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Spin-orbit coupling in the kagome lattice with flux and time-reversal symmetry
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We study the topological properties of a spin-orbit coupled tight-binding model with flux on the kagome
lattice. The model is time-reversal invariant and realizes a Z2 topological insulator as a result of artificial gauge
fields. We develop topological arguments to describe this system showing three inequivalent sites in a unit cell
and a flat band in its energy spectrum in addition to the topological dispersive energy bands. We show the stability
of the topological phase towards spin-flip processes and different types of on-site potentials. In particular, we also
address the situation where on-site energies may differ inside a unit cell. Moreover, a staggered potential on the
lattice may realize topological phases for the half-filled situation. Another interesting result is the occurrence of a
topological phase for large on-site energies. To describe topological properties of the system we use a numerical
approach based on the twisted boundary conditions and we develop a mathematical approach, related to smooth
fields.

DOI: 10.1103/PhysRevB.103.195105

I. INTRODUCTION

The discovery of topological insulators has revolution-
ized the field of condensed matter physics in recent decades
[1–12]. Topological insulators have been observed not only in
solid-state materials [13,14], but also in the artificial systems
created by ultracold atoms loaded in optical lattices [15–21]
and photonic systems [22,23]. In particular, the Azbel-Harper-
Hofstadter [15–17] and the Haldane [18,19] models were
experimentally realized. Robust edge states, indicating topo-
logical insulators, were also observed with ultracold atoms
in synthetic dimensions [20,21]. A common approach to
achieve topological phases in cold atomic gas experiments is
to employ artificial gauge fields [10,24–29]. Realization of ar-
tificial spin-orbit coupling (SOC) was discussed in Ref. [29].
SOC has already been realized experimentally in ultracold
atoms in the absence of optical lattices [30–33] and there
are proposals how to realize it in the presence of the optical
lattices [34,35].

Topological insulators behave as insulators in the bulk,
while they are conducting at their boundary. Despite that, their
topological properties are classified according to the topo-
logical invariants which are determined based on their bulk
properties. Time-reversal symmetric nonmagnetic insulators
are characterized by a Z2 invariant ν, i.e., they are divided
into two categories: a topological insulator with Z2 number
ν = 1 and a trivial band insulator with ν = 0. The latter is
adiabatically connected to the trivial state, while the former
cannot be connected to the trivial state without closing a bulk
gap [1,2].

There are a number of works that have already investi-
gated topological properties of the tight-binding model on

*titvinidze@itp.uni-frankfurt.de

the kagome lattice [36–56], related to spin-orbit coupling
[45–49], staggered fluxes [51], Hofstadter butterflies [53,56],
breathing kagome lattice [54], flat band phases [50,52], chiral
edge modes [40], higher order topological Mott insulators
[55], quantum anomalous Hall [36–44], fractional quantum
Hall [49], and spin Hall [47,48] effects.

Hereafter we study topological properties of the spin-orbit
coupled tight-binding model with flux on the kagome lattice,
which is non-Bravais lattice and contains three sites per unit
cell. In addition to the SOC and the flux produced by the arti-
ficial gauge fields imprinted as spin-dependent Peierls phases,
we also take into account the effect of site-dependent on-site
energies, which can be realized in experiments with ultracold
atoms. We consider the cases where on-site energies can be
different within the lattice unit cell but are the same for all
lattice unit cells, and we also consider cases with staggered
on-site energies between different lattice unit cells.

We show that fluxes and SOC, generated by artificial gauge
fields, induce topological phases. We show that these phases
are stable after applying on-site energies. Interestingly, a stag-
gered potential may also induce a topological phase for the
half-filled situation. A remarkable result we obtained is the
existence of the topological phase for divergingly large on-site
energies.

In this work we also develop an analytical approach to
describe the topological properties of the phases which allows
us to understand the variations of the Z2 number.

The paper is organized as follows. In the next section
(Sec. II) we introduce the model Hamiltonian and rewrite it in
momentum space. In Sec. III we first give an overview of the
numerical method to compute the Z2 number based on twisted
boundary conditions (Sec. III A). Afterwards, in Sec. III B we
present the analytical method which brings a different view
on the topological property of the phases and allows us to
understand the variations of the Z2 number. We present our
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results in Secs. IV and V. In Sec. IV we consider on-site
energies that may differ within the unit cell but are the same
for all unit cells, while in Sec. V we consider a setup with the
staggered potential on the lattice. In Sec. VI we elaborate con-
clusive remarks. The paper also contains three Appendices.
In Appendix A we review and compare two other methods
introduced in Refs. [40,57] to compute the Z2 number for our
model. In Appendix B we derive expressions for conservation
of the average current, and finally in Appendix C we derive an
effective Hamiltonian for large on-site energies.

II. MODEL

A. Hamiltonian in real space

We investigate the tight-binding model with flux on the
kagome lattice. Experimentally, this lattice has been realized
using ultracold atoms by superimposing two triangular optical
lattices with different wavelengths [58]. The resulting struc-
ture has three sites per unit cell, which we denote by R, B,
and G (see Fig. 1). The unit cells are arranged on a triangular
lattice. The displacement vectors between the neighboring
unit cells are

e1 = a(1, 0) and e2 = a

(
1

2
,

√
3

2

)
. (1)

Here a is the lattice constant. Here we have defined the dis-
placement vector e3 = e2 − e1. We also introduce b1 = 1

2 e1,
b2 = 1

2 e2, and b3 = 1
2 e3 within a unit cell between R and B, R

and G, and B and G, respectively.
The Hamiltonian in real-space representation reads

H = −t
∑

r

[c†
R,r1cB,r + c†

R,r+e1
1cB,r

+ c†
R,re−i2πγσ x

cG,r + c†
G,re−i2πγσ x

cR,r+e2

+ c†
B,reiφσ z

cG,r + c†
B,r+e3

eiφσ z
cG,r + H.c.]

+
∑

r

∑
α=R,B,G

Vα,rnα,r. (2)

Here c†
α,r = (c†

α,r,↑, c†
α,r,↓) creates a fermion at site r for α =

R, at site r + b1 for α = B, and at site r + b2 for α = G,
respectively. nα,r,σ = c†

α,r,σ cα,r,σ is the fermion number oper-
ator for spin σ on the corresponding site and nα,r = nα,r,↑ +
nα,r,↓. We define the filling n as n = 1

3N1N2

∑
α,r〈nα,r〉. Here

N1 and N2 are the numbers of unit cells along e1 and e2,
respectively. σ x and σ z are the x and z Pauli matrices acting in
spin space, while 1 is unit matrix. t is the hopping amplitude
of fermions between neighboring lattice sites. The third and
the fourth terms are the Rashba-type spin-orbit coupling terms
[59] of strength γ , which determine the coupling between the
two spin species via e−i2πγσ x = 1 cos(2πγ ) − iσ x sin(2πγ ).
This form allows us to study linear effects associated with
spin-flip terms and also nonlinear processes. Here φ intro-
duces a phase which acquires opposite signs for σ =↑ and
↓ particles, such that the Hamiltonian preserves time-reversal
symmetry. For small values of φ, this term is similar to
a Kane-Mele spin-orbit coupling introduced here between
nearest-neighbor sites [1,2].

e1

e2

b1

b2 b3

2φ
-2φ -φ

φ

FIG. 1. The schematic representation of the kagome lattice. The
lattice contains three sites per unit cell, which we depict by red
(R), blue (B), and green (G). e1 and e2 are the displacement vectors
between the neighboring unit cells which form the triangular lattice.
b1, b2, and b3 are the displacement vectors within the unit cell
between R and B, R and G, and B and G sites, respectively.

Finally, Vα,r is the on-site energy on the α sublattice and
in general, it depends on the unit cell coordinate r. On the
one hand, we consider cases where the on-site energies are
independent of r but can be different from each other inside
the unit cell, i.e., Vα,r = λα . In particular, we consider four
different setups:

(1) all on-site energies are zero (λR = λB = λG = 0),
(2) λB = −λR = λ and λG = 0,
(3) λR = λ and λB = λG = 0,
(4) λB = λ and λR = λG = 0.
Here we note that the case when λG = λ and λR = λB = 0

is equivalent to the case where the on-site energies are nonzero
for R sublattice sites, i.e., case (ii) due to the symmetry dis-
cussed below [see Eq. (17)].

On the other hand, we also consider a staggered potential.
For the latter we have Vα,r = λα,1 for r = 2n1e1 + n2e2 and
Vα,r = λα,2 for r = (2n1 + 1)e1 + n2e2. Here 1 � n1 � N1

and 1 � n2 � N2 are integer numbers. Therefore, the size of
the unit cell of the model is twice as large as the size of the unit
cell of the lattice. Also in this case the unit cells are arranged
on a triangular lattice, but with the displacement vectors be-
tween the neighboring unit cells ẽ1 = 2e1 and ẽ2 = e2. We
consider three cases:

(1) λR,1 = λB,1 = λG,1 = −λR,2 = −λB,2 = −λG,2 = λ

for n = 2/3 filling,
(2) λR,1 = λB,1 = λG,1 = −λR,2 = −λB,2 = −λG,2 = λ

for half-filling (n = 1),
(3) λR,1 = −λR,2 = λ and λB,s=1,2 = λG,s=1,2 = 0 for n =

2/3 filling.
In contrast to our model, Harper [60] and Hofstadter [61] in

their original works considered a Peierls phase φ that depends
on the site coordinate. As it was shown in Ref. [61] such
a Peierls phase produces a fractal spectrum known as the
“Hofstadter butterfly.”
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B. Hamiltonian in momentum space

1. Without staggered potential: Vα,r = λα

First we consider the system without the staggered po-
tential, i.e., for Vα,r = λα . We consider periodic boundary
conditions along the e1 and the e2 directions, i.e., r + N1e1 =
r and r + N2e2 = r. We perform a Fourier transform

H =
∑

k

ψ
†
k

(
H↑(k) HRSO(k)
H†

RSO(k) H↓(k)

)
ψk , (3)

with

Hσ (k)=
⎛
⎝ λR ε1(k) cos(2πγ )ε2(k)

ε1(k) λB eiszφε3(k)
cos(2πγ )ε2(k) e−iszφε3(k) λG

⎞
⎠,

(4)

HRSO(k) =
⎛
⎝ 0 0 sin(2πγ )ξ (k)

0 0 0
sin(2πγ )ξ (k) 0 0

⎞
⎠. (5)

Here we have defined

ψ
†
k = (c†

R,k,↑, c†
B,k,↑, c†

G,k,↑, c†
R,k,↓, c†

B,k,↓, c†
G,k,↓), (6)

as well as εα = −2t cos(k · bα ) and ξ (k) = 2t sin(k · b2).
Note that sz = 1 (−1) for σ =↑ (↓). The reciprocal lattice
of the triangular lattice has the following basis vectors:

g1 = 2π
Re2

e1 · Re2
= 4π

a
√

3

(√
3

2
,−1

2

)
, (7)

g2 = 2π
Re1

e2 · Re1
= 4π

a
√

3
(0, 1). (8)

Here

R =
(

0 −1
1 0

)

represents a π/2 rotation matrix. Therefore

k = n1

N1
g1 + n2

N2
g2. (9)

We obtain k · bα = πnα

Nα
= kα for α = 1, 2 and

k · b3 = πn2
N2

− πn1
N1

= k2 − k1.
The Hamiltonian (3) has six eigenvalues for each value

of k. Due to time-reversal symmetry the spectrum possesses
nonmovable band crossings which are known as Kramers
degeneracies. This leaves three bands potentially nonover-
lapping for any value of k. Based on that, gaps may appear
between the second and third bands, when two from six bands
are filled, as well as between the fourth and fifth bands when
four from six bands are filled. Therefore, a gap may appear
for the fillings n = 2/3 and n = 4/3. Just reminder when all
bands are filled n = 2.

2. Staggered potential

Now we consider the case when a staggered potential is
applied, i.e., Vα,r = λα,1 for r = 2n1e1 + n2e2 and Vα,r = λα,2

for r = (2n1 + 1)e1 + n2e2. In this case, as it was mentioned
above, the displacement vectors between the neighboring unit
cells are ẽ1 = 2e1 and ẽ2 = e2. We again consider periodic
boundary conditions. Taking into account the size of the unit
cell which is twice as large we have r + N1

2 ẽ1 = r and r +
N2ẽ2 = r. In this case, the number of unit cells along the e1

direction is N1/2. After the Fourier transform we obtain

H =
∑

k

ψ̃
†
k

⎛
⎜⎜⎝
H1,↑(k) Ht,↑(k) HRSO(k) 0
H†

t,↑(k) H2,↑(k) 0 HRSO(k)
H†

RSO(k) 0 H1,↓(k) Ht,↓(k)
0 H†

RSO(k) H†
t,↓(k) H†

2,↓(k)

⎞
⎟⎟⎠ψ̃k , (10)

with

Hi,σ (k) =
⎛
⎝ λR,i −te−ik·b1 cos(2πγ )ε2(k)

−teik·b1 λB,i −teiσφe−ik·b3

cos(2πγ )ε2(k) −te−iσφeik·b3 λG,i

⎞
⎠, (11)

Ht,σ (k) =
⎛
⎝ 0 −teik·b1 0

−te−ik·b1 0 −teiσφeik·b3

0 −te−iσφe−ik·b3 0

⎞
⎠. (12)

Here

ψ̃
†
k = (c†

R1,k,↑, c†
B1,k,↑, c†

G1,k,↑, c†
R2,k,↑, c†

B2,k,↑, c†
G2,k,↑, c†

R1,k,↓, c†
B1,k,↓, c†

G1,k,↓, c†
R2,k,↓, c†

B2,k,↓, c†
G2,k,↓). (13)

The reciprocal lattice of the triangular lattice with the ex-
tended unit cell has the following basis vectors:

g̃1 = 2π
Rẽ2

ẽ1 · Rẽ2
= 2π

a
√

3

(√
3

2
,−1

2

)
, (14)

g̃2 = 2π
Rẽ1

ẽ2 · Rẽ1
= 4π

a
√

3
(0, 1), (15)

and taking into account that the number of unit cells along e1

is N1/2 we have

k = n1

N1/2
g̃1 + n2

N2
g̃2. (16)

Here −N1
4 < n1 � N1

4 and −N2
2 < n2 � N2

2 are integer num-
bers. We obtain k · b1 = πn1

N1
= 1

2 k̃1, k · b2 = πn2
N2

= k̃2, and

k · b3 = πn2
N2

− πn1
N1

= k̃2 − 1
2 k̃1.
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The Hamiltonian (10) has 12 eigenvalues for each value of
k. Due to the Kramers degeneracy, discussed above, there are
six bands potentially nonoverlapping for any value of k. They
are between the 2mth and (2m + 1)th bands (m = 1, . . . , 6).
Therefore gaps may appear for the fillings n = 1/3, n = 2/3,
n = 1, n = 4/3, and n = 5/3.

C. Symmetries

In this subsection we discuss the symmetries of the Hamil-
tonian (2). To detect them we consider different gauge
transformations as well as the particle-hole symmetry.

We start with noting that there is no physical difference
between R and G sites in the unit cell. Interchanging them is
equivalent to the following gauge transformation:

cB,r ↔ cB,reiφσ z
, R ↔ G. (17)

One can easily show that due to the gauge transformation

c†
α,r ↔ c†

α,rei π
2 σ x = ic†

α,rσ
x, α = R, B, G, (18)

the following relations hold:

H(γ , φ,Vα,r ) ↔ H(γ , 2π − φ,Vα,r ). (19)

The gauge transformation

c†
α,r ↔ c†

α,rei π
2 σ y = ic†

α,rσ
y, α = R, B, G (20)

gives us

H(γ , φ,Vα,r ) ↔ H(1 − γ , 2π − φ,Vα,r ). (21)

While after the gauge transformation

c†
α,r ↔ c†

α,rei π
2 σ z = ic†

α,rσ
z, α = R, B, G (22)

we obtain

H(γ , φ,Vα,r ) ↔ H(1 − γ , φ,Vα,r ). (23)

Finally, the gauge transformation

c†
R,r ↔ c†

R,reiπ = −c†
R,r, c†

B,r ↔ c†
B,reiπ = −c†

B,r (24)

gives us

H(γ , φ,Vα,r ) ↔ H
(
γ − 1

2 , π − φ,Vα,r
)
. (25)

Due to the fact that γ and φ are in the exponent and are
periodic variables it is enough to consider only

0 � γ < 1 and 0 � φ < 2π. (26)

Based on the Eqs. (19), (21), (23), and (25), we can focus on
the region

0 � γ � 0.25 and 0 � φ � π, (27)

but alternatively one can also consider

0 � γ � 0.5 and 0 � φ � π

2
. (28)

To check further symmetries of the model, we consider
the particle-hole transformation. In general, the Hamiltonian
under consideration [Eq. (2)] is not symmetric under the
particle-hole symmetry, but it maps different parameter sets
to each other.

We perform the following particle-hole transformation:

c†
R,r ↔ σ zcR,r, c†

B,r ↔ −σ zcB,r, c†
G,r ↔ −σ zcG,r. (29)

After simple calculations we obtain that the Hamiltonian un-
der consideration has the following symmetry:

H(γ , φ,Vr ) for n ↔ H(γ , π − φ,−Vr ) for 2 − n.

(30)

Here n is the average filling.
Eventually we consider the time-reversal symmetry.

We write the time-reversal operator � = iσ yK with σ y

the y Pauli matrix acting in spin space and K denoting
complex conjugation. The Hamiltonian (2) is invariant under
time-reversal symmetry: �H�−1 = H. We can check it
explicitly by rewriting e−i2πγσ x = 1 cos 2πγ − iσ x sin 2πγ

and eiφσ z = 1 cos φ + iσ z sin φ and remembering that
σ yσ xσ y∗ = σ x and σ yσ zσ y∗ = σ z. Then we write
H =∑k ψ

†
kH(k)ψk , with H(k) a generic notation for

the momentum space Hamiltonian matrix which appear
in Eq. (3) or in Eq. (10), depending on the situation
we consider. We have �H(k)�−1 = H(−k). Indeed we
notice that Hσ (−k) = Hσ (k)∗, HRSO(−k) = −[HRSO(k)†]∗,
Hi,σ (−k) = Hi,σ (k)∗, and Ht,σ (−k) = Ht,σ (k)∗. Here ↑ =↓
and ↓ =↑.

III. METHODS

In this section we review the different methods which al-
low us to calculate the Z2 number and which are useful to
characterize the topological phases. One of them is numerical
and based on the twisted boundary conditions, while the other
two are analytical and also introduce geometrical arguments
specific to the kagome lattice (see Appendix A). Another way
to calculate the Z2 number is to use the Wilson loop [7,62–
66].

A. Calculation of the Z2 number using twisted boundary
conditions

First, we review the approach employing twisted bound-
ary conditions [66–69] following closely the definitions of
Ref. [69]. We consider spin-dependent twisted boundary con-
ditions along the e1 direction and spin-independent twisted
boundary along the e2 direction. So we have

cr+L1e1,α = eiσzθ1 cr,α and cr+L2e2,α = ei1θ2 cr,α. (31)

Here L1 × L2 is the two-dimensional (2D) sample area while
θ = (θ1, θ2) is the vector of the two twist angles. Here it is
worth mentioning that the periodic boundary condition is the
special case of the twisted boundary condition (31) with θ1 =
θ2 = 0.

We perform calculations for a relatively small real-space
sample L1 × L2 for the different values of θ. Therefore we
introduce another grid of size Nθ1 and Nθ2 , such that θκ=1,2 =
2πnκ/Nθκ

, where −Nθκ
/2 � nκ < Nθκ

/2.
Furthermore, we define the U (1) link variables

Uκ=1,2(θ) = det gκ

| det gκ | , (32)

which are functions of the twist angle θ. Here

[gκ ((θ)]ab = 〈ψa(θ)|ψb(θ + μκ )〉 (33)
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are matrices with dimension equal to the number of occupied
eigenstates of the Hamiltonian |ψa(θ)〉 for a given twist angle
θ. μ1 = (2π/Nθ1 , 0) and μ2 = (0, 2π/Nθ2 ) are unit vectors in
the respective directions.

Now we can define the Berry curvature

�(θ) = log[U1(θ)U2(θ + μ1)U1(θ + μ2)−1U2(θ)−1].

(34)

For time-reversal invariant systems the Z2 number can be
calculated by summing over all θ,

ν ≡
[

1

4π i

∑
θ

�(θ)

]
mod 2. (35)

One can show that Eq. (35) always produces an integer for the
gapped phase, where it is well defined. This number quickly
converges to the actual Z2 number when increasing the numer-
ical accuracy. The advantage of this method is that Eq. (34) is
gauge invariant due to the fact that the phases of a U (1) gauge
transformation will always cancel out.

B. Analytical computation of the Z2 number

Here we consider the case Vα,r = λα . We describe an ana-
lytical computation for the Z2 number at n = 2/3 filling. This
computation is first performed at γ = 0 for all the values of
the flux φ and for arbitrary on-site energy λ and it is consistent
with both approaches described in Appendix A. Then the
results are extended to the γ 
= 0 case, either by adiabatic
evolution of the Hamiltonian or by considering the evolution
of the current operator average value when turning on the
γ term. This analytical approach is complementary to the
previous approach. It allows us to understand (mathematically
speaking) the variations of the Z2 number.

1. The γ = 0 case

When γ = 0, the Hamiltonian [see expression in Eq. (3)]
decouples into two independent parts for σ =↑ and σ =↓ It
gives three energy bands associated with spin up states, which
are degenerate with the three energy bands associated with
the spin down states. Due to this decoupling we have the
following relation for the Z2 topological number [70–72]:

ν = 1
2 (C↑ − C↓) mod 2 = C↑ mod 2, (36)

where

Cσ = 1

2iπ

∫
d2k[∇k × Aσ,k] · ez (37)

is the spin Chern number and ez is a unit vector perpen-
dicular to the kagome lattice and the so-called Berry gauge
field Aσ,k = ∫ d2ru∗

σ,k(r)∇kuσ,k(r) = 〈uσ,k| ∇k |uσ,k〉, asso-
ciated with the lowest energy band with spin σ . uσ,k(r) =
uσ,k(r + R), with R the (magnetic) Bravais lattice vector, is
the periodic (in real space) part of the Bloch eigenvector
�k(r) = eik·ruσ,k(r). The integration is performed over the
whole Brillouin zone (BZ). Because the BZ is a torus, if
we can find a gauge choice such that Aσ,k is uniquely and
smoothly defined over all the BZ, then using the Stokes’
theorem, we find that Cσ is vanishing. Therefore, a nontrivial
topology comes from the impossibility of finding such a gauge

FIG. 2. Definition of the Brillouin zone into two domains (see
Sec. III B), each associated with a different gauge choice for the
eigenvectors.

choice that makes Aσ,k uniquely and smoothly defined. Un-
der a gauge transformation uσ,k(r) → uσ,k(r)ei fσ (k), with fσ a
smooth function of k and independent of r, we have Aσ,k →
Aσ,k + i∇k fσ (k), so Cσ → Cσ . Now, suppose that the BZ
is divided into two domains denoted DI and DII, where the
respective gauge choices |uσ,k,I〉 and |uσ,k,II〉 are unique and
smooth (for illustration see Fig. 2). We define ϕσ (k) a smooth
function of k such that |uσ,k,I〉 = eiϕσ (k) |uσ,k,II〉 and we define
Aσ,k,I = 〈uσ,k,I| ∇k |uσ,k,I〉 and Aσ,k,II = 〈uσ,k,II| ∇k |uσ,k,II〉
which are both uniquely and smoothly defined fields respec-
tively inside DI and DII. Then after using Stokes’ theorem we
obtain

Cσ = 1

2iπ

(∮
�

dk · Aσ,k,I −
∮

�

dk · Aσ,k,II

)
. (38)

Here � is the boundary between DI and DII. Using Aσ,k,I =
Aσ,k,II + i∇kϕσ (k), we find

Cσ = 1

2π

∮
�

dk · ∇kϕσ (k). (39)

In the results of Sec. IV we detail this computation with
convenient gauge choices depending on the value of the pa-
rameters. We should notice that the phase

∮
�

dk · ∇kϕσ (k)
accumulated here is different from a Berry phase accumu-
lated by the wave packet |uσ,k〉 along the � path [40]. The
latter can be written

∮
�

dk · Aσ,k and it is the contribution
to the Chern number of the Berry curvature integrated over
the domain delimited by �. The former is the Berry curvature
integrated over all the BZ and is then related to the difference
of Berry phases in Eq. (38). When the Berry curvature takes
non-negligible values only around L points that we denote
K l , l = 1, . . . , L, the Chern number is well approximated by
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∑
l

∮
�Kl

dk · Aσ,k where �K l is the boundary delimiting the
domain around the K l point where the Berry curvature takes
non-negligible values. Usually the contributions

∮
�Kl

dk · Aσ,k

are numerically evaluated. This is what is done in Ref. [40]
and it provides a way to access the quantity in Eq. (38).

2. Extending the results to the γ �= 0 case

We can generalize the results of the γ = 0 study by con-
sidering adiabatic deformations of the Hamiltonian. Because
the Z2 number is an integer, it is unchanged under adiabatic
deformations of the Hamiltonian, i.e., as long as there is no
gap closing. Therefore, we expect that a γ 
= 0 point is char-
acterized by the same Z2 number as a γ = 0 point which lies
in the same phase (no gap closure between both points).

We can use another argument, maybe more intuitive, from
the evolution of the conductivity for a two-dimensional open
geometry, when we turn the γ term on. When γ = 0 we
assume that the system at n = 2/3 is in a topological insu-
lating phase. It means that we can observe chiral edge modes
[40,73], each of which is associated with a finite chiral current
average value, while the total current vanishes. If we can
show that the chiral current associated with each edge mode
is conserved when we turn γ on, as well as the insulating
feature of the bulk, then we prove that the Z2 number is also
conserved.

We introduce a (real-)time τ dependence in the γ parame-
ter, say a simple linear one 2πγ = τ . We want to evaluate the
electronic current operator j(α,r),(α′,r′ )(τ ) between two nearest-
neighbor points (α, r) and (α′, r′) of the lattice. First we
combine the continuity equation for the charge density nα,r =
c†
α,rcα,r with the (Heisenberg picture) evolution equation for

nα,r to get

∇ · jα,r(τ ) = −i[H(τ ), nα,r], (40)

with H corresponding to the form in Eq. (2) and with

jα,r(τ ) =
∑
α′,r′

j(α,r),(α′,r′ )(τ ) (41)

the electronic current operator at the (α, r) point of the lattice.
In Eq. (41) the summation with (α′, r′) runs over all neighbor-
ing sites of (α, r).

Now we show that when γ goes from 0 to a finite value,
the chiral currents associated with the chiral edge modes are
conserved as well as the insulating feature of the bulk. To this
end we write the time derivative of the average value of the
current operator, at whatever time τ . We denote |�(τ )〉 the
state of the system described by the Hamiltonian H(τ ). We
have

d

dτ
〈�(τ )| j(α,r),(α′,r′ )(τ ) |�(τ )〉

=〈�(τ )|
(

i

h̄
[H(τ ), j(α,r),(α′,r′ )(τ )]+ d

dτ
j(α,r),(α′,r′ )(τ )

)
|�(τ )〉.

(42)

Relying on the symmetries of the Hamiltonian, the sum of
the average current along one directional line in the system
is conserved (for details see in Appendix B). What we call

a directional line is one straight line of atoms in the system
along one of the e1, e2, or e3 directions.

In Appendix B we give an example of this computation for
one directional line that we denote E2, along the e2 direction.
We consider an inversion symmetric lattice with line-shaped
boundaries. For each unit cell at position r ∈ E2, we need to
consider the currents along E2, which are j(G,r),(R,r)(τ ) and
j(R,r+e2 ),(G,r)(τ ). We show (see Appendix B) that∑
r∈E2

d

dτ
〈�(τ )| j(G,r),(R,r)(τ ) + j(R,r+e2 ),(G,r)(τ ) |�(τ )〉 = 0.

(43)

For one line along the e2 direction, the currents, associated
with an eigenstate, are conserved when we vary γ . The proof
can also be done for the currents associated with the e1 and e3

directions, but is not shown here because it is similar to e2 the
proof.

The currents that flow in the system are those associated
with the occupied eigenstates. At n = 2/3, as long as the gap
between the second and the third band does not close, all
the eigenstates associated with the first and the second band
remain occupied. Therefore, when we turn on the γ term, as
long as the gap (between the second and the third band) does
not close, the chiral currents associated with the chiral edge
modes are conserved, as well as the insulating feature of the
bulk, which shows that the Z2 number is conserved.

IV. RESULTS WITHOUT STAGGERED POTENTIAL:
Vα,r = λα

A. Without on-site energies: λR = λB = λG = 0

We start to present our results for Vα,r = λα . First, we
consider a setup for which all the on-site energies are zero,
i.e., λR = λB = λG = 0. We present spectra Ek1 for different
values of γ and φ in Fig. 3. For γ = 0, the spin up and spin
down fermions are decoupled from each other and we obtain
three bands, each of them are doubly degenerate correspond-
ing to spin up and spin down fermions. We obtain flat bands
for φ = 0 (upper band), φ = π/2 (middle band), and φ = π

(lower band). Spectra for φ = π/2 is presented in Fig. 3(a).
For finite γ , the spin up and spin down fermions are mixed.
Degeneracy is partially removed, but bands are still pairwise
partially degenerate. For small values of γ , the system is still
gapped for both n = 2/3 and n = 4/3 fillings [see Fig. 3(b)],
but with increasing γ the gaps are closing [see Figs. 3(c) and
3(d)].

As mentioned above, the gap may appear for n = 2/3 and
n = 4/3 fillings and the results obtained for these fillings are
related to each other by the mapping in Eq. (30). Therefore,
we present our results for n = 2/3 and the results for n = 4/3
can be obtained by replacing φ by π − φ. First, we consider
the gap. Our results are presented in the upper panel of Fig. 4.
The next step is to find out whether we have a trivial band
insulator or a topological band insulator. For this purpose we
calculate the Z2 number using twisted boundary conditions.
Our calculations show that for all values of (γ , φ) for which
the gap is finite, the Z2 number is ν = 1 (see lower panel of
Fig. 4), i.e., the gapped phase is a topological insulator. To
conclude, for large values of γ , the system is in the metallic
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FIG. 3. The spectra Ek1 for vanishing on-site energies (λR = λB = λG = 0) and for different values of γ and φ. Blue lines correspond to
the edge states obtained by calculations where we consider periodic boundary conditions in the e1 direction and open boundary conditions in
the e2 direction. Triangles right (left) indicate that the corresponding edge state is localized at the x2 = N2 (x2 = 1) edge of the system. Brown
(gold) triangles indicate a state which dominantly contains down (up) spin fermions.

phase, while for small values of γ , the system is a topological
insulator.

FIG. 4. The phase diagram for n = 2/3 filling and for λR = λB =
λG = 0. The upper panel shows the size of the gap �, while the
lower panel shows the Z2 number ν. White region in the lower panel
corresponds to the parameter set when the gap is closed.

As mentioned above, topological insulators behave as insu-
lators in the bulk, while they are conducting at their boundary.
Indeed as one can see from Figs. 3(a) and 3(b) considering
only the bulk bands the system is an insulator. With edge
states, however, the system becomes gapless at the boundary
(blue curves inside the gap).

To investigate the edge states in more detail we perform
calculations where we consider periodic boundary conditions
in the e1 direction and open boundary conditions in the e2

direction. We obtain four edge states. Two edge states are
localized at the x2 = 1 edge of the system [see left triangles in
Figs. 3(a) and 3(b) and also Figs. 5(c), 5(d), 5(g), and 5(h)] and
the other two are localized at the x2 = N2 edge of the system
[see right triangles in Figs. 3(a) and 3(b) and also Figs. 5(a),
5(b), 5(e), and 5(f)]. As one can see from Fig. 5 the penetration
length of the edge states into the bulk is two to three unit
cells.

For γ = 0 the spin up fermions and the spin down fermions
are decoupled from each other. In that case we have for the
spin up fermions one edge state localized at the x2 = 1 edge of
the system and one edge state localized at the x2 = N2 edge of
the system. Similar for the spin down fermions. Each of these
edge states can be presented by wave functions �α,σ,k1 (x2)
describing fermions in R, B, and G sublattices with given
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FIG. 5. The edge states for γ = 0 and φ = π/2 (a)–(d) and for γ = 0.05 and φ = π/2 (e)–(h). Triangles pointing up correspond to
spin up fermions and triangles pointing down correspond to spin down fermions. Red (solid), blue (dashed), and green (dashed-dotted) lines
correspond to R, B, and G sites, respectively. l corresponds to the energy level. The number of unit cells along e1 and e2 directions are N1 = 500
and N2 = 100, respectively. Other parameters are λR = λB = λG = 0.

spin σ . As one can see from Figs. 5(a)–5(d) |�B,σ,k1 (x2)| =
|�R,σ,k1 (x2)| 
= |�G,σ,k1 (x2)|. The reason for this is a sym-
metry of the lattice. At one edge we have sites of R and
B sublattice and at the other edge we have sites of the G
sublattice.

For finite γ the spin up and spin down states are not de-
coupled any more. Each of the edge state �α,k1 (x2) describing
fermions in R, B, and G sublattice are superpositions of wave
functions �α,σ,k1 (x2) for both spin projections. This can be
observed by comparing the upper panel Figs. 5(a)–5(d) with
the lower panel Figs. 5(e)–5(h). For γ = 0, the edge states
exhibit finite amplitude only in one of the spin states, while for
γ = 0.05, both spin states have a finite amplitude in the edge
state wave function, nevertheless contain dominantly either up
spins or down spins.

One way of experimentally detecting the topological phase
is measuring the spin Hall conductivity σ H [50,74–77]. But
it is important to point out that the spin Hall conductivity σ H

is only quantized if spin-orbit coupling γ is vanishing [77].
In this case for each spin component the Hall conductivity is
proportional to the respective Chern number. The spin Hall
conductivity is the difference of both Chern numbers, see
discussion on Eq. (36). For finite γ there is no simple relation
between Z2 number ν and σ H evaluated in the spin up and
spin down spin basis. The spin Hall conductivity for zero
temperature is given by the following expression:

σ H (μ) = 1

4N1N2

∑
Ek,n�μ

∑
Ek,m>μ

(�nk,mk − �mk,nk ), (44)

where

�nk,mk = −Im
〈kn|J s

1 |km〉〈km|J2|kn〉
(Ek,n − Ek,m)2

. (45)

Here J s
1 = 1

2 [J1, σz ⊗ 13] is the spin current and
Ja = dH(k)/dka is the charge current along direction
a = 1, 2. 13 is the 3 × 3 unit matrix and describes different
unit cells, while the σz Pauli matrix describes spin degrees of
freedom. Here H(k) is the 6 × 6 Hamiltonian matrix from
Eq. (3) (we again use the periodic boundary conditions).
Ek,n and |kn〉 are the eigenvalues and the eigenvectors of
Hamiltonian H(k). Finally μ is the chemical potential.

In Fig. 6 we plot σ H (μ) as a function of μ. We obtain that
when the chemical potential is inside the gap, the spin Hall
conductivity has a plateau. As it was mentioned above, for
γ = 0 spin Hall conductivity is quantized and proportional to
Z2 number ν: πσ H h̄/e2 = ν = 1. For γ = 0.05 despite the

FIG. 6. Spin Hall conductivity σ H (μ) as a function of chemical
potential μ for γ = 0 and γ = 0.05. The shaded region corresponds
to the values of μ where the chemical potential is inside the gap (blue
for γ = 0 and red for γ = 0.05). Other parameters are φ = π/2 and
λR = λB = λG = 0.
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FIG. 7. The phase diagram for n = 2/3 filling and φ = π/2.
λB = −λR = λ and λG = 0. The upper panel shows the size of the
gap �, while the lower panel shows the Z2 number ν. White region
in the lower panel corresponds to the parameter set when the gap is
closed.

fact that we have plateau spin Hall conductivity is not quan-
tized and πσ H h̄/e2 � 1.013 and deviates from Z2 number ν.
A similar result was also obtained in Ref. [77].

B. Three different on-site energies: λB = −λR = λ and λG = 0

1. The numerical approach

Now we consider the case where different on-site energies
are applied at different sublattice sites. In particular λB =
−λR = λ and λG = 0. We consider again a filling n = 2/3 and
a flux φ = π/2. Note that for this flux, particularly for λ = 0
and γ = 0, the middle band is flat.

We obtain a metallic phase and three gapped phases (see
upper panel of Fig. 7). According to our results, there is
always a metallic phase between the middle gapped phase
(|λ| � √

2t) and the gapped phase with λ �
√

2t , except for
γ = 0. For γ = 0 the gap closes only at λ = ±√

2t . In con-
trast, we do not observe a finite metallic phase region between
the middle gapped phase and the gapped phase with λ �
−√

2t . We obtain that the gap closes only at a single value
of λ for each given γ .

To find out whether one of these gapped phases is topo-
logically nontrivial, we calculate the Z2 number using twisted
boundary conditions. Our results are shown in the lower part
of Fig. 7. According to our results for the gapped phases |λ| �√

2t the Z2 number is equal to 0. These two gapped phases
thus correspond to the trivial band insulator. In contrast, for
the gapped phase |λ| � √

2t we obtain the Z2 number ν = 1.
Thus, the middle gapped phase corresponds to the topological
insulator.

2. The analytical approach

At γ = 0, from the analytical computation method, we
reproduce the numerical results for the Z2 number and we
generalize it for all flux φ and arbitrary on-site energy λ. Both
lowest spin species have the same energy that we denote E . It

is given by

E = −2

√
λ2 + 4t2[1 + f (k)]

3
cos

θ (k)

3
, (46)

with f (k) = 2
∏3

α=1 cos k · bα and 0 � θ (k) � π defined by

θ (k) = arccos
33/2
(

f (k) cos φ + λ[ε2
2 (k)−ε2

3 (k)]
8t3

)
2
[
1 + f (k) + ( λ

2t

)2]3/2 .

(47)

From this expression we can show that the gap between the
lowest band and the middle one only closes at λ = ±√

2t . It
is valid for each spin species, to which associated middle band
energy for both spin species is given by

Em = −2

√
λ2 + 4t2[1 + f (k)]

3
cos

θ (k) − 2π

3
. (48)

We introduce the three nonequivalent high symmetry M
points, M1 = − 1

2 g1, M2 = 1
2 g2, and M3 = 1

2 (g1 + g2) (see
Fig. 2). At λ = √

2t the energy bands touch in reciprocal
space at the M3 point, while at λ = −√

2t the energy bands
touch at the M1 point, and we have

(1) at λ � −√
2t we have E � λ, with the equality occur-

ring at the M1 point,
(2) at −√

2t < λ <
√

2t we have E < −|λ|,
(3) at λ �

√
2t we have E � −λ, with the equality occur-

ring at the M3 point.
In the following we will only describe the computation of

the lowest band Chern number for the case λ < 0 because the
case λ > 0 can be studied following almost the same steps.
We rewrite the state associated with the σ spin species as

|uσ,k〉 =
(
rσ (k)c†

R,k,σ + bσ (k)c†
B,k,σ + gσ (k)c†

G,k,σ

) |0〉√
|rσ (k)|2 + |bσ (k)|2 + |gσ (k)|2

.

(49)

Here |0〉 is a vacuum state and by definition we have
Hσ (k) |uσ,k〉 = E |uσ,k〉. From this relation we get the rσ (k),
the bσ (k), and the gσ (k) coefficients. We describe three gauge
choices GI, GII, and GIII for the eigenvectors that we re-
spectively write |uσ,k,I〉, |uσ,k,II〉, and |uσ,k,III〉. We will see
later that these choices allow us to correctly define the Bloch
eigenvectors over the BZ.

(1) Gauge choice GI : The coefficient gσ (k) is real. More
precisely, we choose

gσ (k) = ρσ (k), (50)

with

ρσ (k)eiϕσ (k) = − (E − λ)ε2(k)

2ε1(k)
− 1

2
e−iszφε3(k), (51)

where ρσ (k) and ϕσ (k) are both real numbers. Then we have

rσ (k) = −E (E − λ) − ε2
3 (k)

2ε1(k)
e−iϕσ (k) (52)

and

bσ (k) = E (E + λ) − ε2
2 (k)

ρ1,σ (k)
ρσ (k)e−iϕ1,σ (k), (53)
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with

ρ1,σ (k)eiϕ1,σ (k) = (E + λ)ε3(k)e−iszφ + ε1(k)ε2(k), (54)

where ρ1,σ (k) and ϕ1,σ (k) are both real numbers.
(2) Gauge choice GII : The coefficient rσ (k) is real. We

choose

gσ (k) = ρσ (k)eiϕσ (k). (55)

Then we have

rσ (k) = −E (E − λ) − ε2
3 (k)

2ε1(k)
(56)

and

bσ (k) = E (E + λ) − ε2
2 (k)

ρ1,σ (k)
ρσ (k)ei[ϕσ (k)−ϕ1,σ (k)]. (57)

(3) Gauge choice GIII : The coefficient bσ (k) is real. We
choose

gσ (k) = ρσ (k)eiϕ1,σ (k). (58)

Then we have

rσ (k) = −E (E − λ) − ε2
3 (k)

2ε1(k)
e−i[ϕσ (k)−ϕ1,σ (k)] (59)

and

bσ (k) = E (E + λ) − ε2
2 (k)

ρ1,σ (k)
ρσ (k). (60)

Notice that ϕσ (k) is well defined (modulo 2π ) for all k
except when ρσ (k) = 0 or when ε1(k) = −2t cos k · b1 = 0
and ϕ1,σ (k) is well defined for all k except when ρ1,σ (k) = 0.

Now we have to distinguish two different cases λ < −√
2t

and −√
2t � λ � 0. For the case λ < −√

2t , then E � λ. The
points for which ρσ (k) = 0 are the same as those for which
ρ1,σ (k) = 0. These are the M2 = 1

2 g2 point at which cos k ·
b2 = cos k · b3 = 0, and the M1 point at which cos k · b1 =
cos k · b3 = 0 and E = λ. In this case we apply the gauge
choice GIII for all the points of the BZ, and then we can show
that the eigenvector |uσ,k,III〉 is uniquely and smoothly defined,
as is the Berry gauge field Aσ,k,III = 〈uσ,k,III | ∇k |uσ,k,III〉. Be-
cause the BZ is a torus, we find that the lowest band Chern
numbers Cσ , are both vanishing. A very similar proof can be
done for the λ >

√
2t case. Therefore, at n = 2/3 filling, for

all flux φ ∈ ]0, π [, the phase associated with λB = −λR = λ

and λG = 0, |λ| >
√

2t is a trivial insulator.
Now, let us study the −√

2t � λ � 0 case. In this situa-
tion, E < λ. We have ρσ (k) = 0 at the M2 point. We have
ρ1(k) = 0 at the M2 and the M1 points. Here it is impos-
sible to find a unique and smooth gauge everywhere in the
BZ. For this purpose we split the BZ into two nonoverlap-
ping domains. One domain, which we call the DII domain,
contains the point where ρσ (k) vanishes. The other one, the
DI domain, contains all the points where E (E − λ) − ε2

3 (k)
vanishes or ε1(k) vanishes. The boundary between DI and DII

does not contain any of the ρσ (k) = 0, E (E − λ) − ε2
3 (k) =

0, and ε1(k) = 0 points. We also define � as a closed path
along this boundary, surrounding once the M2 point. We
refer the reader to Fig. 2 for the notations. Now we apply
the GI gauge choice for the points contained in DI and the
GII gauge choice for the points contained in DII. Then we

can show that the associated eigenvector |uσ,k,I〉 and |uσ,k,II〉
and the Berry gauge fields Aσ,k,I = 〈uσ,k,I| ∇k |uσ,k,I〉 and
Aσ,k,II = 〈uσ,k,II| ∇k |uσ,k,II〉 are uniquely and smoothly de-
fined respectively on DI and DII. Along � we have |uσ,k,I〉 =
e−iϕσ (k) |uσ,k,II〉. We can define ϕσ (k) so that it is smooth along
the whole � path. Therefore we have [see Eq. (39)]

Cσ = − 1

2π

∮
�

dk · ∇kϕσ (k). (61)

Now Cσ is found by studying how ϕσ (k) evolves when
moving along �. Generally speaking, when the � path sur-
rounds a ϕσ (k)’s divergence (here at the M2 point), the
accumulated phase increases or decreases by ±2πz, z ∈ Z,
which gives a quantized Cσ , as expected. We can check it
explicitly, and we find within this analytical argument that

Cσ = −szsgn(sin φ). (62)

A very similar proof can be done for the 0 < λ <
√

2t case.
Therefore, at n = 2/3 filling, for all flux φ ∈ ]0, π [, the phase
associated with λB = −λR = λ and λG = 0, |λ| <

√
2t is a

topological insulator.
This computation allows us to understand the discontin-

uous changes in the Z2 number. Let us denote max(El ) the
highest energy eigenvalue associated with the lowest band.
At γ = 0, when the λ parameter is such that |λ| <

√
2t ,

we have max(El ) < −|λ|. From the eigenvector’s coefficients
[see Eqs. (50)–(60)], we see that we can not define a contin-
uous gauge choice in the whole BZ. When the λ parameter
is such that |λ| >

√
2t , max(El ) = −|λ|. It is now possible

to define a continuous gauge choice in the whole BZ. When
varying the λ parameter and crossing the |λ| = √

2t point, this
discontinuity in the value of max(El ) [from max(El ) < −|λ|
to max(El ) = −|λ|] gives a discontinuity in the Z2 number.
It is important to notice that when |λ| >

√
2t , max(El ) is

reached at either the high symmetry M1 point or the high sym-
metry M3 point. In Appendix A 1 the method for computing
the Z2 number is different. But still, the discontinuity in the
value of max(El ) yields a discontinuity in parity eigenvalue
(associated with the lowest band) at the high symmetry points,
which gives a discontinuity in the Z2 number.

C. On-site energy applied in R sublattice sites: λR = λ and
λB = λG = 0

1. The numerical approach

Now we consider the case where one of the sublattices has
a finite on-site energy, while on the other two sublattices the
on-site energy vanishes. We start with λR = λ and λB = λG =
0. We again consider n = 2/3 filling and we choose the flux
φ = π/2.

We observe two gapped phases for λ < −2t and for
λ > −2t (see upper panel of Fig. 8). Except for γ = 0, there
is always a finite metallic region between these two insulating
phases. For γ = 0 the gap is closing only for λ = −2t .

To determine if any of these gapped phases are topolog-
ically nontrivial, we again calculate the Z2 number using
twisted boundary conditions. We observe that the gapped
phase with λ > −2t is a topological insulator with the Z2

number ν = 1, while the gapped phase with λ < −2t is a
trivial band insulator with ν = 0 (see lower panel of Fig. 8).
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FIG. 8. The phase diagram for n = 2/3 filling and φ = π/2.
λR = λ and λB = λG = 0. The upper panel shows the size of the gap
�, while the lower panel shows the Z2 number ν. White region in the
lower panel corresponds to the parameter set when the gap is closed.

So we obtain three different phases: topological insulator,
band insulator, and metallic phase.

Our results presented in Fig. 8 suggest that the topological
phase exists even in the limit λ → ∞. To check this claim, we
perform calculations for divergingly large λ (see Fig. 9). We
obtain that the gap � is inversely proportional to the on-site
energy λ and for large λ the gap is closing for γ = γc � 1/3π

(see Fig. 9). Based on the fit the behavior of the gap for large
λ is well described by

�(λ, γ ) = 4t2[1 − (γ /γc)1.184]

λ
. (63)

We thus obtain that for γ < γc the gap is finite and never
closed for λ � 0. So, since we know that the system is topo-
logical for λ = 0, it should also be topological for any λ > 0
for γ < γc.

FIG. 9. Behavior of the gap � as a function of γ for filling
n = 2/3 and flux φ = π/2, with λR = λ = 103t and λB = λG = 0.
The red curve with circles corresponds to our numerical calculations
with the original Hamiltonian [see Eq. (2)]. Crosses correspond
to numerical calculations obtained from the effective Hamiltonian
Eq. (79) discussed in Sec. IV E and in Appendix C. Finally, the
dashed curve is a fit function [see Eq. (63)].

2. The analytical approach

At γ = 0 we compute the Z2 number for all flux φ and
arbitrary on-site energy λ. The computation is similar to the
one we have done for the λB = −λR = λ and λG = 0 cases.
Both lowest spin species have the same energy E . We denote
λ̃ = λ/3t , and then we have

E = 2t

√
λ̃2 + 4

3
[1 + f (k)] cos

θ (k) + 2π

3
, (64)

with f (k) = 2
∏3

α=1 cos k · bα and 0 � θ (k) � π defined by

θ (k) = arccos
λ̃3 + 2λ̃

[
1+ f (k)− 3

4t2 ε
2
3 (k)

]− 4 f (k) cos φ[
λ̃2 + 4

3 [1 + f (k)]
]3/2 .

(65)

From this expression we can show that the gap between the
lowest band and the middle one only closes for the parameter
value λ = −2t , at the reciprocal space M3 point. It is valid for
each spin species, to which associated middle band energy is
given by

Em = 2t

√
λ̃2 + 4

3
[1 + f (k)] cos

θ (k) − 2π

3
. (66)

We have
(1) for λ � −2t , E � λ, with the equality occurring at the

M3 point,
(2) for λ > −2t , E < λ.
Now we can proceed in the same way as in Sec. IV B 2.

We keep the same notations for the coefficients of the wave
function and we introduce three new gauge choices.

(1) Gauge choice GIV : The coefficient gσ (k) is real. More
precisely, we choose

gσ (k) = ρ2,σ (k), (67)

with

ρ2,σ (k)eiϕ2,σ (k) = (−E + λ)ε3(k)

2ε1(k)
e−iszφ − 1

2
ε2(k), (68)

where ρ2,σ (k) and ϕ2,σ (k) are both real numbers. Then we
have

rσ (k) = E2 − ε2
3 (k)

ρ3,σ

ρ2,σ e−iϕ3,σ (k) (69)

and

bσ (k) = −E (E − λ) − ε2
2 (k)

2ε1(k)
e−iϕ2,σ (k), (70)

with

ρ3,σ (k)eiϕ3,σ (k) = Eε2(k) + e−iszφε1(k)ε2(k), (71)

where ρ3,σ (k) and ϕ3,σ (k) are both real numbers.
(2) Gauge choice GV : The coefficient bσ (k) is real. We

choose

gσ (k) = ρ2,σ (k)eiϕ2,σ (k). (72)

Then we have

rσ (k) = E2 − ε2
3 (k)

ρ3,σ

ρ2,σ ei[ϕ2,σ (k)−ϕ3,σ (k)] (73)
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and

bσ (k) = −E (E − λ) − ε2
2 (k)

2ε1(k)
. (74)

(3) Gauge choice GV I : The coefficient rσ (k) is real. We
choose

gσ (k) = ρ2,σ (k)eiϕ3,σ (k). (75)

Then we have

rσ (k) = E2 − ε2
3 (k)

ρ3,σ

ρ2,σ (76)

and

bσ (k) = −E (E − λ) − ε2
2 (k)

2ε1(k)
e−i[ϕ2,σ (k)−ϕ3,σ (k)]. (77)

When λ < −2t we can show that the gauge choice GVI is
applicable to the whole BZ. This indicates that at n = 2/3
filling, for all flux φ ∈ ]0, π [, our model with λR = λ and
λB = λG = 0, λ < −2t is characterized by a trivial insulating
phase.

When λ > −2t we split the BZ into two nonoverlapping
domains referring here to DIV and DV domains. The DV

domain contains the point where ρ2(k) vanishes and the
DIV domain contains all the points where E (E − λ) − ε2

2 (k)
vanishes or ε1(k) vanishes. The application of gauge choice
GIV and GV in, respectively, DIV and DV indicates that at
n = 2/3 filling, for all flux φ ∈ ]0, π [, our model with λR = λ

and λB = λG = 0, λ > −2t is characterized by a topological
insulating phase.

D. On-site energy applied in B sublattice sites: λB = λ and
λR = λG = 0

1. The numerical approach

Now we consider the setup where λB = λ and
λR = λG = 0. The filling is again n = 2/3 and we fix the flux
φ = π/2. Similar to the case (λR, λB, λG) = (λ, 0, 0), we
observe two gapped phases: for λ < −2t and for λ > −2t ,
but in contrast to the case when the on-site energy was applied
in R sublattice sites, the critical value γc where the gap is
closing, is decreasing with increasing on-site energy λ (see
upper panel of Fig. 10). We analyze this decrease for large λ

and obtain from the fitting the critical value (see also Fig. 11)

γc = t2

2πλ
. (78)

Another difference between the cases when the on-site
energy is applied in R sublattice sites and in B sublattice
sites is that for the latter, we do not obtain a finite metallic
region between two insulator phases in contrast to the former.
We observe that when a finite on-site energy is applied in B
sublattice sites for fixed γ < 1/4 the gap is closing only at
one value of λ.

We calculate the Z2 number using twisted boundary condi-
tions. We obtain for the gapped phase with λ < −2t ν = 0,
which is topologically trivial, while for λ > −2t we again
obtain that the Z2 number ν = 1 and the system is in the
topological insulator phase (see lower panel of Fig. 10). So we
again obtain three different phases: topological insulator, band

FIG. 10. The phase diagram for n = 2/3 filling and φ = π/2.
λB = λ and λR = λG = 0. The upper panel shows the size of the gap
�, while the lower panel shows the Z2 number ν. White region in the
lower panel corresponds to the parameter set when the gap is closed.

insulator, and metallic phase. According to our results, the
topological phase exists for λ → ∞, but in this configuration
only for γ → 0.

2. The analytical approach

At γ = 0 we compute the Z2 number for all flux φ and
arbitrary on-site energy λ. The computation is very similar
to the one done at λR = λ and λB = λG = 0. We can show
that, for all flux φ ∈ ]0, π [, the λ < −2t parameter space is
characterized by a trivial insulating phase while the λ > −2t
parameter space is characterized by a topological insulating
phase.

E. Effective Hamiltonian

To understand the behavior of the system for large λ, when
the finite on-site energy is applied in one of the sublattice sites,
we derive the effective Hamiltonian (details of the derivation
are given in Appendix C). We obtain that the effective model
is defined on a rectangular lattice with alternating diagonal
hoppings. The resulting structure has two sites in the unit cell
(a and b), while the unit cells are arranged in a triangular

FIG. 11. The critical value γc as a function of λ for n = 2/3
filling and φ = π/2. λB = λ and λR = λG = 0. The inset shows
2πλγc as a function of λ.

195105-12



SPIN-ORBIT COUPLING IN THE KAGOME LATTICE … PHYSICAL REVIEW B 103, 195105 (2021)

e1

e2

b1

FIG. 12. The schematic representation of the lattice correspond-
ing to the effective Hamiltonian in Eq. (79). The lattice contains two
sites per unit cell, which we depict by aqua (a) and brown (b). Unit
cells are arranged on a triangular lattice. Thick lines correspond to
the hoppings existing also in the original Hamiltonian in Eq. (2),
while thin lines correspond to the hoppings which arise in the ef-
fective Hamiltonian.

lattice (see Fig. 12). The effective Hamiltonian reads

Heff =
∑
n,m

[a†
n,mt̂h,+bn,m + a†

n,mt̂h,−bn−1,m

+ a†
n,mt̂v,+bn−1,m+1 + a†

n,mt̂v,−bn,m−1

+ a†
n,mt̂d,aan,m+1 + b†

n,mt̂d,bbn−1,m+1 + H.c.]

+
∑
n,m

[a†
n,mε̂aan,m + b†

n,mε̂bbn,m]. (79)

Here a†
n,m and b†

n,m create fermions in the unit cell (n, m) on
the a and b sublattices. t̂h,±, t̂v,±, t̂d,a, t̂d,b are hopping matrices
and ε̂a and ε̂b describe matrices of on-site energies.

For λR = λ and λB = λG = 0 we are left with B and G
sites. We obtain

t̂h,± = −teiφσ z − t2

λ
e±i2πγσ x

, (80)

t̂v,+ = t̂†
v,− = − t2

λ
ei2πγσ x

, (81)

t̂d,a = ε̂a = ε̂b = − t2

λ
1, (82)

t̂d,b = − t2

λ
ei4πγσ x

. (83)

For λB = λ and λR = λG = 0 we are left with G and R
sites. We obtain

t̂h,± = −te±i2πγσ x − t2

λ
e−iφσ z

, (84)

t̂v,+ = t̂v,− = − t2

λ
e−iφσ z

, (85)

t̂d,a = t̂d,b = ε̂a = ε̂b = −2t2

λ
1. (86)

Based on the effective Hamiltonian in Eq. (79), we cal-
culate the size of the gap for large values of λR = λ (and

λB = λG = 0). We present our results for λ = 1000t in Fig. 9.
As one can expect we get perfect agreement with the results
obtained by the “original” Hamiltonian.

We also analytically investigate the effective Hamiltonian
for large values of λR = λ and λB = λG = 0 (for more de-
tails see Appendix C). For γ = 0 the spin up and spin down
fermions are decoupled from each other. Therefore, instead of
finding eigenvalues of a 4 × 4 matrix (the unit cell contains 2
sites and a factor 2 arises due to the spin) one needs to perform
calculations for two equivalent 2 × 2 matrices. We obtain

Eσ,∓ = −2t2

λ
[1 + cos k1 cos(k1 − 2k2)]

±
√

4t2 cos2 k1 + 4t4

λ2
[1 + cos k1 cos(k1 − 2k2)].

(87)

As a result, we obtain (for more details see Appendix C)

� = min [Eσ,+] − max [Eσ,−] � 4t2

λ
, (88)

in agreement with the result obtained from fitting the numeri-
cal data [see Eq. (63)].

V. RESULTS: STAGGERED POTENTIAL

In this section we consider the results for a
finite staggered potential. As it was mentioned
above Vα,r = λα,1 for r = 2n1e1 + n2e2 and Vα,r =
λα,2 for r = (2n1 + 1)e1 + n2e2. We consider: (i)
λR,1 = λB,1 = λG,1 = −λR,2 = −λB,2 = −λG,2 = λ and
(ii) λR,1 = −λR,2 = λ and λB,s=1,2 = λG,s=1,2 = 0.

A. Uniform potential inside the unit cell of the kagome lattice:
λα,1 = −λα,2 = λ

First, we consider n = 2/3 filling and γ = 0. We obtained
three gapped phases. There is no finite metallic region be-
tween them [see Fig. 13(a)]. We observe that the gapped
phase which also exists for λ = 0 persists for arbitrarily large
λ, which has been numerically confirmed up to λ = 1000t .
However, the gap size shrinks with increasing λ. Both bound-
aries of the topological phase can be conveniently fitted to an
inverse proportionality

φb
c = abt

λ − λb
0

+ π

3
(89)

for large λ. The fit parameters ab and λb
0 for the upper (b = u)

and the lower (b = l) boundaries are obtained using ten points
for each boundary. We obtain au = 0.4335 ± 0.0001, λu/t =
1.12 ± 0.09, al = 0.4325 ± 0.0001, and λl/t = −0.79 ±
0.08 [see also Fig. 13(b)].

Based on our results for the system without on-site ener-
gies (see Sec. IV A), we can predict that the gapped phase,
which also exists for λ = 0 (no on-site energies), must be
a topological insulator. We calculate the Z2 number using
twisted boundary conditions and for the gapped phase men-
tioned above we indeed obtain ν = 1 in agreement with our
prediction. Our calculations show that the other two gapped
phases are topologically trivial band insulators. To conclude,
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(a)

(b)

FIG. 13. The phase diagram for filling n = 2/3,
λα,1 = −λα,2 = λ, and γ = 0 and φ = π/2. (a) The upper
panel shows the size of the gap �, while the lower panel
shows the Z2 number ν. (b) Topological phase for large values
of λ between red and blue curves. Red and blue points are
obtained by our numerical calculations, while blue and red curves
are obtained by fitting [see Eq. (89)]. Fitting parameters are
au = 0.4335 ± 0.0001, λu/t = 1.12 ± 0.09, al = 0.4325 ± 0.0001,
and λl/t = −0.79 ± 0.08.

we again obtain a topological phase in the limit λ → ∞ for
φ = π/3. We also perform calculations for the finite γ and
we obtain a similar phase diagram (not shown).

For the half-filled case (n = 1), in contrast to the case with-
out staggered potential (Vα,r = λα) which is always metallic
for half-filling, we recognize two distinct insulating phases for
φ 
= 0. For φ � 0.2 we additionally observe a third insulating
phase for small γ and λ ≈ 1.5 (not shown). We do not observe
a finite metallic region between these three insulating phases
for φ 
= 0, hence the gap is closing at a specific value of λ for
each given γ . For γ = 0 the closing of the gap takes place
at λ = 2t . Our results for the flux φ = π/2 are presented in
the upper panel of Fig. 14. For φ = π/2 a gapped phase does
exist for all γ 
= 0. Here, for γ → 0, there exists a gapped

FIG. 14. The phase diagram for half-filling (n = 1), φ = π/2,
and λα,1 = −λα,2 = λ. The upper panel shows the size of the gap �,
while the lower panel shows the Z2 number ν. White region in the
lower panel corresponds to the parameter set when the gap is closed.

phase for all values of λ except 0 and 2. If φ 
= π/2, the gap
closes for finite values of λ, and remains open for γ = 0 (not
shown).

To find out if one of these gapped phases are topologically
nontrivial, we calculate the Z2 number using twisted boundary
conditions. Our results are presented in the lower panel of
Fig. 14. We obtain that the gapped phase with λ < 2t corre-
sponds to the topological insulator, while the gapped phase
with λ > 2t and the third gapped phase with λ ≈ 1.5 are
trivial band insulators.

B. On-site energies applied in R-sublattice sites:
λR,1 = −λR,2 = λ and λB,s=1,2 = λG,s=1,2 = 0

Here we study the behavior of the system when a fi-
nite on-site energy is applied in one of the sublattice sites
only. We present our results for filling n = 2/3. We consider
the flux φ = π/2 and on-site energies λR,1 = −λR,2 = λ and
λB,s=1,2 = λG,s=1,2 = 0. We observe only one gapped phase
which also exists for very large values of λ. We check this nu-
merically up to λ = 100t . Our results are presented in Fig. 15.
By calculating the Z2 number we obtain that the gapped phase
is a topological insulator. Again for this setup we obtain a
topological phase in the limit λ → ∞.

We also perform calculations for other values of φ (not
shown) and we obtain a similar phase diagram.

VI. CONCLUSIONS

In this work we have studied topological properties of the
spin-orbit coupled time-reversal tight-binding model with flux
on the kagome lattice. In addition to the spin-orbit coupling
γ and the flux φ, we also considered the effect of the on-
site energies Vα,r. First, we considered the case where the
on-site energies are independent of the spatial coordinate r
but differ within the unit cell, i.e., Vα,r = λα . In this case
we obtain that the system has three bands that are poten-
tially nonoverlapping for any value of k. It follows that for
filling situations n = 2/3 and n = 4/3 a gapped phase can
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FIG. 15. The phase diagram for filling n = 2/3, φ = π/2,
and λR,1 = −λR,2 = λ and λB,s=1,2 = λG,s=1,2 = 0. The upper panel
shows the size of the gap �, while the lower panel shows the Z2

number ν. White region in the lower panel corresponds to the param-
eter set when the gap is closed.

occur. Because of the symmetries of our model, the results
for these two fillings are related by Eq. (30). Here we have
presented results for the the filling n = 2/3. We also per-
formed calculations for a staggered potential. For the latter
we have Vα,r = λα,1 for r = 2n1e1 + n2e2 and Vα,r = λα,2 for
r = (2n1 + 1)e1 + n2e2. In this case we obtain that the system
has six potentially nonoverlapping bands for all values of k.
It follows that a gapped phase can occur for fillings n = 1/3,
n = 2/3, n = 1, n = 4/3, and n = 5/3. In this work we have
presented results for n = 2/3 and for half-filling n = 1.

The model has time-reversal symmetry, and to determine
its topological nature we calculated the Z2 invariant. For this
purpose we used three methods. One of them is numerical
and based on the twisted boundary conditions [66–69], while
the other two are analytical. One of them introduces different
smooth fields for several domains in the reciprocal space and
was developed by us. The phase accumulated at the boundary
between the smooth fields’ domains is related to the topolog-
ical properties. It is important to remind that such a smooth
fields approach has recently been shown to be useful on the
honeycomb lattice, e.g., to indicate that transport and light-
matter properties can be revealed from the Dirac points only
[78,79].

The other approach, described in Appendix A 1, is along
the line of the method introduced on the honeycomb lattice
for Z2 topological insulators [1,2,57]. We also aimed at de-
veloping the “counting points” method in an energy band,
as discussed previously in Ref. [40]. Here we observe gap
closing effects when γ 
= 0 such that the results must be taken
with care in that situation; see Appendix A 2.

Depending on the model parameters, we obtain the topo-
logical insulator, the trivial band insulator, and the metallic
phase. We show that the obtained topological phases are stable
after applying on-site energies. Even more, if the flat band for
half-filling is split due to the the staggered potential in com-
bination with flux and spin-orbit coupling, stable topological
phases appear for arbitrarily small gap sizes.

One of the most interesting results we obtain is the ex-
istence of the topological phase for infinitely large on-site
energies. We show that for selected sets of parameters, in
particular when on-site energies were applied only on one
of the sublattice sides for n = 2/3, we obtain a topological
insulator for infinitely large on-site energies.

The situations with finite on-site energies were studied
previously related to topological insulators. In the original
paper by Kane and Mele, the effect of a finite staggered po-
tential was already considered [1,2]. Topological phases were
obtained for finite on-site energies, while for large on-site
energies, the system was shown to be topologically trivial. Re-
cently, a topological phase for infinitely large on-site energies
was observed for a mixture of three component fermions, on
a triangular lattice at 1/3 filling, in the presence of a gauge
potential stabilizing a quantum Hall insulator [80].

Experimental progress in ultracold atomic gases allows us
to realize and study such systems. Topological phases have
already been realized by loading ultracold atoms in optical lat-
tices [15–21]. For this purpose, artificial gauge fields [10,24–
29] were used. In particular, ultracold atomic gases also allow
the realization of SOC [30–33]. As mentioned above, the
kagome lattice can be realized experimentally by superimpos-
ing two optical triangular lattices with different wavelengths
[58]. The experimental realization of periodically oscillating
on-site energies, i.e., superlattices, is also well established
[24,81–87]. The physics obtained in this paper can be ob-
served for systems cooled down to temperatures T < �/kB,
as the gap � is of the order of t and the typical hopping
amplitude for ultracold atomic gases is of the order 0.1 kHz
[88], the system must reach temperatures of the order of 1 nK.
In real materials φ � π/4 and spin-orbit coupling is always
smaller compared to the hopping amplitude between corre-
sponding nearest neighbors, which in our notations means that
γ � 1/4 [89–91]. Ultracold atomic gases allow us to consider
larger intervals of Peierls phase φ. The maximal value of
the Peierls phase which can be obtained is φ = π/2 while
γ � 1/4 [92,93]. We conclude that the results obtained in our
work may be very relevant for upcoming experiments.
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APPENDIX A: TWO OTHER WAYS OF COMPUTING THE
Z2 NUMBER AT γ = 0

1. Using inversion symmetry

When our system is inversion symmetric (i.e., γ = 0), the
Z2 topological invariant ν (defined for time-reversal invariant
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Hamiltonian, i.e., B = 0) is given by [57]

(−1)ν =
∏

n1 = 0, 1
n2 = 0, 1

δ(n1,n2 ), (A1)

where δ(n1,n2 ) =∏N
m=1 p2m(�(n1,n2 ) ) is the product of the parity

eigenvalues p2m, at �(n1,n2 ), associated with each occupied
Kramers’ degenerate pair (p2m and p2m−1 are identical). The
�(n1,n2 ) points are the time-reversal invariant points, i.e., the
points such that H (�(n1,n2 ) ) = �H (�(n1,n2 ) )�−1. These points
can be written

�(n1,n2 ) = 1
2 (n1g1 + n2g2), (A2)

with g1 and g2 both reciprocal lattice basis vectors. These
points correspond to the so-called � point and to the three
M points.

We find the parity eigenvalues p2m associated with each
of the four �(n1,n2 ) points. We need to express the Hamilto-
nian and the momentum space parity operator at these points.
When γ = 0, the Hamiltonian decouples into two indepen-
dent parts, and it gives three energy bands associated with the
spin up states, which are degenerated with the three energy
bands associated with the spin down states. At n = 2/3 filling,
a Kramers’ degenerate pair is occupied. This pair contains
the lowest energy band associated with each spin species.
Formula (A1) only implies the parity eigenvalues associated
with one band, because the ones associated with the other
band are identical. Therefore, in the following, we consider
separately each of both diagonal parts of the Hamiltonian (3).

The parity operator can be defined in real space by

P(cR,r, cB,r, cG,r) = (cR,−r, cB,−r−e1 , cG,−r−e2 ). (A3)

A Fourier transformation of the fermionic operators enables
to see that, in momentum space, the parity operator reads

Pk = diag(1, e−ie1k, e−ie2k ). (A4)

Therefore, at the �(0,0) point, P�(0,0) is diagonal so δ(0,0) =
1 and at the other points we have P�(1,0) = diag(1,−1, 1),
P�(0,1) = diag(1, 1,−1), and P�(1,1) = diag(1,−1,−1).

Now we need to evaluate the lowest energy associated
eigenvectors of H↑(k) at �(1,0), �(0,1), and �(1,1). We consider
two different setups λB = −λR = λ and λG = 0 or λR = λ and
λB = λG = 0. We start with λB = −λR = λ and λG = 0. We

denote the lowest energy eigenvalue El (k) and we write |uσ,k〉
the σ spin species associated eigenvector

|uσ,k〉 = (rσ (k)c†
R,k,σ + bσ (k)c†

B,k,σ + gσ (k)c†
G,k,σ ) |0〉√

|rσ (k)|2 + |bσ (k)|2 + |gσ (k)|2
.

(A5)

We notice that
(1) At the �(1,0) point, for λ < −√

2t , the smallest eigen-
value is El = λ and the associated eigenvector is proportional
to (0,1,0), while for λ > −√

2t , the smallest eigenvalue is
El = −(λ + √

16t2 + λ2)/2, with associated eigenvector pro-
portional to ( − 2t/(λ + El ), 0, 1).

(2) At the �(0,1) point, the smallest eigenvalue is
El = −√

4t2 + λ2 and the eigenvector associated with it is
proportional to ( − 2t/(λ + El ), 1, 0).

(3) At the �(1,1) point, if λ >
√

2t , then El = −λ is
the smallest eigenvalue and the associated eigenvector is
proportional to (1,0,0), while if λ <

√
2t , then the small-

est eigenvalue is El = (λ − √
16t2 + λ2)/2, with associated

eigenvector proportional to (0, 2teiszφ/(λ − El ), 1).
Applying the parity operator and the eigenvectors, we find

that the phases λ >
√

2t and λ < −√
2t are trivial insulators

while the phase −√
2t < λ <

√
2t is a topological insulator.

These results are summed up in Table I.
Now we consider λR = λ and λB = λG = 0. We notice

that
(1) At the �(1,0) point, the smallest eigenvalue is

El = (λ − √
16t2 + λ2)/2, with associated eigenvector pro-

portional to (−El/2t, 0, 1).
(2) At the �(0,1) point, the smallest eigenvalue is

El = (λ − √
16t2 + λ2)/2, with associated eigenvector pro-

portional to (−El/2t, 1, 0).
(3) At the �(1,1) point, if λ < −2t , then El = λ is the

smallest eigenvalue and the associated eigenvector is pro-
portional to (1,0,0), while if λ > −2t , then the smallest
eigenvalue is El = −2t , with associated eigenvector propor-
tional to (0,−eiszφ, 1).

Applying the parity operator on the eigenvectors, we find
that the phase λ < −2t is a trivial insulator while the phase
λ > −2t is a topological insulator. These results are summed
up in Table II.

TABLE I. Table resuming the computation of the Z2 topological invariant ν for an inversion and time-reversal symmetric system. In
this example we took the chemical potentials to be λB = −λR = λ and λG = 0. For definition (n1, n2) see Eq. (A2), while for definitions
(rσ (k), bσ (k), gσ (k)) see Sec. IV B 2.

λ (n1, n2) Eigenvalues El Eigenvector’s coefficient (rσ (k), bσ (k), gσ (k)) Parity operator (−1)ν

λ < −√
2t (1,0) λ (0, t, 0) diag(1, −1, 1) +1

(0,1) −√
4t2 + λ2 ( − 2t2/(λ + El ), t, 0) diag(1, 1,−1)

(1,1) (λ − √
16t2 + λ2)/2 (0, 2t2eiszφ/(λ − El ), t ) diag(1, −1, −1)

−√
2t < λ <

√
2t (1,0) −(λ + √

16t2 + λ2)/2 ( − 2t2/(λ + El ), 0, t ) diag(1, −1, 1) −1
(0,1) −√

4t2 + λ2 ( − 2t2/(λ + El ), t, 0) diag(1, 1,−1)
(1,1) (λ − √

16t2 + λ2)/2 (0, 2t2eiszφ/(λ − El ), t ) diag(1, −1, −1)
λ >

√
2t (1,0) −(λ + √

16t2 + λ2)/2 ( − 2t2/(λ + El ), 0, t ) diag(1, −1, 1) +1
(0,1) −√

4t2 + λ2 ( − 2t2/(λ + El ), t, 0) diag(1, 1,−1)
(1,1) −λ (t, 0, 0) diag(1, −1, −1)
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TABLE II. Table resuming the computation of the Z2 topological invariant ν for an inversion and time-reversal symmetric system. In
this example we took the chemical potentials to be λR = λ and λB = λG = 0. For definition (n1, n2) see Eq. (A2), while for definitions
(rσ (k), bσ (k), gσ (k)) see Sec. IV C 2.

λ (n1, n2) Eigenvalues El Eigenvector’s coefficient (rσ (k), bσ (k), gσ (k)) Parity operator (−1)ν

λ < −2t (1,0) (λ − √
16t2 + λ2)/2 (−El/2, 0, t ) diag(1,−1, 1) +1

(0,1) (λ − √
16t2 + λ2)/2 (−El/2, t, 0) diag(1, 1, −1)

(1,1) λ (t, 0, 0) diag(1, −1, −1)
λ > −2t (1,0) (λ − √

16t2 + λ2)/2 (−El/2, 0, t ) diag(1,−1, 1) −1
(0,1) (λ − √

16t2 + λ2)/2 (−El/2, t, 0) diag(1, 1, −1)
(1,1) −2t (0, −teiszφ, 1) diag(1, −1, −1)

2. Counting the subband number under a weak magnetic field

Here we consider the case Vα,r = λα , γ = 0. We review an-
other method to determine the Chern number associated with
the energy bands of our model. It is based on the numerical
determination of the energy spectrum when we add a weak
magnetic field B = Bẑ orthogonal to the kagome lattice plane.
That is we add the term

−B
∑

r

∑
α=R,B,G

(nα,r,↑ − nα,r,↓) (A6)

in the Hamiltonian and also an extra coordinate depen-
dent flux φ1(r) for the hopping between nearest-neighbor
sites.

As we argued before, the Hamiltonian decouples into two
spin independent parts. Spin up and spin down parts are as-
sociated with opposite energy bands’ Chern number. Here for
simplicity we only consider the spin up part of the Hamil-
tonian. We call the energy bands when B = 0 the “parents
bands.” Under a weak magnetic field, each parent band i is
spitted into a certain number of subbands that we denote Di.
We can link this number to the amplitude of the magnetic field
and to the Chern number νi of the ith parent band [40,94].
We introduce f = qnφ where nφ = Ba2

h/e is the number of flux
quanta in the system and q is the area of the first magnetic
Brillouin zone. In the following we choose B such that 1/ f is
an integer. Then we have

νi = 1

f
− Di. (A7)

First we show that this method is useful at λα = 0, α =
R, B, G, or λα � t . We implement the effect of the B field
in the Hamiltonian. We compute the energy spectrum and
the energy density of states (DoS) so that we can count
the number of subbands arising from each parent band. We
consider for instance 1/ f = 5. Figure 16 show the den-
sity of states (DoS) at different values λα . At λα = 0, α =
R, B, G, we see that we have D1 = 4 subbands, D2 = 5 sub-
bands, and D3 = 6 subbands, which gives ν1 = −ν3 = 1, and
ν2 = 0. We see that when |λα| start increasing, counting
the subbands is becoming more and more difficult; when
λα reaches a value of the order t or greater, the determina-
tion of the Chern number relying on this method becomes
impracticable.

When γ 
= 0, several issues prevent us from extending this
method to compute the energy bands’ Chern number. First,
the Hamiltonian does not decouple into two spin independent

parts. Formula (A7) relies on a semiclassical dynamics de-
scription of the Bloch electrons in a magnetic field with no
interband tunneling. At γ 
= 0, this description is much more
tricky to draw because the bands are crossing. Moreover, we
cannot identify the subbands arising from each parent band,
so counting the former is impracticable.

APPENDIX B: CONSERVATION OF THE AVERAGE
CURRENT ALONG E2 DIRECTION

Here we compute the time derivative of the average value
of the current operator for one directional line that we denote
E2, along the e2 direction. We remind that we consider an
inversion symmetric lattice with line-shape boundaries. The

FIG. 16. Density of states for the spin up part of the Hamiltonian
with γ = 0, 1/ f = 5, and at −λR = λB = λ, λG = 0 (upper panel)
and λR = λ, λB = λG = 0 (lower panel).
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E2 line crosses a certain number of unit cells and may have
two extremities if the system is open in the e2 direction. Both
atoms at the extremity of the line have the same color that we

denote αe, αe = R or G. For each unit cell at position r, we
need to consider the currents along E2, which are j(G,r),(R,r)(τ )
and j(R,r+e2 ),(G,r)(τ ). We have

[H(τ ), j(G,r),(R,r)(τ )] = − e2

[
it2(sin2 τ − cos2 τ )

∑
σ={↑,↓}

[(c†
R,r+e2,σ

cR,r,σ − c†
G,r−e2,σ

cG,r,σ ) + H.c.]

+ it2 cos τ
∑

σ={↑,↓}
[(c†

G,r,σ cB,r,σ + c†
G,r,σ cB,r−e1,σ

) + H.c.]

− it2 cos τ
∑

σ={↑,↓}
[(eiszφc†

B,r,σ cR,r,σ + eiszφc†
B,r+e3,σ

cR,r,σ ) + H.c.]

+ 2it2 cos2 τ
∑

σ={↑,↓}
(c†

G,r,σ cG,r,σ − c†
R,r,σ cR,r,σ )

+ 2t2 cos τ sin τ
∑

σ={↑,↓}
(c†

R,r+e2,σ
cR,r,σ + c†

G,r−e2,σ
cG,r,σ ) − H.c.

− t2 sin τ
∑

σ={↑,↓}
(c†

G,r,σ cB,r,σ + c†
G,r,σ cB,r−e1,σ

) − H.c.

+ t2 sin τ
∑

σ={↑,↓}
(eisz (σ )φc†

B,r,σ cR,r,σ + eisz (σ )φc†
B,r+e3,σ

cR,r,σ ) − H.c.

]
, (B1)

d

dτ
j(G,r),(R,r)(τ ) = e2 t

∑
σ={↑,↓}

(i sin τ c†
G,r,σ cR,r,σ + cos τ c†

G,r,σ cR,r,σ ) + H.c., (B2)

[H(τ ), j(R,r+e2 ),(G,r)(τ )] = − e2

[
it2(cos2 τ − sin2 τ )

∑
σ={↑,↓}

[(c†
R,r+e2,σ

cR,r,σ − c†
G,r+e2,σ

cG,r,σ ) + H.c.]

− it2 cos τ
∑

σ={↑,↓}
[(c†

G,r,σ cB,r+e3,σ
+ c†

G,r,σ cB,r+e2,σ
) + H.c.]

+ it2 cos τ
∑

σ={↑,↓}
[(eiszφc†

B,r,σ cR,r+e2,σ
+ eiszφc†

B,r+e3,σ
cR,r+e2,σ

) + H.c.]

+ 2it2 cos2 τ
∑

σ={↑,↓}
(c†

R,r+e2,σ
cR,r+e2,σ

− c†
G,r,σ cG,r,σ )

− 2t2 cos τ sin τ
∑

σ={↑,↓}
(c†

R,r+e2,σ
cR,r,σ − c†

G,r+e2,σ
cG,r,σ ) − H.c.

− t2 sin τ
∑

σ={↑,↓}
(c†

G,r,σ cB,r+e3,σ
+ c†

G,r,σ cB,r+e2,σ
) − H.c.

+ t2 sin τ
∑

σ={↑,↓}
(eisz (σ )φc†

B,r,σ cR,r+e2,σ
+ eisz (σ )φc†

B,r+e3,σ
cR,r+e2,σ

) − H.c.

]
, (B3)

and

d

dτ
j(R,r+e2 ),(G,r)(τ ) = e2 t

∑
σ={↑,↓}

(i sin τ c†
G,r,σ cR,r+e2,σ

+ cos τ c†
G,r,σ cR,r+e2,σ

) + H.c. (B4)

We can notice that, integrated along the whole line E2, the first and fifth terms of the commutator (B1) are can-
celed by the ones of the commutator (B3), and the fourth term of both commutators give a resulting contribution
2it2 cos2 τ

∑
σ={↑,↓} (c†

αe,r1,σ
cαe,r1,σ

− c†
αe,r2,σ

cαe,r2,σ
), with r1 and r2 both positions at the extremity of E2. Moreover, we
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notice that the Hamiltonian is invariant under inversion symmetry added to the transformation γ → −γ . This trans-
forms the second, third, sixth, and seventh terms in the commutator (B1) (taken at some position r), respectively, into
the opposite of the same terms in the commutator (B3) (taken at the inversion symmetric position rR) and the term
2it2 cos2 τ

∑
σ={↑,↓} (c†

αe,r1,σ
cαe,r1,σ

− c†
αe,r2,σ

cαe,r2,σ
) into its opposite, while it leaves the terms (B2) and (B4) unchanged. It

means that we have ∑
r∈E2

〈�(τ )|
( i

h̄
[H(τ ), j(G,r),(R,r)(τ )] + i

h̄
[H(τ ), j(R,r+e2 ),(G,r)(τ )]

)
|�(τ )〉

=
∑
r∈E2

〈�(τ )|
(
− i

h̄
[H(τ ), j(R,r+e2 ),(G,r)(τ )] − i

h̄
[H(τ ), j(G,r),(R,r)(τ )]

)
|�(τ )〉 , (B5)

where E2 is the ensemble containing the positions of all the
unit cells belonging to the E2 line. From this we deduce that
the term

∑
r∈E2

〈�(τ )|
(

i

h̄
[H(τ ), j(G,r),(R,r)(τ )]

+ i

h̄
[H(τ ), j(R,r+e2 ),(G,r)(τ )]

)
|�(τ )〉

amounts to a vanishing contribution.
The Hamiltonian is also invariant under c†

α,r = (c†
α,r,↑,

c†
α,r,↓) → c† ′

α,r = (−c†
α,r,↑, c†

α,r,↓), α = R, B, G, added to
the transformation γ → −γ . From this we deduce that
each of the operators 〈�(τ )| ( d

dτ
j(G,r),(R,r)(τ )) |�(τ )〉 and

〈�(τ )| ( d
dτ

j(R,r+e2 ),(G,r)(τ )) |�(τ )〉 gives a vanishing contribu-
tion. Eventually we conclude that we have∑
r∈E2

d

dτ
〈�(τ )| j(G,r),(R,r)(τ ) + j(R,r+e2 ),(G,r)(τ ) |�(τ )〉 = 0.

(B6)

APPENDIX C: EFFECTIVE HAMILTONIAN

1. Real space

Here we derive the effective Hamiltonian for the case for
which the large on-site energy (either positive or negative) is
applied only on one site per unit cell, while for the other two
sites, the on-site energies are equal to zero or smaller than the
hopping amplitude t .

To derive the effective Hamiltonian, we split our original
Hamiltonian into three parts:

H = Ho + Hλ + H�. (C1)

Here Hλ denotes the on-site potential for the sites with large
on-site energies, while Ho denotes the Hamiltonian describing
the reduced lattice, without these sites. H� represents the
coupling of these two subsystems.

In matrix form we have

H =
(
Ho H′

�

H′†
� Hλ

)
. (C2)

Here H� = H′
� + H′†

�. The dimension of the matrix H is
6N1N2 × 6N1N2 since the system contains 3N1N2 sites and
therefore there are 6N1N2 single particle energy levels (ad-
ditional factor 2 comes from the spin degrees of freedom).

The dimension of the matrix Ho is 4N1N2 × 4N1N2, because
it contains 2N1N2 sites. The dimension of the matrix Hλ is
2N1N2 × 2N1N2, as the latter contains only N1N2 sites. Finally
the dimension of the matrix H′

� (H′†
�) is 4N1N2 × 2N1N2

(2N1N2 × 4N1N2).
So we have

H|ψ〉 = 1E |ψ〉 �⇒ det [H − 1E ] = 0,∣∣∣∣Ho − 1E H′
�

H′†
� Hλ − 1E

∣∣∣∣ = det [Hλ − 1E ]

× det[Ho − 1E − H′
�(Hλ − 1E )−1H′†

�] = 0.

Here E corresponds to the eigenvalues of Hamiltonian (C1).
For further evaluation we will restrict ourselves to the case
that det [Hλ − 1E ] 
= 0. So we have det [Heff (E ) − 1E ] = 0.
Here

Heff (E ) = Ho − H′
�(Hλ − 1E )−1H′†

�. (C3)

Here Heff (E ) is a 4N1N2 × 4N1N2 matrix. Assuming
that the sites with large on-site energies are decou-
pled from one another, we get Hλ = diag{λrλ

}. Thus we
have

Heff (E ) = Ho −
∑

r1,r2∈�o

∑
rλ∈�λ

|r1〉〈r1|H′
�|rλ〉〈rλ|H′†

�|r2〉〈r2|
λrλ

− E
,

(C4)

where

|r〉 =
(|r,↑〉

|r,↓〉
)

,

with r1 and r2 running over all lattice sites except of those
with large on-site energies (�o), while rλ runs over all lattice
sites with large on-site energies (�λ).

We note that up to this point no approximation was made
and Eqs. (C3) and (C4) are exact expressions, but they are
nonlinear equations.

We are interested in the low energy sector, i.e., |E | � |λrλ
|.

So we can neglect E compared to λrλ
and obtain the following

effective Hamiltonian:

Heff = Ho −
∑

r1,r2∈�o

∑
rλ∈�λ

|r1〉〈r1|H′
�|rλ〉〈rλ|H†

�|r2〉〈r2|
λrλ

.

(C5)
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Now we calculate 〈rα|H�|rα′ 〉:

Matrix elements Same unit cell Different unit cell

〈rR|H�|rB〉 −t1 −t1
〈rB|H�|rR〉 −t1 −t1
〈rR|H�|rG〉 −te−i2πγσ x −tei2πγσ x

〈rG|H�|rR〉 −tei2πγσ x −te−i2πγσ x

〈rB|H�|rG〉 −teiφσ z −teiφσ z

〈rG|H�|rB〉 −te−iφσ z −te−iφσ z

For the case where we apply a large on-site energy λ to
either R, B, or G for each unit cell, we obtain

Heff =
∑
n,m

[a†
n,mt̂h,+bn,m + a†

n,mt̂h,−bn−1,m

+ a†
n,mt̂v,+bn−1,m+1 + a†

n,mt̂v,−bn,m−1

+ a†
n,mt̂d,aan,m+1 + b†

n,mt̂d,bbn−1,m+1 + H.c.]

+
∑
n,m

[a†
n,mε̂aan,m + b†

n,mε̂bbn,m], (C6)

where a†
n,m and b†

n,m create fermions in the unit cell (n, n) on
a and b sublattices. t̂±, t̂v,±, t̂d,a, t̂d,b are hopping matrices and
ε̂a and ε̂b describe on-site energies.

For λR = λ and λB = λG = 0 we are left with B and G
sites. We obtain

t̂h,± = −teiφσ z − t2

λ
e±i2πγσ x

, (C7)

t̂v,+ = t̂†
v,− = − t2

λ
ei2πγσ x

, (C8)

t̂d,a = ε̂a = ε̂b = − t2

λ
1, (C9)

t̂d,b = − t2

λ
ei4πγσ x

. (C10)

For λB = λ and λR = λG = 0 we are left with G and R
sites. We obtain

t̂h,± = −t2e±i2πγσ x − t1t3
λ

e−iφσ z
, (C11)

t̂v,+ = t̂v,− = − t1t3
λ

e−iφσ z
, (C12)

t̂d,a = t̂d,b = ε̂a = ε̂b = −2t2

λ
1. (C13)

2. Momentum space

In this section we rewrite the effective Hamiltonian
Eq. (C6) in momentum space. Similar to the original lattice,
also for the effective system, unit cells are arranged on a
triangular lattice (see Fig. 12).

We perform a Fourier transformation

an,m = 1√
N1N2

∑
k

eik·rak,

bn,m = 1√
N1N2

∑
k

eik·(r+b1 )bk.

Here

r = ne1 + me2. (C14)

We obtain

Heff =
∑

k

[a†
k(eik·b1 t̂h,+ + e−ik·b1 t̂h,− + eik·(e2−b1 )t̂v,+

+ e−ik·(e2−b1 )t̂v,−)bk + a†
keik·e2 t̂d,aak

+ b†
keik·(e2−e1 )t̂d,bbk + H.c.] +

∑
k

[a†
kε̂aak + b†

kε̂bbk].

(C15)

So we have

Heff =
∑

k

[a†
k(eik1 t̂h,+ + e−ik1 t̂h,− + ei(2k2−k1 )t̂v,+

+ e−i(2k2−k1 )t̂v,−)bk + b†
k(e−ik1 t̂†

h,+ + eik1 t̂†
h,−

+ e−i(2k2−k1 )t̂†
v,+ + ei(2k2−k1 )t̂†

v,−)ak

+ a†
k(ei2k2 t̂d,a + e−i2k2 t̂†

d,a + ε̂a)ak

+ b†
k(ei2(k2−k1 )t̂d,b + e−i2(k2−k1 )t̂†

d,b + ε̂b)bk].

(C16)

In the matrix form, the Hamiltonian can be written as
follows:

Heff =
∑

k

φ
†
kHeff (k)φk, (C17)

Heff (k) =

⎛
⎜⎝
H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

⎞
⎟⎠, (C18)

φ
†
k = (a†

k,↑, a†
k,↓, b†

k,↑, b†
k,↓). (C19)

For λR = λ and λG = λB = 0 we have

H11 = H22 = −2t2

λ
cos(2k2) − 2t2

λ
,

H33 = H44 = −2t2 cos(4πγ )

λ
cos[2(k2 − k1)] − 2t2

λ
,

H12 = H21 = 0,

H34 = H43 = 2t2 sin(4πγ )

λ
sin[2(k2 − k1)],

H13 = H†
31 = −2t cos k1eiφ

− 2t2 cos(2πγ )

λ
[cos(2k2 − k1) + cos k1]

H24 = H†
42 = −2t cos k1e−iφ

− 2t2 cos(2πγ )

λ
[cos(2k2 − k1) + cos k1],

H14 = H41 = 2t2 sin(2πγ )

λ
[sin(2k2 − k1) + sin k1],

H23 = H32 = 2t2 sin(2πγ )

λ
[sin(2k2 − k1) + sin k1].
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While for λB = λ and λR = λB = 0 we have

H11 = H22 = −2t2

λ
cos(2k2) − 2t2

λ
,

H33 = H44 = −2t2

λ
cos[2(k2 − k1)] − 2t2

λ
,

H12 = H21 = 0,

H34 = H43 = 0,

H13 = H†
31 = −2t cos(2πγ ) cos k1

− 2t2

λ
[cos(2k2 − k1) + cos k1]e−iφ,

H24 = H†
42 = −2t cos(2πγ ) cos k1

− 2t2

λ
[cos(2k2 − k1) + cos k1]eiφ,

H14 = H41 = 2t sin(2πγ ) sin k1,

H23 = H32 = 2t sin(2πγ ) sin k1.

3. Analytical solution for λR = λ, λB = λG = 0 and γ = 0

We now calculate eigenvalues of the effective Hamiltonian
for λR = λ, λB = λG = 0. For γ = 0, spin up and spin down
fermions are decoupled from each other. Therefore instead of
finding eigenvalues of a 4 × 4 matrix (the unit cell contains
2 sites and a factor 2 comes due to the spin) one needs to
perform calculations for two equivalent 2 × 2 matrices. We
obtain

Eσ,− = − 2t2

λ
[1 + cos k1 cos(k1 − 2k2)]

−
√

4t2 cos2 k1 + 4t4

λ2
[1 + cos k1 cos(k1 − 2k2)]2,

(C20)

Eσ,+ = − 2t2

λ
[1 + cos k1 cos(k1 − 2k2)]

+
√

4t2 cos2 k1 + 4t4

λ2
[1 + cos k1 cos(k1 − 2k2)]2.

(C21)

The size of the gap is the energy difference between the
lowest energy of the higher band and the highest energy of
the lower band. So we have to find the minimal value of
Eσ,+ and maximal value of Eσ,−. One can easily notice that
Eσ,+ � 0. From here directly follows that min[Eσ,+] = 0.
This minimum occurs for k1 = ±π/2. What concerns Eσ,−,
it is maximal when k1 − 2k2 = π . So we have to find the
maximum for

f = −4t2

λ
sin2 k1

2
−
√

4t2 cos2 k1 + 16t4

λ2
sin4 k1

2
. (C22)

We have to solve df
dk1

= 0, leading to

−2t2

λ
sin k1 − −8t2 cos k1 sin k1 + 16t4

λ2 sin2 k1
2 sin k1

2
√

4t2 cos2 k1 + 16t4

λ2 sin4 k1
2

= 0.

(C23)
The solution k1 = 0 corresponds to the local minimum, there-
fore the maximum is given by

cos k1 − 2t2

λ2
sin2 k1

2
= t

λ

√
cos2 k1 + 4t2

λ2
sin4 k1

2
. (C24)

We take the square of both sides of the equation and obtain

cos2 k1 − 4t2

λ2
cos k1 sin2 k1

2
= t2

λ2
cos2 k1. (C25)

Here the solution cos k1 = 0 also corresponds to a local mini-
mum. So we have for the maximum

cos k1 = t2

t2 + λ2
. (C26)

Based on that we obtain

k1 = π

2
− arcsin

t2

t2 + λ2
� π

2
− t2

λ2
, (C27)

and therefore

max[Eσ,−] � −4t2

λ
+ 3t4

λ3
� −4t2

λ
. (C28)

So we get

� = min [Eσ,+] − max [Eσ,−] � 4t2

λ
. (C29)
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[28] V. Galitski, G. Juzeliūnas, and I. B. Spielman, Phys. Today 72,

38 (2019).
[29] V. Galitski and I. B. Spielman, Nature (London) 494, 49

(2013).
[30] Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Nature

(London) 471, 83 (2011).
[31] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,

and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).
[32] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S.

Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302
(2012).

[33] L. Huang, Z. Meng, P. Wang, P. Peng, S.-L. Zhang, L. Chen, D.
Li, Q. Zhou, and J. Zhang, Nat. Phys. 12, 540 (2016).

[34] A. M. Dudarev, R. B. Diener, I. Carusotto, and Q. Niu, Phys.
Rev. Lett. 92, 153005 (2004).

[35] F. Grusdt, T. Li, I. Bloch, and E. Demler, Phys. Rev. A 95,
063617 (2017).

[36] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62,
R6065 (2000).

[37] J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, Phys. Rev.
A 82, 043811 (2010).

[38] D. Green, L. Santos, and C. Chamon, Phys. Rev. B 82, 075104
(2010).

[39] Z.-Y. Zhang, J. Phys.: Condens. Matter 23, 365801 (2011).
[40] A. Petrescu, A. A. Houck, and K. Le Hur, Phys. Rev. A 86,

053804 (2012).
[41] G. Xu, B. Lian, and S.-C. Zhang, Phys. Rev. Lett. 115, 186802

(2015).

[42] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y.
Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann,
C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth,
Y. Chen et al., Nat. Phys. 14, 1125 (2018).

[43] Z. Guguchia, J. A. T. Verezhak, D. J. Gawryluk, S. S. Tsirkin,
J.-X. Yin, I. Belopolski, H. Zhou, G. Simutis, S.-S. Zhang,
T. A. Cochran, G. Chang, E. Pomjakushina, L. Keller, Z.
Skrzeczkowska, Q. Wang, H. C. Lei, R. Khasanov, A. Amato,
S. Jia, T. Neupert et al., Nat. Commun. 11, 559 (2020).

[44] J. Legendre and K. Le Hur, Phys. Rev. Research 2, 022043(R)
(2020).

[45] H.-M. Guo and M. Franz, Phys. Rev. B 80, 113102 (2009).
[46] G. Liu, P. Zhang, Z. Wang, and S.-S. Li, Phys. Rev. B 79,

035323 (2009).
[47] Z. Wang and P. Zhang, New J. Phys. 12, 043055 (2010).
[48] G. Liu, S.-L. Zhu, S. Jiang, F. Sun, and W. M. Liu, Phys. Rev.

A 82, 053605 (2010).
[49] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106,

236802 (2011).
[50] R. Liu, W.-C. Chen, Y.-F. Wang, and C.-D. Gong, J. Phys.:

Condens. Matter 24, 305602 (2012).
[51] X. Liu, W. Chen, Y. Wang, and C. Gong, J. Phys.: Condens.

Matter: Inst. Phys. J. 25, 305602 (2013).
[52] G.-W. Chern, C.-C. Chien, and M. Di Ventra, Phys. Rev. A 90,

013609 (2014).
[53] L. Du, Q. Chen, A. D. Barr, A. R. Barr, and G. A. Fiete, Phys.

Rev. B 98, 245145 (2018).
[54] A. Bolens and N. Nagaosa, Phys. Rev. B 99, 165141 (2019).
[55] K. Kudo, T. Yoshida, and Y. Hatsugai, Phys. Rev. Lett. 123,

196402 (2019).
[56] M. Wackerl, P. Wenk, and J. Schliemann, Phys. Rev. B 100,

165411 (2019).
[57] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[58] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,

and D. M. Stamper-Kurn, Phys. Rev. Lett. 108, 045305 (2012).
[59] Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[60] P. G. Harper, Proc. Phys. Soc. Sect. A 68, 874 (1955).
[61] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[62] J. Herzog-Arbeitman, Z.-D. Song, N. Regnault, and B. A.

Bernevig, Phys. Rev. Lett. 125, 236804 (2020).
[63] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Phys. Rev.

B 84, 075119 (2011).
[64] A. Alexandradinata, X. Dai, and B. A. Bernevig, Phys. Rev. B

89, 155114 (2014).
[65] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, Phys. Rev.

B 100, 195135 (2019).
[66] B. Irsigler, J.-H. Zheng, F. Grusdt, and W. Hofstetter, Phys. Rev.

Research 2, 013299 (2020).
[67] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674

(2005).
[68] T. Fukui and Y. Hatsugai, Phys. Rev. B 75, 121403(R) (2007).
[69] P. Kumar, T. Mertz, and W. Hofstetter, Phys. Rev. B 94, 115161

(2016).
[70] L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
[71] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Phys.

Rev. Lett. 97, 036808 (2006).
[72] C. L. Kane, Topological band Theory and the Z2 Invariant, in

Topological Insulators, edited by M. Franz and L. Molenkamp,
Contemporary Concepts of Condensed Matter Science Vol. 6
(Elsevier, 2013), pp. 3–34 .

195105-22

https://doi.org/10.1038/s41586-020-2482-7
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1038/nphys3171
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nature13915
https://doi.org/10.1126/science.aad4568
https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1038/s41567-017-0024-5
https://doi.org/10.1088/1367-2630/12/3/033007
https://doi.org/10.1103/RevModPhys.83.1523
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1088/0034-4885/77/12/126401
https://doi.org/10.1063/PT.3.4111
https://doi.org/10.1038/nature11841
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1038/nphys3672
https://doi.org/10.1103/PhysRevLett.92.153005
https://doi.org/10.1103/PhysRevA.95.063617
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevA.82.043811
https://doi.org/10.1103/PhysRevB.82.075104
https://doi.org/10.1088/0953-8984/23/36/365801
https://doi.org/10.1103/PhysRevA.86.053804
https://doi.org/10.1103/PhysRevLett.115.186802
https://doi.org/10.1038/s41567-018-0234-5
https://doi.org/10.1038/s41467-020-14325-w
https://doi.org/10.1103/PhysRevResearch.2.022043
https://doi.org/10.1103/PhysRevB.80.113102
https://doi.org/10.1103/PhysRevB.79.035323
https://doi.org/10.1088/1367-2630/12/4/043055
https://doi.org/10.1103/PhysRevA.82.053605
https://doi.org/10.1103/PhysRevLett.106.236802
https://doi.org/10.1088/0953-8984/24/30/305602
https://doi.org/10.1088/0953-8984/25/30/305602
https://doi.org/10.1103/PhysRevA.90.013609
https://doi.org/10.1103/PhysRevB.98.245145
https://doi.org/10.1103/PhysRevB.99.165141
https://doi.org/10.1103/PhysRevLett.123.196402
https://doi.org/10.1103/PhysRevB.100.165411
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevLett.108.045305
https://doi.org/10.1088/0022-3719/17/33/015
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevLett.125.236804
https://doi.org/10.1103/PhysRevB.84.075119
https://doi.org/10.1103/PhysRevB.89.155114
https://doi.org/10.1103/PhysRevB.100.195135
https://doi.org/10.1103/PhysRevResearch.2.013299
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevB.75.121403
https://doi.org/10.1103/PhysRevB.94.115161
https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevLett.97.036808


SPIN-ORBIT COUPLING IN THE KAGOME LATTICE … PHYSICAL REVIEW B 103, 195105 (2021)

[73] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
[74] S. Iimura and Y. Imai, J. Phys. Soc. Jpn. 87, 094715 (2018).
[75] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[76] L. Matthes, S. Küfner, J. Furthmüller, and F. Bechstedt, Phys.

Rev. B 94, 085410 (2016).
[77] F. Matusalem, M. Marques, L. K. Teles, L. Matthes, J.

Furthmüller, and F. Bechstedt, Phys. Rev. B 100, 245430
(2019).

[78] P. W. Klein, A. G. Grushin, and K. Le Hur, Phys. Rev. B 103,
035114 (2021).

[79] J. Hutchinson and K. L. Hur, arXiv:2002.11823.
[80] M. Hafez-Torbati, J.-H. Zheng, B. Irsigler, and W. Hofstetter,

Phys. Rev. B 101, 245159 (2020).
[81] L. Guidoni and P. Verkerk, Phys. Rev. A 57, R1501 (1998).
[82] G. Ritt, C. Geckeler, T. Salger, G. Cennini, and M. Weitz, Phys.

Rev. A 74, 063622 (2006).
[83] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto,

Phys. Rev. A 73, 033605 (2006).
[84] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A.

Widera, T. Müller, and I. Bloch, Nature (London) 448, 1029
(2007).

[85] P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-
Cardoner, S. Fölling, and I. Bloch, Phys. Rev. Lett. 101, 090404
(2008).

[86] L.-J. Lang, X. Cai, and S. Chen, Phys. Rev. Lett. 108, 220401
(2012).

[87] S. Nascimbène, Y.-A. Chen, M. Atala, M. Aidelsburger, S.
Trotzky, B. Paredes, and I. Bloch, Phys. Rev. Lett. 108, 205301
(2012).

[88] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[89] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,
Nat. Mater. 14, 871 (2015).

[90] Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H.
Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018).

[91] Q. Wang, S. Sun, X. Zhang, F. Pang, and H. Lei, Phys. Rev. B
94, 075135 (2016).

[92] T. D. Stanescu, V. Galitski, and S. Das Sarma, Phys. Rev. A 82,
013608 (2010).

[93] N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A. Martin-
Delgado, M. Lewenstein, and I. B. Spielman, Phys. Rev. Lett.
105, 255302 (2010).

[94] M.-C. Chang and Q. Niu, Phys. Rev. Lett. 75, 1348 (1995).

195105-23

https://doi.org/10.1103/PhysRevLett.71.3697
https://doi.org/10.7566/JPSJ.87.094715
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.94.085410
https://doi.org/10.1103/PhysRevB.100.245430
https://doi.org/10.1103/PhysRevB.103.035114
http://arxiv.org/abs/arXiv:2002.11823
https://doi.org/10.1103/PhysRevB.101.245159
https://doi.org/10.1103/PhysRevA.57.R1501
https://doi.org/10.1103/PhysRevA.74.063622
https://doi.org/10.1103/PhysRevA.73.033605
https://doi.org/10.1038/nature06112
https://doi.org/10.1103/PhysRevLett.101.090404
https://doi.org/10.1103/PhysRevLett.108.220401
https://doi.org/10.1103/PhysRevLett.108.205301
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/s41467-018-06088-2
https://doi.org/10.1103/PhysRevB.94.075135
https://doi.org/10.1103/PhysRevA.82.013608
https://doi.org/10.1103/PhysRevLett.105.255302
https://doi.org/10.1103/PhysRevLett.75.1348

