = I − iT is the bare single-particle S matrix for an electron crossing the impurity. Note in particular that �
(off-diag)
n,a0

grows with t (at most as t n) and not with L; the same is then true of �n,a0 , justifying our calculation of the thermodynamic limit.
Substituting Eq. (3.21) into Eq. (3.20) and using the symmetry of the integrand to eliminate the sum over permutations σ ′, we
find one of our main results, a series expression for the current in the thermodynamic limit:

I (T1, μ1; T2, μ2; t ) = Re

⎧⎨⎩ ∂

∂t

∞∑
n=1

∑
σ∈Sym(n)

W (σ )
n (J )

∫ D

−D

dk1 . . . dkn

(2π )n

[
n−1∏
j=1

[ f1(k j ) + f2(k j )]

]
[ f1(kn) − f2(kn)]

×
∫ t

0
dx1 . . . dxn

(
n∏

�=1

e−i(k�−kσ�
)x�

)
�(xn < · · · < x1)

}
, (3.24)

where we have defined J-dependent spin sums via

W (σ )
n (J ) =

∑
a0,a1,...,an

b0,c0

(sgn σ )
1

2n+1
�n−1

[
a1, . . . , an−1; aσ1 , . . . , aσn−1

]b0c0

a0a0
iT anb0

aσn c0
. (3.25)

We have included a sum over the initial impurity spin a0

(compensated by an additional prefactor of 1
2 ) purely for nota-

tional simplicity, and it is easily verified that using a fixed a0

produces the same answer.
This series answer, Eq. (3.24), has the interesting property

that it yields not only a series in powers of J for small J
(which follows straightforwardly from the power counting of
the crossing states), but also a series in the inverse parameter
1/J for large |J|. The fundamental reason for the 1/J series
is the existence of the |J| = ∞ basis discussed in Sec. II D;
however, we give below a self-contained argument using only
the J = 0 basis.

We write the coefficients of the identity and spin-flip terms
of the bare S matrix as ZI and ZP:

Sb1b0
a1a0

≡ (I − iT )b1b0
a1a0

≡ ZIδ
b1
a1

δb0
a0

+ ZPδb0
a1

δb1
a0

. (3.26)

Explicitly, these coefficients are

ZI = 1 − 3
16 J2

1 − i 1
2 J + 3

16 J2
, (3.27a)

ZP = −iJ

1 − i 1
2 J + 3

16 J2
. (3.27b)

Note in particular that ZP is O(J ) for small J and O(1/J ) for
large J . In Appendix F, we prove that for n � 2, the spin sum
W (σ )

n (J ) has at least n + 1 powers of ZP (where we consider
Z∗

P and ZP as equivalent for power-counting purposes). This
confirms that the current series can be expanded in either
parameter.

In Table I, we list all nonvanishing spin sums up to n = 4,
leaving out the seven permutations at n = 4 that start at order
O(J6) or O(1/J6). The product structure of the tensor (3.23)
permits fairly quick evaluation of these sums; an ordinary
computer can produce Table I from the definition (3.25) in
a matter of seconds.

C. Steady-state limit of the current

A basic question in quench problems is the existence of the
steady limit of observable quantities, such as the current

Isteady state(T1, T2,V ) = lim
t→∞ I (T1, μ1; T2, μ2; t ), (3.28)

where we set μ1 = 0 and μ2 = −V on the right-hand side.
We argue that the existence of the long-time limit of our

series expression (3.24) reduces to a certain spin sum iden-
tity, which we then prove in Appendix F. This confirms the
existence of the steady-state current to all orders either in J
or in 1/J . Note that Doyon and Andrei have already shown
that the Schwinger-Keldysh perturbation series for the current
converges in time to all orders in J [7]. As discussed in more
detail in [7], the leads serve as thermal baths in the limit of
infinite system size, even though there is no explicit relaxation
mechanism (i.e., coupling to an external bath whose degrees
of freedom appear in the Hamiltonian).

A natural question to ask at this point is: Why are we
concerned with showing that the time-evolving current con-
verges in the long-time limit if we have already shown that the
wavefunction reaches a NESS? The original definition (3.1)
of the current can be shown to be equivalent to the expec-
tation value of a local operator: I (t ) = 〈�(t )|̂I|�(t )〉 with

TABLE I. First several nonvanishing spin sums.

σ ≡ (σ1, . . . , σn) W (σ )
n (J )

(1) 1 − ZI − 1
2 ZP

(2, 1) 3
4 |ZP|2ZP

(3, 1, 2) 3
4 |ZP|4(−ZI + 1

2 ZP

)
(2, 3, 1) 3

4 |ZP|4(ZI + 1
2 ZP

)
(3, 2, 1) − 3

4 |ZP|4ZP

(2, 3, 4, 1) 3
4 |ZP|4[−ZP + |ZP|2(ZI + 5

4 ZP

)]
(2, 4, 1, 3) and (3, 1, 4, 2) 3

4 |ZP|4ZP

(
1 − 3

4 |ZP|2)
(3, 4, 1, 2) 3

4 |ZP|4ZP(−1 + |ZP|2)

(4, 1, 2, 3) 3
4 |ZP|4[−ZP + |ZP|2(−ZI + 5

4 ZP

)]
(4, 3, 2, 1) 3

4 |ZP|4ZP

(
1 − 3

2 |ZP|2)
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Î = Re[iJψ
†
1a(0)σaa′ · ψ2a′ (0)S]. The long-time limit of I (t )

should be the same as the expectation value of this local
operator in the NESS:

lim
t→∞ I (t ) = 〈�NESS |̂I|�NESS〉. (3.29)

Since we have |�NESS〉 explicitly, one might think that this
proves that the long-time limit exists. However, this is not
so. Evaluating the right-hand side of Eq. (3.29) with the
time-independent version of our formalism, we find that it
contains many infrared divergences; introducing an infrared
regulator, we find that the problem of showing that these
divergences cancel is equivalent to the problem of showing
that I (t ) converges for large time. Indeed, having a finite t is
itself an example of an infrared regulator. If the limit on the
left-hand side of Eq. (3.29) does exist, then the equality holds.

There are two ways to proceed with the analysis of the
time-evolving current (3.24): we can do the n − 1 integrations
over position variables analytically, leaving n integrations
over momenta still to be done; or we can do the n integrations
over momenta analytically, leaving n − 1 integrations over
position variables still to be done. The first option leaves us
with momentum integrals of the same type that arise in loops
in a Keldysh calculation. We pursue the second option, both
because it allows for better understanding of the steady-state
limit and because it results in integrals that are easier to
evaluate in the large bandwidth regime.

Our approach is to use the following formula for the
Fourier transform of a Fermi function f (T, μ, k) (with tem-

perature T , chemical potential μ, and cutoff D):∫ D

−D
dk e−iky f (T, μ, k) = 1

i

(
eiDy

y
− πTe−iμy

sinh(πTy)

)
, (3.30)

where error terms of order O(e− 1
T (D±μ) ) have been dropped

on the right-hand side. This truncation is very accurate in
the universal regime, in which the cutoff is much larger than
all other energy scales. To use this formula, we relabel some
integration coordinates to obtain

∂

∂t

∫ t

0
dx1 . . . dxn

(
n∏

�=1

e−i(k�−kσ�
)xn

)
�(xn < · · · < x1)

=
∫ ∞

0
dx1 . . . dxn−1

(
n∏

�=1

e−ik�y(σ )
�

)
× �(t − x1 − · · · − xn−1), (3.31)

where we have defined the following linear combinations of
the x j variables:

y(σ )
� =

n−1∑
m=�

xm −
n−1∑

m=σ−1(�)

xm. (3.32)

Using the Fourier transform (3.30) and the identity∑n
j=1 y(σ )

j = 0, we then obtain

I (T1, μ1; T2, μ2; t ) = 1

2π
Re

⎧⎨⎩
∞∑

n=1

1

(iπ )n−1

∑
σ∈Sym(n)

W (σ )
n (J )ϕ(σ )

n (T1, μ1; T2, μ2; t )

⎫⎬⎭, (3.33)

where [defining D̃ = D + 1
2 (μ1 + μ2) and V = μ1 − μ2]

ϕ(σ )
n (T1, μ1; T2, μ2; t ) = 1

i

∫ ∞

0
dx1 . . . dxn−1 �(t − x1 − · · · − xn−1)

×
[

n−1∏
j=1

(
eiD̃y(σ )

j

y(σ )
j

− πT1e−i 1
2 V y(σ )

j

2 sinh
(
πT1y(σ )

j

) − πT2ei 1
2 V y(σ )

j

2 sinh
(
πT2y(σ )

j

))][ πT2ei 1
2 V y(σ )

n

sinh
(
πT2y(σ )

n
) − πT1e− i 1

2 V y(σ )
n

sinh
(
πT1y(σ )

n
)]. (3.34)

We can now address the convergence of the series in time. The
key point is to show that for any permutation σ such that the
corresponding spin sum W (σ )

n (J ) is nonvanishing, there is a fi-
nite limit limt→∞ ϕ(σ )

n (T1, μ1; T2, μ2, t ). The qualification that
the spin sum be nonvanishing is an important one since there
are many cases in which the integral ϕ(σ )

n does not converge
in time. The simplest example is ϕ

(1,2)
2 (T1, μ1; T2, μ2; t ) =

D̃tV . This linear divergence is of no consequence for
the current because it is multiplied by a vanishing spin
sum: W (1,2)

2 (J ) = 0.
More generally, divergences for large time are to be ex-

pected if one or more of the integration variables x1, . . . , xn−1

appears only in the Heaviside function and nowhere else in
the integrand. [For example, for σ = (1, 2), we have y(σ )

1 =
y(σ )

2 = 0, so x1 only appears in the Heaviside function, and
ϕ

(1,2)
2 ∼ t .] If instead all x j variables appear explicitly (not

including the Heaviside function), then the only possible
sources of divergences in time are the oscillating phase terms
(since the 1/ sinh terms are very small at large x). The
oscillating phase terms take the form of multidimensional
generalizations of the one-dimensional integral

∫ b
1 du eiu

u ,
which is finite as b → ∞; thus, we can expect that there
are no time divergences even from the oscillating phases.
(Asymptotic evaluation of several of these integrals confirms
this expectation; see Appendix G.)

Our task, then, is to show that for any permutation σ ∈
Sym(n) such that one or more of the x j variables is ab-
sent from y(σ )

1 , . . . , y(σ )
n , the corresponding spin sum W (σ )

n (J )
vanishes. These permutations are exactly the reducible ones;
those for which the permutation rearranges the first m
entries independently of the last n − m (for some m < n).
From Eq. (3.25) and from the product structure (3.23) of
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the tensor �n, we see that the spin sums for all reducible
permutations vanish provided that the following identity holds
for any n � 1, σ ∈ Sym(n):∑

a0,a1,...,an

�n
[
a1, . . . , an; aσ1 , . . . , aσn

]c′c
a0a0

= 0. (3.35)

We prove this identity in Appendix F. (The proof does not rely
on the detailed form of the coefficients ZI and ZP, but only on
the fact that they lead to a unitary S matrix.) Thus, we have
shown convergence in time to all orders in J and 1/J .

Having established the existence of the steady-state limit,
we can write

I (T1, T2,V ) ≡ Isteady state(T1, T2,V ) (3.36a)

≡ lim
t→∞ I (T1, μ1 = 0; T2, μ2 = −V ; t ), (3.36b)

where both sides depend implicitly on the cutoff D through
D̃ = D − V/2 [see Eq. (3.34) and below]. Setting μ1 = 0 is no
real loss of generality since working with arbitrary μ1 (given
fixed voltage difference V ) only means that D̃ = D + (μ1 +
μ2)/2, instead, and we will see that D̃ can be replaced by D
in the large-bandwidth limit.

The steady-state current, then, depends on the three ex-
ternal parameters T1, T2, and V . It is convenient to work in
spherical coordinates (M, θ, φ) with V as the “Z axis”:

V = M cos θ, (3.37a)

T1 =
√

2M sin θ cos φ, T2 =
√

2M sin θ sin φ, (3.37b)

M =
√

V 2 + 1

2

(
T 2

1 + T 2
2

)
. (3.37c)

It is to be expected that for large bandwidth, the steady-
state integrals ϕ(σ )

n (T1, T2,V ) include logarithmic divergences
in the limit D/M → ∞. These logarithmic divergences, to-
gether with the coupling constant dependence contained in
the spin sums W (σ )

n (J ), encode the scaling properties and the
emergence of the Kondo temperature TK through the Callan-
Symanzik equation, as we discuss in more detail in the next
two sections. Here, we present a technical discussion of the
steady-state integrals and their logarithmic divergences.

The basic integral we need to consider is the steady-state
limit of (3.34), which is obtained simply by deleting the Heav-
iside function:

ϕ(σ )
n (T1, T2,V ) ≡ lim

t→∞ ϕ(σ )
n (T1, μ1 = 0; T2, μ2 = −V ; t ).

(3.38)

As discussed above, any permutations σ for which this limit
fails to exist are of no importance since the corresponding spin
sum W (σ )

n (J ) vanishes. From Eq. (3.24) we obtain

Isteady state(T1, T2,V ) = 1

2π
Re

⎧⎨⎩
∞∑

n=1

1

(iπ )n−1

×
∑

σ∈Sym(n)

W (σ )
n (J )ϕ(σ )

n (T1, T2,V )

⎫⎬⎭.

(3.39)

We express the steady-state integral ϕ(σ )
n in spherical co-

ordinates, denoting it by the same symbol. Rescaling to
dimensionless variables uj ≡ 1

2 Mxj and v
(σ )
j ≡ 1

2 My(σ )
j , we

obtain

ϕ(σ )
n (M, θ, φ)

= M cos θ

∫ ∞

0
du1 . . . dun−1

×
[

n−1∏
j=1

(
ei(2D/M−cos θ )v(σ )

j − f
(
θ, φ; v(σ )

j

))/
v

(σ )
j

]
× h

(
θ, φ; v(σ )

n

)
, (3.40)

where

f (θ, φ; v) =
√

2π sin θ cos φ ve−i(cos θ )v

sinh(23/2π sin θ cos φ v)

+
√

2π sin θ sin φ vei(cos θ )v

sinh(23/2π sin θ sin φ v)
(3.41)

and

h(θ, φ; v) = 1

i

(√
2π tan θ sin φ ei(cos θ )v

sinh(23/2π sin θ sin φ v)

−
√

2π tan θ cos φ e−i(cos θ )v

sinh(23/2π sin θ cos φ v)

)
. (3.42)

Note that f (θ, φ; v = 0) = h(θ, φ; v = 0) = 1.
We have explicitly calculated the asymptotic forms of the

integral (3.40) in the large-bandwidth regime for all permu-
tations σ that we need in order to find the current up to
and including the J5 or 1/J5 terms. We find that the rapidly
oscillating phases generate logarithmic divergences: powers
of ln(2D/M ) with coefficients that depend on the ratios T1/V
and T2/V through the angles θ and φ. In some cases, there are
also linear divergences, but they cancel in the final answer for
the current at this order.

To arrive at Eq. (3.40), we assumed V > 0; however, the
special case of V = 0 reduces to an integral of the same form
with different functions f and h. For example, the linear re-
sponse conductance G(T ) = ∂I/∂V |T1=T2=T,V =0 involves the
following integral:

∂

∂V

∣∣∣∣
V =0

ϕ(σ )
n (T1 = T, T2 = T,V )

=
∫ ∞

0
du1 . . . dun−1h

(
v(σ )

n

) n−1∏
j=1

ei D
πT v

(σ )
j − f

(
v

(σ )
j

)
v

(σ )
j

,

(3.43)

where f and h are given in this case by f (v) = h(v) =
v/ sinh v. The case of the thermoelectric current (V = 0 with
arbitrary T1 and T2) is similar. All cases thus reduce to the
study of the large-λ behavior of the following general form:∫ ∞

0
du1 . . . dun−1 h

(
v(σ )

n

) n−1∏
j=1

eiλv
(σ )
j − f

(
v

(σ )
j

)
v

(σ )
j

. (3.44)
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Appendix G presents our asymptotic results for the general
form given in (3.44) only using general properties of f and
h. The simplest nontrivial example is the permutation σ =
(2, 1), for which we have v

(σ )
1 = −v

(σ )
2 = u1 and the follow-

ing asymptotic result:∫ ∞

0
du1

eiλu1 − f (u1)

u1
h(−u1)

λ→∞−→ −h(0) ln λ

− h(0)
(
γ − i

π

2

)
+
∫ ∞

0
du ln u

d

du
[ f (u)h(−u)],

(3.45)

where γ is the Euler constant [not to be confused with the
anomalous dimension γ (g) that we discuss later]. In the
steady-state current in the regime of small J , the ln λ diver-
gence here will be multiplied by J3: it is the equivalent of the
one-loop divergence that appears in a Keldysh calculation.

Notice that the constant (λ-independent) term in (3.45) is a
more complicated functional of f and h than the log term.
This is the beginning of a pattern that seems to persist to
higher orders. For example, in the case of σ = (2, 3, 1) that
is explicitly written out in Appendix G, there is a ln2 λ term
that depends only on h(0), a ln λ term involving both h(0) and
the same single variable integral over f and h that appears
in (3.45), and then a λ-independent constant that depends on
the same quantities already encountered in ln2 λ and ln λ and
also on a double integral involving f and h. These terms then
appear in the small-J current multiplied by J4 (two loops).
This pattern of asymptotic expansion is the mechanism under-
lying the scaling that we find in the following two sections.

D. Antiferromagnetic regime: Universality

We evaluate our current series in the regime of weak
antiferromagnetic coupling. We first review what scaling
properties are expected on general grounds, then present the
results of our calculations. For easier comparison with the
literature, we refer to g ≡ ρJ = 1

2π
J from now on.

It is expected that, when all other energy scales in the
problem are much smaller than the bandwidth, the current
becomes a universal function funiversal(T1/TK , T2/TK ,V/TK ),
where the Kondo temperature TK = De− 1

2g + 1
2 ln g is a dy-

namically generated scale. The “scaling limit” consists of
taking D → ∞ and g → 0+ with TK fixed; the resulting
funiversal is then the same as that which would be obtained
from taking the low-energy limit of a calculation done

with a more realistic Hamiltonian, e.g., with a more com-
plicated band structure than the wide-band limit we have
considered.

Universal scaling should manifest itself in a pattern of log-
arithmic divergences as D/M is sent to infinity. In the regime
of small |g| and large D/M, the perturbative renormalizability
of the Kondo model constrains the steady-state current to the
form I (T1, T2,V ) → V

∑∞
n=2

∑n−2
m=0 anmgn lnm 2D

M , where the
coefficients anm depend only on the ratios T1/V and T2/V .
This is shown in a very general setting by Delamotte in
Ref. [35]. Our choice of V for the dimensionful prefactor and
2D/M for the argument of the log is one of convenience. We
have assumed that the current starts at order g2, as is confirmed
by calculation.

The current (assuming large bandwidth from now
on) should satisfy the Callan-Symanzik equation
[D ∂

∂D + β(g) ∂
∂g + γ (g)]I (T1, T2,V ) = 0, which is a

differential form of the statement that all UV divergences
can be absorbed by using a running coupling constant
and rescaling the current operator. The solution to the
Callan-Symanzik equation takes the form I (T1, T2,V ) =
funiversal(T1/TK , T2/TK ,V/TK )e− ∫ g

0 dg′ γ (g′ )
β(g′ ) , and the anomalous

dimension γ (g) should start at the same order or higher in g
as β(g) so that the g-dependent scale factor goes to unity in
the scaling limit. (Such a scale factor has been seen before in
the Kondo problem; see Ref. [36].)

Most of these general expectations are met by our series.
Up to and including the equivalent of three loops (which
is g5 in this case), the current at large bandwidth is a scal-
ing form that satisfies the Callan-Symanzik equation with
β(g) and γ (g) that are independent of the ratios T1/V and
T2/V . The leading order of the beta function [β(g) = −2g2],
and the corresponding leading-order expression TK = De− 1

2g ,
agree with the standard answer [37]. The only surprise is
that the first correction to the beta function, and hence to
TK , differs by a constant from the expected answer; that is,
we obtain β(g) = −2g2 + β3g3 with β3 = 16 instead of the
expected [37] β3 = 2.

Let us present these results in more detail. We begin by
writing the scaling form that we find for the current. We will
write the series in a triangular structure [35] in which the nth
column contains the gn+1 terms, while the nth row contains
terms of the form gn+ j ln j−1 2D

M ( j � 1). The entries in the first
row are called the “leading logarithms,” the second row the
“subleading logarithms,” and so on. For large bandwidth, we
find

Isteady state(T1, T2,V ) =
3π

4
V

{
g2 + 4g3 ln

2D

M
+ 12g4 ln2 2D

M
+ 32g5 ln3 2D

M

+ C1(θ, φ)g3 + 6C1(θ, φ)g4 ln
2D

M
+ [24C1(θ, φ) − 32]g5 ln2 2D

M

+ C2(θ, φ)g4 −
(

16C1(θ, φ) − 8C2(θ, φ)
+64 + 3π2

)
g5 ln

2D

M

+ C3(θ, φ)g5 + O(g6)

}
, (3.46)
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where C1 and C2 are (in the spherical coordinates introduced earlier)

C1(θ, φ) = 4 Re

{
γ −

∫ ∞

0
du ln u

∂

∂u
[ f (θ, φ; u)h(θ, φ; −u)]

}
, (3.47a)

C2(θ, φ) = Re

{
6γC1(θ, φ) − 12γ 2 + 7

12
π2 − 4

∫ ∞

0
du ln2 u

∂

∂u
[ f (θ, φ; u)h(θ, φ; −u)]

+ 8
∫ ∞

0
du1du2 ln u1 ln u2

∂

∂u1

∂

∂u2
[ f (θ, φ, u1) f (θ, φ, u2)h(θ, φ; −u1 − u2)]

+ 8
∫ ∞

0
du1du2

1

u2
ln

u1 + u2

u1

∂

∂u1
[ f (θ, φ, u1 + u2) f (θ, φ,−u1)h(θ, φ; −u2)]

}
. (3.47b)

We omit a very lengthy explicit form of C3 (a sum of integrals
over f and h, including triple integrals).

As discussed in more detail by Delamotte [35], this tri-
angular structure makes clear the operation of perturbative
renormalizability. [Delamotte does not consider anomalous
scaling γ (g), but this is a simple modification.] One can see
that the leading logs are built from pure numbers, the sublead-
ing logs include pure numbers and the constant C1, and so on.
We emphasize that we do not require the answer to take this
form; we find it as the result of a detailed calculation.

Equation (3.46) satisfies the Callan-Symanzik equation(
D

∂

∂D
+ β(g)

∂

∂g
+ γ (g)

)
I (T1, T2,V ) = 0, (3.48)

with

β(g) = −2g2 + β3g3 + β4g4 + O(g5) (β3 = 16) (3.49)

and

γ (g) = γ2g2+ (−32 + 3π2− 2β4)g3+ O(g4) (γ2 = −32),
(3.50)

where the constant β4 would be determined by the next order
of the current (g6, or the equivalent of four loops). As expected
on general grounds, β(g) and γ (g) are found to depend only
on the coupling constant g; the terms C1 and C2 (which contain
all dependence on the angles θ and φ) drop out of the scaling
equation entirely. In the following calculations, we leave β3

and γ2 unspecified in order to see how they appear in the final
answers.

The calculation now follows some standard steps, and we
omit many details. We write the current in a universal form in
the scaling limit (g → 0+ with TK fixed). The Kondo tempera-
ture TK is determined by [D ∂

∂D + β(g) ∂
∂g]TK = 0, and is given

by

TK = α−1D exp

[
− 1

2g
+ β3

4
ln |g| + O(g)

]
, (3.51)

where α > 0 is an arbitrary normalization constant. The run-
ning coupling at scale M, denoted gM , is such that (D, g) and
(M, gM ) correspond to the same TK . In the high-energy regime
(M � TK , with M � D as always), the running coupling is

gM = 1

2 ln M
TK

[
1 + β3

4

ln ln M
TK

ln M
TK

+
(

β3

4
ln 2 + ln α

)
1

ln M
TK

+ β2
3

16

ln2 ln M
TK

ln2 M
TK

+ β3

2

(
β3

4
ln 2 + ln α − β3

8

) ln ln M
TK

ln2 M
TK

]

+ O

(
1

ln3 M
TK

)
. (3.52)

(See Ref. [7] for the case β3 = 2.) We set the normalization
constant α = 1 for now. Solving the Callan-Symanzik equa-
tion and taking the scaling limit yields

I (T1, T2,V )

= 3π

4
V g2

M

[
1+

(
C1(θ, φ)+ 4 ln 2 − 1

2
γ2

)
gM

]
+ O(g4

M ).

(3.53)

The leading term, which is the sum of the leading log terms of
the series, yields

I (T1, T2,V ) = 3π

16 ln2 M
TK

V + · · · (M � TK ), (3.54)

and so

G(T1, T2,V ) = 3π2G0

16 ln2 M
TK

+ · · · (M � TK ), (3.55)

where we have restored physical dimensions in the differential
conductance G ≡ ∂I/∂V (G0 = 2e2/h = 1/π is the unitarity
limit of conductance). This is a slight generalization of a well-
known result, first found in Ref. [5] (in the case of T1 = T2 =
0 with V as the variable, or V = 0 with T1 = T2 ≡ T as the
variable); see also Ref. [7] for the case of equal temperatures
and arbitrary voltage.

At the next approximation beyond leading log, the coeffi-

cient β3 enters into the current as a term of the form β3
ln ln M

TK

ln3 M
TK

,

and so our result cannot be fully correct (note that the coef-
ficient of such a term cannot be adjusted by rescaling TK ). It
seems probable, based on a simpler calculation we have done
(see Appendix I), that our unusual cutoff scheme has led to
some extra “cutoff artifact” term in the current that changes
the coefficient β3. For the moment, we can say that since the
leading logs are correct in the small-g case, the leading logs of
the large-|g| regime (see next section) should also be correct.

A calculation we can do reliably, at the next order beyond,
is the effect of temperature on the current; in particular, we
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consider the following quantity in the regime V � TK :

�I (T1, T2,V ) ≡ I (T1, T2,V ) − I (T1 = 0, T2 = 0,V ).
(3.56)

The idea is that this subtraction eliminates the leading-order
effect of β3 (and of γ2, which is sensitive to the same terms
that affect β3). We note the following:

gM = gV + 1

2 ln V
TK

[
ln(cos θ )

ln V
TK

+ β3

2
ln(cos θ )

ln ln V
TK

ln2 V
TK

]

+ O

(
1

ln3 V
TK

)
, (3.57)

hence,

g2
M − g2

V = ln(cos θ )
1

2 ln3 V
TK

+ O

(
ln ln V

TK

ln4 V
TK

)
, (3.58)

and so

�I (T1, T2,V ) = 3π

32

V

ln3 V
TK

[
C1(θ, φ) − C1(θ = 0, φ)

+ 4 ln(cos θ )

]
+ O

(
ln ln V

TK

ln4 V
TK

)
, (3.59)

where the φ coordinate in C1 does not matter when θ =
0. What we have calculated corresponds to the leading

temperature-dependent term in the summation of the sub-
leading logarithms [the second row of (3.46)]; the first
contribution is temperature independent and has been can-
celed, and higher contributions depend on the coefficient β3.

Equation (3.59) is essentially a one-loop result. It agrees
with the calculations of Doyon and Andrei in Ref. [7] (here-
after “DA”). Translating their calculation of the current into
our notation and calculating the difference �I , we find [38]

�IDA(T,V ) = 3π

32

V

ln3 V
TK

[
4[P(cot θ ) − P(∞)]

+ 4 ln(cos θ )

]
+ O

(
ln ln V

TK

ln4 V
TK

)
, (3.60)

where the function P is given in an integral form in DA. Spe-
cializing our result (3.59) to equal temperatures sets φ = π/4,
and we find numerically that our function C1(θ, φ = π/4) =
4P(cot θ )+ constant; thus, C1(θ, φ = π/4) − C1(θ = 0, φ =
π/4) = 4[P(cot θ ) − P(∞)], so our result agrees with DA
(�I = �IDA).

We now turn to two special cases: the linear re-
sponse conductance G(T ) = (∂I/∂V )|T1=T2=T,V =0 and the
zero-temperature conductance G(V ) = (∂I/∂V )|T1=T2=0. We
find

G(T ) = 3π2G0

4

{
g2 + 4g3 ln

D

T
+ 12g4 ln2 D

T
+ 32g5 ln3 D

T

− 4 ln
2π

e1+γ
g3 − 24 ln

2π

e1+γ
g4 ln

D

T
− 32

(
ln

2π

e1+γ
+ 1

)
g5 ln2 D

T

−7.75g4 − 138.90g5 ln
D

T

+9.01g5 + O(g6)

}
, (3.61a)

G(V ) = 3π2G0

4

{
g2 + 4g3 ln

D

V
+ 12g4 ln2 D

V
+ 32g5 ln3 D

V

− 32g5 ln2 D

V

−7

4
π2g4 − (64 + 17π2)g5 ln

D

V

+ 2[π2 − 32 + 48 ln 2 − 24ζ (3)]g5 + O(g6)

}
, (3.61b)

where ζ is the Riemann zeta function. Using the Callan-Symazik equation to take the scaling limit, we find the following results
in the high-energy regime (T �TK or V �TK ):

G(T ) = 3π2G0

16 ln2 T
TK

[
1 + 8

ln ln T
TK

ln T
TK

+ α
(T )
1

ln T
TK

+ 48 ln2 ln T
TK

ln2 T
TK

+ α
(T )
2 ln ln T

TK

ln2 T
TK

+ O

(
1

ln2 T
TK

)]
, (3.62a)

G(V ) = 3π2G0

16 ln2 V
TK

[
1 + 8

ln ln V
TK

ln V
TK

+ α
(V )
1

ln V
TK

+ 48 ln2 ln V
TK

ln2 V
TK

+ α
(V )
2 ln ln V

TK

ln2 V
TK

+ O

(
1

ln2 V
TK

)]
, (3.62b)
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where the α
(T )
j , α

(V )
j constants are

α
(T )
1 = 8(1 + ln 2) − 2 ln

2π

e1+γ
, (3.63a)

α
(V )
1 = 8(1 + ln 2), (3.63b)

α
(T )
2 = 4(2 + 3 ln 2) + 3 ln

2π

e1+γ
, (3.63c)

α
(V )
2 = 4(2 + 3 ln 2). (3.63d)

Note that the individual values of α
(T )
1 and α

(V )
1 can be

changed by adjusting the normalization constant α in Eq.
(3.51). In this high-energy regime, one can define T (T )

K as
the rescaling that sets α

(T )
1 to zero, with a similar definition

for T (V )
K ; then, the ratio T (T )

K /T (V )
K = exp [(α(T )

1 − α
(V )
1 )/2] =

e1+γ

2π
is independent of rescaling.

Let us compare these results with the literature. The
leading-order results for G(T ) and G(V ) are well known [5],
and are special cases of Eq. (3.55). For a higher-order check,
we compare to the real-time renormalization group calcu-
lation of Pletyukhov and Schoeller (PS) [10]. While these
authors calculated the full conductance curves numerically,
we are concerned for the moment with comparing to the
analytical expressions they find for the first two terms (g2

R and
g3

R) of G(T ) and G(V ) as power series in the running coupling
gR. Reexpressing their answers in terms of bare quantities,
we note that the D-independent g3 terms of our series [the
distinctive number ln 2π

e1+γ for G(T ) and zero for G(V )] are in
exact agreement with PS. This in turn means we have exact
agreement for the ratio T (T )

K /T (V )
K . Our scaling differs from

theirs at higher order, seeing as they find the conventional
expression (β3 = 2). Conventional scaling would have been
obtained in our calculation had an additional contribution
3π2G0(g4 ln D

T − g5 ln2 D
T ) been present in G(T ) [or the same

term in G(V ) with V replacing T ], but extensive checks (see
Appendix H) have not detected any such contribution. How-
ever, we can show in the calculation of a different observable
that such a term can arise as an “artifact” of the unusual cutoff
scheme we have used; furthermore, in that other observable

we can show that a modification of our scheme removes the
artifact. See Appendix I for details.

The first terms in the final answers (3.62a) and (3.62b) that

β3 affects are the double-log terms
ln ln T

TK

ln3 T
TK

and
ln ln V

TK

ln3 V
TK

; with

the conventional β3 = 2, the coefficient 8 would instead be 1.
[Note that the coefficients of the leading terms, 1/ ln2(T/TK )
and 1/ ln2(V/TK ), are unaffected.]

We therefore conclude that our approach yields the cor-
rect leading-log answer in the high-energy regime, with the
higher-order corrections being affected by an artifact of our
cutoff scheme. By subtracting the zero-temperature current,
we can reliably calculate the effect of temperature at the first
approximation beyond leading logs. In the next section, we re-
peat the calculation in the strong coupling regime, focusing on
the quantities that came out correctly in the antiferromagnetic
case.

E. Ferromagnetic regime: Universality

Our approach reveals a another universal regime of the
Kondo model: strong ferromagnetic coupling (g < 0, |g| �
1). We note that there are several proposed mesoscopic real-
izations [39–41] of the weak ferromagnetic model; it may be
possible to realize strong ferromagnetism by modifying these
proposals to use the charge Kondo effect [42].

We find that the strong ferromagnetic model generates a

Kondo temperature given at leading order by T (F )
K = De

3π2

8 g.
A very similar discussion applies in this case as in the an-
tiferromagnetic regime. (Indeed, the quantity −1/g, which
is small and positive, plays much the same role as a small
antiferromagnetic coupling, though the parallel is not exact.)
The scaling limit in this regime consists of taking D → ∞
and g → −∞ with TK fixed; the resulting universal functions
are expected to agree with the low-energy results from a more
realistic Hamiltonian.

We begin in the same way as in the antiferromagnetic case,
by examining the scaling. The same integrals appear again;
the only change we need to make is to expand the spin sums
W (σ )

n (J ) about J = −∞ instead of J = 0. (We can actually
expand the spin sums about |J| = ∞ with the same result
for either sign of J; we discuss the case of large positive J
in Sec. III F.) We find the following scaling form at large
bandwidth:

I (T1, T2,V ) =
1

π
V

{
1 − 4

9π2

[
7

g2
− 16

π2g3
ln

2D

M
+ 64

π4g4
ln2 2D

M
− 2048

9π6g5
ln3 2D

M

−C1
16

π2g3
+ C1

128

π4g4
ln

2D

M
+ (4 − 12C1)

512

π6g5
ln2 2D

M

+ (3C2 + 6πC̃1 − 22π2)
16

9π4g4
+
(

32 − 8C2 + 16C1

−12πC̃1 + 11π2

)
64

9π6g5
ln

2D

M

+C4
1

g5
+ O

(
1

g6

)]}
, (3.64)
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where C1, C2, C̃1, and C4 depend on the ratios T1/V and
T2/V ; the first two have been defined already in Eqs. (3.47a)
and (3.47b), C̃1 is the imaginary part of the same quantity that
appears in C1:

C̃1(θ, φ)= 4 Im

{
γ −

∫ ∞

0
du ln u

∂

∂u
[ f (θ, φ; u)h(θ, φ;−u)]

}
,

(3.65)

and C4 is given by a lengthy sum of integrals over f and h,
which we omit. This expansion is valid for either sign of g,
though we focus on the ferromagnetic case g < 0 for now.

For T1 = T2, we find that the Callan-Symanzik equation
holds with a nonzero anomalous dimension γ (g):

β(g) = − 8

3π2

[
1 + 32

9π2g
+ β̃2

π4g2
+ O

(
1

g3

)]
, (3.66a)

γ (g) = 256

27π4g3

{
1 + 56

9π2g
+ 1

π4

[
7

4
β̃2 − 115

9π2
+ 64

3π4

]
1

g2

+ O

(
1

g3

)}
, (3.66b)

where the constant β̃2 would be determined by the next order
(1/g6). The scaling invariant is the Kondo temperature for
this regime [43]:

T (F )
K ≡ De

3π2

8 g− 4
3 ln |g|. (3.67)

Let us emphasize that the nonzero anomalous dimension γ (g)
for the current operator is necessary in this case to resum

even the leading logarithms. Concretely, this means that one
would not obtain the correct beta function by compensating a
change in coupling constant in the 1/g2 term by a change of
bandwidth in the (1/g3) ln 2D

M term; the resulting beta function
would not be consistent with the next term, ∼(1/g4) ln2 2D

M .
One is forced rescale the whole observable as well, which is
equivalent to introducing γ (g).

Notice that we can take the scaling limit D → ∞, g →
−∞ with T (F)

K held fixed, indicating that the strong fer-
romagnetic regime is universal. Resumming the leading
logs, we find that the conductance approaches the uni-
tarity limit asymptotically at high voltage or temperature
(Fig. 5):

G(T,V ) = G0

⎛⎝1 − 3π2

16 ln
√

T 2+V 2

T (F)
K

+ · · ·
⎞⎠. (3.68)

In analogy to the antiferromagnetic case, we expect that the
coefficient − 4

3 of ln |g| in Eq. (3.67) is affected by our cutoff
scheme and may not be reliable; however, this only affects
higher-order corrections to Eq. (3.68). We expect that in the
first correction beyond leading logs, the difference �G is
reliable (see inset of Fig. 5), again by analogy to the antiferro-
magnetic case.

Curiously, the scaling breaks down if the lead temperatures
are different (T1 
= T2). The problem term ∼(1/g5) ln(2D/M )
is in the sub-subleading-log part of the series, and may possi-
bly be affected by cutoff artifacts.

For the special cases G(T ) and G(V ), we obtain

G(T ) = G0

{
1 − 4

9π2

[
7

g2
− 16

π2g3
ln

D

T
+ 64

π4g4
ln2 D

T
− 2048

9π6g5
ln3 D

T

+ 16

π2g3
ln

2π

e1+γ
− 128

π4g4
ln

2π

e1+γ
ln

D

T
+ 2048

9π6g6

(
3 ln

2π

e1+γ
+ 1

)
ln2 D

T

− 4.39
1

g4
+ 1.61

1

g5
ln

D

T

−0.22
1

g5
+ O

(
1

g6

)]}
, (3.69a)

G(V ) = G0

{
1 − 4

9π2

[
7

g2
− 16

π2g3
ln

D

V
+ 64

π4g4
ln2 D

V
− 2048

9π6g5
ln3 D

V

+ 2048

9π6g5
ln2 D

V

− 436

9π2g4
+ 64

9π2
(64 + 25π2)

1

g5
ln

D

V

+ 16

27π6g5
{192[4 − 6 ln 2 + 3ζ (3)]

−24π2} + O

(
1

g6

)]}
. (3.69b)
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In the high-energy regime (T � TK or V � TK ), the running coupling constant is large and negative, and we can use the
Callan-Symanzik equation to find the following universal results:

G(T ) = G0

{
1 − 3π2

16 ln2 T
TK

[
1 + 8

3

ln ln T
TK

ln T
TK

+ α̃
(T )
1

ln T
TK

+ 16

3

ln2 ln T
TK

ln2 T
TK

+ α̃
(T )
2 ln ln T

TK

ln2 T
TK

+ O

(
1

ln2 T
TK

)]}
, (3.70a)

G(V ) = G0

{
1 − 3π2

16 ln2 V
TK

[
1 + 8

3

ln ln V
TK

ln V
TK

+ α̃
(V )
1

ln V
TK

+ 16

3

ln2 ln V
TK

ln2 V
TK

+ α̃
(V )
2 ln ln V

TK

ln2 V
TK

+ O

(
1

ln2 V
TK

)]}
, (3.70b)

where the α̃
(T )
j , α̃

(V )
j constants are

α̃
(T )
1 = 8

9
− 8

3
ln

3π2

8
− 2 ln

2π

e1+γ
, (3.71a)

α̃
(V )
1 = 8

9
− 8

3
ln

3π2

8
, (3.71b)

and

α̃
(T )
2 = −8

(
4

9
ln

27π6

512
+ ln

2π

e1+γ

)
, (3.72a)

α̃
(V )
2 = −32

9
ln

27π6

512
. (3.72b)

Notice that the unitarity limit is reached asymptotically at high
energy (Fig. 5). This is the main prediction of our method so
far. Ultimately, the unitary conductance traces back to the fact
that the bare S matrix of the model becomes a single-particle
phase shift of π/2 in the limit |J| → ∞ (see Sec. II D).

To see the predicted rise towards unitarity experimentally,
one would need a hierarchy of scales T (F )

K � V � Emax or
T (F )

K � T � Emax, where Emax is the lowest-energy scale at
which the Kondo model is no longer an accurate description
of the system. Defining T (F,T )

K and T (F,V )
K in the same way

as in the antiferromagnetic case [see (3.62b) and below],

FIG. 5. The universal conductance G ≡ ∂Isteady state/∂V in the
strong ferromagnetic regime at leading-log approximation. In con-
trast to the antiferromagnetic case in which G is known to reach
the unitarity limit G0 ≡ 2e2/h at T = V = 0 [44], here the unitarity
limit is reached asymptotically at large voltage or temperature. As
the external scale is lowered to T (F)

K and below, the series in 1/g
breaks down and another method is needed. Inset: the first correction
beyond leading log in the quantity �G ≡ G(T,V ) − G(T = 0,V )
for V � T (F)

K , with various values of T .

we find that the universal ratio is the same in this regime:
T (F,T )

K /T (F,V )
K = e1+γ

2π
.

F. RG discussion

The basic picture of scaling in the antiferromagnetic Kondo
model is that the theory is effectively strongly coupled at
low energies (T,V � TK ), even though the coupling constant
that appears in the original Hamiltonian is small (0 < g �
1). Loosely speaking, one says that the coupling constant
increases as one reduces the measurement scale, reaching
infinity at zero energy. It is tempting to suggest, then, that a
calculation using the Kondo Hamiltonian with large g (ex-
panding in powers of 1/g) would reproduce the low-energy
regime of the model with small g. In this section, we show that
this is not so, both by general arguments and by examining
our explicit answers in the large-g regime. Starting from weak
coupling and flowing to strong coupling at low energy is not
the same as starting the theory at strong coupling.

Our statement does not contradict the many successes of
the effective field theory approach to the low-energy regime
(of the model with small g), which refers to the leading irrele-
vant operators around the strong coupling fixed point. Instead,
the conclusion is that the effective field theory approach is
more sophisticated than the simple idea of taking g to be large
in the original Hamiltonian.

To clarify the point, we must carefully set up the field
theoretic version of the renormalization group. For definite-
ness, we consider a dimensionless observable O(D, g, T ) with
temperature T as the only external scale. Our analysis is not
confined to equilibrium, though, and T can be replaced by
any single energy scale (such as a bias voltage). Suppose the
observable is calculated as a power series in g, with the leading
term being g2; then a series expansion in g must take the form

O(D, g, T ) = g2 +
∞∑

n=3

gnFn(D/T ), (3.73)

where Fn(D/T ) are some functions. As discussed in [35],
these functions are constrained by the perturbative renormal-
izability of the model to take a logarithmic form in the T � D
regime:

Fn(D/T ) =
n−2∑
m=0

anm lnm D

T
+ · · · , (3.74)

where the anm coefficients are pure numbers that depend on
the observable being evaluated. The logarithmic terms define
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the “scaling form” part of the observable:

Oscaling form(D, g, T ) = g2 +
∞∑

n=3

n−2∑
m=0

anmgn lnm D

T
. (3.75)

The scaling form satisfies the RG scaling (or Callan-
Symanzik) equation[

D
∂

∂D
+ β(g)

∂

∂g
+ γ (g)

]
Oscaling form = 0. (3.76)

Assuming (as we find for the current) that the leading order of
the anomalous dimension term γ (g) starts at the same order or
higher as the leading order of the beta function, the solution
of the Callan-Symanzik equation then implies that the scaling
form can be written as a function of T/TK only (where TK is
the scaling invariant defined by [D ∂

∂D + β(g) ∂
∂g]TK = 0), up

to corrections that vanish as g → 0+:

Oscaling form(D, g, T ) = funiversal(T/TK )[1 + O(g)]. (3.77)

In the Kondo model, the leading order of the beta function
has negative sign. This implies that TK can be held fixed while
taking the limit D → ∞ and g → 0+, which means that the
function funiversal(T/TK ) is a universal result for the observable
O. In contrast, the scaling invariant cannot be held fixed in the
limit D → ∞ and g → 0−, so the function funiversal(T/TK ) in
the ferromagnetic case only represents what would happen if
the simplified (wide-band) model itself were realized.

Let us focus on the antiferromagnetic (g > 0) case for
now. The procedure for calculating the asymptotic behav-
ior of funiversal(T/TK ) for T � TK using the first few series
coefficients anm is well known. One finds that the solution
of the Callan-Symanzik equation is characterized by a run-
ning coupling (gR = 1

2 ln T/TK
at the leading approximation)

which is found to grow as T is reduced. As T approaches TK

from above, one finds that infinitely many series coefficients
are needed; however, nonperturbative techniques confirm that
the running coupling keeps growing as T is reduced. If one
ignores momentarily the distinction between the running cou-
pling and the bare coupling, one can imagine that a series
in 1/g would provide information about the low-temperature
behavior of funiversal(T/TK ), much in the same way that a
series in g yields the high-temperature behavior.

The basic problem with this approach is that if one repeats
the same steps with the 1/g series, i.e., expand each order
of the series for large bandwidth and declare the logarithmic
part to be the “scaling form,” one arrives at a scaling form
that may not be the same as the one found from the g series.
Since the ultimate goal is to take g → 0+ with TK fixed, the
scaling form of the g series is the correct one. But the parts of
this scaling form that describe the small T/TK behavior of the
function funiversal(T/TK ) may appear to be negligible in the 1/g
series.

A simple example illustrates the point. It is known that
the universal conductance curve G(T ) reaches unitarity at
T = 0 with corrections of the form T 2/T 2

K . Thus, the scaling
form for the conductance must include a contribution of the
form 1

g
T 2

D2 , seeing as this term becomes T 2/D2 in the g → 0+

scaling limit (we assume the conventional expression TK =
De− 1

2g + 1
2 ln g in this discussion). Since this term vanishes for

FIG. 6. Kondo scaling picture. The two universal regimes are
weak antiferromagnetic bare coupling (0 < g � 1, TK = De−1/(2g))
and strong ferromagnetic bare coupling (g < 0, |g| � 1, T (F)

K =
De−3π2 |g|/8). The former has been much studied, and the latter is
predicted by our calculations. In either case, the running coupling
gR is close to the bare coupling if the system is probed at a high-
energy scale (high relative to TK but always small compared to the
bandwidth), but moves away from the bare coupling as the energy
scale is reduced.

large bandwidth rather than diverging logarithmically, it is
exactly the type of term that is dropped in determining the
scaling form of the 1/g series. The logarithmically diverg-
ing terms, on the other hand, can easily be negligible in the
g → 0+ scaling limit; consider, e.g., the expansion 1

g+ln D/T =
1
g − 1

g2 ln D
T + · · · in powers of 1/g. Thus, no finite number of

terms of the 1/g series will yield the low-temperature behavior
since there is no obvious way to identify which contributions
are important in the g → 0+ scaling limit.

The scaling form of the 1/g series describes a different
physical problem: one in which the bare coupling constant
is large in magnitude. The sign of the beta function then
indicates that the strong ferromagnetic regime is universal
and the strong antiferromagnetic regime is nonuniversal. The
quantity − 1

g behaves much like g does in the antiferromag-
netic case; that is, the g = −∞ point behaves like g = 0+, and
g = 0− behaves like g = ∞. Let us state this more definitely.
A system with large negative bare coupling g has a running
coupling that is also large and negative at high energies, so an
RG-improved power series in 1

g produces accurate results. At
low energies, a more powerful technique is needed; neither a
series in 1

g nor a series in the inverse parameter g gives any
information about the low-energy behavior (unless one has all
terms of the series), because in this case the correct scaling
form is the one generated by the 1/g series (which can differ
from the scaling form generated by the g series).

Our calculation yields the beginning of the RG flow in
the strong ferromagnetic regime (see Fig. 6): starting at the
unstable fixed point gR = −∞, the running coupling constant
becomes smaller in magnitude according to gR = − 8

3π2 ln T
T (F )

K

(at leading order). As T approaches T (F )
K from above, |gR|

becomes too small for our calculation to be valid. We expect
that gR continues to flow to the stable fixed point gR = 0−
without any other fixed points in-between (much like the cor-
responding antiferromagnetic flow from gR = 0+ to gR = ∞).
The ground state of the system would flow from a triplet at
high energy, with entropy ln 3, to a free spin at low energy,
with entropy ln 2. We emphasize again that perturbation the-
ory in small, bare, ferromagnetic g provides no information
at all about the low-energy behavior of a system with strong
ferromagnetic g except the extreme point. In other words,
the conductance in the universal strong ferromagnetic regime
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should be zero at T = V = 0, but calculating the approach to
zero requires another method (such as an analysis of leading
irrelevant operators, or NRG).

IV. CONCLUSION AND OUTLOOK

We have provided an exact, explicit solution for the time-
evolving wavefunction in a many-body problem, and found
the corresponding NESS in the long-time limit. In the ther-
modynamic limit, we have found a series expression for the
current which can be expanded either for weak coupling or for
strong coupling, and shown that either expansion converges to
all orders in the steady-state limit. Our series predicts a uni-
versal strong ferromagnetic regime in which the conductance
approaches the unitarity limit asymptotically at large voltage
or temperature. We expect that the same basic picture of RG
flow will be found if the calculation can be repeated using a
conventional cutoff scheme.

There are a number of possible directions to take with this
work in the future. One is the evaluation of the S matrix, not
the bare S matrix that we used in our calculations, but the
physical S matrix for excitations above a filled Fermi sea.
The NESS we obtained in the Kondo model is a many-body
scattering “in” state, and it is straightforward to obtain the
corresponding “out” state by considering evolution to large
negative times. Since the initial quantum numbers are arbi-
trary, we are free to construct a state consisting of a Fermi
sea with one electron above it with momentum p and spin
a; schematically, |FS, pa〉in. The S matrix for elastic single-
particle scattering is then given by out〈FS, pa′|FS, pa〉in. The
calculation of the S matrix can proceed using some of the
same technology developed here, such as the reduction of
a general overlap to a sum of normal-ordered overlaps. If
necessary, the calculation could be done by considering finite
time first and then taking the limit of large time. More compli-
cated scattering processes involving particle-hole pairs could

be considered by making different choices of the initial and
final quantum numbers.

Another direction would be to adapt either the self-
consistent rate equation used in [6] or the Dyson equation
used in [34] to the many-body wavefunction approach pre-
sented here, in order to repeat the calculation of the electric
current in the presence of a nonzero magnetic field on the dot
(particularly in the strong ferromagnetic regime).

It would be interesting to see if our general method for
calculating local quenches can be useful in a wider class
of problems. As we have mentioned, the usual signatures
of integrability in the Kondo model, such as the Yang-
Baxter equation, do not appear in any obvious way in our
calculations.

To take full advantage of the fact that the wavefunction for
a fixed number of electrons is exact, it is essential to find a
different way of taking the thermodynamic limit of observ-
ables other than the approach we took here of expanding in
powers of J or 1/J . We hope that the technology for using
these wave functions to calculate observable quantities in the
thermodynamic limit can eventually reach the advanced state
of development found in equilibrium calculations with the
Bethe ansatz.

ACKNOWLEDGMENTS

We are grateful to Chung-Hou Chung, Piers Coleman,
Garry Goldstein, Yashar Komijani, Yigal Meir, Andrew
Mitchell, Achim Rosch, and Hubert Saleur for helpful discus-
sions. We have benefited from working on related problems
with Huijie Guan, Paata Kakashvili, Christopher Munson,
and Roshan Tourani. A.B.C. acknowledges support from
the Samuel Marateck Fellowship in Quantum Field Theory
Physics and the Excellence Fellowship (both from Rutgers
University). This material is based upon work supported by
the National Science Foundation under Grant No. 1410583.

APPENDIX A: NOTATION FOR CALCULATIONS

We present a compact notation for manipulating the many-body wavefunction and its matrix elements. This notation allows
us to do calculations that would be excessively lengthy if all indices were written out in full. It will be used throughout the
remaining appendices.

We use boldface letters to stand for lists of indices: m = (2, 5, 6), for example. We use mj and m( j) interchangeably to
refer to individual list elements, such as m2 = m(2) = 5. Boldface letters in subscripts indicate products in the manner of the
following examples [in which m has length n, a small circle stands for composition, and σ ∈ Sym(n)]:

cαm = cαm(1) . . . cαm(n) , cαm◦σ
= cαm(σ1 ) . . . cαm(σn ) , (A1)

c†
αm

= c†
αm(n)

. . . c†
αm(1)

, c†
αm◦σ

= c†
αm(σn )

. . . c†
αm(σ1 )

. (A2)

Given any list m of increasing indices (m1 < · · · < mn), we define I j (m) to be the set of increasing lists of length j chosen
from m:

I j (m) = {� = (�1, . . . , � j ) ⊂ m | �1 < · · · < � j}. (A3)

It is often convenient to write a sum over a single index �1 as a sum over lists � of length 1 [i.e., � ∈ I1(m)] in order to use the
notation we define in the next paragraph.

Given � ∈ I j (m), we define ←−−perm[�] to be the permutation of m that brings all the entries of � to the left of all the remaining
entries of m; we define −−→perm[�] similarly. For example, if m = (1, 3, 6, 7) and � = (1, 6), then ←−−perm[�] maps (1, 3, 6, 7) →
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(1, 6, 3, 7) and −−→perm[�] maps (1, 3, 6, 7) → (3, 7, 1, 6). Note that ←−−perm[�] and −−→perm[�] depend implicitly on the list m from
which the entries in � are chosen. We write the sign factors for these permutations in the following way:

←−sgn � ≡ sgn ←−−perm[�], (A4a)
−→sgn � ≡ sgn −−→perm[�]. (A4b)

The slash notation m/� indicates the list m with the indices belonging to � all removed; in the example given above, m/� =
(3, 7). The same slash notation also applies for removing a single entry of list: for instance, m/3 = (1, 6, 7). Using this notation,
the many-body wavefunction (2.30) can be written more compactly as

|�(t )〉 =
N∑

n=0

∑
m∈In(N)

(←−sgn m)c†
αN/m

(t )
∑

σ∈Sym(n)

(sgn σ )
∣∣χαm◦σ ,β (t )

〉
. (A5)

APPENDIX B: PROOF OF GENERAL FORMALISM

We demonstrate that the “inverse problem” conditions (2.31a) and (2.31b) imply that the construction (A5) satisfies |�(t )〉 =
e−iHt |�〉. The second condition (2.31b) immediately implies that |�(t = 0)〉 = |�〉. The main task is to show that the first
condition (2.31a) implies that (H − i d

dt )|�(t )〉 = 0. On any given term within |�(t )〉, we bring H − i d
dt to the right past all of

the c†(t ) operators to hit the |χ (t )〉 state, at the cost of generating an A(t ) operator for each c†(t ) operator that is passed. Since
|χ,β (t )〉 ≡ |β(t )〉 is annihilated by (H − i d

dt ), Eq. (A5) yields(
H − i

d

dt

)
|�(t )〉 =

N∑
n=1

∑
m∈In (N)

(←−sgn m)c†
αN/m

(t )
∑

σ∈Sym(n)

(sgn σ )

(
H − i

d

dt

)∣∣χαm◦σ ,β (t )
〉

+
N−1∑
n=0

∑
m∈In(N)

(←−sgn m)
∑

�∈I1(N/m)

(←−sgn �)c†
αN/m/�

(t )Aα�(1) (t )
∑

σ∈Sym(n)

(sgn σ )
∣∣χαm◦σ ,β (t )

〉
. (B1)

Using the condition (2.31a), we find that the first term becomes

1st term of (B1) = −
N∑

n=1

∑
m∈In(N)

(←−sgn m)c†
αN/m

(t )
∑

σ∈Sym(n)

(sgn σ )Aαm(σn ) (t )
∣∣χα(m◦σ )/m(σn ),β (t )

〉
(B2a)

= −
N∑

n=1

∑
m∈In(N)

(←−sgn m)c†
αN/m

(t )
∑

�∈I1(m)

(−→sgn �)Aα�(1) (t )
∑

σ∈Sym(n−1)

(sgn σ )
∣∣χα(m/�)◦σ ,β (t )

〉
, (B2b)

where the second line follows from relabeling mσn → �1.
For the second term of (B1), we note the following relabeling of summations, which is valid for any function X :∑

m∈In(N)

(←−sgn m)
∑

�∈I1(N/m)

(←−sgn �)X (m, �) =
∑

m∈In+1(N)

(←−sgn m)
∑

�∈I1(m)

(−→sgn �)X (m/�, �). (B3)

Thus,

2nd term of (B1) =
N−1∑
n=0

∑
m∈In+1(N)

(←−sgn m)c†
αN/m

(t )
∑

�∈I1(m)

(−→sgn �)Aα�(1) (t )
∑

σ∈Sym(n)

(sgn σ )
∣∣χα(m/�)◦σ ,β (t )

〉
, (B4)

which is precisely what is needed to cancel the first term of (B1) (once we relabel the summation variable n → n − 1). This
completes the proof that (A5) satisfies the time-dependent Schrödinger equation.

APPENDIX C: KONDO CROSSING STATES IN THE GENERAL CASE

We calculate the n = 1 crossing state for |t | < L/2, finding that the negative time solution is related to the positive time
solution by a simple transformation. We then show that the formula (2.51) for the crossing states |χeknan,a0 (t )〉 solves the
appropriate inverse problem for arbitrary n. We also present the solution in a more general Hamiltonian with an anisotropic
Kondo interaction and a potential scattering term.

We generalize the ansatz (2.42) for the n = 1 crossing state to∣∣χek1a1,a0 (t )
〉 = 1√

L

∫ L/2

−L/2
dx
(
F b1,b0

k1a1,a0
(t − x1)�(0 < x1 < t ) + Gb1,b0

k1a1,a0
(t − x1)�(t < x1 < 0)

)
ψ

†
eb1

(x)eib0Bt |b0〉, (C1)
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where F is given by Eq. (2.48) and G is another smooth function. For |t | < L/2, we obtain(
H − i

d

dt

)∣∣χek1a1,a0 (t )〉 = 1√
L

[(
−iIb1b0

d1d0
+ 1

4
Jσb1d1 · σb0d0

)
F d1,d0

k1a1,a0
(t )eid0Bt�(t )

+
(

iIb1b0
d1d0

+ 1

4
Jσb1d1 · σb0d0

)
Gd1,d0

k1a1,a0
(t )eid0Bt�(−t )

]
ψ

†
eb1

(0)|b0〉. (C2)

Inserting a factor of 1 = �(t ) + �(−t ) into Eq. (2.45) yields

Aek1a1 (t )|a0(t )〉 = 1√
L

1

2
Je−ik1t eia0Bt [�(t ) + �(−t )]σb1a1 · σb0a0ψ

†
eb1

(0)|b0〉. (C3)

The differential equation (H − i d
dt )|χek1a1,a0 (t )〉 = −Aek1a1 (t )|a0〉 then separates into a �(t ) part and a �(−t ) part. The �(t ) part

has already been considered in the main text, leading to the condition (2.46) on the function F . The �(−t ) part leads to the
following condition on the function G:(

iIb1b0
d1d0

+ 1
4 Jσb1d1 · σb0d0

)
Gd1,d0

k1a1,a0
(t )eid0Bt = − 1

2 Je−ik1t eia0Btσb1a1 · σb0a0 , (C4)

from which we conclude [comparing to Eq. (2.46)] that G(−t ) = F ∗(t ).
Our next task is to show that |χeknan,a0 (t )〉 as given in (2.51) satisfies(

H − i
d

dt

)∣∣χeknan,a0 (t )
〉 = −Aeknan (t )

∣∣χekn/nan/n,a0 (t )
〉
, (C5)∣∣χeknan,a0 (t = 0)

〉 = 0. (C6)

The crossing state (2.51) vanishes at t = 0 by construction. To show that the differential equation (C5) holds, we need the
n-variable generalization of the delta-Heaviside regularization (2.44), namely,

δ(xn)�(0 < xn < · · · < x1 < t ) = 1
2δ(xn)�(0 < xn−1 < · · · < x1 < t ). (C7)

By computations very similar to the n = 1 case discussed in the main text, we obtain(
H − i

d

dt

)∣∣χknan,a0 (t )
〉 = L−n/2

∫ L/2

−L/2
dxn/n δc0

a0

(
n−1∏
j=1

F
bj ,c j

k j a j ,c j−1
(t − x j )

)(
−iIbnb0

dnd0
+ 1

4
Jσbndn · σb0d0

)
× F dn,d0

knan,cn−1
(t )�(0 < xn−1 < · · · < x1 < t )ψ†

ebn
(0)ψ†

ebn/n
(xn/n)eib0Bt |b0〉 (C8)

and

Aeknan (t )
∣∣χekn/nan/n,a0 (t )

〉 = L−n/2
∫ L/2

−L/2
dxn/n δc0

a0

(
n−1∏
j=1

F
bj ,c j

k j a j ,c j−1
(t − x j )

)
1

2
Je−ikn+1tσbnan · σb0cn−1

×�(0 < xn−1 < · · · < x1 < t )ψ†
ebn

(0)ψ†
ebn/n

(xn/n)eib0Bt |b0〉. (C9)

Comparing, we see that the differential equation (C5) holds due to the same condition (2.46) that F was required to satisfy in
order to solve the n = 1 problem. This confirms that Eq. (2.51) is the correct n-electron crossing state for the Kondo model. The
case of negative t can be done similarly.

A more general form of the Kondo Hamiltonian can be solved by essentially the same calculations, with the only change
being a modification of the T matrix. In particular, we can allow anisotropy and potential scattering:

H = −i
∫ L/2

−L/2
dx

∑
γ=1,2

ψ†
γ a(x)

d

dx
ψγ a(x) +

∑
γ ,γ ′=1,2

1

2
ψ†

γ a(0)

[
3∑

j=1

Jjσ
j

aa′S j + J ′δaa′

]
ψγ ′a′ (0) − BSz. (C10)

Following the same steps, we find that the condition (2.46) that the function F is required to satisfy (in the J = 0 basis)
generalizes to[

−iIb1b0
d1d0

+ 1

2

(
1

2

3∑
j=1

Jjσ
j

b1d1
σ

j
b0d0

+ J ′δb1a1δb0a0

)]
F d1,d0

k1a1,a0
(t )eid0Bt = −e−ik1t eia0Bt

[
1

2

3∑
j=1

Jjσ
j

b1a1
σ

j
b0a0

+ J ′δb1a1δb0a0

]
. (C11)

Only the spin part has changed (not the time-dependent part). The same solution (2.48) works with a more general T matrix that
is found by matrix inversion. Here, we present the solution in the partially anisotropic case, in which we fix m = 1, 2, or 3 and
declare that the remaining two Kondo couplings are equal to J⊥. (We allow m to be general so that the special direction may or
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may not coincide with the z axis, which is the direction of the B field.) The T matrix is given by

T = i

[
− 2I + 1

1 + i 1
2

(
1
2 Jm + J ′)P+(I + σ m ⊗ σ m) + 1

1 + i 1
2

(
J⊥ − 1

2 Jm + J ′)P+(I − σ m ⊗ σ m)

+ 1

1 − i 1
2

(
2J⊥ − 1

2 Jm − J ′)P−(I + σ m ⊗ σ m) + 1

1 − i 1
2

(
J⊥ + 1

2 Jm − J ′)P−(I − σ m ⊗ σ m)

]
, (C12)

where P± = 1
2 (I ± P).

In the fully isotropic case (Jx = Jy = Jz ≡ J ) with potential scattering included, we obtain

T = 2i

(
−I + 1

1 + i 1
2

(
1
2 J + J ′)P+ + 1

1 − i 1
2

(
3
2 J − J ′)P−

)
, (C13)

which provides another check; a short calculation confirms that the corresponding bare S matrix S = I − iT agrees exactly with
that found in the Bethe ansatz solution of the one-lead model (see [29], for example, bearing in mind that the conventions are
related by J = 2JBethe ansatz).

We can also solve the quench problem for the Hamiltonian (C10) in the |J| = ∞ basis.

APPENDIX D: EVALUATION OF BILINEARS

We derive Eq. (3.12), the formula for the expectation value of ψ†
oa(x)ψea(x). For most of the proof, it is convenient to work

in a more general setting; hence, we consider the expectation value of the product O†
1O2 of two fermionic operators, and return

to the notation of c†
α operators and impurity states |β〉 (see Sec. II A). The time-dependent operators c†

α (t ) behave the same as c†
α

operators under normal ordering and satisfy the same anticommutation relations ({cα′ (t ), c†
α (t )} = {cα′ , c†

α} = δαα′ ).
We begin by proving a useful relation for rearranging sums:

N∑
n,n′=0

∑
m∈In (N)

(←−sgn m)
∑

m′∈In′ (N)

(←−sgn m′)
min{N−n,N−n′}∑

p=0

∑
�∈Ip(N/m)

(−→sgn �)
∑

�′∈Ip(N/m′ )

(−→sgn �′)X (m, m′, �, �′)

=
N∑

p=0

∑
�,�′∈Ip(N)

(←−sgn �)(←−sgn �′)
N∑

n,n′=0

∑
m∈In(�)

(←−sgn m)
∑

m′∈In′ (�′ )

(←−sgn m′)X (m, m′, N/�, N/�′), (D1)

where X is any function. Proof. On the left-hand side, do the p sum before the n, n′ sums and the �, �′ sums before the m, m’
sums. This yields

N∑
p=0

∑
�,�′∈Ip(N)

(−→sgn �)(−→sgn �′)
N−p∑

n,n′=0

∑
m∈In(N/�)

(←−sgn m)
∑

m′∈In(N/�′ )

(←−sgn m′)X (m, m′, �, �′). (D2)

Then, we need only relabel p → N − p, � → N/�, and �′ → N/�′, noting that this changes each −→sgn to ←−sgn.
The next preparatory step is to show that the normal-ordered overlap of states evolving from any initial quantum numbers is

zero (except for the trivial case of time-evolving impurity states with no creation operators):

:
〈
�α′

m,β ′ (t )
∣∣�αm,β (t )

〉
: =

{
δββ ′ , m is the empty list
0, otherwise. (D3)

We can show this by direct calculation in the Kondo model, but the following proof is simpler and more general. We use Wick’s
theorem:

cα′
m′ (t )c†

αm
(t ) =

min{|m|,|m′|}∑
p=0

∑
�∈Ip(m)

(−→sgn �)
∑

�′∈Ip(m′ )

(−→sgn �′)
∑

σ∈Sym(p)

(sgn σ )

(
p∏

j=1

{
cα′

�′ (σ j )
(t ), c†

α�( j)
(t )
})

: cα′
m′/�′

(t )c†
αm/�

(t ) :, (D4)

and the relation (D1) to obtain the following expression for the overlap of two states as a sum of normal-ordered overlaps:

〈
�α′

N,β ′ (t )
∣∣�αN,β (t )

〉 = N∑
n=0

∑
m,m′∈In(N)

(←−sgn m)(←−sgn m′)
∑

σ∈Sym(N−n)

(sgn σ )

×
(

N−n∏
j=1

{
cα′

(N/m′ )(σ ( j))
(t ), c†

α(N/m)( j)
(t )
})

:
〈
�α′

m′ ,β ′ (t )
∣∣�αm,β (t )

〉
:, (D5)
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where the n = 0 term on the right-hand side is (
∏N

j=1{cα′
σ ( j)

(t ), c†
α j

(t )})〈β ′(t )|β(t )〉. The left-hand side is exactly equal to this

n = 0 term; to see this, consider the left-hand side at t = 0 (it is independent of time) and recall that the c†
α (t ) operators have the

same anticommutation relations as the c†
α operators. Thus, the sum from n = 1 to N on the right-hand side yields zero. Taking

N = 1, we obtain

0 = :
〈
�α′

N (1),β
′ (t )
∣∣�αN (1),β (t )

〉
:, (D6)

which is the first nontrivial case of the identity (D3). Since the α, α′ labels are arbitrary, we see that the n = 1 contribution on
the right-hand side of Eq. (D5) vanishes for any N . Taking N = 2 yields

0 = : 〈�α′
N (1)α

′
N (2),β

′ (t )|�αN (1)αN (2),β (t )〉 :, (D7)

and so on up to arbitrary N � 1 by induction. This completes the proof of Eq. (D3). �
We can now consider the bilinear O†

1O2. Wick’s theorem with the bilinear states

cα′
m′ (t )O†

1O2c†
αm

(t ) =
min{|m|,|m′|}∑

p=0

∑
�∈Ip(m)

(−→sgn �)
∑

�′∈Ip(m′ )

(−→sgn �′)

×
∑

σ∈Sym(p)

(sgn σ )

(
p∏

j=1

{
cα′

�′ (σ j )
(t ), c†

α�( j)
(t )
})[

: cα′
m′/�′

(t )O†
1O2c†

αm/�
(t ) :

+
∑

s∈I1(m/�)

(−→sgn s)
{
O2, c†

αs(1)
(t )
}

: cα′
m′/�′

(t )O†
1c†

αm/�/l
(t ) :

+
∑

s′∈I1(m′/�′ )

(−→sgn s′)
{
cα′

s′ (1)
(t ),O†

1

}
: cα′

m′/�′/s′
(t )O2c†

αm/�
(t ) :

+
∑

s∈I1(m/�)

(−→sgn s)
{
O2, c†

αs(1)
(t )
} ∑

s′∈I1(m′/�′ )

(−→sgn s′)
{
cα′

s′ (1)
(t ),O†

1

}
: cα′

m′/�′/s′
(t )c†

αm/�/s
(t ) :

]
. (D8)

Using this and the relation (D1), we obtain

〈
�α′

N,β ′ (t )
∣∣ O†

1O2|�αN,β (t )
〉 = N∑

n=1

∑
m,m′∈In (N)

(←−sgn m)(←−sgn m′)
∑

σ∈Sym(N−n)

(sgn σ )

×
(

N−n∏
j=1

{
cα′

(N/m′ )(σ j )
(t ), c†

α(N/m)( j)
(t )
})[

:
〈
�α′

m′ ,β ′ (t )
∣∣O†

1O2

∣∣�αm,β (t )
〉

:

+
∑

�∈I1(m)

(−→sgn �)
{
O2, c†

α�(1)
(t )
}

:
〈
�α′

m′ ,β ′ (t )
∣∣O†

1

∣∣�αm/�,β (t )
〉

:

+
∑

�′∈I1(m′ )

(−→sgn �′)
{
cα′

�′ (1)
(t ),O†

1

}
:
〈
�αm′/�′ ,β ′ (t )

∣∣O2

∣∣�αm,β (t )
〉

:

+
∑

�∈I1(m)

(−→sgn �
){
O2, c†

α�(1)
(t )}

∑
�′∈I1(m′ )

(−→sgn �′)
{
cα′

�′ (1)
(t ),O†

1

}
:
〈
�α′

m′/�′ ,β
′ (t )
∣∣�αm/�,β (t )

〉
:

]
. (D9)

Due to the identity (D3), the last term in the brackets is zero unless n = 1. A further simplification occurs when we set αN =
α′

N and β = β ′: the product of anticommutators is then equal to unity if m′ = m and σ is the identity permutation, and zero
otherwise. We also take advantage of the fact that the fermionic antisymmetry of the bra and ket vectors under exchange of
quantum numbers remains valid in a normal-ordered inner product (even with O†

1 and/or O2 inserted); this allows us to replace
the sums over increasing lists of indices by unrestricted sums, at the cost of combinatorial factors. After some relabelings of
indices, we obtain

〈
�αN,β (t )

∣∣ O†
1O2

∣∣�αN,β (t )
〉 = N∑

n=1

N∑
m1,...,mn=1

[
1

n!
:
〈
�αm,β (t )

∣∣O†
1O2

∣∣�αm,β (t )
〉

:

+ 1

(n − 1)!

{
O2, c†

αm(n)
(t )
}

:
〈
�αm,β (t )

∣∣O†
1

∣∣�αm/m(n),β (t )
〉

:
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+ 1

(n − 1)!

{
cαm(n) (t ),O†

1

}
:
〈
�αm/m(n),β (t )

∣∣O2

∣∣�αm,β (t )
〉

:

]

+
N∑

j=1

{
cα j (t ),O†

1

}{
O2, c†

α j
(t )
}
. (D10)

Let us specialize to the two-lead Kondo model and take the inserted operators to be O†
1 = ψ†

oa(x), O2 = ψea(x). Then, since
the crossing states are built from even operators only, the ψ†

oa(x) operator must be in an anticommutator (since otherwise the
normal-ordering symbol makes it annihilate a crossing state); this eliminates two terms. Writing the electron quantum numbers
as α ≡ γ ka, we obtain

〈
�αN,a0 (t )

∣∣ ψ†
oa(x)ψea(x)

∣∣�αN,a0 (t )
〉 = N∑

n=1

N∑
m1,...,mn=1

1

(n − 1)!

{
cαm(n) (t ), ψ†

oa(x)
}

× :
〈
�αm/m(n),β (t )

∣∣ψea(x)
∣∣�αm,β (t )

〉
: +

N∑
j=1

{
cα j (t ), ψ†

oa(x)
}{

ψea(x), c†
α j

(t )
}
. (D11)

This is Eq. (3.12) in the main text, once the compact notation is written out in full.

APPENDIX E: EVALUATION OF THE NORMAL-ORDERED OVERLAP

We derive the result (3.21) for the normal-ordered overlap in the even sector that appears in the calculation of the electric
current. We need the following identity for rearranging the types of sums that arise in normal-ordered overlaps:∑

m∈I j (n)

(−→sgn m)
∑

σ∈Sym( j)

(sgn σ )
∫ t

0
dxmX bm

km◦σ am◦σ
(t, xm)�(xmj < · · · < xm1 )ψ†

bm
(xm)

×
∑

w∈Sym(n− j)

(sgn w)
∫ t

0
dxn/mY

bn/m

k(n/m)◦wa(n/m)◦w
(t, xn/m)�(x(n/m)n− j < · · · < x(n/m)1 )ψ†

bn/m
(xn/m)

=
∑

σ∈Sym(n)

(sgn σ )
∑

m∈I j (n)

∫ t

0
dxnX bm

kσ◦maσ◦m
(t, xm)Y bn/m

kσ◦(n/m)aσ◦(n/m)
(t, xn/m)�(xn < · · · < x1)ψ†

bn
(xn), (E1)

where 1 � j � n, and X and Y are any functions. To prove this identity, we note that the product of two Heavside functions
can always be written as a sum over Heaviside functions, with the summation including all orderings consistent with the two
original Heaviside functions. For instance, �(x1 < x2)�(x3 < x4) = �(x1 < x2 < x3 < x4) + �(x3 < x1 < x4 < x2)+ (four
more terms), that is, all the orderings of the four variables such that x1 < x2 and x3 < x4. We assume that no two of the x
variables are ever equal (so that orderings are always unambiguous); this amounts to ignoring sets of measure zero, which make
no difference as the x variables are always integrated. The generalization of this example is

�(xmj < · · · < xm1 )�(x(n/m)n− j < · · · < x(n/m)1 ) =
∑

�∈I j (n)

�(xι[m,�](n) < · · · < xι[m,�](1) ), (E2)

where the permutation ι[m, �] ∈ Sym(n) is defined via

ι[m, �] ◦ −−→perm[m] = −−→perm[�]. (E3)

The meaning of this permutation becomes more clear if we note that ι[m, �] ◦ � = m and ι[m, �] ◦ (n/�) = n/m; in other
words, ι[m, �] puts m at spots � and leaves n/m in the original order. Making the change of variables xp → xι[m,�]−1(p) and
bp → bι[m,�]−1(p), we find that the left-hand side of Eq. (2.7) is equal to∑

�,m∈I j (n)

(−→sgn m)
∑

σ∈Sym( j),w∈Sym(n− j)

(sgn σ )(sgn w)
∫ t

0
dxn X b�

k�◦σ a�◦σ
(t, x�)

× Y
bn/�

k(n/�)◦wa(n/�)◦w
(t, xn/�)�(xn < · · · < x1)ψ†

b�
(x�)ψ†

bn/�
(xn/�). (E4)

We rearrange the creation operators ψ
†
b�

(x�)ψ†
bn/�

(xn/�) = (−→sgn �)ψ†
bn

(xn) and note that (−→sgn m)(−→sgn �) = sgn ι[m, �]. To complete
the proof, we relabel several of the summations as a single sum over permutations σ ′:∑

m∈I j (n)

∑
σ∈Sym( j),w∈Sym(n− j)

(sgn ι[m, �])(sgn σ )(sgn w) ←→
∑

σ ′∈Sym(n)

(sgn σ ′), (E5)
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where the permutation σ ′ ∈ Sym(n) is defined via σ ′ ◦ � = m ◦ σ and σ ′ ◦ (n/�) = (n/m) ◦ w. The right-hand side of Eq. (2.7)
is then obtained once we relabel σ ′ as σ and � as m.

Our task is to evaluate the normal-ordered inner product of

|�eknan,a0 (t )〉 =
n∑

j=0

∑
m∈I j (n)

(−→sgn m)c†
ekmam

(t )
∑

σ∈Sym(�)

(sgn σ )
∣∣χek(n/m)◦σ a(n/m)◦σ ,a0 (t )

〉
(E6)

and

〈
�k′

n/na′
n/n,a

′
0
(t )
∣∣cek′

na′
n
(t ) =

n∑
j′=1

∑
m′ ∈ I j′ (n)

n ∈ m′

(−→sgn m′)
∑

σ∈Sym( j′ )

(sgn σ )
〈
χek′

(n/m′ )◦σ
a′

(n/m′ )◦σ
,a′

0
(t )
∣∣cek′

m′ a′
m′ (t ). (E7)

Note that we have changed the labeling (via m → n/m, m′ → n/m′) so that we are summing over which subsets of the original
quantum numbers are put into momentum operators (rather than into crossing states). The key point is that normal ordering
forces each c†(t ) to contract with a ψ (x) operator inside a 〈χ (t )| state, and each c(t ) operator to contract with a ψ† operator
inside a |χ〉 state; c†(t ) and c(t ) operators never contract with each other. We can therefore drop the part of c†(t ) that is outside
the forward light cone (in position space). Our strategy is to bring each half of the inner product to a more suitable form using
the identity (E1), then impose normal ordering on the overlap by requiring that the c†(t ) and c(t ) operators do not contract.

Performing some relabelings of indices and using the identity (E1), we obtain

∣∣�eknan,a0 (t )〉 = L−n/2
n∑

j=0

∑
m∈I j (n)

(−→sgn m)
∫ t

0
dxn

∑
σ∈Sym( j)

(sgn σ )e−ikm◦w (t−xm )Ibm
am◦σ

�(xm( j) < · · · < xm(1) )

×ψ
†
ebm

(xm)
∑

σ∈Sym(n− j)

(sgn σ ) e−ik(n/m)◦σ (t−xn/m )Mbn/m,b0
a(n/m)◦σ ,a0�(x(n/m)(n− j) < · · · < x(n/m)(1) )ψ

†
bn/m

(xn/m)|b0〉 + . . .

= L−n/2
∑

σ∈Sym(n)

(sgn σ )
n∑

j=0

∑
m∈I j (n)

∫ t

0
dxne−ikσ◦n (t−xn )Ibm

aσ◦m
Mbn/m,b0

aσ◦(n/m),a0�(xn < · · · < x1)ψ†
bn

(xn)|b0〉 + . . . , (E8)

where m are the indices that were assigned to c†(t ) operators (which have been truncated to include only the part that survives
inside a normal-ordered product), and where we have used the notation

Mbn,b0
an,a0

= δc0
a0

δb0
cn

n∏
j=1

(−iT )b j c j
a j c j−1 . (E9)

A similar calculation for the other half of the inner product [requiring a slight generalization of the identity (2.7) to accommodate
the condition n ∈ m′] yields

c†
ek′

na′
n
(t )|�ek′

n/na′
n/n,a

′
0
(t )〉 = L−n/2

∑
σ ′∈Sym(n)

(sgn σ ′)
n∑

j′=1

∑
m′∈I j′ (n)

n∈σ ′◦m′

∫ t

0
dxne−ikσ ′◦n′ (t−xn )Ibm′

a′
σ ′◦m′

× Mbn/m′ ,b0

a′
σ ′◦(n/m′ )

,a′
0
�(xn < · · · < x1)ψ†

bn
(xn)|b0〉 + . . . , (E10)

where m′ are the indices assigned to c†(t ) operators. The overlap of (E8) and (E10) can then be put into normal order by
requiring that the lists m and m′ have no entries in common. The Heaviside functions force the ψ and ψ† operators to contract
in the simplest way, and so we obtain

:
〈
�k′

n/na′
n/n,a

′
0
(t )
∣∣cek′

na′
n
(t )
∣∣�eknan,a0 (t )

〉
:= L−n

∑
σ,σ ′∈Sym(n)

(sgn σ )(sgn σ ′)
n∑

j=0

n∑
j′=1

∑
m∈I j (n),m′∈I j′ (n)

|m∩m′ |=0, n∈σ ′◦m′

Ibm′
a′

m′

×M∗bn/m′ ,b0

a′
n/m′ ,a′

0
Mbn/m,b0

an/m,a0 Ibm
am

∫ t

0
dxne−i(kσ◦n−k′

σ ′◦n )(t−xn )�(xn < · · · < x1). (E11)
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Using the unitarity of the bare S matrix (S∗b1b0
c1c0

Sc1c0
a1a0

= Ib1b0
a1a0

), we further simplify this expression to

: 〈�k′
n/na′

n/n,a
′
0
(t )|cek′

na′
n
(t )|�eknan,a0 (t )〉 := L−n

∑
σ,σ ′∈Sym(n)

σ ′ (n)=n

(sgn σ )(sgn σ ′)�n−1[a′
σ ′◦(n/n); aσ◦(n/n)]

b0cn−1

a′
0a0

×Manb0
aσ (n)cn−1

∫ t

0
dxne−i(kσ◦n−k′

σ ′◦n )(t−xn )�(xn < · · · < x1). (E12)

Equation (3.21) in the main text is then obtained by setting each k′
j = k j and a′

j = a j , and writing out the indices.
A very similar calculation confirms Eq. (D3), which was shown earlier by general arguments; one finds that the requirement

n ∈ m′ is absent, and that the inner product vanishes due to the unitarity of the bare S matrix.

APPENDIX F: PROPERTIES OF SPIN SUMS

In this Appendix, we prove that for n � 2, the spin sum W (σ )
n (J ) has at least n + 1 powers of ZP (which demonstrates that the

current series in the main text can be read as a series in J or in 1/J). We then prove the spin sum identity (3.35) from the main
text, which confirms that all orders of either series (J or 1/J) converge in the long-time limit.

From the definition (3.23), we have the following rule for generating �n+1 from �n:

�n+1[a′
n, a′

n+1; an, an+1]c′c
a′

0a0
= −|ZP|2�n[a′

n; an]c′c
a′

0a0
δ

a′
n+1

an+1 + ZI Z
∗
P

(
�n[a′

n; an]an+1c
a′

0a0
δc′

a′
n+1

− �n[a′
n; an]c′an+1

a′
0a0

δc
an+1

)
. (F1)

The base case, n = 1, can be found by a short calculation:∑
a0

�1[a′
1; a1]c′c

a0a0
= |ZP|2(2I

a′
1c′

a1c − I
a′

1c′
a1c
)
. (F2)

Consider n � 2. From Eq. (3.25), S = ZI I + ZPP, and the fact that the tensor �n vanishes when its upper two indices are
contracted, we obtain

W (σ )
n (J ) = − 1

2n+1
(sgn σ )

∑
a0,a1,...,an

ZP�n−1[an/n; a(n/n)◦σ ]aσn an
a0a0

. (F3)

The base case and the update rule (F1) then confirm that W (σ )
n (J ) has at least n + 1 powers of ZP.

We proceed to prove the identity (3.35) from the main text, repeated here for reference:

�n[an; an◦σ ]c′c
a0a0

= 0 [n � 1, σ ∈ Sym(n)], (F4)

with implied summation over any repeated spin indices. Rather than use the explicit forms of the coefficients ZI and ZP, we only
use the fact that they are constrained by the unitarity of the bare S matrix:

|ZI |2 + |ZP|2 = 1, (F5a)

ZI Z
∗
P + Z∗

I ZP = 0. (F5b)

The proof uses the update rule (F1) and the base case (F2). To give a sense of the pattern for �n, we present the n = 2 case,
as well:

�2[a′
1, a′

2; a1, a2]c′c
a0a0

= |ZP|2
[
|ZP|2

(
I

a′
1a′

2c′
a1a2c − 2I

a′
2c′c

a2a′
1a1

)
+ 2ZI Z

∗
P

(
I

a′
1c′c

a2a′
2a1

− I
a′

2c′c
a1a′

1a2

)]
. (F6)

The pattern is the following: a sum of identity tensors multiplied by some function of ZI and ZP. In each identity tensor, we can
either have (1) c′ contracts with c and each a′

j contracts with a j , or (2) c′ contracts with some a′
j′ , c contracts with some a j , and

the remaining am and a′
m indices contract in some way (always pairing a primed with an unprimed index). To be precise, we will

show by induction the following general form:

�[a′
n; an]c′c

a0a0
= XnIa′

nc′
anc +

∑
σ ′∈Sym(n−1)

n∑
j, j′=1

Y (σ ′ )
n, j, j′ I

a′
n/ j′

a(n/ j)◦σ ′ I
c′c
a′

j′ a j
, (F7)

where the coefficients Xn and Y (σ ′ )
n, j, j′ depend on ZI and ZP. The base case is of this form, with −X1 = 1

2Y (1)
1,1,1 = |ZP|2. For the

induction step, we assume this general form for some n � 1 and use the update rule to obtain

�n+1[a′
n, a′

n+1; an, an+1]c′c
a0a0

= −|ZP|2XnI
a′

na′
n+1c′

anan+1c −
∑

σ ′∈Sym(n−1)

n∑
j, j′=1

Y (σ ′ )
n, j, j′ I

an/ j′
a(n/ j)◦σ ′

×
[
−|ZP|2δa′

n+1
an+1 δ

c′
a′

j′
δc

a j
+ ZI Z

∗
P

(
δ

a′
j′

an+1δ
c′
a′

n+1
δc

a j
− δ

a′
n+1

a j δc′
a′

j′
δc

an+1

)]
. (F8)
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TABLE II. Linear combinations v
(σ )
1 , . . . , v(σ )

n .

σ ≡ (σ1, . . . , σn) v
(σ )
1 v

(σ )
2 v

(σ )
3 v

(σ )
4

(1) 0
(2,1) u1 −u1

(3,1,2) u1 u2 −u1 − u2

(2,3,1) u1 + u2 −u1 −u2

(3,2,1) u1 + u2 0 −u1 − u2

(2,3,4,1) u1 + u2 + u3 −u1 −u2 −u3

(2,4,1,3) u1 + u2 −u1 u3 −u2 − u3

(3,1,4,2) u1 u2 + u3 −u1 − u2 −u3

(3,4,1,2) u1 + u2 u2 + u3 −u1 − u2 −u2 − u3

(4,1,2,3) u1 u2 u3 −u1 − u2 − u3

(4,3,2,1) u1 + u2 + u3 u2 −u2 −u1 − u2 − u3

As claimed, this expression is of the general form (F7). We can read off Xn+1 = −|ZP|2Xn. While extracting Y (σ ′ )
n+1, j, j′ would

be messy, we can see that the remaining terms all include Ic′c
a′

j′ a j
with j, j′ ∈ {1, . . . , n + 1}, with the remaining am indices

contracted with the remaining a′
m′ indices in some order. [Note that we have written some contractions as Kronecker deltas

for typographical clarity. Also, we can put the unprimed indices in the canonical order an/ j′ that appears in (F7) simply by
rearranging the corresponding unprimed indices below, which is just some choice of the permutation σ ′ ∈ Sym(n).]

We proceed to prove the main result by induction. For the base case, we note that setting c′ = c yields zero in Eq. (F2). Next,
we assume that (F4) holds for some n � 1 [and for any σ ∈ Sym(n)], and we let w ∈ Sym(n + 1). Then, the update rule (F1)
yields

�n+1[an, an+1; aw◦n, awn+1 ]c′c
a0a0

= −|ZP|2�n[an; aw◦n]c′c
a0a0

δan+1
awn+1

+ ZI Z
∗
P

(
�n[an; aw◦n]

awn+1 c
a0a0 δc′

an+1
− �n[an; aw◦n]c′an+1

a0a0
δc

awn+1

)
. (F9)

The first term on the right-hand side vanishes due to the induction assumption. This is particularly clear if wn+1 = n; but even if
wn+1 � n, we are free to relabel the summation indices to obtain the same form (F4) that vanishes by assumption. To deal with
the second term on the right-hand side, we use the general form (F7) to find

coeff. of ZI Z
∗
P = XnIan

aw◦n

(
δc′

an+1
δc

awn+1
− δc′

awn+1
δc

an+1

)
+

∑
σ ′∈Sym(n−1)

n∑
j, j′=1

Y (σ ′ )
n, j, j′ I

an/ j′
aw◦(n/ j)◦σ ′

(
δ

awn+1

a′
j

δc′
an+1

δc
aw j

− δan+1
aw j

δc′
a j′

δc
awn+1

)
. (F10)

In the Xn term, we get zero immediately if wn+1 = n + 1; if instead wn+1 � n, then Ian
aw◦n

= (const)δ
awn+1
an+1 (where the constant is

some number obtained from summing all the other spin indices), yielding zero once we sum over an+1 and awn+1 . Similarly, in
each Y (σ ′ )

n, j, j′ term, we will have to contract either (1) aw j with a j′ and awn+1 with an+1, or (2) aw j with an+1 and awn+1 with a j′ , and
either way, the two terms in parentheses cancel once the spin indices are summed. For instance, if w j = j′ and wn+1 = n + 1,
then we are in case (1) immediately; if instead w j = j′ but wn+1 � n, then the identity tensor in front yields (const)δ

awn+1
an+1 , and

we are again in case (1), and so on [45]. Thus, we have shown that Eq. (F4) holds for n + 1, completing the induction proof.

APPENDIX G: ASYMPTOTIC EVALUATION OF INTEGRALS

We study the asymptotic behavior as λ → ∞ of the general form (3.44), namely,

R(σ )[{ f , h}, λ] ≡
∫ ∞

0
du1 . . . dun−1

[
n−1∏
j=1

eiλv
(σ )
j − f

(
v

(σ )
j

)
v

(σ )
j

]
h
(
v(σ )

n

)
, (G1)

where σ ∈ Sym(n) and the v
(σ )
j variables are the following linear combinations of the integration variables

v
(σ )
j =

n−1∑
m= j

um −
n−1∑

m=σ−1( j)

um (1 � j � n). (G2)

These linear combinations are listed in Table II for all of the 11 permutations σ that we need in order to evaluate the current up
to and including the J5 or 1/J5 term.
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We use brackets to indicate that R(σ )[{ f , h}, λ] is a functional of f and h and a function of the real parameter λ. As discussed
in the main text, λ is essentially the bandwidth divided by a dimensional scale, and the functions f and h take various forms
depending on which case is being considered. We have found the asymptotic form as λ → ∞ of R(σ )[{ f , h}, λ] for all 11 of the
necessary permutations. By leaving f and h unspecified, we can cover all cases discussed in the main text at once.

We will not attempt to characterize exactly what properties of f and h are necessary for our calculations below to be valid.
At the very least, we assume that f and h are both analytic with poles only along the imaginary axis (but no pole at the origin),
that f (0) = 1 (otherwise R(σ )[{ f , h}, λ] would be ill defined due to the denominators), and that h(v) decays like 1/v or faster
as v → ∞; we also assume that f ′(0) = 0 and that h(0) is real, although these conditions could easily be relaxed. All of these
assumptions hold for the particular f and h functions defined in the main text.

Before presenting the full results, we show one more example. We have already given the simplest nontrivial example in (3.45)
in the main text, which is the asymptotic expansion of R(2,1)[{ f , h}, λ]. An example result from the next order (n = 3) is

R(2,3,1)[{ f , h}, λ] ≡
∫ ∞

0
du1du2

eiλ(u1+u2 ) − f (u1 + u2)

u1 + u2

e−iλu1 − f (−u1)

−u1
h(−u2) (G3a)

λ→∞−→ −1

2
h(0) ln2 λ+

[
− h(0)

(
γ + i

π

2

)
+
∫ ∞

0
du ln u

d

du
[ f (u)h(−u)]

]
ln λ

−
(

7π2

24
+ 1

2
γ 2+ i

1

2
πγ

)
h(0)+

(
γ + i

π

2

) ∫ ∞

0
du ln u

d

du
[ f (u)h(−u)] + 1

2

∫ ∞

0
du ln2 u

d

du
[ f (u)h(−u)]

−
∫ ∞

0
du1du2

1

u2
ln

u1 + u2

u1

∂

∂u1
[ f (u1 + u2) f (−u1)h(−u2)], (G3b)

where γ is the Euler constant. Notice that here and in the simpler example (3.45), the asymptotic expansion consists of powers
of ln λ with coefficients that are functionals of f and h; higher powers of ln λ are multiplied by simpler functionals, and the
highest power is lnn−1 λ.

We have shown analytically that for all of the 11 necessary permutations, the asymptotic form of R(σ )[{ f , h}, λ] is a sum of
logarithmic terms (including a constant term, i.e., ln0 λ) and a linear term. That is, we have shown

R(σ )[{ f , h}, λ]
λ→∞−→ z(σ )

linear[{ f , h}]λ +
n−1∑
j=0

z(σ )
j [{ f , h}] ln j λ, (G4)

where z(σ )
linear[{ f , h}] and z(σ )

j [{ f , h}] are complex numbers (functionals of f and h). Let us first discuss the coefficient z(σ )
linear[{ f , h}]

of the linear term. This coefficient vanishes for all of the 11 permutations except for (3,2,1) and (4,3,2,1); for these two
permutations, we find

z(3,2,1)
linear [{ f , h}] = − i

π
z(4,3,2,1)

linear [{ f , h}] = −i
∫ ∞

0
du f (u)h(u). (G5)

In the current, these linear terms cancel at the order we are working to (J5 or 1/J5), so we can ignore them.
We proceed to the logarithmic terms. It turns out that for all 11 permutations, the coefficients z(σ )

j [{ f , h}] can be expressed
entirely in terms of the following three functionals:

ρ1[{ f , h}] =
(
−γ + i

π

2

)
h(0) +

∫ ∞

0
du ln u

d

du
[ f (u)h(−u)], (G6a)

ρ2[{ f , h}] = −
(

7π2

24
+ 1

2
γ 2 + i

1

2
πγ

)
h(0) +

(
γ + i

π

2

) ∫ ∞

0
du ln u

d

du
[ f (u)h(−u)]

+ 1

2

∫ ∞

0
du ln2 u

d

du
[ f (u)h(−u)] −

∫ ∞

0
du1du2

1

u2
ln

u1 + u2

u1

∂

∂u1
[ f (u1 + u2) f (−u1)h(−u2)], (G6b)

ρ3[{ f , h}] =
(

γ − i
1

2
π

)2

h(0) − 2

(
γ − i

1

2
π

)∫ ∞

0
du ln u

d

du
[ f (u)h(−u)]

+
∫ ∞

0
du1du2 ln u1 ln u2

∂

∂u1

∂

∂u2
[ f (u1) f (u2)h(−u1 − u2)]. (G6c)

Table III contains our results for the coefficients z(σ )
j [{ f , h}] of the asymptotic expansion. These results completely specify the

integrals we need for n = 1, 2, and 3, while for n = 4, they provide the complete expansion except for the coefficient z(σ )
0 [{ f , h}]

of the smallest term (the λ-independent constant); these remaining coefficients can also be written as lengthy functionals of f and
h (including triple integrals), and we list their approximate numerical values in Table IV for the two special cases corresponding
to the zero bias conductance G(T ) and I (T1 = 0, T2 = 0,V ).
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TABLE III. Leading-log, subleading-log, and sub-subleading-log terms in R(σ )[{ f , h}, λ] [see Eq. (G4)].

σ ≡ (σ1, . . . , σn) z(σ )
n−1[{ f , h}] z(σ )

n−2[{ f , h}] z(σ )
n−3[{ f , h}]

(1) h(0)
(2, 1) −h(0) ρ1

(2, 3, 1) − 1
2 h(0) −iπh(0) + ρ1 ρ2

(3, 1, 2) h(0) −2ρ1 ρ3

(3, 2, 1) 0 0 −h(0)

(2, 3, 4, 1) − 1
3 h(0) −iπh(0) + ρ1

2
3 π 2h(0) + 2ρ2

(2, 4, 1, 3) 1
2 h(0) iπh(0) − 3

2 ρ1 −iπρ1 − ρ2 + ρ3

(3, 1, 4, 2) 1
6 h(0) − 1

2 ρ1
2
3 π 2h(0) + iπρ1 − ρ2

(3, 4, 1, 2) 0 h(0) (2 + iπ )h(0) − 2ρ1

(4, 1, 2, 3) −h(0) 3ρ1 −3ρ3

(4, 3, 2, 1) 0 −h(0) −(2 + iπ )h(0) + 2ρ1

Our asymptotic results are in good agreement with Monte Carlo evaluation [46]. An example of this agreement is shown in
Fig. 7.

The calculations that produce Table III are lengthy; to illustrate the method used, we derive the asymptotic expansion (3.45)
in the main text. The integral to be studied is

R(2,1)[{ f , h}, λ] =
∫ ∞

0
du1

eiλu1 − f (u1)

u1
h(−u1). (G7)

We would like to separate the λ-dependent term of (G7), but cannot do so because eiλu1/u1 by itself diverges too strongly
at u1 = 0. We therefore integrate by parts, finding (note that h falls off sufficiently rapidly at infinity so that the boundary
contribution is zero)

R(2,1)[{ f , h}, λ] = R(2,1)
1 [{ f , h}, λ] + R(2,1)

2 [{ f , h}], (G8)

where

R(2,1)
1 [{ f , h}, λ] = −

∫ ∞

0
du1 ln u1

d

du1
[eiλu1 h(−u1)], (G9a)

R(2,1)
2 [{ f , h}] =

∫ ∞

0
du1 ln u1

d

du1
[ f (u1)h(−u1)]. (G9b)

We evaluate R(2,1)[{ f , h}, λ] for large λ using a contour argument based on example 1 in Sec. 6.6 of Ref. [47]. The essential
idea is to turn the rapidly oscillating phase into a decaying exponential.

Recall that any poles of h are on the imaginary axis. Write C for the contour that starts at 0 and extends to i∞ going slightly
to the right (Re u1 > 0) around each of the poles. This contour C taken in reverse, the original integration contour from 0 to
∞, and a semicircular arc from ∞ to i∞ form a closed contour that contains no poles. Furthermore, it can be verified that the
semicircular arc makes no contribution. Therefore, the original contour can be replaced by C:

R(2,1)
1 [{ f , h}, λ] = −

∫
C

du1 ln u1
d

du1
[eiλu1 h(−u1)]. (G10)

TABLE IV. Constant terms z(σ )
0 [{ f , h}, λ] for n = 4 integrals in two special cases.

σ ≡ (σ1, . . . , σn) z(σ )
0 [{ f , h}] for f (v) = h(v) = v/ sinh v z(σ )

0 [{ f , h}] for f (v) = sinc v, h(v) = cos v

(2, 3, 4, 1) 2.24 + 1.06i 1.14 + 3.51i
(2, 4, 1, 3) 4.50 − 3.12i 1.35 − 1.76i
(3, 1, 4, 2) 1.48 − 7.24i 0.97 − 6.02i
(3, 4, 1, 2) 3.51 − 3.14i 0.37 − 3.14i
(4, 1, 2, 3) 6.76 − 3.20i 1.90 − 2.62i
(4, 3, 2, 1) −3.95 −1.49
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FIG. 7. Sample numerical checks of our asymptotic result for R(3,1,4,2)[{ f , h}, λ]. Case 1 is f (v) = h(v) = v/ sinh v, which is used in the
calculation of G(T ); case 2 is f (v) = cos v and h(v) = sinc v, which is used in the calculation of I (T1 = 0, T2 = 0,V ) [and hence, G(V )].
Only the real part of R(3,1,4,2)[{ f , h}, λ] appears in the answer to the order we consider (J5 or 1/J5), but the agreement for the imaginary part
is similar.

For large λ, the function h can be replaced by its value at zero; the reason for this is that the difference h(−u1) − h(0) starts at
linear order, which permits integration by parts:

−
∫

C
du1 ln u1

d

du1

{
eiλu1 [h(−u1) − h(0)]

} =
∫

C
du1

1

u1
[h(−u1) − h(0)]eiλu1 (G11)

=
∫

C
du1

d

du1

[
1

u1
[h(−u1) − h(0)]

1

iλ
eiλu1

]
−
∫

C
du1

d

du1

[
1

u1
[h(−u1) − h(0)]

]
1

iλ
eiλu1 (G12)

= O

(
1

λ

)
. (G13)

We have therefore shown

R(2,1)
1 [{ f , h}, λ] = −

∫
C

du1 ln u1
d

du1
[eiλu1 h(0)] + O

(
1

λ

)
. (G14)

Since there are no longer any poles, we can shift the contour C to be exactly the positive imaginary axis; then the remaining
integrals are elementary after the change of variables s1 = λu1:

R(2,1)
1 [{ f , h}, λ] = −

∫ ∞

0
du1 ln(iu1)

d

du1
[e−λu1 h(0)] + O

(
1

λ

)
(G15a)

= h(0)

(
− ln λ − γ + i

1

2
π

)
+ O

(
1

λ

)
. (G15b)

Adding this to Eq. (G9b), we obtain the second row of Table III.
For the higher-order integrals, the basic strategy is the same: use integration by parts to rewrite the integral in a form that can

be separated into a sum of simpler terms, shift integration contours to turn oscillating phases into decaying exponentials, and
replace functions by their values at zero via integration by parts. In the case of σ = (4, 3, 2, 1), this last step has to be done more
carefully due to the linear divergence.

APPENDIX H: ADDITIONAL CHECKS

We begin this Appendix by summarizing two alternate calculations we have done that yield the same series answer for the
current that is obtained in the main text. We then discuss some alternate ways of carrying out the integrals, again confirming our
earlier answers. Finally, we verify that we obtain the usual leading-order scaling of the anisotropic Kondo model.

Rather than use the original definition (1.2) of the time-evolving current I (t ) (as the time derivative of the number of electrons
in one reservoir), we can instead calculate the expectation value of a local operator:

Î = Re[iJψ
†
1a(0)σaa′ψ2a′ (0) · S]. (H1)
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It can be shown by general arguments that I (t ) = 〈�(t )|̂I|�(t )〉. We now present two equivalent ways of evaluating the right-hand
side.

The first check is to evaluate the expectation value 〈�(t )|̂I|�(t )〉 using the approach of Appendix D (taking care to include the
action of the impurity operator S on impurity states). The result, for N electrons, agrees with I (t ) as calculated in the main text.
The second check, which also confirms that |�(t )〉 satisfies the Schrödinger equation, is to write 〈�(t )|̂I|�(t )〉 in an alternate
form, as the derivative of an overlap between two states. This is accomplished by means of the following simple result, which
we present in a general setting. Suppose the Hamiltonian H consists of a “reference” Hamiltonian Href plus terms that depend
on a varying real parameter φ:

Hφ = Href +
n∑

j=1

f j (φ)O j, (H2)

where the functions f j (φ) and operators O j are arbitrary. We wish to calculate the expectation value of an operator (see below)
in the time-dependent state e−iHφ0 t |�〉, where |�〉 is an arbitrary initial state and φ = φ0 corresponds to the physical Hamiltonian
of interest. Let |�φ〉 be a family of states such that |�φ0〉 = |�〉. We then have

〈�|eiHφ0 t

(
n∑

j=1

f ′
j (φ0)O j

)
e−iHφ0 t |�〉 = i

∂

∂t

∂

∂φ

∣∣∣∣
φ=φ0

〈�|eiHφ0 t e−iHφ t |�φ〉, (H3)

as can be seen by doing the time derivative first on the right-hand side. Thus, the time-dependent expectation value of a certain
form of observable reduces to the calculation of an overlap between two states, one evolving with the physical value φ = φ0,
and the other with a varying value φ.

In the two-lead Kondo model, we calculate the current by introducing a varying parameter φ that is a relative phase between
the tunneling terms ψ

†
1 ψ2 and ψ

†
2 ψ1. To be precise, we set f1(φ) = (eiφ − 1), f2(φ) = (e−iφ − 1), O1 = ψ

†
1a(0)σaa′ψ2a′ (0) · S,

and O2 = ψ
†
2a(0)σaa′ψ1a′ (0) · S in Eq. (H3). The time-evolving wavefunction for arbitrary phase φ is found exactly using our

formalism (essentially the only change is that the matrix that relates the lead 1/lead 2 basis to the odd/even basis depends on the
varying phase), and the current is found as the derivative of the overlap. The result for the current for N electrons again agrees
with the main text. Note that this also provides confirmation that we have solved the time-dependent Schrödinger equation
correctly, seeing as that is what is used in deriving the general formula (H3).

We proceed to some checks of our evaluations of integrals. We have found the large-bandwidth asymptotic form of the basic
steady-state integral ϕ(σ )

n (T1 = 0, T2 = 0,V ) in an alternate way that agrees with the results of Appendix G and also provides
the analytical formula for the bandwidth-independent g5 and 1/g5 terms in G(V ) in the main text. We have also repeated the
calculation of G(T ) in an alternate cutoff scheme in which the Fermi function smoothly drops to zero at large negative energies,
rather than being sharply cut off.

The basic integral that appears in our current series is given by Eq. (3.34) in the main text. Using the notation of Appendix G,
the result obtained in the main text, in the special case of zero temperature, can be written as

1

V
lim

t→∞ ϕ(σ )
n (T1 = 0, μ1 = 0; T2 = 0, μ2 = −V ; t ) ≡ 1

V
ϕ(σ )

n (T1 = 0, T2 = 0,V ) = R(σ )
[
{ f , h}, 2

D

V
− 1

]
, (H4)

where f (v) = sinc v and h(v) = cos v. The asymptotic expansion of R(σ )[{ f , h}, 2 D
V − 1] for D/V � 1 can be read off from

Table III and the third column of Table IV; our task is to calculate 1
V ϕ(σ )

n (T1 = 0, T2 = 0,V ) in an alternate way as a check.
An alternate approach in this special case is to do the position integrals in Eq. (3.34) before the momentum integrals, arriving

at the long-time limit by means of the Laplace transform. Recall that the long-time limit of a function F (t ) is determined by the
behavior of its Laplace transform near the origin:

lim
t→∞ F (t ) = lim

s→0+
sF̃ (s), where F̃ (s) =

∫ ∞

0
dt e−st F (t ). (H5)

Taking the Laplace transform and doing the position integrals, we find

sϕ̃(σ )(T1, μ1; T2, μ2; s) =
( i

2

)n−1 ∫ D

−D
dk1 . . . dkn

{
n−1∏
j=1

[ f1(k j ) + f2(k j )]

}
[ f1(kn) − f2(kn)]

×
n−1∏
�=1

i

kσ1 + · · · + kσ�
− k1 − · · · − k� + is

. (H6)
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TABLE V. Asymptotic expansion of R(σ )[{ f , h}, λ] for f (v) = sinc v, h(v) = cos v.

σ ≡ (σ1, . . . , σn) b(σ )
3 b(σ )

2 b(σ )
1 b(σ )

0

(1) 1
(2, 1) −1 iπ/2
(2, 3, 1) −1 −iπ/2 −π 2/12
(3, 1, 2) 2 −iπ −π 2/3
(3, 2, 1) 0 0 −1
(2, 3, 4, 1) −2 −iπ π 2/2 [ζ (3) + iπ 3/3]/2
(2, 4, 1, 3) 3 iπ/2 π 2/4 −[3ζ (3) + iπ 3/3]/4
(3, 1, 4, 2) 1 −iπ/2 π 2/4 −[ζ (3) + i2π 3/3]/4
(3, 4, 1, 2) 0 2 2 2 − π 2/8 − 3 ln 2 − iπ
(4, 1, 2, 3) −6 3iπ π 2 [3ζ (3) − iπ 3/2]/2
(4, 3, 2, 1) 0 −2 −2 3 ln 2 − 2

The point of these manipulations is that if we set T1 = T2 = 0, we obtain a form that is tractable analytically. After some
relabelings of coordinates, we obtain

sϕ̃(σ )(T1 = 0, μ1 = 0; T2 = 0, μ2 = −V ; s) = in−1
n−1∑
m=0

(
1

2

)m(n − 1

m

)∫ −V

−D
dk1 . . . dkn−m+1

×
∫ 0

−V
dkn−m . . . dkn Sk1...kn−1

n−1∏
�=1

i

kσ1 + · · · + kσ�
− k1 − · · · − k� + is

, (H7)

where the symmetrizer Sk1...kn−1 acts on the first n − 1 momenta of any function X via

Sk1...kn−1 X (k1, . . . , kn) = 1

(n − 1)!

∑
σ ′∈Sym(n−1)

X
(
kσ ′

1
, . . . , kσ ′

n−1
, kn
)
. (H8)

By lengthy computer evaluation, these integrals were done analytically for all of the 11 permutations; then the limit s → 0+ was
taken and an expansion was done for large D/V . The final results are conveniently written in the following form:

1

V
ϕ(σ )

n (T1 = 0, T2 = 0,V ) = 1

V
lim

s→0+
sϕ̃(σ )(T1 = 0, μ1 = 0; T2 = 0, μ2 = −V ; s) (H9)

D�V−→ b(σ )
linear

D

V
+

3∑
n=0

b(σ )
n

n∑
m=0

1

m!
lnm D

V
, (H10)

where b(σ )
linear is zero for all 11 permutations except for b(3,2,1)

linear = − i
π

b(4,3,2,1)
linear = −iπ/2, and where the remaining coefficients are

listed in Table V. These results are in good agreement with Table III and the third column of Table IV.
Another check is provided by varying the cutoff scheme that regulates the UV divergences of the model. The cutoff scheme

we have used amounts to multiplying the Fermi function by a Heaviside function �(k + D) (the cutoff of large positive energies
turns out to be unimportant due to the exponential suppression of the Fermi function there). For an alternate cutoff scheme, we
replace the Heaviside function by a smoothly decaying function (which is chosen for convenience to have the form of a Fermi
function); the resulting Fourier transform for the cutoff Fermi function is∫ ∞

−∞
dk f (T, μ,k)

1

e− 1
T (D′+k) + 1

e−iky = π

i
T

eiD′y − e−iμy

sinh(πTy)
, (H11)

again with exponentially small corrections O(e−(D′+μ)/T ). We write the cutoff as D′ as a reminder that, while it plays the same
role, it is not identical to the sharp cutoff D except in the case T = 0. In this alternate cutoff scheme, we repeated the calculation
of the integrals R(σ )[{ f , h}, λ] by Monte Carlo integration at several logarithmically spaced values of λ. The results indicate that
D′ and D yield equivalent answers in the large-bandwidth regime; we have shown this analytically for some of the integrals using
the contour method described in Appendix G.

Still another check is obtained by repeating the calculation allowing anisotropy in the Kondo interaction. As shown in
Appendix C, the anisotropy changes the T matrix that appears in the wavefunction. The same series answer for the current
is obtained, with the only change being a modification of the spin sums W (σ )

n (J ). The leading log results are

G(V ) = 3π2

4
G0

[
2

3
g2

⊥ + 1

3
g2

z + 4g2
⊥gz ln

D

V
+ 12

(
1

3
g4

⊥ + 2

3
g2

⊥g2
z

)
ln2 D

V
+ 32

(
2

3
g4

⊥gz + 1

3
g2

⊥g3
z

)
ln3 D

V
+ O(g6)

]
, (H12)
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and the same for G(T ) with with V replaced by T . The Callan-Symanzik equation is satisfied with the following beta functions
at leading order:

βg⊥ (g⊥, gz ) = −2g⊥gz + O(g3), (H13a)

βgz (g⊥, gz ) = −2g2
⊥ + O(g3), (H13b)

which are standard [37].

APPENDIX I: CUTOFF ARTIFACT IN THE TIME-DEPENDENT MAGNETIZATION

In this Appendix, we show that the unconventional cutoff scheme we have used in this paper leads to an extra log divergence in
a toy calculation (relative to the conventional scheme). We also provide a way to modify our scheme to correct this, recovering
the conventional answer. We suspect that this same phenomenon occurs in the calculation of the current, leading to a cutoff
“artifact” of the form g4 ln D or g5 ln2 D that changes the third-order coefficient of the beta function [β3 in Eq. (3.49)]. Details of
the calculations of this section can be found in Ref. [25].

We consider the time-evolving expectation value of the impurity magnetization Sz evaluated with three different cutoffs: a
cutoff DH on the Hamiltonian, a cutoff Dρ on the initial density matrix ρ, and a cutoff Dproj on the time-evolving density matrix.
This last cutoff is implemented by replacing e−iHtρeiHt → PDproj e

−iHtρeiHt PDproj , where PDproj is the projection operator onto the
modes within [−Dproj, Dproj]. Conventional calculations have DH = Dρ = Dproj; indeed, once DH is finite, the other two cutoffs
make no difference as long as neither is less than DH . Our calculation in the main text used DH = Dproj = ∞ with Dρ finite,
but this leads to a cutoff artifact in the impurity magnetization (as we show below). Setting DH = ∞ and Dρ = Dproj removes
the artifact, recovering the conventional answer. Presumably, repeating the calculation of the current in the main text with
Dρ = Dproj (instead of Dρ = ∞) should yield the correct coefficient β3 in the beta function; however, this calculation appears to
be considerably more difficult than the Dρ = ∞ case.

The time-dependent magnetization up to second order, starting from an initial state with impurity spin a0 and working at zero
temperature, is found to be

〈Sz〉t = Sz
a0a0

[1 − (2ρJ⊥)2X (Dt ) + · · · ], (I1)

where X (Dt ) is given in the different schemes by (for large bandwidth)

X (Dt ) =
⎧⎨⎩ln (Dt ) + 1 + γ − ln 2 for DH = Dρ = Dproj ≡ D (conventional scheme),

2[ln (Dt ) + 1 + γ ] for DH = Dproj = ∞, Dρ ≡ D (scheme used in main text),
ln (Dt ) + 1 + γ − ln 2 for DH = ∞, Dproj = Dρ ≡ D (projection scheme).

(I2)

The first two cases can be read off with a slight generalization of a calculation done in Ref. [48]; we have done the second two
cases with our wavefunction method [25] (thus the second case is done two different ways, and they agree). Thus, we see that
the cutoff scheme we use in the main text can lead to an extra ln D term in an observable. Recall from the main text that this
is exactly the kind of term that is missing from our calculation, that could change the coefficient β3 of the beta function. We
also note here that having DH = ∞ seems essential in our method at present, in order to get derivatives and delta functions in
position space that make our “inverse problems” solvable.
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