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Orbital susceptibility of T-graphene: Interplay of high-order van Hove singularities and Dirac cones
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Square-octagon lattice underlies the description of a family of two-dimensional materials such as tetra-
graphene. In the present paper we show that the tight-binding model of square-octagon lattice contains both
conventional and high-order van Hove points. In particular, the spectrum of the model contains flat lines
along some directions composed of high-order saddle points. Their role is analyzed by calculating the orbital
susceptibility of electrons. We find that the presence of van Hove singularities (VHS) of different kinds in the
density of states leads to strong responses: paramagnetic for ordinary singularities and more complicated for
high-order singularities. It is shown that at doping level of high-order VHS the orbital susceptibility as a function
of hoppings ratio α reveals the dia- to paramagnetic phase transition at α ≈ 0.94. This is due to the competition
of paramagnetic contribution of high-order VHS and diamagnetic contribution of Dirac cones. The results for
the tight-binding model are compared with the low-energy effective pseudospin-1 model near the three band
touching point.
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I. INTRODUCTION

Possible existence of two new graphene allotropes, planar
tetragraphene (or octagraphene) and buckled T-graphene com-
posed of carbon octagons with tetrarings, was demonstrated
some time ago using the density functional theory (DFT) [1].
Several previous attempts to find such allotropes were made
in Refs. [2,3]. It was noted that planar T-graphene allotrope
should be the most stable one after graphene while the buckled
T-graphene is not stable, and its fully relaxed state is very
similar to planar T-graphene [4]. Recently, the tetragraphene
allotrope has been predicted to possess superconductivity with
critical temperature up to around 20.8 K [5].

Some geometrical and electronic properties, as well as
low-energy physics of octagraphene, were studied in Ref. [6];
the phase diagrams were analyzed and the existence of Mott
metal-insulator phase transitions in the Hubbard model on
square-octagon lattice was pointed out in Refs. [7–11]. In
addition, structural and electronic properties of T-graphene
and its modifications were studied by DFT calculations in
Refs. [12–15] and the kinetic stability with time was analyzed
in Ref. [16]. Later, it was shown [17] that the 2D monolayers
of Zn2O2 and Zn4O4 also have nearly ideal square-octagon
lattice. In a recent paper [18] the stability of multilayer
materials such as ZnO composed of square-octagon lat-
tice was studied with the help of DFT technique. Also it
was shown that MoS2 transition metal dichalcogenide with
square-octagon lattice can possess Dirac fermions with Fermi
velocity comparable to that of graphene [9]. The coexistence
of Dirac fermions and nearly flat bands seems to be a very
interesting property of square-octagon lattice and motivates
us to study physical quantities such as orbital susceptibility in

terms of a newly introduced concept of high-order van Hove
singularities [19].

As is known, when the doping level approaches VHS,
the system can exhibit strong responses such as orbital
paramagnetism in the two-dimensional case [20] or chiral
superconductivity in the case of graphene [21]. An ordinary
VHS in the two-dimensional electron system corresponds
to logarithmic divergence of the density of states (DOS).
The distinctive feature of high-order VHS is a more sin-
gular, power-law divergence of DOS with an asymmetric
peak [19,22]. At the same time, the recent studies of two-
dimensional lattices uncovered a wide family of exotic band
structures [23] with flat bands and multiband touching points,
at which the quasiparticles are effectively described by high-
pseudospin Hamiltonians. Flat bands can be considered as a
limiting case of VHS with delta-function divergence of DOS.

The prominent examples of materials with high-order VHS
of different kinds are bilayer graphene with tuned dispersion
with the help of an interlayer voltage bias [24], Sr3Ru2O7

[25], and β-YbAlB4 [26]. Recently it was also shown that
when a high-order VHS is placed close to the Fermi level,
density wave, Pomeranchuk orders and superconductivity can
all be enhanced [27]. The role of high-order VHS on different
types of instabilities in twisted bilayer graphene was analyzed
in Ref. [28]. The presence of van Hove singularities in twisted
bilayer graphene [29] can lead to valley magnetism [30], den-
sity waves and unconventional superconductivity [31] such as
topological and nematic superconductivity [32], the so-called
“high-Tc” phase diagram [33], and Kohn-Luttinger supercon-
ductivity [34].

The orbital susceptibility [35] measures the response
of a time-reversal invariant electronic system to an
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FIG. 1. T-graphene lattice structure, which is described in the
main text. Each sublattice is denoted by its own color. Black dashed
rectangle encircles one elementary cell. The hopping parameters
between two small squares are t1 and inside each small square are
t2.

external magnetic field. To evaluate susceptibility of T-
graphene analytically and numerically we use the formulas
for susceptibility derived in Refs. [36] and [37]. We analyze
the role of VHS of both kinds in orbital susceptibility for
electrons on square-octagon lattice. Particularly, we show that
the flat lines in tight-binding band structure, which were firstly
mentioned in Ref. [8], also represent high-order VHS with
inverse square root divergence of DOS.

The paper is organized as follows. In Sec. II we describe
the tight-binding Hamiltonian of square-octagon lattice. Then,
in Sec. III we derive effective low-energy Hamiltonians that
describe bands around highly-symmetric points in the Bril-
louin zone (BZ). Also we identify the type of VHS which
are present in T-graphene. In Sec. IV we perform numerical
evaluation of susceptibility and then analyze the qualitative
physical effects of Dirac cones (Sec. IV B) and VHS using
effective low-energy expansion (Secs. IV C and IV D). The
role of high-order VHS is discussed also in the Conclusions
(Sec. V) where we summarize the obtained results. In Ap-
pendix A we analyze flat lines in the dispersion of middle
bands, and in Appendix B we present expressions for the
Green’s functions of tight-binding and Löwdin Hamiltonians.

II. TIGHT-BINDING MODEL

The square-octagon lattice consists of four atoms per unit
cell which form a small square and is shown in Fig. 1. Accord-
ing to Ref. [3], the numerical values for all nearest neighbor
interatomic distances are approximately equal to 1.429 Å
and lattice constant a = 3.47 Å for T-graphene. Reference
[6] gives the intrasquare, 1.48 Å, and intersquares, 1.35 Å,
distances, and similar values were reported in Ref. [18]. The
basis vectors of Bravais lattice and reciprocal lattice are

a1 = (a, 0), a2 = (0, a);

b1 =
(

0,
2π

a

)
, b2 =

(
2π

a
, 0

)
. (1)

In the tight-binding model, we take hopping parameters be-
tween atoms in two neighboring small squares to be t1 and
inside the small square to be t2. The corresponding tight-

binding Hamiltonian has the form [6,8]

HT g(k) = −

⎛
⎜⎜⎝

0 t2 t1eikxa t2
t2 0 t2 t1eikya

t1e−ikxa t2 0 t2
t2 t1e−ikya t2 0

⎞
⎟⎟⎠ (2)

and acts on the four-component wave functions ψ =
(ψA, ψB, ψC, ψD) (see Fig. 1 for sublattice labels). The
above mentioned difference in interatomic distances can ef-
fectively be described by tuning the hopping parameters t1 and
t2. The values of these hopping parameters can be taken from
DFT calculations: t1 = 2.9 eV and t2 = 2.5 eV were used in
Ref. [6], while t1 = 2.98 eV and t2 = 2.68 eV were found
from DFT calculations inside one layer of octagraphene [38].

The spectrum can be found from the equation det[εI −
HT g(k)] = 0, which after simplification reduces to [6,8]

ε4 − 2
(
t2
1 + 2t2

2

)
ε2 + 4t1t2

2 ε(cos (akx ) + cos (aky))

− 4t2
1 t2

2 cos (akx ) cos (aky) + t4
1 = 0 (3)

and has the form of depressed quartic equation. The spectrum
is symmetric with respect to rotations on the angle π

4 in k
space, because the lattice has a C4 point symmetry group.
Also the spectrum is symmetric with respect to transfor-
mations ε → −ε together with kx → kx ± π

a , ky → ky ± π
a

(called chiral symmetry in Ref. [8]). The Brillouin zone of
square-octagon lattice is a square with −π

a < kx, ky < π
a . The

corresponding highly-symmetric points are defined as

� = (0, 0), M =
(
±π

a
,±π

a

)
,

X =
(
±π

a
, 0
)
,
(

0,±π

a

)
, (4)

and are located in the center, corners and the middle of each
square site, respectively. It is convenient to measure the energy
in terms of t1 hopping parameter, and introduce the dimen-
sionless ratio of hopping parameters α = t2/t1. The 3D plots
of the spectrum defined by Eq. (3) for several values of α are
shown in Fig. 2, while the 2D plots along highly-symmetric
lines are represented in Fig. 3. For α = 1, near the three-band-
touching points � and M, one observes almost flat middle
bands [8]. These two middle bands support completely flat
energy lines, which are extended over full BZ. Below we
proceed with description of highly-symmetric points in terms
of van Hove singularities in the DOS.

III. SPECTRUM STRUCTURE AROUND
HIGHLY-SYMMETRIC POINTS: VAN HOVE

SINGULARITIES

Firstly, let us present general definitions that will be used
throughout the text. By definition, the one-electron DOS per
spin is given by

D(ε) =
4∑

i=1

∫
BZ

d2k

(2π )2
δ[ε − εi(k)], (5)

with i running over the band dispersions εi(k) found from
Eq. (3). Due to chiral symmetry the DOS is an even function
of energy. The ordinary VHS with the logarithmic diverging
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FIG. 2. Spectrum which is given by Eq. (3) for three values of parameter α = t2/t1: panel (a) α = 1
3 , panel (b) α = 1 and panel (c) α = 3

2 .
The energy ε is measured in units of hopping parameter t1. On the panel (b) one can observe the three-band-touching points where the two
Dirac cones meet nearly flat middle band. Black lines denote the lines of constant energies.

DOS occurs at saddle point ks of a particular band in which

∇kε(k) = 0 and det D < 0, (6)

where Di j ≡ 1
2∂i∂ jε(k) is the 2 × 2 Hessian matrix of a dis-

persion ε(k) at ks. Here and below we use short-hand notation
∂i = ∂ki . After proper rotation of a basis, the dispersion around
the saddle point can be conveniently represented as ε − εs ≈
−ζ p2

x + βp2
y with wave vector deviation p = k − ks. The two

coefficients ζ and β are the eigenvalues of D and satisfy the
condition −ζβ = det D < 0.

The high-order VHS corresponds to the saddle point with
the following properties [19]:

∇kε = 0 and det D = 0. (7)

This class of VHS can be divided into two types: ζ = β = 0
(multicritical VHS) or ζ �= 0, β = 0. The DOS is expected
to have a power-law divergence at such points. The position
of all VHS can be found by differentiating Eq. (3) and setting
∇kε = 0, from which we get the system of equations:

sin(akx )(ε − t1 cos(aky)) = 0,

sin(aky)(ε − t1 cos(akx )) = 0. (8)

Below we perform expansion of the energy spectrum of T-
graphene around highly-symmetric points and flat lines and

identify the corresponding VHS type with the DOS diver-
gence.

A. � and M points

Before proceeding with the calculation, we underline that
previously mentioned symmetry of spectrum makes these two
points equivalent up to change of energy sign. Thus, the anal-
ysis around the � point can be directly translated to the M
point and vice versa by chiral symmetry.

To find the approximate expressions for band energies
around highly-symmetric points, we perform the series ex-
pansion of spectral equation (3). We write ε = ε

(0)
i + δ, where

ε
(0)
i is the energy of the ith band exactly at the given point in

k space. Then, we expand the equation into series in δ and ka
(measured from the given point) and find the solution for δ

in leading order. Performing this for the � point, we find the
following results in the case α > 1:

ε1

t1
≈ − 1 − 2α + α|k|2a2

4(α + 1)
, (9)

ε2,3

t1
≈ 1 − a2α

4(α2 − 1)

×
[
α|k|2 ±

√(
α2|k|4 − 4(α2 − 1)k2

x k2
y

)]
, (10)

FIG. 3. The spectrum of T-graphene along the closed path X -�-M-X and DOS for α = 1/3, 1 and α = 3/2. DOS is plotted on the right
of each spectrum and is measured in units of 1

a2t1
. DOS is regularized with finite broadening of levels, � = 0.01t1 to make plots smooth.
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ε4

t1
≈ −1 + 2α + α|k|2a2

4(α−1) . (11)

The numbering of bands goes from the lower one to the upper
one (for α < 1 the indices 2 and 4 should be interchanged).
From expression (9) one can conclude that the spectrum of
tight-binding Hamiltonian (2) is bounded by −1 − 2α < ε <

1 + 2α at zero temperature. In particular, it follows from
Eq. (10) that the top of band ε3 has completely flat lines along
the kx and ky axes.

In the case α = 1 we find the following expansions for
three upper bands [which have triply degenerate point (see
also Ref. [8])]:

ε1

t1
≈ −3 + 1

8
a2|k|2, ε3

t1
≈ 1 − k2

x k2
y a2

2|k|2 ,

ε2,4

t1
≈ 1 ± a√

2
|k| − a2

(
k2

x − k2
y

)
2

16|k|2 . (12)

The two bands ε2,4 form Dirac cones with Fermi veloc-
ity vF = at1/

√
2h̄ with additional square-order corrections

in |k|a. The middle band ε3 is completely flat in first-order
approximation but has nontrivial anisotropic corrections of
second order in |k|a.

The � and M points define the energy boundaries of each
band (see Fig. 2). For α � 1 the bands are in the ranges [−1 −
2α,−1], [−1,−1 + 2α], [1 − 2α, 1], [1, 1 + 2α] measured
in units of t1. It follows from the expansions (9)–(11) taken at
k = 0. We find that the gap near ε = 0 opens for α < 1/2. For
the α � 1 the bands’ energy ranges are ε/t1 ∈ [−1 − 2α, 1 −
2α], [−1, 1] for both middle bands, and [−1 + 2α, 1 + 2α].
In this case the gaps are opened for α > 1 above ε = t1 and
below ε = −t1, respectively. These features of spectrum are
manifested in vanishing DOS in corresponding gap energy
ranges, see Fig. 3.

Next, we identify the type of VHS at ε3 = t1 in the α = 1
case. For this purpose, we evaluate the DOS contribution for
each band separately, taking the leading term in wave-vector
expansion. The integration over wave vector in Eq. (5) is
extended to cutoff parameter � of effective expansions (12).
Then, the Dirac cones give the standard graphenelike result:

D2(ε) + D4(ε) = |ε − t1|
πa2t2

1

. (13)

The evaluation of DoS for the middle nearly flat band is more
complicated but can be performed in polar coordinates:

D3(ε � t1) =
∫ �

0

∫ 2π

0

kdkdφ

(2π )2
δ

[
ε − t1 + t1

k2a2 sin2(2φ)

8

]
.

(14)

We emphasize the fact that the middle band contributes
only for ε < t1 and the corresponding DOS is asymmetric.
The integration over k is easily performed, and the inte-
gration over angle can be confined to the first quadrant
with adding a total factor 4. Then, one should integrate
in the limits where the solutions under delta function are

possible:

φmin = 1

2
arcsin

(√
8(1 − ε/t1)

�2a2

)
< φ <

φmax = π

2
− 1

2
arcsin

(√
8(1 − ε/t1)

�2a2

)
. (15)

Thus, the integral for DOS becomes

D3(ε � t1) = 1

t1a2

∫ φmax

φmin

dφ
4

sin2(2φ)

≈ 2

t1a

�√
2(1 − ε/t1)

, (16)

with the 1/
√

1 − ε/t1 divergence, as was noted previously.
This power-law divergence together with asymmetry of the
DOS clearly indicates that this point corresponds to high-
order VHS (see middle peaks of the DOS in all panels of
Fig. 3). Below we show that this holds true for all points on
flat lines in the dispersion ε3(k). Also one should note that this
singularity has a larger exponent κ = 1/2 [which is defined
as D3(ε � t1) ∼ |t1 − ε|−κ ] than in twisted bilayer graphene
(κ = 1/4, Ref. [19]) and the same as in Sr3Ru2O7 [25] and
β-YbAlB4 [26] materials.

Above we have found the long wavelength expansions of
spectrum for small values of wave vector k. However, these
expansions are violated if the model parameter α approaches
1. In this case we can use another series expansion of the
spectrum: We assume that |1 − α| ∼ |ka| are of the same
order. Then, we replace both terms |1 − α| and |ka| in Eq. (3)
with ζ |1 − α| and ζ |ka|, respectively, and expand the obtained
equation into powers of ζ . This guaranties that expansions
keep contributions from both small values |1 − α| and |ka|
in the same leading order. Next, we solve the approximate
spectral equation around each band, as for Eqs. (9)–(11), and
set finally ζ = 1; we find

ε1

t1
= −1 − 2α +

(
k2

x + k2
y

)
a2

8
,

ε3

t1
= 1 − k2

x k2
y a2

2
(
k2

x + k2
y

) ,
ε2,4

t1
= 1 −

⎛
⎝(1 − α) ±

√(
k2

x + k2
y

)
a2

2
+ (1 − α)2

⎞
⎠. (17)

The last two expressions show that the |1 − α| competes with
|k|a and their larger value defines the spectrum form in the
leading order.

B. X points and flat lines

At the X point the eigenvalues of Hamiltonian (2) are

εX
1,4 = ∓t1

√
1 + 4α2, εX

2,3 = ∓t1. (18)

The energies ε1,4 belong to lower and upper bands, respec-
tively, and the energies ε2,3 belong to flat lines for the points
in k space, which are situated in the middle between band-
touching points. In Appendix A we show how the flat lines
are related to the C4 point symmetry group of the lattice and
structure of tight-binding Hamiltonian. Performing the series
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expansion of the spectral equation in the same way as dis-
cussed above Eq. (9) but for wave vectors around X = (0, π

a ),
we find:

ε1 ≈ εX
1 + t1a2

4

[
k2

x

(
1 + t1

εX
1

)
−
(

ky − π

a

)2
(

1 − t1
εX

1

)]
,

(19)

ε4 ≈ εX
4 + t1a2

4

[
k2

x

(
1 + t1

εX
4

)
−
(

ky − π

a

)2
(

1 − t1
εX

4

)]
.

(20)

These two dispersion relations represent ordinary VHS, de-
fined via the conditions (6). The Hessian matrix is diagonal
and its elements are the derivatives of the above dispersion
relations with respect to wave vectors, D = diag(∂xxε, ∂yyε).
The DOS exhibits a logarithmic divergence around ε = εX

1

and ε = εX
4 : D1,4(ε) ∼ log ( �a2t1

|ε−εX
1,4| ). These upper and lower

peaks in DOS are clearly visible in Fig. 3.
Next, we find the series expansion of ε2,3 bands’ dispersion

around the X point. Due to chiral symmetry mentioned after
Eq. (3), it suffices to make expansion only for the upper band,
while for the lower band it can be found by appropriate change
of wave vectors. Expanding the spectral equation (3) for the
third band around energy ε3 = t1 into series in kxa, we find:

ε3 ≈ t1 − t1

[
k2

x a2

2
− k4

x a4

4α2(1 − cos(kya))

]
. (21)

This approximation works well only for k4
x a4

4α2(1−cos(kya)) <
k2

x a2

2 ,
since this band has ε3 � t1 energy for all points in the BZ. The
Hessian matrix for the dispersion (21) has only one nonzero
component on diagonal D = diag(− t1a2

2 , 0). Thus, we observe
that the middle bands at the X point and in other points of flat
line where 1 − cos(kya) �= 1 exhibit a high-order saddle point
(det D = 0). One can check that the DOS for dispersion (21)
has an inverse square root divergence 1/

√
t1 − ε with energy,

with benchmark asymmetry:

D3(ε � t1) =
∫

d2k

(2π )2
δ

[
ε − t1

(
1 − k2

x a2

2

)]

= �√
2π2at1

√
1 − ε/t1

. (22)

In Fig. 3 we present dispersion relations for T graphene along
the path X -�-M-X which represents the main features in the
spectrum (left part of each panel) and DOS (regularized by
finite level broadening, right part of each panel) for the values
α = 1/3, 1, and α = 3/2. Note that the path length in the
M-� direction is

√
2 times larger than that in the X -M or �-X

directions. Our plots show that at energies ∓t1
√

1 + 4α2 DOS
exhibits logarithmic divergences, which are the standard VHS
at X points. At the same time, the much stronger peaks in DOS
correspond to flat lines in the spectrum at energies ∓t1 which
are ‘high-order’ VHS. Our results for spectra agree with the
results of Refs. [6–8], however, the dispersion ε3 in Eq. (12)
was not recognized as the one exhibiting high-order VHS.

Figure 3 demonstrates also evolution of DOS as the func-
tion of the hopping parameter α. At ε = 0 we find that for α <

1/2 there are no states (insulating phase), while for larger α

the states are present. For energies |ε| < t1 the DOS is always

finite for α > 1/2 meaning metallic behavior. On the other
hand, for energies |ε| > t1 and α > 1 we observe the presence
of gaps in the DOS. In Sec. IV we will study the behavior of
orbital susceptibility around van Hove singularities.

C. Effective models of band touching point: Linear and
quadratic approximations

In the tight-binding model of square-octagon lattice the
band touching exists at two highly-symmetric points: � and
M. Since they are related by chiral symmetry [see discussion
after Eq. (3)], we need to build an effective Hamiltonian only
at one of these points. As was proposed in Ref. [8], one can
perform a rotation to C4v basis utilizing the following unitary
matrix

UC4v
= 1

2

⎛
⎜⎜⎝

1
√

2 0 1
1 0

√
2 −1

1 −√
2 0 1

1 0 −√
2 −1

⎞
⎟⎟⎠, (23)

which acts on four-component wave functions in sublattice
space, defined below Eq. (2). After such unitary transfor-
mation we obtain the following first-order effective SU (3)
Hamiltonian near the � point:

H (1)
SU (3) = t1

⎛
⎜⎝

1 0 − iakx√
2

0 1 iaky√
2

iakx√
2

− iaky√
2

2α − 1

⎞
⎟⎠. (24)

This Hamiltonian is useful for understanding how the Dirac
cones emerge in spectrum for α = 1. The spectrum defined
by this Hamiltonian is

ε0

t1
= 1,

ε±
t1

= α ±
√

a2|k|2
2

+ (α − 1)2, (25)

where ε0 corresponds to the ε3 band of the tight-binding
model and ε−,+ to the bands ε2,4, respectively. The corre-
sponding eigenvectors are

�0 = 1

|k| (ky, kx, 0),

�− = (ikxa,−ikya,
√

2(1 − ε−))√
2(|k|2a2 + 2(1 − α)(1 − ε−))

,

�+ = (−ikxa, ikya,
√

2(ε+ − 1))√
2(|k|2a2 + 2(α − 1)(ε+ − 1))

. (26)

One should note that the linear Hamiltonian of such a type
does not capture the spectral structure of the middle band.
Instead, the middle band is treated as completely flat, and the
corresponding effective theory is an example of pseudospin-1
fermion models (see Ref. [39] for topological classification
of such theories). Since the aim of the present paper is to
analyze the role of high-order VHS, we need to build the
effective Hamiltonian that correctly captures the dispersion of
middle band at leading order in |k|a. The needed dispersion is
presented, for example, in Eq. (12) in the α = 1 case.

To find the corresponding effective Hamiltonian, we use
the Löwdin method [40], which is also called Löwdin
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partitioning (the example calculation for Lieb-kagome Hamil-
tonian was performed in Ref. [41]). The idea is to perform
the rotation of the full tight-binding Hamiltonian (2) via the
unitary transformation (23) and then represent it in a blocklike
form:

H =
(

Hαα Hαβ

Hβα Hββ

)
, (27)

where the α subspace describes SU (3) band touching and β

subspace corresponds to the lower band, decoupled from other
three bands by relatively large gap. Then, the effective second-
order Hamiltonian around band touching is written as

Hα = Hαα + Hαβ (ε0 − Hββ )−1Hβα, (28)

where ε0 = ε2,3(k = 0) = t1. For the � point this Hamiltonian
has the following form

H (2)
SU (3) = ε̂(0) + t1

⎛
⎜⎜⎝

− a2(2α+1)k2
x

4(α+1)
a2kxky

4(α+1) − iakx√
2

a2kxky

4(α+1) − a2(2α+1)k2
y

4(α+1)
iaky√

2
iakx√

2
− iaky√

2
k2a2

4

⎞
⎟⎟⎠,

(29)

where ε̂(0) = t1diag(1, 1, 2α − 1). Such a simple Hamilto-
nian is particularly useful when the proper dispersion of all
three bands is needed at leading order.

IV. ORBITAL SUSCEPTIBILITY

In this section we study the manifestation of T-graphene
spectrum features considered above, in particular, VHS of
both kinds, in the orbital susceptibility. The susceptibility
measures the response of an electronic system to an exter-
nal magnetic field and is defined standardly as the second
derivative of the grand canonical potential at zero field. The
main formula, which is most suitable in our case for numerical
calculation, was given in Ref. [42], the more general formula
was derived in Ref. [37]. The susceptibility can be represented
as

χorb (μ, T ) = −μ0e2

12h̄2

Im

πS

∫ ∞

−∞
nF(ε) Tr X̂ dε. (30)

Here nF (ε) = 1/(e(ε−μ)/T + 1) is the Fermi distribution,
μ0 = 4π × 10−7 in SI units, and S is the area of the sample.
The operator X̂ is written in terms of zero-field Green func-
tion G(k) and Bloch Hamiltonian H (k), and ∂x,y are partial
derivatives over momenta:

X̂ = G(k)∂2
x H (k)G(k)∂2

y H (k)

− G(k)∂2
xyH (k)G(k)∂2

xyH (k)

+ 2([G(k)∂xH (k), G(k)∂yH (k)])2. (31)

The trace operation contains the integral over the BZ and the
trace over band indices:

Tr(•) =
∑

k

tr(•) = S
∫

BZ

d2k

4π2
tr(•). (32)

The orbital susceptibility can be rewritten in several other
forms, one of them without commutator [37],

χorb (μ, T ) = −μ0e2

12h̄2

Im

πS

∫ +∞

−∞
nF (ε) Tr{GHxxGHyy

− GHxyGHxy − 4(GHxGHxGHyGHy

− GHxGHyGHxGHy)}dε. (33)

Here G = G(k) is the Green function and Hi, Hi j denote the
first and second derivatives of the Hamiltonian with respect to
components of momenta ki, j , and the trace contains momenta
integration, as defined in Eq. (32). The last formula can be
also rewritten [37] in terms of the previously found one by
Gomez-Santos [36],

χorb(μ, T ) = −μ0e2

2h̄2

Im

πS

∫ +∞

−∞
nF (ε) Tr

{
GHxGHyGHx

× GHy + 1

2
(GHxGHy + GHyGHx )GHxy

}
dε.

(34)

Here the first term represents the Fukuyama result [43]. Three
formulas for susceptibility are equivalent of course, and the
use of a specific formula depends on possible simplifications,
for example, for Hamiltonians linear in momenta the expres-
sions (31) or (33) are preferred since the terms with second
derivatives Hi j vanish.

To check the numerical results below we use the sum rule
which states that the integral of the orbital susceptibility over
the whole band vanishes:∫

χorb(μ, T )dμ = 0. (35)

The derivation of the sum rule for general tight-binding model
was given in Ref. [44]. Below we apply the formulas for or-
bital susceptibility to particular models, namely tight-binding
model of tetragraphene and effective low-energy SU (3) mod-
els.

A. Application of general formulas to tetragraphene

Let us now apply the formula (30) to tetragraphene Hamil-
tonian (2). Since the second derivatives ∂2

xyH and ∂2
yxH vanish,

the operator X̂ reduces to

X̂ = G(k)∂2
x H (k)G(k)∂2

y H (k)

+ 2([G(k)∂xH (k), G(k)∂yH (k)])2. (36)

The Green’s function is given in Appendix B. Then, calcu-
lating the trace of X̂ for each term separately, we find the
expressions presented in Appendix by Eqs. (B6) and (B7).
We denote the first term with second derivatives in (36) as
“term 1” and the term with commutator as “term 2.” Here and
thereafter we use dimensionless energy parameter ε → ε/t1
to simplify the form of expressions. One should notice that
the numerators in both terms (B6) and (B7) are real, thus the
imaginary part comes fully from integration over energy due
to the presence of singular denominators. We write the de-
terminants as

∏4
i=1(ε − εi(k)), where εi(k) are band energies

measured in units of t1.
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FIG. 4. The dependence of susceptibility χ on chemical potential μ, measured in units of t1 hopping parameter, for three values of α:
(a) 1/3, (b) 1, (c) 3/2. The susceptibility is normalized to scale factor χ0 = μ0e2a2t1/12h̄2. The legend on panel (b) shows the lines definitions
in panels (a)–(c): dashed and dash-dotted lines correspond to first and second term contributions in X̂ [see Eq. (36)], while the solid line
describes the total susceptibility (the different ranges in the y axis are taken for better visibility). Panel (d) shows the total susceptibility for
three values of α.

One can use also an alternative expression (34) for suscep-
tibility obtaining shorter expression

χorb(μ, T ) = −μ0e2t1
2h̄2

Im

π

∫ +∞

−∞
dεnF (t1ε)

×
∫

BZ

d2k

4π2
tr {GHxGHyGHxGHy}. (37)

Evaluating the trace, we find

tr {GHxGHyGHxGHy}

=
(

2αa(ε2 − 1)

det
[
ε − 1

t1
H (k)

]
)4

sin2(kxa) sin2(kya). (38)

The advantage of this formula is that the numerator is much
simpler compared to Eqs. (B6) and (B7). However, the larger
power of denominator makes it harder to perform numerical
calculation, since the behavior at the band-touching point is
more singular.

The integrals over energy can be evaluated analytically
using Cauchy formula with residues. Next, we need to cal-
culate the integrals over wave vector in the full BZ. They are
cumbersome and can be performed only numerically.

The numerical evaluation can be performed by sampling
many points in the BZ and replacing the integral by a quadra-
ture sum. For this purpose we use Monte Carlo approach:
It converges very fast with increasing number of sample
points for multidimensional integrals. Taking N sample points
in the BZ, the integral over d2k is replaced by the sum∫

BZ
d2k

(2π )2 f (k) = 1
N

∑
j f (k j ). Then, the final formula used in

evaluation is

χorb (μ, T ) = χ0

N

N∑
j=1

[∑
i

res
ε=εi

nF (t1ε) f R(ε)

]
k=k j

. (39)

The residues were evaluated analytically using expressions
(B6) and (B7), and the band energy solutions of spectral
equation (3) were substituted numerically into final expres-
sions. Here we introduced the scale factor for susceptibility
χ0 = μ0e2a2t1/12h̄2.

The results of evaluation for χ as a function of chemical
potential are shown in Fig. 4. We have checked that good
convergence is reached for N = 105 and N = 5 × 105 for the
terms (B6) and (B7), respectively. The errors of integration
become in this case several orders less than the absolute values

of susceptibility. As a test, we checked that the sum rule,
which is given by Eq. (35), holds true with the same precision.

The orbital susceptibility exhibits standard weak diamag-
netic peaks near the edges of the spectrum, which can
be easily understood from the Landau-Peierls (LP) formula
[37,42,45,46],

χLP(μ, T )

= μ0e2

12h̄2

4∑
i=1

∫
d2k

4π2
n′

F (εi )
(
∂2

x εi∂
2
y εi − ∂2

xyεi∂
2
xyεi

)
, (40)

which takes into account only intraband contributions. Here
n′

F (ε) is a derivative of the Fermi distribution function. We
note that the LP contribution in total susceptibility comes
from the first two terms in Eq. (31) which contain second
derivatives.

In the case of T-graphene only the lower (upper) band gives
a strong contribution to the orbital susceptibility at the lower
(upper) edge of the spectrum. This can be clearly seen from
Figs. 2 and 3, since at the lower (upper) edge the correspond-
ing band in the � (M) point is separated by a large gap from
the other three bands. The dispersion of this band is quadratic
in momenta, see Eq. (9), and both derivatives in the first
term of the LP formula are positive. The second term exactly
vanishes, and thus the LP susceptibility is negative because
n′

F (ε) < 0. These peaks are clearly visible in susceptibility
described by the red line (term 1) in panels (a)–(c) of Fig. 4
(leftmost and rightmost negative peaks). At the same time, the
Landau-Peierls formula does not capture the contribution of
high-order saddle points. This is because the large contribu-
tion from a Fermi function derivative n′

F (εi ) is compensated
by vanishing determinant of Hessian matrix that is present in
round brackets.

At the ordinary van Hove points, which are placed on
upper and lower bands at X points at the energy levels εX

1,4 =
∓√

1 + 4α2, one finds strong paramagnetic peaks. These
peaks are also well described by the Landau-Peierls formula
(40). Substituting series expansion (19) or (20), one finds that
only the first term in the Landau-Peierls formula is nonzero
and has a positive sign due to opposite signs of ∂2

x and ∂2
y

derivatives. Moreover, due to the divergent DOS at this energy
level, the contribution of this band dominates and leads to
strong paramagnetism. This is also related to famous mag-
netic breakdown phenomena [47], where the quasiclassical
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FIG. 5. The dependence of orbital susceptibility on relative
strength of tight-binding parameters α = t2/t1 for μ = 1.0t1 and
T = 0.05t1. The numerically-evaluated total susceptibility (solid
blue line) is compared with susceptibility obtained from effective
pseudospin-1 Hamiltonians (24) (gray dash-dotted line) and (29)
(magenta dashed line).

approximation in terms of electronic orbits fails in the vicinity
of saddle points due to effects of tunneling from one trajectory
to the neighboring one that leads to rotation of the electron in
a direction opposite to the direction of classical rotation (see
Ref. [20] for a physical picture of this phenomenon). Large
paramagnetic peaks coming from the Landau-Peierls formula
are well seen in the red line (term 1) in the left panel of
Fig. 4 (α = 1/3). Due to the sum rule (35) they are almost
compensated by diamagnetic contribution in the green line

(term 2). The competition of two terms in Eq. (36) leads to
several dia- to paramagnetic transitions when we continuously
change the chemical potential μ (see Fig. 4). The susceptibil-
ity for α = 3/2 behaves qualitatively similar to the case with
α = 1/3.

The behavior of the susceptibility is more interesting when
the hopping parameter α is close to unity. At the Fermi level
μ = 0 the orbital susceptibility does not exhibit any peculiar
properties. However, when the doping is tuned to the band-
touching point μ = t1, one can expect nontrivial behavior of
susceptibility due to the presence of massless fermions form-
ing a Dirac cone and flat lines with high-order VHS of DOS.
Near the energy levels μ = ±t1 [see the panels (b) and (d) in
Fig. 4] we find strong diamagnetic and paramagnetic peaks.
Since the contribution of high-order VHS is suppressed in the
LP formula (term 1) we are left with diamagnetic contribution
from term 2 due to Dirac excitations when |μ| � t1. On the
other hand, when |μ| � t1 there is a strong paramagnetic
contribution in term 2 from high-order VHS. The existence of
the orbital paramagnetism is a necessary condition to cancel
the diamagnetic contribution in order to satisfy the sum rule
(35). The competition of these two contributions leads to a
sharp dia- to paramagnetic transition at |μ| ≈ t1 (see panels
(b) and (d) in Fig. 4 and Supplemental Material [48]). This
transition manifests itself in Fig. 5 where the susceptibility
at μ = t1 is plotted as a function of α (blue line). Below
we analyze the orbital susceptibility for effective linear and
quadratic Hamiltonians given by Eqs. (24) and (29) to obtain
some insights into the physics of these peculiar features.

B. Analytical results in effective pseudospin-1 model around band touching

Let us firstly use the linear effective Hamiltonian around the band-touching point to find an analytical approximation for
the susceptibility. It is given by Eq. (24), and we omit the dimensional parameter t1, restoring it in the final expressions for
susceptibility,

H3 ≡ HSU (3)

t1
=

⎛
⎜⎝

1 0 − iakx√
2

0 1 iaky√
2

iakx√
2

− iaky√
2

2α − 1

⎞
⎟⎠. (41)

The corresponding Green’s function is

GSU (3) = 1

det[ε − H3]

⎛
⎜⎝

ε2 − 1
2 a2k2

y − 2α(ε − 1) − 1 − 1
2 a2kxky − ia(ε−1)kx√

2

− 1
2 a2kxky ε2 − 1

2 a2k2
x − 2α(ε − 1) − 1 ia(ε−1)ky√

2
ia(ε−1)kx√

2
− ia(ε−1)ky√

2
(ε − 1)2

⎞
⎟⎠. (42)

The determinant in denominator is simple

det[ε − H3] = 1 − ε

2
(a2k2 + 2(ε − 1)(2α − ε − 1)) (43)

and gives two Dirac cones and the flat band at ε = 1. The first derivatives of the Hamiltonian are,

Hx
3 = a√

2

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, Hy

3 = a√
2

⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, (44)

while all second derivatives are zero. Then, we can apply the formula (34), which in our case reduces to

χorb(μ, T ) = −μ0e2t1
2h̄2

Im

πS

∫ +∞

−∞
nF (ε) Tr {GHxGHyGHxGHy}dε. (45)
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Calculating the matrix trace we come at the orbital susceptibility given by the triple integral,

χorb(μ, T ) = −μ0e2t1
2h̄2

Im

π

∫ +∞

−∞
nF (t1ε)dε

∫
d2k

4π2

16a8k2
x k2

y(
a2
(
k2

x + k2
y

)+ 2(ε − 1)(2α − ε − 1)
)4 . (46)

The integration over momenta is easily performed using polar coordinates∫
d2k

4π2

16a8k2
x k2

y(
a2
(
k2

x + k2
y

)+ 2(ε − 1)(2α − ε − 1)
)4 = a2

12π
×
{ 1

2(α−1)

(
1

ε−1 − 1
ε+1−2α

)
, α �= 1,

− 1
(ε−1)2 , α = 1.

(47)

Then, using the formula

Im
∫ +∞

−∞

f (E )

(E − α) j
dE = − π

( j − 1)!
f ( j−1)(α), (48)

for susceptibility we finally obtain:

χorb(μ, T ) = − χ0

2π

{ 1
2(α−1) (nF (t1(2α − 1)) − nF (t1)), α �= 1,

t1n′
F (t1), α = 1.

(49)

Note that the case α = 1 is the limit of the upper case with α �= 1. The result for α = 1 has the same functional structure as the
susceptibility for low-energy model of graphene [37] but differs in numerical factor and sign. The latter difference is connected
with the presence of the flat band in the spectrum. In such a case the flat band plays the crucial role giving strong deltalike
paramagnetic response of the system at μ = t1 instead of diamagnetic, which was a result of two Dirac cones in graphene. Note
however, that the linear effective Hamiltonian does not capture the correct dispersion of the middle band. The model contains a
completely flat band and the spectrum (25) is similar to a gapped dice model where the paramagnetic contribution from flat band
exceeds diamagnetic contribution from Dirac cones (see Ref. [49])

The plot of effective susceptibility defined by Eq. (49) is shown in Fig. 5 as a function of a hopping parameter α. On the plot
it is denoted as “Eq. (24)” effective theory. We compare its dependence on α with total susceptibility of actual model evaluated
numerically. The doping level μ = t1 coincides with the band touching point at which the high-order VHS and Dirac point are
present for α = 1. The numerical calculations demonstrate the presence of dia- to paramagnetic transition at α ≈ 0.94, which is
absent in the low-energy result (49). Thus, we should analyze a more precise effective model, which is given by the second-order
Hamiltonian Eq. (29).

C. Paramagnetic-diamagnetic phase transition at
band-touching point and second-order effective Hamiltonian

The calculation of orbital susceptibility for the second-
order effective Hamiltonian (29) involves all terms in the
X̂ operator (31), because all first and second derivatives of
Hamiltonian (29) over ki are nonzero. The corresponding
Green’s function is presented in the Appendix, see Eq. (B8).
Since the calculations quickly become cumbersome, we
present only numerical results here. For the integrals over
wave number k we use Monte-Carlo method. The energies
for each point in k space are found from Eq. (B9) and then
we use the integration formula (39) multiplied by volume
factor �2a2/π2. Here � is a cut-off parameter, that defines
the region of applicability of second-order effective Hamilto-
nian (29). We estimated it as � ≈ 0.8 1

a by comparing exact
spectrum with one obtained from Eq. (B9).

The orbital susceptibility for the effective Hamiltonian (29)
at the band-touching point μ = 1.0t1 as a function of a hop-
ping parameter α is presented in Fig. 5. It is clearly seen that
this Hamiltonian exhibits dia- to paramagnetic transition at
α = 0.94 in agreement with tight-binding Hamiltonian and
in contrast to the linear effective Hamiltonian (24). Quali-
tatively, one can expect that such a transition occurs due to
the presence of Dirac cones, which give strong diamagnetism
in graphene [37,50], and the proximity of a high-order VHS
that should result in strong paramagnetism. The competition
between these two opposite responses together with the weak
role of fourth band leads to a dia- to paramagnetic transition.

D. The role of van Hove singularities

Let us discuss the role of van Hove singularities in T-
graphene. For the ordinary VHS the orbital susceptibility
exhibits a paramagnetic peak [20]. This can be understood
using the standard Landau-Peierls formula for contribution
of single band [37]. In T-graphene, at the doping level μ =
±t1, one meets the three-band-touching points, at which two
Dirac cones and middle band with flat lines intersect. In a
single-layer graphene the presence of Dirac cones leads to sin-
gular diamagnetic contribution into orbital susceptibility χ ∼
−χ0δ(μ) at zero temperature [50]. In the gapped dice model,
spectrum of which is similar to (25), the paramagnetic con-
tribution due to a flat band exceeds diamagnetic contribution
from Dirac cones (see Ref. [49]). In the case of T-graphene,
the presence of a middle band, which is not flat anymore
but contains flat lines with high-order VH singularities on
it, leads to strong paramagnetic contribution competing with
diamagnetic contribution from Dirac cones, thus resulting in
sign change of the orbital susceptibility.

High-order Van Hove singularities manifest themselves
in many physical quantities as was reported in, e.g.,
Refs. [24–34]. In the present paper we focused on the
magnetic susceptibility of noninteracting electrons in square-
octagon lattice. However, one should expect the mani-
festation of high-order VHS of T-graphene also in other
physical quantities besides orbital susceptibility which is
a subject for future studies. We note that the accessi-
bility of doping levels beyond the van Hove singularity
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was demonstrated in recent experiment for single-layer
graphene [51].

V. CONCLUSIONS

In this paper we have studied the spectrum structure of
the tight-binding model for the square-octagon lattice and
analyzed the emergence of Dirac cones and van Hove singu-
larities of different type. Firstly, we found that the singularities
in DOS that correspond to the flat lines in spectrum of T-
graphene, represent VHS of high-order. Their benchmarks are
large divergence exponent κ = 1/2 (instead of logarithmic
divergence for ordinary VHS) and asymmetry of DOS near
corresponding energy level. Such high-order saddle points in
spectrum are intermediate between the ordinary saddle points
and completely flat bands. Also, using the Löwdin partition-
ing, we derived an effective second-order Hamiltonian that
correctly captures dispersions of three bands near the high-
order saddle point.

Secondly, we have studied the orbital susceptibility of
electrons on the square-octagon lattice. We have found that
while for ordinary VHS there are standard paramagnetic peaks
predicted long ago by Vignale [20], the recently introduced
high-order VHS [19] manifest themselves in a more compli-
cated way. The tight-binding magnetic susceptibility exhibits
several dia- to paramagnetic transitions when a chemical po-
tential runs the whole zone.

Studying the orbital susceptibility at the band-touching
point (μ = t1) as a function of the tight-binding hoppings
ratio α, we found a diamagnetic-paramagnetic transition at
α ≈ 0.94. Its existence can be qualitatively understood due
to competitions of contributions from Dirac cones, which
give strong diamagnetism, and high-order VHS that result in
strong paramagnetism. The effective low-energy pseudospin-
1 Hamiltonian near the � point (24) correctly describes

paramagnetic contribution but does not capture the dia-
to paramagnetic transition. On the other hand, the effec-
tive Hamiltonian (29), which keeps second-order terms in a
wave-vector expansion, correctly reproduces the dia- to para-
magnetic transition at α = 0.94 given by the tight-binding
Hamiltonian.

The tight-binding parameter α can be varied due to in-
plane deformations keeping C4 symmetry, thus allowing to
verify the dia- to paramagnetic transition in experiment.
Though it is not probably easy to fine-tune the hopping param-
eters experimentally, one can observe the different phases by
analyzing different materials that are based on square-octagon
lattice (see Refs. [13,17,18]). Also, the T-graphene model can
be realized experimentally with cold fermionic atoms in an
optical lattice, or in phononic crystals [52]. In these cases
it could be possible to test directly the sign change of the
susceptibility as a function of α. In further studies of the
T-graphene model it would be interesting to include impurities
and interactions.

Note Added in Proof. Recently [53], the role of high-order
VHS in the orbital magnetic susceptibility was studied for
twisted bilayer graphene. These studies complement the anal-
ysis of the present work.
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APPENDIX A: FLAT LINES IN DISPERSION OF MIDDLE BANDS AND LATTICE SYMMETRY

In this Appendix we show that the flat lines in spectrum are related to the C4 point symmetry group. Also we show that every
point of flat line represents a high-order saddle point. Firstly, one can check that setting kx = 0 (or ky = 0) in spectral equation
(3), it can be factorized:

(ε − 1)(−(4α2 + 1)ε + 4α2 cos(aky) + ε3 + ε2 − 1) = 0. (A1)

Here we used scaled energy parameter ε, measured in units of t1. Thus, we find the middle band dispersion ε = 1, which describes
a flat line. The same property of spectral equation holds true for kxa = ±π and kya = ±π lines, with ε = −1.

The wavevector in tight-binding Hamiltonian (2) is measured from � point. Performing the rotation to the basis of C4

symmetry group via the unitary matrix given in Eq. (23), we find the transformed Hamiltonian:

U †
C4v

HUC4v
= t1

2

⎛
⎜⎜⎝

−4α − cos (akx ) − cos (aky) i
√

2 sin (akx ) i
√

2 sin (aky) − cos (akx ) + cos (aky)
−i

√
2 sin (akx ) 2 cos (akx ) 0 −i

√
2 sin (akx )

−i
√

2 sin (aky) 0 2 cos (aky) i
√

2 sin (aky)
− cos (akx ) + cos (aky) i

√
2 sin (akx ) −i

√
2 sin (aky) 4α − cos (akx ) − cos (aky)

⎞
⎟⎟⎠. (A2)

It can be clearly seen that along flat line direction kx = 0 (and similarly for ky = 0), the Hamiltonian reduces to the matrix

U †
C4v

HUC4v
(kx = 0, ky) = t1

2

⎛
⎜⎜⎝

−1 − 4α − cos (aky) 0 i
√

2 sin (aky) −1 + cos (aky)
0 2 0 0

−i
√

2 sin (aky) 0 2 cos (aky) i
√

2 sin (aky)
−1 + cos (aky) 0 −i

√
2 sin (aky) −1 + 4α − cos (aky)

⎞
⎟⎟⎠. (A3)
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Thus, one can conclude that the presence of flat lines is protected not only by C4 symmetry, but also by the geometry of
tight-binding model. As was noted in Ref. [8], at the � point the flat lines represent nearly flat band (two lines intersect at the
angle π

2 ). When the two hopping parameters are equal, α = 1, the corresponding linear low-energy model (24) treats the middle
band as completely flat and is similar to a pseudospin-1 model. However, in the second order approximation [see Eq. (29)] the
middle band becomes dispersive. This fact distinguishes this pseudospin-1 model from other models, such as Lieb [54], Kagome
[55], or α − T3 [44,56,57] models, where the presence of exactly flat band is supported by the lattice geometry in tight-binding
approximation.

Finally, expanding the spectral equation (3) near the flat line kx = 0 up to second order in kxa, we find

δ4 − 4δ3 + 4(1 − α2)δ2 + 2α2δ((kxa)2 − 2 cos(kya) + 2) + 2α2(kxa)2(cos(kya) − 1) = 0. (A4)

Here δ = 1 − ε measures the deviation of energy from flat line value. In this equation we can omit the third and fourth order
corrections (δ3 and δ4) and obtain simple quadratic equation. The solution, that corresponds to the flat line, has the following
approximate behavior

δ ≈ k2
x a2

2
− k4

x a4

4α2(cos (kya) − 1)
. (A5)

The determinant of Hessian matrix for such a solution is always zero. Thus we conclude that every point on a flat line is a
high-order saddle point.

APPENDIX B: GREEN’S FUNCTION OF TIGHT-BINDING AND LÖWDIN HAMILTONIANS

In this Appendix we calculate the Green function of the tight-binding Hamiltonian (2). Standardly it is defined as

G(k, ε) = 1

t1

(
ε − 1

t1
H (k)

)−1

(B1)

for energy ε measured in units of t1. Using the formula for adjoint matrix, we find the simple but long expression. For the clarity,
we write the Green’s function in block form:

G(k, ε) = 1

t1 det
[
ε − 1

t1
H (k)

](G11 G12

G†
12 G22

)
. (B2)

The corresponding blocks are given by the following expressions:

G11(k, ε) =
(

ε(−2α2 + ε2 − 1) + 2α2 cos (kya) αe−ikya(−ε + eikxa)(−1 + εeikya)
αe−ikxa(−1 + εeikxa)(−ε + eikya) ε(−2α2 + ε2 − 1) + 2α2 cos (kxa)

)
(B3)

G12(k, ε) =
(

2α2(ε − cos (kya)) − (ε2 − 1)eikxa α(−ε + eikxa)(ε − eikya)
α(−ε + eikxa)(ε − eikya) 2α2(ε − cos (kxa)) − (ε2 − 1)eikya

)
(B4)

G22(k, ε) =
(

ε(−2α2 + ε2 − 1) + 2α2 cos (kya) αe−ikxa(−1 + εeikxa)(−ε + eikya)
αe−ikya(−ε + eikxa)(−1 + εeikya) ε(−2α2 + ε2 − 1) + 2α2 cos (kxa)

)
. (B5)

These expressions are used to evaluate the traces for “term 1” and “term 2” [first and second terms in Eq. (36)]:

tr [term 1] = a4

det
[
ε − 1

t1
H (k)

]2 [4α2((ε2 + 1) cos(kxa) − 2ε)((ε2 + 1) cos(kya) − 2ε)], (B6)

tr [term 2] = 16α2a4

det
[
ε − 1

t1
H (k)

]3

[
t2
1 α2(ε2 + 2)2 + ε(α2ε(ε2 + 2) cos(2kxa) + ((ε2 − 1)2 − 4ε2α2(ε2 + 2)) cos(kxa))

+ 2α2ε2 cos(2kya)(ε cos(kxa) − 1)2 + cos(kya)(−2(2α2 + 1)ε3 − 8α2ε − 4α2ε3 cos(2kxa)

+ (4αε − ε2 + 1)(4αε + ε2 − 1) cos(kxa) + ε5 + ε) − ε2(ε2 − 1)2
]
. (B7)

For the second-order effective Hamiltonian (29), which is obtained with the help of Löwdin partitioning method, the Green’s
function is (we set a = 1 to simplify the notation)

G = 1

t1 det
[
ε − H (2)

SU (3) (k)

t1

]

×

⎛
⎜⎜⎝
[
1 − k2

4 − 2α + ε
][ (2α+1)k2

y

4(α+1) + ε − 1
]

− k2
y

2 − kxky(k2+16α−4ε+4)
16(α+1) − ikx (2(ε−1)+α(k2

y +2ε−2))
2
√

2(α+1)

− kxky(k2+16α−4ε+4)
16(α+1)

[
(2α+1)k2

x
4(α+1) + ε − 1

][
1 − k2

4 − 2α + ε
]− k2

x
2

i(2(ε−1)+α(k2
x +2ε−2))ky

2
√

2(α+1)
ikx (2(ε−1)+α(k2

y +2ε−2))
2
√

2(α+1)
− i(2(ε−1)+α(k2

x +2ε−2))ky

2
√

2(α+1)
(ε − 1)2 + (2α+1)k2 (ε−1)+αk2

x k2
y

4(α+1)

⎞
⎟⎟⎠

(B8)
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and the determinant is given by the following third-order polynomial:

det

[
ε−H (2)

SU (3)(k)

t1

]
= ε3−ε2(α(8α−k2 + 12) + 4)

4(α + 1)
−ε(−32(α + 1)(4α − 1) + αk4 cos(4φ) + (3α + 2)k4 + 16α(2α + 1)k2)

32(α + 1)

+ −128(2α2 + α − 1) − αk6 − 4(α − 2)(2α + 1)k4 + 32α(4α + 1)k2 + αk4(8α + k2 + 4) cos(4φ)

128(α + 1)
.

(B9)
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