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Tunneling conductance of the (d + ip)-wave superconductor
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We theoretically investigate the tunneling conductance of the (d + ip)-wave superconductor that was recently
proposed to be realized at the (110) surface of a high-Tc cuprate superconductor. Utilizing the quasiclassi-
cal Eilenberger theory, we obtain the self-consistent pair potentials and the differential conductance of the
normal-metal/(d + ip)-wave superconductor junction. We demonstrate that the zero-bias peak of a d-wave
superconductor is robust against the spin-triplet p-wave surface subdominant order, even though it is fragile
against the spin-singlet s-wave one. Comparing our numerical results with experimental results, we conclude
that spin-triplet p-wave surface subdominant order is feasible.
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I. INTRODUCTION

Unconventional superconductors (SCs) can host surface
bound states, the Andreev bound states (ABSs), forming a
zero-energy flat band [1–6]. The zero-energy ABSs can be
observed as a zero-bias conductance peak (ZBCP) in the
quasiparticle tunneling spectra of the junctions of a normal
metal and a high-Tc cuprate (i.e., a spin-singlet d-wave SC)
[7–16]. In addition, the ABSs induce a Josephson current
with a low-temperature anomaly [17–19] and a paramagnetic
Meissner current [20–29]. The origin of the ABSs has been
clarified from the viewpoint of the topological invariant de-
fined using the bulk Hamiltonian [30].

The zero-energy ABSs may be fragile against perturbations
because of the high degeneracy of the flat band. The surface
s-wave subdominant order originating this instability was pro-
posed [31,32] in 1995. Theoretically, the subdominant s-wave
component splits the zero-energy peak in the local density
of states (LDOS) [33–35] and gives rise to a spontaneous
surface current by breaking the time reversal symmetry (TRS)
[36]. In experiments, however, neither such peak splitting nor
TRS breaking has been observed [8,9,11–16], except for a
few cases [10,37,38]. More seriously, the induced s-wave pair
potential requires an on-site attractive interaction, in contra-
diction to the strong repulsive interaction in the cuprate. The
instability of the ABSs is not still conclusive, even though
other possibilities have been pointed out, such as surface
ferromagnetism [39], spin density waves [40], the stag-
gered flux phase [41,42], and translational symmetry breaking
[43–50].

The spin-triplet p-wave subdominant order was recently
proposed using the finite-size two-dimensional Hubbard
model with the random-phase approximation [51]. The ferro-
magnetic fluctuation caused by the ABSs can stabilize such
a p-wave subdominant order, which breaks the TRS [52].
The obtained (d + ip)-wave pairing shows different properties
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compared with those of the d + is wave: there is no clear
zero-energy splitting in the LDOS and no spontaneous sur-
face current. Although a number of papers have studied the
(d + is)-wave state [31,34–36], the unique properties of the
(d + ip)-wave state have not yet been clarified. In particular,
the mixture of spin-singlet and spin-triplet pairs would cause
nontrivial phenomena.

We here study the conductance spectra of the normal-
metal/dxy-wave SC junctions with a subdominant py-wave
pair potential at the interface and compare the results with
those for the well-known (d + is)-wave superconducting
junction. We consider a ballistic planar junction, as shown
in Fig. 1, where the barrier potential is present at the in-
terface. Utilizing the quasiclassical Eilenberger formalism,
we obtain the differential conductance using the pair poten-
tial obtained by solving the self-consistency equation. The
calculated results show that the ZBCP of the dxy-wave SC
can survive under the spin-triplet py-wave subdominant pair
potential, even though it is fragile against the spin-singlet
s-wave subdominant pair potential. From the spin-resolved
conductance spectra, we show that the transport properties of
the (d + ip)-wave junction strongly depend on the spin of an
injected electron because of the coexistence of the spin-triplet
and singlet pairs near the interface.

We also investigate whether the ZBCP can survive, even
if the p-wave surface attractive potential is short range
and strong, as pointed out in Ref. [51]. The ZBCP is
demonstrated to be robust even against such a short-range
attractive potential. Comparing our results with experimental
data, we conclude that our results, which take the sub-
dominant p-wave order into account phenomenologically,
support recent theoretical predictions based on microscopic
calculations.

II. MODEL AND FORMULATION

We consider the ballistic normal-metal/dxy-wave SC junc-
tion shown in Fig. 1, where the SC and the normal metal
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FIG. 1. Schematic of the normal-metal (N)/superconductor (S)
junction. The dxy-wave superconductor that corresponds to (110) of
a cuprate superconductor is realized in S. Because of the flat-band
instability, a subdominant pair potential is induced near the interface.
There is a barrier potential Z at the interface.

(N) occupy x � 0 and x < 0, respectively. In a ballistic SC,
Green’s function obeys the Eilenberger equation [53]:

ivFx ∂xǧαα = −α[iωnτ̌3 + �̌α, ǧαα], (1)

ǧαα (φ, x, iωn) =
[

ĝαα f̂αα

− f̂
˜

αα −ĝ
˜
αα

]
, (2)

where ĝ and f̂ are the normal and anomalous Green’s func-
tions, vFx is the x component of the Fermi velocity vF , ωn

is the Matsubara frequency with integer n, the direction of
the momentum is characterized by the angle φ (kx = α cos φ

and ky = sin φ, with α = ±1 and −π/2 � φ � π/2), �̌α =
�̌α (φ, x), and τ̌ j ( j = 1, 2, or 3) are the Pauli matrices in the
particle-hole space. In this study, the symbols ·̌ and ·̂ denotes
the matrices in the particle-hole and spin space, respectively.
The pair-potential matrix is defined as

�̌α =
[

0 �̂

−�̂† 0

]
, �̂ =

[
0 �↑↓

�↓↑ 0

]
, (3)

where we have omitted the index α. The spin structure of the
pair potential is parametrized as

�̂ =
{
�d (iσ̂2) + i�pσ̂1 for d + ip wave,
(�d + i�s)iσ̂2 for d + is wave, (4)

where �μ (μ = s, p, and d) is the amplitude of the μ-wave
pair potential and σ̂ j ( j = 1, 2, or 3) are the Pauli matrices in
spin space. The momentum dependences of the pair potentials
are given by

�d (x, φ) = �d (x) sin(2φ), (5)

�p(x, φ) = �p(x) sin φ, (6)

�s(x, φ) = �s(x). (7)

The pair potentials are determined by the self-consistency
equation:

�μ = 
μ

nc∑
n=0

〈Tr[V̂μ(φ) f̂αα (φ, x, iωn)]〉FS, (8)

where the angular brackets mean the angle average on the
Fermi surface, 〈· · · 〉 = ∑

α

∫ π/2
−π/2 · · · (dφ/2π ), and nc is the

cutoff integer, which is decided by the relation 2nc + 1 <

ωc/πT � 2nc + 3, with ωc being the cutoff energy. The at-
tractive potential depends on the pairing symmetry:

V̂μ(φ) =
⎧⎨
⎩

2iσ̂2 sin(2φ) for the d wave,
2σ̂1 sin φ for the p wave,
iσ̂2 for the s wave.

(9)

The coupling constant 
μ is


μ = 2πT

[
ln

(
T

Tμ

)
+

nc∑
n=0

1

n + 1/2

]−1

, (10)

where Tμ is the effective critical temperature. Namely, the
ratios Tp/Td and Ts/Td characterize the amplitude of the sub-
dominant pair potential.

Microscopic theories [51,52] suggest that the attractive
potential for the p-wave channel may be short range. To
model such a short-range potential, we introduce the spatial-
dependent attractive potential 
′

μ(x) as


′
μ(x) = 
μ exp [−x/κ], (11)

where κ is the decay parameter which characterizes the length
scale of the attractive potential. Replacing 
μ in Eq. (8) by

′

μ(x), we can self-consistently calculate the subdominant
pair potential under the short-range attractive potential.

When the pair-potential matrix does not have the diagonal
component as in Eq. (4), the 4 × 4 Eilenberger equation can
be decomposed into two 2 × 2 equations:

ivFx ∂xg̃X
αα = −α

[
iωnτ̃3 + �̃X

α , g̃X
αα

]
. (12)

The spin-reduced Green’s function g̃X and the pair potential
are defined as

g̃O =
[

g↑ f↑↓
− f

˜ ↓↑
−g

˜↓

]
, g̃I =

[
g↓ f↓↑

− f
˜ ↑↓

−g
˜↑

]
, (13)

�̃O
α =

[
0 �↑↓

−�∗
↑↓ 0

]
, �̃I

α =
[

0 �↓↑
−�∗

↓↑ 0

]
, (14)

where we omit the direction index α and the index X = O and
I means the outer and inner components in the Nambu space,
respectively. Hereafter, we make the index X explicit only
when necessary. Using the Riccati parametrization [54–56],
the quasiclassical Green’s functions ĝX

αα can be expressed as

g̃αα = i

1 − DαFα

(
1 + DαFα 2iαFα

2iαDα −(1 + DαFα )

)
, (15)

where Dα = DX
α and Fα = F X

α are the so-called Riccati ampli-
tudes. The Riccati amplitudes obey the following Riccati-type
differential equations:

vFx ∂xD+ = 2ωnD+ + �+D2
+ − �∗

+, (16)

vFx ∂xD− = 2ωnD− + �∗
−D2

− − �−, (17)

vFx ∂xF+ = −2ωnF+ + �∗
+F 2

+ − �+, (18)

vFx ∂xF− = −2ωnF− + �−F 2
− − �∗

−. (19)

The Eilenberger equation is supplemented by the boundary
conditions [35,55–59]. The boundary conditions at the N/SC
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interface are given by

F±(0) = −Rsω D∓(0), (20)

where R is the reflection probability amplitude and sω =
sgn[ωn].

A. Real-energy representation

In order to discuss the quantities depending on the energy,
we need the Green’s function in the real-energy representa-
tion. The Green’s function in the real-energy space can be
obtained by the analytic continuation: iωn → E + iδ. In this
case, the Riccati amplitudes are also converted as

DX
±(x, iωn) = i
X

±(x, E ), F X
± (x, iωn) = iζ X

± (x, E ). (21)

From the Riccati amplitude 
±, we can directly calculate the
angle-resolved conductance as a function of E = eV and φ:

σR = 1 + σN |
+|2 + (σN − 1)|
+
−|2
|1 + (σN − 1)
+
−|2 , (22)

where 
± = 
±(x = 0, E , φ), σR = σ X
R (E , φ), σN = σN (φ),

V is the bias voltage applied to the junction, and 
± = 
X
±.

The conductance in the normal state is obtained by solving the
scattering problem: σN (φ) = 1 − R = cos2 φ/(Z2 + cos2 φ),
where we assume the potential barrier ZvF δ(x), with δ(x)
being the delta function.

The total conductance is defined as

GNS(E ) =
∑

X

∫ π/2

−π/2
G′X

NS(E , φ) cos φdφ, (23)

G′X
NS(E , φ) = σN (φ)σ X

R (E , φ), (24)

where G′X
NS(E , φ) is the angle-resolved differential conduc-

tance. The conductances G′O
NS(E , φ) and G′I

NS(E , φ) cor-
respond to those of up-spin and down-spin injections,
respectively. It is convenient to introduce the normalized con-
ductance ḠNS = GNS/GNN, with GNN = 2

∫ π/2
−π/2 σN cos φdφ.

The local density of states (LDOS) can be obtained from
the quasiclassical Green’s function. The LDOS is given by

ρ = 1

π

∫ π/2

−π/2
ρ ′(φ)dφ, ρ ′(φ) = 1

2

∑
α

Tr[ǧαα]|iωn→E+iδ.

(25)

In quasiclassical theory, the LDOS is normalized by its
normal-state value.

III. RESULTS

A. Differential conductance

The differential conductance for the (d + ip)- and (d + is)-
wave junctions are shown in Figs. 2(a) and 2(b), respectively,
with magnified images shown in Figs. 2(c) and 2(d), where the
pair potentials are determined self-consistently (see Appendix
A for details). Throughout this paper, the temperature and
cutoff energy are set to T = 0.05Td and ωc = 2πTd . Figure 2
shows that the ZBCP is robust against the p-wave subdomi-
nant component but fragile against the s-wave component. In
the d + ip case, the ZBCP survives even when Tp/Td = 0.25.
With increasing Tp/Td , the ZBCP becomes broader, where the

FIG. 2. Differential conductances of (a) (d + ip)- and (b) (d +
is)-wave junctions. Magnified images are shown in (c) and (d). The
ZBCP is not split by the p-wave subdominant component but by the
s-wave one. The ZBCP is robust against the p-wave subdominant pair
potential but is fragile against the s-wave one. The barrier potential is
set to Z = 3. The pair potential is determined self-consistently. The
temperature and cutoff energy are set to T = 0.05Td and ωc = 2πTd .

peak width is roughly characterized by Tp. When Tp/Td =
0.25, two peaks seem to overlap at eV = 0: A sharper one and
a broader one. In the d + is case, the ZBCP is fragile against
the subdominant pair potential, as shown in Fig. 2(b). In the
presence of the s-wave pair potential, the ZBCP is split into
two peaks, where the distance between two peaks is charac-
terized by Ts. This result is consistent with Refs. [31,36].

We explain the origin of the sharp and narrow peaks for
the (d + ip)-wave junction by analyzing the injected-spin
dependence of GNS. The conductances for the up-spin and
down-spin injections are shown in Fig. 3(a) and 3(b), respec-
tively, where the parameters are set to the same values as those
used in Fig. 2. The center of the zero-energy peak for the
up-spin (down-spin) injection shifts from E = 0 to a finite

FIG. 3. Injected-spin dependence of GNS of the (d + ip)-wave
junction. The injected particle is assumed to be (a) up and (b) down.
The differential conductance of the (d + ip)-wave junction depends
on the injected spin because the subdominant component is spin-
triplet pairing. The parameters are set to the same values used in
Fig. 2.
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FIG. 4. Angle-resolved differential conductances of (d + ip)-wave junctions for (a) up- and (b) down-spin injection. The zero-energy flat
band of a d-wave SC becomes dispersive by a p -wave subdominant pair potential. The dispersion of the bound states changed from a flat
band to a V-shaped one. The surface states around φ = 0 stay around zero energy because the p -wave component is small around φ = 0.
The effective critical temperatures for the subdominant components are set to Tp = Ts = 0.25Td in (a), (b), and (c). The results for the (c)
(d + is)-wave and (d) d-wave junctions.

positive (negative) energy, where the peak becomes broader
simultaneously. Although the peak center moves from the zero
bias, the zero-energy conductance (GNS/GNN)|E=0 always has
an amplitude larger than unity independent of the injected
spin. Therefore, the ZBCP of the total conductance [Fig. 2(a)]
does not disappear but becomes thicker by the subdominant
p-wave order parameter. The spin-resolved conductance for
the (d + is)-wave junction (not shown) does not depend on
the injected spin because both of the d- and s-wave pairs are
spin singlets.

The angle-resolved differential conductance are shown in
Fig. 4, where the pairing symmetry is assumed to be d + ip
wave in Figs. 4(a) and 4(b), d + is wave in Fig. 4(c), and pure
d wave in Fig. 4(d). The injected spin is assumed to be up
in Figs. 4(a), 4(c), and 4(d), whereas it is down in Fig. 4(b),
where the conductance for the (d + is)-wave and pure d-wave
junctions does not depend on the injected spin. In the absence
of a subdominant pair potential, the angle-resolved conduc-
tance G′

NS(φ) has a peak at the zero-bias voltage (i.e., eV = 0)
independent of ky = sin φ [see Fig. 4(d)].

In the presence of the p-wave subdominant component,
the in-gap conductance peak changes from a flat band to a V
(inverted V) shape for up-spin (down-spin) injection, as shown
in Fig. 4(a) [Fig. 4(b)]. However, the in-gap peak around
φ = 0 stays around eV = 0 because the p -wave component
has nodes at φ = 0 (see Fig. 5). As a result, for both spin

FIG. 5. Schematic of the pair potentials. The py-wave subdom-
inant component has a small amplitude for the low-angle injection
(φ ∼ 0), where the amplitude of the s-wave component is indepen-
dent of the angle. Reflecting the py-wave nature, the zero-energy
conductance peak of the (d + ip)-wave superconductor does not
split.

injections, the zero-energy conductance has a relatively large
amplitude, and the ZBCP in the total conductance can survive
even with the py-wave subdominant component

In the (d + is)-wave case, the in-gap conductance changes
from the flat band to an S-shaped one, as shown in Fig. 4(c),
where the conductance does not depend on the injected spin.
Even around φ = 0, the ABSs are lifted from eV = 0 because
the s-wave pair potential does not have any nodes on the Fermi
surface (see Fig. 5). Reflecting this nodeless structure, the
slope of the in-gap conductance peak around φ = 0 is much
larger than those for the (d + ip)-wave junction. As a result,
the conductance at eV = 0 of the (d + is)-wave junction is
greatly reduced by the subdominant component.

Contrary to the differential conductance, the LDOS reflects
the splitting of the zero-energy peak owing to the subdominant
pair potential. The LDOSs at the interface of the (d + ip)-
and (d + is)-wave junctions are shown in Figs. 6(a) and 6(b).
Comparing Figs. 6(a) and 2(a), we see that the zero-energy
peak splits even in the (d + ip)-wave junction, where the
ZBCP does not split. The zero-energy peak moves to E ∼
±Tp. In GNS, the surface state with the small angle (i.e.,
|φ| ∼ π/2) contributes more than those with large angles (i.e.,
|φ| ∼ π/2) because the conductance represents the electric
current flowing in the x direction; the more perpendicular
injection has the greater contribution to the conductance [see
the factor cos φ in the angle integration in Eq. (23)]. On the

FIG. 6. Local density of states at the interface of (a) (d + ip)- and
(b) (d + is)-wave junctions. The results are normalized to its normal-
state value. Differing from the differential conductance, the ZBCP in
the LDOS is split by the subdominant pair potential regardless of the
pairing symmetry of the subdominant pair potential. The parameters
are set to the same values as used in Figs. 2(a) and 2(b), respectively.
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FIG. 7. Evolution of the zero-bias conductance peaks for
(a) (d + ip)- and (b) (d + is)-wave junctions. In (a) and (b), the
barrier potential is set to. Z = 1, 2, 3, 4, and 6. The calculated results
are plotted with a shift of GNN with increasing Z . The ZBCP for
the (d + ip)-wave junction does not split regardless of the barrier
strength, whereas the ZBCP for the (d + is)-wave junction changes
from a peak to finite-energy double peaks when Z � 2. The spatial
profiles of the pair potentials are shown in (c) and (d), where the
subdominant components are plotted in the insets. In (c) and (d), the
barrier potential is set to Z = 1, 2, 3, and 6. The effective critical tem-
perature for the subdominant components is set to Tp/Td = Ts/Td =
0.25.

other hand, the LDOS is not directly related to the transport.
Thus, the channels with large angles also contribute to the
LDOS. Although there are two high peaks in the LDOS of
the (d + ip)-wave junction, a sharp but low peak appears at
E = 0. The origin of this low peak is the same as in the con-
ductance. The center of the LDOS peaks shift to the positive
or negative side depending on the spin. However, the LDOSs
for both spins have a relatively large amplitude at E = 0 and
make a zero-energy peak in the total LDOS.

The spontaneous edge currents in the (d + ip)- and (d +
is)-wave SCs are explained in Appendix B by focusing on
the symmetry of the quasiclassical Green’s function. The
spontaneous current is absent (present) in the (d + ip)-wave
[(d + is)-wave] SC.

B. Barrier-strength dependence

The differential conductance in the presence of a sub-
dominant component depends on the strength of the barrier
potential [60]. The evolution of the ZBCP is shown in
Figs. 7(a) and 7(b), where the (d + ip)- and (d + is)-wave
superconductors are assumed in Figs. 7(a) and 7(b), respec-
tively. The barrier potential Z changes as follows: Z = 1, 2,
3, 4, and 6. Effective critical temperatures for the subdomi-
nant components are set to Tp/Td = Ts/Td = 0.25. The ZBCP
for the (d + ip)-wave junction is present regardless of the
strength of the barrier parameter Z . We have confirmed that
the ZBCP does not split under even higher barrier potentials.
In general, the position of the midgap conductance peak is
not influenced by the barrier parameter Z . The larger barrier
just results in sharper spectra. Therefore, the low-angle con-

tribution discussed above can survive even with a large barrier
potential.

The zero-bias conductance for the d + is wave is more
sensitive to the barrier potential than that for that for the
(d + ip)-wave junction. The amplitude of the zero-bias con-
ductance reduces significantly with increasing Z . Even with
a rather small barrier potential (e.g., Z = 2), the two peaks
appear at eV = 0.25�0, which corresponds to the ampli-
tude of the subdominant s-wave pair potential. Namely, the
split peak would be observed more frequently in high-Tc su-
perconductor junctions if the s-wave subdominant order is
realized.

The barrier-potential dependences of the pair potentials
for the (d + ip)- and (d + is)-wave junctions are shown in
Figs. 7(c) and 7(d), where the p- and s-wave subdominant
components are shown in the insets. The barrier potential is
set to Z = 1, 2, 3, and 6. The dominant d-wave pair poten-
tial is not strongly dependent on Z . Their profiles for Z � 2
are almost the same regardless of the pairing symmetry of
the subdominant components. The amplitudes of both of the
subdominant p- and s-wave pair potentials increase with an
increase in Z . The larger Z generates the more subdominant
components reflecting the parity mixing by the inversion sym-
metry breaking.

C. Effects of short decay length

The microscopic calculations [51,52] indicate that the p-
wave attractive interaction may be very strong in the very
vicinity of the interface. The decay length of surface p-wave
component may be much shorter than the superconducting
coherence length, and Tp may be larger than Td . Such a
short-range strong attractive interaction can be modeled by
increasing Tp and by introducing the decay parameter κ [see
Eq. (11)]: The differential conductance and pair potentials
with a short-range strong attractive potential are shown in
Figs. 8(a) and 8(b). The results show that the ZBCP is not split
by the subdominant pair potential even when the attractive
potential is much larger than that for the dominant d wave.
With the increase of the decay parameter, the ZBCP becomes
broader because the influences from the subdominant poten-
tial becomes larger.

IV. DISCUSSION

We have confirmed that our conclusions on the ZBCP do
not depend on the details of the potential at the interface
(see Appendix C). We have replaced the δ-function insulating
barrier with the rectangular one. The results for the rect-
angular potential (not shown) are qualitatively the same as
those for the δ-function one [e.g., Fig. 7(a)]; the ZBCP of the
(d + ip)-wave junction does not split. Therefore, our conclu-
sions are valid even when the interface potential has a finite
width (i.e., a more realistic model than the δ-function barrier
model).

The conductance spectra of cuprate superconductors ob-
served in experiments to date have a peak at the zero energy
[8,9,11–15], even though several experiments have reported
splitting of the ZBCP [10,37,38]. Our theoretical study,
where the p-wave surface attractive interaction is phenomeno-
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FIG. 8. Effect of the short decay length of the subdominant com-
ponent. The differential conductances and the profile of the pair
potentials are shown in top and bottom rows, respectively, where
Tp/Td = 1 in (a) and (c) and Tp/Td = 2 in (b) and (d). We see that
the ZBCP is present even when Tp > Td and κ < ξ0.

logically taken into account, demonstrates that the p-wave
subdominant pair potential does not split the zero-bias peak.
In particular, our results show that the microscopic theory
[51,52] can be consistent with experimental results obtained
to date.

The conductance spectrum of a (d + ip)-wave junction
depends on the spin of the injected particle because of the mix-
ture of the p-wave spin-triplet and d-wave spin-singlet pairs.
Replacing the normal-metal electrode with a ferromagnetic
metal will provide useful information for detecting the sur-
face subdominant pair potential. Investigating how the p- and
s-wave subdominant pair potentials modify the conductance
spectra would be interesting.

In this paper, we have studied the transport property of the
(d + ip)-wave junction in the ballistic limit by calculating the
tunneling conductance. The induced p-wave pair, however, is
more fragile against impurity scatterings than are s-wave pairs
[27,61–64]. Thus, in the presence of disorder, the differential
conductance of the (d + ip)- and (d + is)-wave junctions may
be different. Clarifying the effect of disorder will be important
for applying our theory to experimental results.

V. CONCLUSION

We have theoretically studied the conductance spec-
troscopy of normal-metal/dxy-wave superconductor junctions
with the spin-triplet py-wave subdominant order at the inter-
face utilizing the quasiclassical Eilenberger formalism. We
have considered the ballistic junction, where a δ-function-
type insulating barrier exists at the interface. The conductance
spectra were calculated using self-consistent pair potentials.

The calculated conductance spectra show that the ZBCP
originating from the dxy-wave pair potential is not split by the
py-wave subdominant pair potential at the interface, in con-
trast to the s-wave subdominant component, which is known

to split the ZBCP. The py-wave pair potential has nodes at
ky = 0, which does not affect the zero-energy states around
ky = 0. The contributions from these channels form the ZBCP
in the conductance spectra, even in the presence of the py-
wave subdominant pair potential.

In addition, we have studied the effect of the py-wave sub-
dominant pair potential on the dispersion of the surface states
of the dxy-wave SC. The py-wave subdominant component
changes the zero-energy flat band formed with the Andreev
bound states to a V shape or inverted V shape, depending
on the spin subspace. The spin-subspace dependence stems
from the coexistence of the spin-singlet and spin-triplet pair
potentials near the interface.
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APPENDIX A: PROFILE OF THE PAIR POTENTIAL

The profiles of the pair potentials of the (d + ip)-
and (d + is)-wave junctions are shown in Figs. 9(a) and
9(b), respectively. The pair potentials are normalized by
that in a homogeneous d-wave superconductor (i.e., �̄p =
�p(s)/�d |x→∞). The parameters are set to the same values
used in Fig. 2. The amplitude of the subdominant pair po-
tential depends on the effective critical temperature Tp and
Ts. The p-wave subdominant pair potential is slightly larger
than the s-wave one. The subdominant component affects
slightly the d-wave dominant component. However, the effect
is negligible.

FIG. 9. Spatial dependences of the pair potentials in (a) (d + ip)-
and (b) (d + is)-wave junctions. The parameters are set to the same
values as used in Fig. 2.
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FIG. 10. Low-bias-voltage conductance of the (d + ip)-wave
junction with the finite-width interface potential. The parameters are
set to κL = 0.5, 1.0, 2.0, and 3.0, Tp = 0.25Td , and Vp/μ = 4.

APPENDIX B: SPONTANEOUS CHARGE CURRENT

The Eilenberger equation (1) can be rewritten as

iαvFx ∂xǧ + [Ȟ, ǧ]− = 0, (B1)

Ȟ(x, α, φ, iωn) =
[

iωnσ̂0 �̂α

−�̂†
α −iωnσ̂0

]
, (B2)

where ǧ = ǧαα . In this section, we make α explicit only when
necessary. The current density in the y direction can be ob-
tained from the Green’s function:

jy(x) = evF N0
π

iβ

∑
ωn

〈kyTr[ĝ(x, ky, iωn)]〉, (B3)

where e < 0 is the charge of a quasiparticle, ky = sin φ,
and β = 1/T . Using the basic symmetry of the Green’s
function ǧ(x, α, φ, iωn) = −τ̌3{ǧ(x, α, φ,−iωn)}†τ̌3, we can
reduce the current density into the form

jy
j0

= T

Td

∑
ωn>0

〈kyIm{Tr[ĝ]}〉 (B4)

= T

Td

∑
ωn>0

∑
α

∫ π/2

0
Im{Tr[ĝ(x, α, φ, iωn)

− ĝ(x, α,−φ, iωn)]} sin φ dφ, (B5)

where j0 = 2πevF N0Td . In Eq. (B5), we have divided the
interval of integration into two regions.

The matrices Ȟ for the dxy-wave SC can be written as

Ȟ =
[

iωnσ̂0 iσ̂2�d sin(2φ)
iσ̂2�

∗
d sin(2φ) −iωnσ̂0

]
, (B6)

which satisfies the symmetry relation

Ȟ(x, α, φ, iωn) = τ̌2
[
Ȟ(x, α,−φ, iωn)

]∗
τ̌2. (B7)

This relation means that the Green’s function has the
symmetry in the particle-hole space ǧ(x, α, φ, iωn) =
τ̌2[ǧ(x, α,−φ, iωn)]∗τ̌2, meaning that

ĝ(x, α, φ, iωn) = −[ĝ(x, α,−φ, iωn)]∗. (B8)

Substituting Eq. (B8) into (B5), we can demonstrate that no
spontaneous current flows at the surface of a dxy-wave SC
without a subdominant pair potential.

The matrices Ȟ for the (d + ip)- and (d + is)-wave SCs
can be written as

Ȟp =
[

iωnσ̂0 iσ̂2�d sin(2φ) + σ̂1i�p sin φ

iσ̂2�
∗
d sin(2φ) + σ̂1i�∗

p sin φ −iωnσ̂0

]
, (B9)

Ȟs =
[

iωnσ̂0 iσ̂2{�d sin(2φ) + i�s}
iσ̂2{�∗

d sin(2φ) + i�∗
s } −iωnσ̂0

]
. (B10)

We can show that the matrix Ȟp satisfies Eq. (B7), whereas
Ȟs does not due to �s. Namely, we can demonstrate that no
spontaneous charge current flows in the (d + ip)-wave case,
whereas the current flows spontaneously in the (d + is)-wave
case.

APPENDIX C: FINITE-WIDTH BARRIER POTENTIAL

In this section, we investigate the generality of our results.
The thickness of the insulating barrier can be finite even
though we employ the δ-function-type barrier potential in the
main text. The reflection coefficient in this case is given by

r = (k2 + κ2)

(k2 − κ2) + 2ikκ tanh(κL)
, (C1)

k/kF = cos φ, κ/kF =
√

Vp/μ − cos2 φ, (C2)

where μ is the chemical potential, Vp and L are the height
and width of the scattering potential, k is the x compo-
nent of the Fermi wave vector kF , and we have assumed
�0 � μ ∼ Vp.

The results are shown in Fig. 10. We see that our conclu-
sion (i.e., a robust zero-energy peak) does not change even
when we employ the rectangular-potential model. In partic-
ular, the low-transparency result in Fig. 10 (κL = 3) is very
similar to that of δ-function-barrier model with Z = 6 [see
Fig. 7(a)]. Therefore, our conclusion presented in the main
text is independent of the potential at the interface.
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