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Despite the robustness of the chiral edge modes of quantum Hall systems against the superconducting
proximity effect, Cooper pairs can penetrate into the chiral edge channels and carry the Josephson current in
an appropriate setup. In our work, the Josephson junction of a spin-polarized quantum anomalous Hall insulator
(QAHI) with a Chern number ν = 1 connecting conventional superconductors is studied from the perspective
of pairing symmetry consistent with the chiral edge mode. Induced pairing states are equal-spin triplet, a
combination of the even- and odd-frequency components, nonlocally extended, and have a finite momentum 2kF .
The signature of the equal-spin triplet pairings is confirmed via the dependence on the interface-magnetization
direction, and that of the finite-momentum pairing states via the width dependence of the critical current and
the spatial profile of the anomalous Green’s function. In the presence of disorder, the robustness of the chiral
edge mode leads to high sensitivity of the critical current and the equilibrium phase difference to disorder
configurations, which is resulting from the interference of current-carrying channels. The numerical calculations
on a lattice model are also examined by a simplified analytical model.
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I. INTRODUCTION

Quantum Hall phases [1] and conventional superconduc-
tor phases are electronic states of matter characterized by
different orders, topological and spontaneously symmetry-
broken orders, while both are immune to disorder and support
nondissipative electric current. The quantized Hall current in
a quantum Hall insulator is carried by conducting edge chan-
nels, the number of which coincides with the Chern number
defined by the bulk electronic states. These edge channels
consist of unidirectionally flowing electronic system (chiral
edge mode), which is unique to quantum Hall edges in that
they cannot be realized in closed one-dimensional electronic
systems due to the quantum anomaly.

Supercurrent in a superconductor is carried by pairs of
electrons called the Cooper pairs. While the superconduct-
ing order is measured by the pair potential �σσ ′ (t, x), the
amount of pairing states is measured by the pair amplitude
(or the anomalous correlation) −i〈T cσ (t, x)cσ ′ (0, 0)〉, where
cσ (t, x) is the annihilation operator of the electron with a
spin σ at temporal and spatial coordinate (t, x) and T is
the time-ordering operator. The pair potential and pair am-
plitude are categorized by the spin configuration, angular
momentum, and symmetry regarding time reversal, which as
a whole obey the Pauli principle, that is, the permutation
of two electrons changes the sign of the pair potential (am-
plitude) [2–4]. Among them, conventional superconductors
indicate superconductors having an even-frequency/spin-
singlet/even-parity (ESE) pair potential. On the other hand,
odd frequency indicates that the pair potential (amplitude) is

odd under time reversal (and thus odd under the sign change of
the frequency). Although realization of the odd-frequency pair
potential in the bulk of superconductors is still under debate
[5], the odd-frequency pair amplitude appears ubiquitously at
the surface or the interface of even-frequency superconductors
[4]. Specifically, in the heterostructure of a normal metal and a
conventional superconductor, ESE pairs are transformed into
a combination of ESE and odd-frequency/spin-singlet/odd-
parity (OSO) pairs during the tunneling into a normal metal,
due to the breaking of translational symmetry [6–8].

When a ferromagnet is attached to a conventional super-
conductor, the penetration depth of singlet pairs is limited by
a length determined by the exchange coupling [9–11] and, fur-
thermore, singlet pairs are completely excluded in the limit of
a half-metal since pairings between opposite spins are prohib-
ited. However, in the presence of a mechanism to flip the spin
at the interface, singlet pairs are transformed into equal-spin
triplet pairs, which penetrate even into a half-metal at long
range [12–16]. The resulting triplet pairs are even-frequency
odd-parity (ETO) pairs in addition to odd-frequency even-
parity (OTE) pairs since translational symmetry is broken at
the interface [7,9,10].

Topological materials have unique electronic states on their
boundary, and thus the heterostructure with superconduc-
tors can have a different functionality from non-topological
materials [17,18]. Especially, the proximity-induced odd-
frequency pairings in topological materials have been studied
in three-dimensional (3D) topological insulators [19–25],
quantum spin Hall insulators (QSHI) [26–31], Rashba metals
[31–35], and Weyl semimetals [36–38].
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The focus of this study is the Josephson junction of a
conventional superconductor and a spin-polarized quantum
anomalous Hall insulator (QAHI). Experimentally, hetero-
junctions of quantum Hall systems and superconductors have
been reported, e.g., in [39–44]. In quantum Hall systems, sym-
metry of induced pairing states depends on the nature of chiral
edge modes. When chiral edge modes are spin degenerate,
such as in a spin-degenerate quantum Hall state with a Chern
number ν = 2 [45–52], the Josephson current is carried by
singlet (ESE and OSO) pairs. Similar pairing states occur
in a single chiral edge mode of a spin-unpolarized QAHI
[53,54], in which the spin-polarization axis depends on the di-
rection of the boundary. However, the situation is different in a
spin-polarized single chiral edge mode [55–57]. In general, a
spin-polarized chiral edge mode is not a good conductor of the
Josephson current due to (i) the chirality by which backward
Andreev reflection does not occur, (ii) the Pauli exclusion
principle by which equal spins cannot be present at the same
position and time, and (iii) spin polarization which prohibits
opposite-spin pairings to flow into the edge [55].

In this work, we study the dc Josephson effect of a junc-
tion comprising of a spin-polarized QAHI and conventional
s-wave superconductors by putting emphasis on symmetry of
induced pairing states. Since the spin-polarized chiral edge
mode is a less transparent conductor of conventional ESE
pairs due to the above-mentioned three factors, induced pair-
ings are shown to be (i) equal-spin triplet, (ii) a combination
of even and odd frequencies, and have (iii) a finite momentum
(the Fulde-Ferrell state [58]). In addition, (iv) the anomalous
correlation extends nonlocally throughout the QAHI edge due
to the robustness of the chiral edge mode against the proximity
effect and disorder. By comparing with the Josephson effect
through a QSHI, it will become clear that these pairing states
are unique to the spin-polarized chiral edge mode. Notice that
in our setup the bulk of a QAHI is not influenced by the prox-
imity effect, which may cause a topological phase transition
to a topological superconductor phase [59–61]. In addition,
we consider only conventional superconductors, while the
Josephson junction between unconventional ones has been
studied in [62,63].

This paper is organized as follows. A lattice model of a
superconductor/QAHI/superconductor (S/QAHI/S) Joseph-
son junction is introduced in Sec. II, and is used to calculate
the anomalous correlation and the Josephson current through a
clean and dirty QAHI in Sec. III. From an analytical perspec-
tive, a model of a Josephson junction through a chiral edge
mode as a low-energy model of the S/QAHI/S junction is in-
troduced in Sec. IV, and the corresponding physical quantities
are estimated perturbatively in Sec. V. Finally, the conclusion
is given in Sec. VI.

II. A LATTICE MODEL FOR NUMERICAL
CALCULATIONS

Consider a Josephson junction of a spin-polarized QAHI
sandwiched by two s-wave superconductors [Fig. 1(a)]. First,
we model a spin-polarized QAHI with a Chern number ν = 1
by the Bernevig-Hughes-Zhang (BHZ) model [64] of a QSHI
coupled with an exchange field M. The Fourier transform

QAHI SC

(b)(a)

SC SC
QAHI

FIG. 1. (a) A setup for the lattice model of a S/QAHI/S Joseph-
son junction. Near the interfaces with superconductors, the regions
of which are referred to as the left and right interface layers and are
shown by darker purple in the figure, the exchange field (black arrow)
is tilted from the bulk direction. (b) A mechanism of the equal-spin
crossed Andreev reflection. The blue solid (dashed) line represents
the spin-up electron (hole), and the red solid line represents the spin-
down electron. The arrows indicate the direction in which electrons
and holes flow.

of the Hamiltonian defined on the square lattice is given by
HQAHI = HBHZ + Hexchange, where

HBHZ = εs + εp

2
− (ts − tp)(cos kx + cos ky)

+
[εs − εp

2
− (ts + tp)(cos kx + cos ky)

]
sz

+ 2tsp(sy sin kx + σ zsx sin ky), (1)

Hexchange = −Mxσ
x − Myσ

ysz − Mzσ
zsz. (2)

Here, σ and s are Pauli matrices for spin and orbital (s and
p) degrees of freedom, respectively. Without the exchange
field (M = 0), the BHZ model shows a trivial insulator phase
when εs − εp > 4(ts + tp), while it shows a QSHI phase when
εs − εp < 4(ts + tp) and tsp �= 0 [65]. In the presence of the
exchange field, the QSHI phase, where both spin components
are in quantum Hall phases with opposite Chern numbers, is
turned to a QAHI phase, where one of the spin components
is in trivially insulating phase, via a topological phase transi-
tion.1 When we fix ts = tp > 0 and 0 < εs = −εp < 4ts and
the exchange field is along the z direction (M = Mzẑ), the
BHZ model shows a QSHI phase when Mz ∈ [εs − 4ts,−εs +
4ts], while QAHI phases when Mz ∈ [−εs − 4ts, εs − 4ts] and
[−εs + 4ts, εs + 4ts], where the spin of the chiral edge mode
is polarized along −ẑ and ẑ directions, respectively. Notice
that the exchange term (2) is made to respect fourfold rota-
tional symmetry of the BHZ model: the s orbital has spin 1

2
and the p orbital has total spin 3

2 , and thus the BHZ model
has symmetry of HBHZ(ky,−kx ) = RHBHZ(kx, ky)R−1, where
R = e−iπσ z/4(1 + sz )/2 + e−3iπσ z/4(1 − sz )/2.

A conventional s-wave superconductor is modeled by

HSC =
(

ξk iσ y�

−iσ y�∗ −ξ ∗
−k

)
, (3)

1Notice that the spin-unpolarized QAHI employed in [53,54] is
obtained from our spin-polarized QAHI model by extracting one
of the spin degrees of freedom that forms a topological phase and
regarding the orbital degrees of freedom as spin ones.
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where the 2 × 2 matrix represents the Nambu space of the
electron and hole degrees of freedom and ξk = [2tSC(2 −
cos kx − cos ky) − μ]σ 0.

Near the interface between the QAHI and two supercon-
ductors, the exchange field M is slightly tilted from the
direction of the bulk field in order to introduce triplet pair-
ings into the spin-polarized chiral edge mode of the QAHI
[Fig. 1(a)]. At the interface of the QAHI and the super-
conductors, the number of electron bands mismatches (four
electron bands in the QAHI while two electron bands in the
superconductors). Here, we assume that an electron in the
superconductors tunnels to s and p orbitals of the QAHI by
the same tunneling amplitude without flipping the spin. The
tunneling between the QAHI and the superconductors is made
to respect the fourfold rotational symmetry so that the both
interfaces behave in the same way.

The formation of equal-spin pairing states is resulting from
the equal-spin crossed Andreev reflection through which spin-
up electrons in one boundary are reflected as spin-up holes
in the other boundary [Fig. 1(b)]. This phenomenon consists
of the following two processes [11,14,16,66,67]. First, the
tilt of the spin-polarization axis in the interface layer mixes
spin-up and spin-down electrons, and then the usual Andreev
reflection transforms spin-down electrons into spin-up holes
[Fig. 1(b)]. Equivalently, in the reversed order, the Andreev
reflection transforms incoming spin-up electrons into spin-
down holes, from which the interface layer generates spin-up
holes.

III. NUMERICAL RESULTS

In this section, numerical calculations performed with the
lattice model are presented. The parameters are fixed as εs −
εp = 6, ts = tp = 1, tsp = 0.5, tSC = 1, μ = 2, |�R| = |�L| =
0.5, and the tunneling amplitude ttunnel = 0.5. The chemical
potential is defined by μ = εs − 3, where μ = 0 corresponds
to the center of the bottom of the conduction bands and the top
of the valence bands. Notice that we employ relatively large
pair potential to make the observation easier. The exchange
field in the bulk of the QAHI is M = (0, 0, 2) along the z
direction, while that in the QSHI is M = (0, 0, 0). Near the
interface with superconductors, the first and second layers
have the direction of the exchange field tilted from the z direc-
tion by polar angles of 0.1π and 0.05π , respectively, and the
polarization axis of the right interface lies within the Mx-Mz

plane [Fig. 1, see also Fig. 5(a)]. The width of the junction is
fixed to be 20 and the length of two superconductors to be 20,
which is much longer than the coherence length v/|�| ∼ 2.2

The length of the QAHI is L = 30 except for the study of the
length dependence in Sec. III C.

A. Induced pairings

First, we consider how the chiral edge mode is affected by
the superconducting proximity effect. The chiral edge mode

2The width is large enough that the hybridization of the edge
modes can be neglected in our setting. Notice that the Josephson
effect in a narrow QSHI under an applied magnetic field where the
hybridization plays a crucial role has been studied in [78].
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FIG. 2. The energy spectrum of the whole Josephson junction is
shown as a function of the phase difference between two supercon-
ductors for (a) a S/QAHI/S junction and (b) a S/QSHI/S junction.
The corresponding geometry, the edge modes, and the type of the
Andreev reflection (equal-spin crossed or normal) are shown for (c) a
S/QAHI/S junction and (d) a S/QSHI/S junction, where the blue
(red) lines represent spin-up (-down) modes and the colored arrows
on them represent the direction in which both electrons and holes
flow. Filled and empty circles represent electrons and holes and the
arrows on them the spin.

is known to be robust against the proximity effect in the sense
that the linear dispersion cannot be gapped, which can be seen
in the spectrum of the chiral edge mode. Figure 2(a) represents
the change of the energy spectrum of a S/QAHI/S Josephson
junction as a function of the phase difference between the
left and right superconductors. The energy spectrum within
the pair potential |�R(L)| is equally spaced, and looks almost
insensitive to the phase difference. Since the chiral edge mode
extends along the whole boundary of the QAHI [Fig. 2(c)],
the interlevel spacing is determined by the perimeter of the
QAHI. This result is in stark contrast to the energy spectrum
of the Josephson junction via a QSHI (S/QSHI/S) [Fig. 2(b)],
in which the proximity effect induces a gap of ∼0.4|�|, and
the energy spectrum of the bound states is largely affected by
the change of the phase difference. The in-gap modes within
the induced gap are bound to the top and bottom boundaries
where the proximity effect is absent [Fig. 2(d)], and thus the
interlevel spacing is determined by the length of the QSHI (or,
equivalently, the distance between two superconductors).

From the perspective of the Andreev reflection, the chiral-
ity of a QAHI edge prohibits a hole to be reflected locally, that
is, a spin-up electron flowing along the bottom boundary is re-
flected as a spin-up hole on the top boundary [Fig. 2(c)], which
is known as the crossed Andreev reflection. On the other hand,
since a QSHI has spin-up and spin-down edge modes flowing
in the opposite direction, the Andreev reflection occurs in
the ordinary way, that is, separately in the bottom and top
boundaries [Fig. 2(d)], which is consistent with the gapped
interface by the induced pair potential.
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When the equal-spin crossed Andreev reflection occurs in
a QAHI, triplet pairs are induced along the boundary. The
amount of the pairing states is measured by the anomalous
part of the Green’s function calculated by the inverse of
ω − H ± iδ, where δ = |�R/L|/100 is used in the following.
The anomalous Green’s function is exponentially small inside
the gapped bulk of the QAHI, and the only nonvanishing
components in the QAHI are those between a spin-up elec-
tron and hole along the boundary. In the following, only the
s-orbital part is focused since two orbitals are qualitatively
equivalent. The equal-spin triplet anomalous Green’s function
is decomposed into symmetric and antisymmetric parts with
respect to the sign change of the frequency ω → −ω and the
permutation of the positions as [4]

F ETO/OTE
rr′ (ω) = [

F R
rr′ (ω)

]
↑s,↑s ∓ [

F R
r′r(ω)

]
↑s,↑s

± [
F A

rr′ (−ω)
]
↑s,↑s − [

F A
r′r(−ω)

]
↑s,↑s, (4)

where F R/A
rr′ is the retarded (advanced) anomalous Green’s

function between two points r and r′. The real and imaginary
parts, and the absolute value of even-parity components at
the same site F ESE/OTE

rr and odd-parity components between
neighboring sites F OSO/ETO

rr+êx
along the junction boundary, are

shown for the chemical potential μ/|�| = 0 and 0.6, and the
frequency ω/|�| = 0.6 in Fig. 3(a). As can be seen from
the figure, the absolute value is almost constant while the real
and imaginary parts of the anomalous Green’s function have
spatial oscillation. The periodicity of the oscillation coincides
with 2π/2kF (= πv/μ), where v is the Fermi velocity of the
chiral edge mode and in our model the same as the hopping
amplitude ts = tp = 1. This is an evidence that the Cooper pair
has momentum 2kF , that is, two electrons with both the Fermi
momentum kF are paired, which has been pointed out in [47]
for singlet pairings in a ν = 2 spin-degenerate quantum Hall
system. This pairing state is known as the Fulde-Ferrell state,
while the other type of the finite-momentum pairing state, the
Larkin-Ovchinnikov type [68], does not appear in our numer-
ical and analytical models. The finite-momentum pairing is
common to pairings in S/ferromagnet/S junctions [69,70],
while the alternation of 0 and π junctions by the length of the
weak link cannot be seen in our case. The presence of both
even- and odd-frequency components is consistent with the
breaking of translational symmetry by the finite-momentum
pairing, which transforms the ETO into OTE component
and vice versa. Notice that the amplitude of the anomalous
Green’s function varies largely by the frequency ω since it
contains peaks with a width δ around the electron and hole
spectra of the chiral edge mode [Fig. 3(c)].

For the case of the S/QSHI/S junction, the anoma-
lous Green’s function along the boundary is also shown in
Fig. 3(b). There are four nonvanishing components away from
the interface, that is, ESE and OSO components, and opposite-
spin ETO and OTE components. The absolute value shows a
stationary wave between two superconductors, and its period
is approximately inversely proportional to the frequency ω,
but not dependent on the Fermi momentum as in the case of
the S/QAHI/S junction. This result is consistent with the fact
that electrons in the QSHI boundary make pairs in the conven-
tional way, that is, a spin-up electron with the momentum kF

makes a pair with a spin-down electron with the momentum
−kF .

B. Nonlocal correlation

Since the crossed Andreev reflection at the QAHI/S
interface occurs between the top and bottom boundaries
[Fig. 1(b)], electrons and holes have a correlation across
the boundaries in a nonlocal way. The nonlocal anomalous
Green’s function in a S/QAHI/S junction between a fixed
point r0 on the bottom boundary and a point r along the top
and bottom boundaries is shown in Fig. 4(a) for μ/|�| = 0
and ω/|�| = 0.6. The anomalous Green’s function is finite
even at the opposite boundary (r on the top boundary). When
μ = 0, the anomalous Green’s function Frr0 is a periodic
function of r, whose period is inversely proportional to the
frequency ω. We have also examined that the nonlocal corre-
lations persist in the presence of disorder due to the robustness
of the chiral edge mode (not shown in this paper).

Figure 4(b) is the nonlocal anomalous Green’s function in
a S/QSHI/S junction for ω/|�| = 0.2, which is below the
induced gap (∼0.4|�|) at the QSHI/S interface, and μ/|�| =
0.6. The anomalous Green’s function extends within the same
boundary since the top and bottom boundaries are separated
by the gapped interface regions. This result is consistent with
an intuitive picture given in Figs. 2(c) and 2(d).

C. dc Josephson effect

Next, we consider the dc Josephson effect induced by the
phase difference ϕ between the pair potential of two supercon-
ductors. When the absolute value of the pair potential is the
same (|�R| = |�L|), the Josephson current is estimated from
the free energy F of the junction by I = (2e/h̄)dF/dϕ [71],
and in the limit of vanishing temperature T → 0, the expres-
sion is simplified as I = (2e/h̄)dE/dϕ, where E = ∑

εn<0 εn

is the ground-state energy.
When the Josephson current is carried by the equal-

spin triplet pairs, the equilibrium phase difference where the
ground-state energy is minimized is continuously dependent
on the angle formed by the direction of the exchange field of
the bulk, left, and right interfaces [Fig. 5(a)] [11,14,16,66,67].
The equilibrium phase difference is either 0 or π when the
three directions are coplanar, and it is continuously changed
by 2π when the direction of the exchange field of one of the
interfaces is rotated around the bulk one. The azimuth-angle
dependence of the equilibrium phase difference in junctions
with a QAHI length L = 12 and 30 is shown in Fig. 5(b).
For L = 30, the ground-state energy and the Josephson cur-
rent as a function of the phase difference ϕ are shown in
Figs. 5(c) and 5(d), respectively, for the azimuth angle of the
left interface φL = 0, π/4, π/2, 3π/4, and π . The current-
phase relation is almost always sinusoidal: I = Ic sin(ϕ − ϕ0),
where Ic is the critical current and ϕ0 is the equilibrium phase
difference [10,72]. Exceptional cases occur when accidental
near-zero-energy modes cross ε = 0 during the change of
the phase difference from ϕ = 0 to 2π . However, for a long
junction these exceptions can be neglected since the varia-
tion of each eigenmode near ε = 0 is far smaller than the
interlevel spacing [see Fig. 2(a)]. Thus, the following calcu-
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FIG. 3. (a) Spatial profile of the anomalous Green’s function (F ESE/OTE
rr and F OSO/ETO

rr+êx
) along (a) the S/QAHI/S junction boundary and

(b) the S/QSHI/S junction boundary is shown for μ/|�| = 0, 0.6 (bottom to top) and ω/|�| = 0.6. (c) The frequency dependence of the
anomalous Green’s function F ETO

rr+êx
and F OTE

rr at the center of the S/QAHI/S junction boundary for μ = 0 is plotted. In each figure, the real
(imaginary) part of the anomalous Green’s function is shown by the solid (dotted) black line, and the absolute value by the red shaded region.
The length of the solid arrow below the μ = 0.6|�| data in (a) represents the period of the anomalous Green’s function.

lations are performed under the assumption of the sinusoidal
current-phase relation to reduce the computational cost. When
L = 30, the equilibrium phase ϕ0 varies continuously from
−π to π during the change of the azimuth angle φL of the
left interface from 0 to 2π . On the other hand, for L = 12,
the equilibrium phase difference is insensitive to the direction
of the interface exchange field. This result indicates that pair-
ing states carrying the Josephson current are changed from
opposite-spin components [ESE, OSO, ETO (S = 0), OTE
(S = 0)] to equal-spin ones [ETO (S = 1) and OTE (S = 1)]

between L = 12 and 30. From this result, a short junction (in
our setting, L < 20) is considered to behave as an ordinary
S/insulator/S junction where the chiral edge mode does not
work as a conducting channel.

The QAHI length dependence of the critical current and
the equilibrium phase difference is shown in Figs. 6(a) and
6(b), respectively. Around a length L ∼ 20, an exponential
decay implying that the QAHI behaves as an insulator is
changed to an algebraic decay implying that the chiral edge
mode carries the Josephson current. This transition can also
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be seen from the equilibrium phase in Fig. 6(b), where a
short junction is insensitive to the relative direction of the
exchange field between two interfaces while the equilibrium
phase in a long junction is changed from π to 0 by rotating
the azimuth angle of the left interface by π (from parallel to
symmetric configuration). The critical current for the parallel
configuration shows a dip around L = 20 where the transition
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FIG. 6. Length dependence of (a) the critical current and (b) the
equilibrium phase difference is shown for the chemical potential
μ = 0. The solid and dashed lines are for the exchange field of the
left interface being parallel (the azimuth angle φL = 0) and symmet-
ric (φL = π ) to that of the right interface, respectively, and the red
line is for the case where the exchange field is uniform. The inset in
(a) shows the uniform, symmetric, and parallel configurations of the
exchange field. The length and chemical-potential dependence of the
critical current in (c) a S/QAHI/S junction with the symmetric con-
figuration and in (e) a S/QSHI/S junction are shown in log scale. For
a specific value of the chemical potential μ/|�| = 0, 0.2, 0.6, 0.8,

and 1, the length dependence of a S/QAHI/S junction is shown
in (d). The critical current Ic in (c) and (e) is measured in units of
|�|e/h̄.

from 0 to π junction occurs. We call it a 0-π transition point.
The appearance of the 0-π transition point is the signature
of the crossover of pairing symmetry, that is, from singlet to
equal-spin triplet pairings. The critical length at which the 0-π
transition point occurs depends on many detailed factors since
it is determined by the crossover between exponentially (sin-
glet) and algebraically (equal-spin triplet) decaying functions.
Specifically, a larger tilt angle of the interface magnetization
would increase the equal-spin-triplet Josephson current while
a larger bulk gap of the minority spin would decrease the sin-
glet Josephson current, both of which shift the 0-π transition
point to a shorter length. However, quantitative prediction of
the 0-π transition point would be difficult since the equal-
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spin-triplet Josephson current depends nonmonotonically on
the chemical potential [Fig. 6(d)], the width of the sample
(Sec. V D). When the exchange field is uniform throughout
the QAHI, triplet pairing states are not induced and thus the
critical current decays exponentially even in a long junction
(L > 20) [the red curve in Fig. 6(a)].

The length and chemical-potential dependence of the criti-
cal current is shown in Figs. 6(c) and 6(d) for the S/QAHI/S
junction and in 6(e) for the S/QSHI/S junction, respectively.
In contrast to the S/QSHI/S junction, a periodic wavy pattern
of a S/QAHI/S junction at μ > 0 and L > 20 is attributed
to the finite-size effect, where the critical current shows a
cusp when the chemical potential μ agrees with a discrete
spectrum of the chiral edge mode [Fig. 2(a)]. Notice that
the periodicity of the cusp pattern in Fig. 6(d) is considered
to represent the oscillation corresponding to the momentum
kF (not 2kF ) as a function of the perimeter of the QAHI.
The current phase relation in the S/QSHI/S junction is not
sinusoidal due to the discrete in-gap spectrum sensitive to the
phase difference [Fig. 2(b)]. Notice that in ferromagnets and
half-metals the interface magnetization is determined by the
interface properties [14], and thus would not be controllable
externally. Therefore, experimentally detectable signature of
the equal-spin triplet pairing would be the length dependence
at sufficiently low temperature, that is, the critical current is
inversely proportional to the cubic of the perimeter [[56] and
(24) in Sec. V B].

D. Disorder effect

Finally, we consider the disorder effect on the dc Josephson
effect. Here, we consider onsite potential disorder given in the
Nambu space by

[Hdisorder]rr =
(

δεr 0
0 −δεr

)
, (5)

where r is the position in the QAHI, δεr is uniformly dis-
tributed within [−W,W ], and each matrix element implicitly
accompanies the identity matrices of the spin and orbital
degrees of freedom. The critical current and the equilibrium
phase difference in the presence of disorder of the strength W
are shown in Figs. 7(a) and 7(b), respectively. It is known that
within a disorder strength W ∈ [0, 2|�|] studied here, the bulk
is still in a QAHI phase and thus the chiral edge mode persists.
The results indicate that the both critical current Ic and the
equilibrium phase difference ϕ0 are sensitive to disorder con-
figurations, which can also be seen in rapidly decaying critical
current of the configuration-averaged current-phase relation
max[Ic sin(ϕ − ϕ0)] [the blue curve in Fig. 7(a)], while the
average of the critical current Īc is less sensitive to disorder
[the red curve in Fig. 7(a)].

Although disorder is an irrelevant perturbation to the chi-
ral edge mode, it can change local parameters such as the
Fermi velocity and the chemical potential. When the chemical
potential has asymmetry between the top and bottom bound-
aries, the equilibrium phase difference can be shifted [54].
This property will be studied analytically in Sec. V C. It will
be shown that the configuration-dependent equilibrium phase
difference is attributed to asymmetry of the potential on top
and bottom boundaries. Notice that in order for the Josephson
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FIG. 7. Disorder effect of (a) the critical current and (b) the
equilibrium phase difference in a S/QAHI/S junction and that of
(c) the critical current of a S/QSHI/S junction are shown. The
grayscale of each rectangular region indicates the number of disorder
configurations. The red curves in (a) and (c) represent the average
of the critical current over 1000 and 10 disorder configurations,
respectively, and the blue curve in (a) represents the critical current
of the configuration-averaged current-phase relation.

current through robust edge modes to be sensitive to disor-
der configurations, it is essential that the chiral edge mode
extends across the boundaries [Fig. 2(c)] since the shift of the
equilibrium phase difference is resulting from the interference
of two conduction modes of the Josephson current: one is by
an electron on the bottom boundary and a hole on the top
boundary and the other is by a similar mode with the electron
and hole inverted. On the other hand, less sensitive averaged
critical current [the red curve in Fig. 7(a)] is considered to be
resulting from the robustness of the chiral edge mode. (The
critical current through a diffusive normal metal typically
decays as Ic ∝ W −4 since when the Thouless energy ETh is
smaller than the pair potential |�|, the critical current obeys
IcRN ∼ ETh [73], where the normal-metal resistance and the
Thouless energy are estimated as RN ∝ τ−1 and ETh ∝ τ , and
the relaxation time as τ ∝ W −2 by the Born approximation
[74].) While the averaged critical current decreases as the
disorder becomes stronger within W ∈ [0, 2|�|(= ts)], it in-
creases as the disorder strength approaches the critical value
W ∼ 4ts, over which the bulk becomes a (nontopological)
Anderson insulator.

Figure 7(c) shows the disorder effect of the critical current
of the S/QSHI/S junction. Since the Andreev reflection in
the S/QSHI/S junction occurs locally and thus there is no
interference, the phase difference at an equilibrium is always
0. Also, the critical current is insensitive to both disorder
strength and disorder configurations.
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(a) (b)QAHI edge

Right SCLeft SC

FIG. 8. (a) Symmetric and (b) asymmetric lattice geometry of an analytical model of a QAHI edge connected to two superconductors.

Consider the case when disorder is spin dependent (mag-
netic disorder), but weak enough so that the other spin
component in a trivial insulator is not involved. Magnetic
disorder in the bulk would not affect the Josephson effect up
until the topological phase transition point, which is larger
than the gap of the minority spin and hence is out of focus
here. Due to magnetic disorder near the interface, the critical
current and the equilibrium phase difference would be largely
affected since they are sensitive to the direction of the inter-
face magnetization. Therefore, regarding the Josephson effect,
weak magnetic disorder in the QAHI would have a similar
effect as potential disorder.

IV. A CHIRAL EDGE MODEL FOR ANALYTICAL
CALCULATIONS

In the following, the numerical results in the previous
sections, that is, the edge-induced pairing states and the dc
Josephson effect through a spin-polarized QAHI, are studied
analytically based on the equilibrium Green’s function. In
this section, the analytical model of a Josephson junction is
defined on a one-dimensional lattice [Fig. 8(a)].

The low-energy properties of the QAHI are modeled by the
gapless edge mode: a spin-polarized chiral linear-dispersion
model on a closed one-dimensional lattice defined by

Hedge =
∑

k

c†
k↑(vk − μ)ck↑. (6)

Here, although the momentum k = 2πs/N for the lattice of
N sites should be defined in the Brillouin zone [−π, π ], this
condition is relaxed to k = 2πs/N (s ∈ [−∞,∞]) to remove
the ambiguity [45].

The Josephson junction is modeled by the chiral edge
model (6) coupled with two s-wave superconductors on a one-
dimensional semi-infinite lattice [Fig. 8(a)]. The Hamiltonians
of the two superconductors are given by

HSC,R = −tSC

∑
m�1,σ

a†
m+1σ amσ + �R

∑
m�1

a†
m↑a†

m↓ + H.c.,

(7)

HSC,L = −tSC

∑
m�−1,σ

a†
m−1σ amσ + �L

∑
m�−1

a†
m↑a†

m↓ + H.c.,

(8)

where the right (left) superconductor is defined on a lattice
labeled by m � 1 (m � −1). Notice that the annihilation and

creation operators of the electrons in the chiral edge (the two
superconductors) are denoted by c and c† (a and a†).

Let the number of the lattice sites N be an even integer
and let the length of two paths (clockwise and anticlockwise)
connecting two contact points on the chiral edge be the same.
We assign j = 0 ( j = N/2) to the coordinate of the right (left)
contact point. The tunneling Hamiltonian between the chiral
edge and the two superconductors is given by

Htunnel,R = (a†
1↑ a†

1↓)TR

(
c0↑
c0↓

)
+ H.c., (9)

Htunnel,L = (a†
−1↑ a†

−1↓)TL

(
cN/2↑
cN/2↓

)
+ H.c., (10)

where c jσ (σ =↑,↓) in the above expression is the Fourier
transform of ckσ in (6). The tunneling matrix defined by

TR(L) = −ttunnelRR(L)

[
1 + σ z

2
+ τ

1 − σ z

2

]
R−1

R(L) (11)

represents spin-filtered tunneling resulting from a tilted spin-
polarization axis which works equivalently as the interface
layers in the lattice model [16]. The polarization axis is mea-
sured by the polar angle θR(L) and the azimuth angle φR(L), and
they are contained in the tunneling matrix through the rotation
matrix RR(L) = R(θR(L), φR(L)) = e−iφR(L)σ

z/2e−iθR(L)σ
y/2 of spin

1
2 . Notice that the tunneling matrix contains tunneling of both
majority and minority spins with respect to the polarization
axis, the latter of which is resulting from the evanescent mode
decaying exponentially by the thickness of the interface layer,
and the ratio of the amplitude of two tunneling is denoted by
τ (< 1) [16].

V. ANALYTICAL RESULTS

First of all, we review the Green’s function of the chiral
edge mode and the superconductors in the absence of the
tunneling between them, the derivation of which is explained
in Appendix A.

The Matsubara Green’s function of the chiral edge electron
and hole between two points j and j′ is given, respectively, as
[45]

[
gedge

j j′ (iωn)
]

11 = 1

2v

e−i(iωn+μ)(sgn[ j− j′]N/2− j+ j′ )/v

sin[N (iωn + μ)/2v]
, (12)

[
gedge

j j′ (iωn)
]

33 = 1

2v

e−i(iωn−μ)(sgn[ j− j′]N/2− j+ j′ )/v

sin[N (iωn − μ)/2v]
. (13)
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On the other hand, the Green’s function of the spin-down
electron and hole that do not propagate along the chiral edge
is also necessary in the following argument. Here, the en-
ergy band of the spin-down electrons and holes is assumed
to be dispersionless with an energy gap V , that is, H↓ =∑

k V c†
k↓ck↓, and the resulting Green’s function is, respec-

tively,

[
gedge

j j′ (iωn)
]

22 = 1

N

∑
k

eik( j− j′ ) 1

iωn − V
= δ j j′

iωn − V
, (14)

[
gedge

j j′ (iωn)
]

44 = δ j j′

iωn + V
. (15)

The Green’s function of the superconductors in a semi-
infinite lattice is derived by using the boundary Green’s
function method [75,76]. In the wide-band limit (ωn, |�| �
tSC), the boundary Green’s function between the leftmost
(rightmost) site of the right (left) superconductor is, respec-
tively,

gSC,R
11 (iωn) � − iωn + �̃R

tSC
(
ω2

n + |�R|2)1/2 , (16)

gSC,L
−1−1(iωn) � − iωn + �̃L

tSC
(
ω2

n + |�L|2)1/2 , (17)

where �̃R(L) = −Re[�R(L)]σ yτ y − Im[�R(L)]σ yτ x.

A. Anomalous Green’s function

First, consider the anomalous Green’s function between
two sites j, j′ on the chiral edge. When j and j′ are away
from the contact points, only spin-up components propagate.
The leading-order terms of the anomalous Green’s function
representing the equal-spin Andreev reflection in the pertur-
bation series with respect to the tunneling amplitude ttunnel are
given by

[
G(2)

j j′ (iωn)
]

13 = − iωnCRei(arg[�R]−φR )(
ω2

n + |�R|2)(ω2
n + V 2

)
× [

gedge
j0 (iωn)

]
11

[
gedge

0 j′ (iωn)
]

33

+ (R → L, 0 → N/2), (18)

where CR/L = t4
tunnel|�R/L|V τ (1 − τ 2) sin θR/L/t2

SC (see deriva-
tion in Appendix B). Some notices on (18) are in order: the
anomalous Green’s function depends on (i) the tunneling of
the evanescent minority spin (∝ τ ), (ii) the reflection of the
spin-down electrons and holes from a superconductor back to
the same superconductor (∝ [gedge

00 (iωn)]22 − [gedge
00 (iωn)]44 =

−2V/(ω2
n + V 2)), and also (iii) the polar angle of the tunnel-

ing matrix TR/L through sin θR/L. These facts indicate that the
equal-spin Andreev reflection is resulting from the combina-
tion of spin-flipping normal reflection and the opposite-spin
(ordinary) Andreev reflection. In addition, (iv) the anomalous
Green’s function vanishes in the limit ωn → 0, which is con-
sistent with vanishing Andreev reflection in the same limit
of the Josephson junction through half-metals [16]. (v) The
azimuth angle φR/L works equivalently as the phase of the pair

potential �R/L [11,14,16,66,67]. (vi) Since[
gedge

j0 (iωn)
]

11

[
gedge

0 j′ (iωn)
]

33

= e−ωn( j− j′ )/ve−iμ(N− j− j′ )/v

4v2 sin[N (iωn + μ)/2v] sin[N (iωn − μ)/2v]
, (19)

the anomalous Green’s function with a fixed interval j − j′
behaves as e2iμ j/v , which agrees with a numerically found
2kF (= 2μ/v) oscillation in Sec. III A.

The ETO and OTE components can be directly derived
by substituting iωn → ±(ω + iδ) and using the definition (4),
part of which resulting from the right superconductor is given
by

F ETO/OTE
j j+a (ω)

= − ωCRei(arg[�R]−φR )

v2(|�R|2 − ω2)(V 2 − ω2)

× χETO/OTE(a)e−iμ(N−2 j)/v

sin[N (ω + iδ + μ)/2v] sin[N (ω + iδ − μ)/2v]
.

(20)

Here, the interval a appears in the expression as χETO(a) =
ieiμa/v sin[ωa/v] and χOTE(a) = eiμa/v cos[ωa/v], which
agree with the periodicity of the nonlocal anomalous corre-
lation in Sec. III B. From the expression of χETO/OTE(a), large
OTE indicates small ETO and vice versa [6]. Both the ETO
and OTE components have singularities at ω = 2πvs/N ∓
μ(s ∈ Z), which corresponds to the spectra of the chiral edge
electron (hole). However, to be precise, the peak position
of the anomalous Green’s function in numerical calculation
[Fig. 3(c)] does not agree with the spectrum of the isolated
QAHI, but with the modified spectrum of the chiral edge mode
shown in Fig. 2(a), which cannot be explained by the above
perturbative calculation. In addition, the highest peak of the
anomalous Green’s function can be seen around ω = |�| and
|V | in (20), while that in the numerics around ω ∼ 0.6|�|. Ac-
cording to the numerical calculation, the highest peak position
is determined by the tunneling amplitude between the QAHI
and superconductors (a larger amplitude shifts the highest
peak position farther from |�|). We have adopted a relatively
large tunneling amplitude of 0.5ts, which is beyond the scope
of the perturbative approach of this section.

B. dc Josephson effect

Next, consider the Josephson current through the chiral
edge mode (see derivation in Appendix C). The Josephson
current is an equilibrium current, and thus is derived from the
equilibrium Green’s function as

I = ie

2β h̄

∑
ωn

tr τ z[TRG10(iωn) − TLG−1N/2(iωn)], (21)

where TR(L) is defined in (B2). Notice that 0 and N/2 in the
subscript of the Green’s functions in (21) are the coordinates
of the right and left point contacts on the chiral edge, respec-
tively, and 1 (−1) is the leftmost (rightmost) site of the right
(left) superconductor.

Intuitively, the Josephson current is carried by electrons
moving in one direction and holes moving in the opposite
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direction, the number of which is balanced to be in an equilib-
rium by the Andreev reflection at two superconductors [77].
In our model, electrons on the bottom (top) boundary and
holes on the top (bottom) boundaries are related by the equal-
spin Andreev reflection by the right and left superconductors,
which is described by the two terms in (18) by assigning j
and j′ on the bottom and top (bottom and top) boundaries,
respectively. The leading-order contribution to the Josephson
current is thus the combination of the leading contribution of
the anomalous Green’s function [G(2)

N/2,0(iωn)]13(31) given in

(18) and and its counterpart [G(2)
0,N/2(iωn)]31(13). The expres-

sion of the Josephson current is shown in (C8).
In the high-temperature limit (2πv/N � β−1), the summa-

tion over the Matsubara frequency ωn is approximated by the
summation over ω0(1) = ±πβ−1, which gives

I (3) � e

h̄

4β5CRCL

v2
e−Nπ/βv sin δϕ

× π2

(π2 + β2|�R|2)(π2 + β2|�L|2)(π2 + β2V 2)2
,

(22)

where

δϕ = arg
�L

�R
+ φR − φL. (23)

On the other hand, in the low-temperature limit (2πv/N �
β−1) and when the interlevel spacing of the chiral edge mode
is much smaller than the pair potential and the gap of the
minority spin (2πv/N � |�R/L|,V ) the Josephson current is
given by

I (3) � e

h̄

2πvCRCL

3N3V 4|�R�L|2 F
( Nμ

2πv

)
sin δϕ, (24)

where F (a) is a dimensionless periodic function [F (a + 1) =
F (a)] defined in (C10), and it gives the maximum value of
1 when the chemical potential lies exactly at the discrete
spectrum of the chiral edge mode μ = 2πvs/N (s ∈ Z) (see
Fig. 10). The Josephson current is dependent on the relative
azimuth angle φR − φL of the tunneling matrix in addition to
the phase difference of the pair potential of two superconduc-
tors, which shares the same property as the Josephson current
through half-metals [11,14,16,66,67]. However, this leading-
order calculation of the Josephson current cannot reproduce
the nonlinearity of the numerically obtained azimuth-angle
dependence of the equilibrium phase difference [Fig. 5(b)]
and relatively small critical current for noncoplanar configura-
tions [φL �= 0, π in Fig. 5(d)]. This difference might be due to
the difference of the spin-flipping mechanism. The phase (23)
is the consequence of the interference mentioned in Sec. III D.
The critical current decays as 1/N3, which agrees with [56].

C. Asymmetric geometry

Next, we consider a case where the geometry of the junc-
tion has asymmetry with respect to the permutation of the top
and bottom boundaries [Fig. 8(b)] (see details in Appendix
D). A similar topic has been studied from the perspective of
symmetry of a spin-unpolarized QAHI in [54].
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Right SCLeft SC(a)

10 20 30 40 50

Numerical
Analytical

C
rit
ic
al
cu
rre
nt

(lo
g,
ar
b.
un
it)

C
rit
ic
al
cu
rre
nt

(lo
g,
ar
b.
un
it)

Width

(b)

Analytical

(In
te
rv
al
)-1

[×
(la
tti
ce
co
ns
t.)

-1
]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.00

0.05

0.10

0.15

Chemical potential

(c)

FIG. 9. (a) A lattice geometry of the Josephson junction of the
chiral edge mode connected to finite-width superconductors. (b) The
critical current as a function of the width is shown for the chemical
potential μ/|�| = 0, 0.2, 0.4, and 0.6 by comparing with the cor-
responding numerical result. (c) The inverse of the interval of the
neighboring width where the critical current vanishes is shown as a
function of the chemical potential. The analytical result is shown by
the solid line, and the numerical one by points.

Let the length and the chemical potential of the top (bot-
tom) boundary be denoted by N1 and μ1 (N2 and μ2). The
plane wave eikx is an eigenstate with the eigenenergy vk − μ1

(vk − μ2) on the top (bottom) boundary. Eigenstates in the
whole chiral edge are thus determined by the scattering prob-
lem, in which plane waves with the same eigenenergy are
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FIG. 10. A periodic function F (a) used in the low-temperature
limit of the Josephson current.

connected by boundary conditions. The boundaries of the two
regions are the two contact points with superconductors. Let
the perimeter of the chiral edge be denoted by N (= N1 +
N2). The eigenenergies are ε = 2πvs/N − μ̃(s ∈ Z), where
μ̃ = (μ1N1 + μ2N2)/N , and the corresponding momentum is
k1s = 2πs/N + (μ1 − μ2)N2/Nv and k2s = 2πs/N + (μ2 −
μ1)N1/Nv on the top and bottom boundaries, respectively.
The unperturbed Green’s function of the chiral edge without
tunneling can be derived in the same way as before. The
resulting expression of the Josephson current is obtained from
that for the symmetric case (C8), (22), and (24) by changing
the chemical potential as μ → μ̃ and δϕ defined in (23) by

δϕ̃ = δϕ − (N1 − N2)μ̃

v
− 2N1N2(μ1 − μ2)

Nv
. (25)

The dependence of the length difference appears in the second
term of the right-hand side of (25) and that of the chemical-
potential difference in the third term.

According to (25), even when the length of the two bound-
aries is the same (N1 = N2), a chemical-potential difference
of the interlevel spacing of the chiral edge mode (μ1 − μ2 =
2πv/N) can change a 0 junction into a π junction or vice
versa. Therefore, although the expression in this section is
applicable only to systems without disorder, it can be deduced
that strong disorder-configuration dependence of the equilib-
rium phase in Sec. III D is the consequence of asymmetric
profile of the disorder potential.

D. Comparison with numerical results

Using the result of the previous subsection, we can con-
sider the effect of a finite width W as in the lattice model
studied numerically in Sec. II. Let the QAHI be modeled by a
chiral edge channel on a one-dimensional lattice as in Fig. 8,
and let superconductors on both sides of the junction be mod-
eled by arrays of one-dimensional superconductors (Fig. 9).
Within the leading-order contribution to the Josephson current
as in Sec. V B, the total Josephson current is estimated by the
summation over all pairs between the left and right arrays of
superconductors, that is, W 2 pairs. Each contribution has the
same magnitude, while the phase differs by the difference of
the two paths N1 − N2 according to (25). There are W pairs
corresponding to N1 − N2 = 0, W − 1 pairs corresponding to
N1 − N2 = ±2, and so on. When the length of the QAHI is

L, the perimeter is N = N1 + N2 = 2(L + W ) − 4. From (24),
the total Josephson current at sufficiently low temperature is
given by

I � e

h̄

2πvCRCL

3N3V 4|�R�L|2 F

(
Nμ

2πv

)

×
W −1∑

n=−W +1

(W − |n|) sin

(
δϕ − 2nμ

v

)
. (26)

The resulting Josephson current is proportional to sin δϕ,
while the critical current depends on the width W . As a
consequence of the periodic function F (a), the critical cur-
rent shows a wavy pattern with the period δμ = 2πv/N
[see Fig. 6(c)], that is, the interlevel spacing of the chi-
ral edge mode. On the other hand, from the summation
part of (26), the critical current vanishes identically when
μ/v = ±mπ/W (m ∈ N ), which can be seen by large dips
of the critical current at μ/|�| ∼ 0.4, 0.75, . . . in Fig. 6(c),
or equivalently when

W = mvπ

|μ| = 2mπ

2|kF | (m ∈ N ). (27)

Equation (27) indicates that the interval of the vanishing-
critical-current width could be a possible signature of a
finite-momentum pairing since the period is determined by
2kF and it is resulting from the second term of the right-hand
side of (25) that is present only when the chemical potential
is nonzero and the system is chiral, that is, the momentum of
the Cooper pair is finite.

For the QAHI with a length L = 30, the width dependence
of the critical current is estimated numerically and analytically
in Fig. 9(b) for the chemical potential μ/|�| = 0, 0.2, 0.4,
and 0.6. The analytical result with a width W agrees with
the numerical one with a slightly different width W + 4.
This difference would be resulting from a finite thickness
of the chiral edge mode, which is not necessarily bound
to the boundary lattice sites. However, the interval of the
vanishing-critical-current width of the numerical calculation
quantitatively agrees with the analytical one [Fig. 9(c)], and
hence would work as a measure of the finite momentum of
the Cooper pair.

VI. CONCLUSION

We have studied the Josephson effect through a spin-
polarized QAHI between conventional s-wave superconduc-
tors focusing on pairing symmetry induced by the edge state
and on the comparison with that through a QSHI. The pairing
states along the QAHI edge are equal-spin triplet, the combi-
nation of even and odd frequencies, nonlocally extended, and
have a finite momentum (the Fulde-Ferrell state) due to the
spin polarization, translation symmetry breaking, robustness,
and the chirality.

Equal-spin triplet pairs carry the Josephson current when
the length of the QAHI exceeds a crossover length, below
which the Josephson current is carried by singlet pairs via
the bulk. The appearance of the equal-spin triplet pairs was
examined by the dependence of the interface-exchange-field
direction between the QAHI and two superconductors. When
the three directions of the bulk and left- and right-interface
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exchange fields have a finite solid angle, the phase differ-
ence that minimizes the junction energy is neither 0 nor π ,
and changes continuously by 2π during the rotation of the
left-interface exchange field by 2π around the bulk one. The
finite momentum of the ETO and OTE pairs can be con-
firmed via the interval of the vanishing-critical-current width,
and theoretically by a spatial oscillation of the corresponding
anomalous Green’s function, in which the periodicity coin-
cides with twice the Fermi momentum 2kF .

Numerical calculations are qualitatively examined by a
simple analytical model of a chiral fermion on a closed
one-dimensional circle coupled to two superconductors on
a semi-infinite lattice. The anomalous Green’s function and
the Josephson current are perturbatively derived via the
Matsubara Green’s function up to the leading order in the
tunneling amplitude between the QAHI and superconductors.

The analytical model explains a numerically discovered large
fluctuation of the equilibrium phase difference in the presence
of potential disorder from an asymmetric profile of the chem-
ical potential.
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APPENDIX A: UNPERTURBED GREEN’S FUNCTION

In this Appendix, we review the derivation of the unperturbed Green’s function of the chiral edge fermion [45] and the s-wave
superconductor on a semi-infinite space [75,76]. First, the Matsubara Green’s function of the spin-up electron on the chiral edge
mode (6) with the Matsubara frequency ωn = (2n + 1)πT between two points j and j′ is given by

[
gedge

j j′ (iωn)
]

11 = 1

N

∑
k

eik( j− j′ ) 1

iωn − vk + μ
. (A1)

Here, the momentum k is simplified to be unbounded since the energy levels away from the Fermi level would be less relevant
[45]. The summation over k = 2πs/N (s ∈ Z) is rewritten by the complex integral as

[
gedge

j j′ (iωn)
]

11 = 1

2π iN

∮
C

dz
sgn[ j − j′]

esgn[ j− j′]z − 1

ez( j− j′ )/N

iωn + ivz/N + μ

= 1

2v

e−i(iωn+μ)(sgn[ j− j′]N/2− j+ j′ )/v

sin[N (iωn + μ)/2v]
, (A2)

where C is an infinitely large circle on the complex plane that avoids a pole at z = iN (iωn + μ)/v, and sgn[ j − j′] is included to
ensure the convergence. The expression (A2) is consistent with the periodicity of the number of the lattice sites N , that is, for two
points j and j′ satisfying j > j′, the distance measured in the clockwise direction ( j − j′ > 0) and that in the counterclockwise
directions ( j − j′ − N < 0) give the same result as long as they are within [−N, N]. The unperturbed Green’s function of the
spin-up hole is given by changing μ → −μ in (A2).

The unperturbed Green’s function of a superconductor on a semi-infinite lattice (the boundary Green’s function) is derived
by solving the Dyson equation for the superconductor on the infinite lattice in the presence of an infinite potential at m = 0 that
excludes particles at this site [75,76]. The Hamiltonian of the superconductor in the infinite lattice is HSC = HSC,R + HSC,L +
HSC,0, where �R = �L = � and HSC,0 connects the two superconductors as

HSC,0 = −tSC

∑
σ

∑
m=−1,0

a†
m+1σ amσ + �a†

0↑a†
0↓ + H.c. (A3)

The Green’s function is derived in the presence of a potential, the Hamiltonian of which is given by

Hpotential = U
∑

σ

a†
0σ a0σ . (A4)

By Fourier transform of HSC, the Matsubara Green’s function of the superconductor in the infinite lattice is

gSC
mm′ (iωn) = 1

M

∑
k

eik(m−m′ ) 1

iωn − HSC(k)
, (A5)

where M is the number of lattice sites. Here, HSC(k) = −2t cos kτ z − Re[�R]σ yτ y − Im[�R]σ yτ x is the 4 × 4 Hamiltonian
matrix of HSC on a basis (ak↑, ak↓, a†

−k↑, a†
−k↓), and σ (τ ) is the Pauli matrix for the spin (Nambu) space. In the limit of M → ∞,

gSC
mm′ (iωn) → 1

2π

∫
dk eik(m−m′ ) 1

iωn − HSC(k)
= 1

2π i

∮
C0

dz zm−m′−1 iωn − t (z + z−1)τ z + �̃

ω2
n + t2(z + z−1)2 + |�|2 , (A6)
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where C0 is the unit circle in the complex plane, and �̃ = −Re[�]σ yτ y − Im[�]σ yτ x. Performing the integral, we obtain

gSC
mm = − 1

t2
SC

iωn + �̃

λ−2 − λ2
, (A7)

gSC
m+1m = gSC

mm+1 = 1

tSC

τ z

λ−2 + 1
, (A8)

where λ2 = [ω2
n + |�|2 + 2t2 − (ω2

n + |�|2)1/2(ω2
n + |�|2 + 4t2)1/2]/2t2.

In the presence of the potential (A4), the Dyson equation for the boundary Green’s function is given by

gSC,b
mm′ (iωn) = gSC

mm′ (iωn) + gSC
m0(iωn)UgSC,b

0m′ (iωn), (A9)

where U = Uτ z. In the limit of an infinite potential height U → ∞, the Green’s function gSC,b
0m′ (iωn) vanishes while the product

with U remains finite. The Dyson equation for UgSC,b
0m (iωn) is simplified by taking the limit of U → ∞ as

UgSC,b
0m (iωn) = [

U−1 − gSC
00 (iωn)

]−1
gSC

0m(iωn) → −[
gSC

00 (iωn)
]−1

gSC
0m(iωn). (A10)

Therefore, the boundary Green’s function of the superconductor is given in terms of that in the infinite lattice by

gSC,b
mm′ (iωn) = gSC

mm′ (iωn) − gSC
m0(iωn)

[
gSC

00 (iωn)
]−1

gSC
0m′ (iωn). (A11)

Specifically, by substituting (A7) and (A8), the boundary Green’s function between the leftmost (rightmost) site of the right (left)
superconductor is given in the wide-band limit (t � ωn, |�R|) by (16) [(17)]. Notice that since conventional superconductors
are not topological, the boundary Green’s functions (16) and (17) are simply twice that in a uniform system (A7) in this limit.

APPENDIX B: ANOMALOUS EDGE CORRELATION

In the presence of tunneling between the chiral edge mode and the two superconductors, the Dyson equation of the Green’s
function of the chiral edge mode is

Gj j′ (iωn) =gedge
j j′ (iωn) + gedge

j0 (iωn)�R(iωn)G0 j′ (iωn) + gedge
jN/2(iωn)�L(iωn)GN/2 j′ (iωn). (B1)

Here, by introducing 4 × 4 tunneling matrix

TR(L) =
(

TR(L) 0
0 −T ∗

R(L)

)
, (B2)

and using the boundary Green’s functions (16) and (17) of the two superconductors, the self-energy is given by

�R(L)(iωn) = TR(L)g
SC,R(L)
11(−1−1)(iω)TR(L)

= − t2
tunnel

tSC(ω2
n + |�R(L)|2)1/2

(
iωnPR(L) −iτ�R(L)σ

y

iτ�∗
R(L)σ

y iωnP∗
R(L)

)
. (B3)

By using projection operators P±(θR, φR) defined by TR = −ttunnel[P+(θR, φR) + τP−(θR, φR)] [see also the definition of the
tunneling matrix (11)], we obtain PR(L) = P+(θR(L), φR(L)) + τ 2P−(θR(L), φR(L)).

Since only the spin-up electrons and holes can propagate along the edge, the only finite components of the anomalous Green’s
function are the (1,3) and (3,1) components. According to (B3) the (1,3) component of the self-energy �R(L)(iωn) is absent. The
leading-order contribution in perturbation expansion appears in the second order in the self-energy, and is given by

[
G(2)

j j′ (iωn)
]

13 =[
gedge

j0 (iωn)
]

11

[
gedge

0 j′ (iωn)
]

33

[
�R(iωn)gedge

00 (iωn)�R(iωn)
]

13 + (R → L, 0 → N/2). (B4)

Substituting (B3), the anomalous Green’s function is given by (18).

APPENDIX C: JOSEPHSON CURRENT

1. Formula

First, the formula of the Josephson current in terms of the Matsubara Green’s function is reviewed. Let the electric current
flowing from the chiral edge to the right superconductor be denoted by IR, and that from the left superconductor to the chiral
edge by IL. We define the Josephson current flowing from the left to right superconductor by the average of the two currents
I = (IR + IR)/2. The current operator through the right contact is determined by the change of the total electric charge NR of the
right superconductor by the tunneling operator as ÎR = ie[NR, Htunnel,R]/h̄. The Josephson current is given by

I = − e

2h̄
tr[τ zTRG−+

10 (t, t ) − τ zTLG−+
−1 N/2(t, t )]. (C1)
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Here, [G−+
m j (t, t ′)]αβ = −i〈�α

m(t )�†β
j (t ′)〉 is the greater Green’s function between a site m on the superconductors and a site j

on the chiral edge, where �m = (am↑ am↓ a†
m↑ a†

m↓)T and � j = (c j↑ c j↓ c†
j↑ c†

j↓)T . In an equilibrium, the Fourier transform of the
greater Green’s function is related to the equilibrium Green’s function through G−+(ω) = [1 − f (ω)][GR(ω) − GA(ω)], where
f (ω) is the Fermi distribution function. Since the retarded (advanced) Green’s function has poles in the lower- (upper-) half of
the complex plane, the integral over the real frequency is closed by connecting the end points through a semicircle on the upper-
(lower-) half-plane, the integration path of which is indicated by C+ (C−). Since poles inside the path are those of the Fermi
distribution function at iωn = (2n + 1)π iβ−1, where n � 0 for C+ and n < 0 for C−, we obtain

G−+(t, t ) = 1

2π

∫
dω [1 − f (ω)][GR(ω) − GA(ω)]

= i

[
1

2π i

∮
C+

dω GR(ω) − 1

2π i

∮
C−

dω GA(ω)

]
[1 − f (ω)]

= −iβ−1
∑
ωn

G(iωn). (C2)

Then, the Josephson current is given by

I = ie

2β h̄

∑
ωn

tr[τ zTRG10(iωn) − τ zTLG−1 N/2(iωn)]. (C3)

2. Perturbative expansion

The Dyson equation for the Green’s function along the chiral edge is given in (B1), and that between the chiral edge and
superconductors by

T RG10(iωn) = �R(iωn)G00(iωn), (C4)

T LG−1N/2(iωn) = �L(iωn)GN/2 N/2(iωn). (C5)

The leading nonvanishing contribution to the Josephson current is the combination of the leading contribution to the Andreev re-
flection described by (B4) at both superconductors, which is given by the anomalous components of �R(iωn)gedge

00 (iωn)�R(iωn).
Therefore, the leading order of (C4) and (C5) that has a finite contribution to the Josephson current is

T RG10 � [
�Rgedge

00 �R
]
gedge

0N/2

[
�Lgedge

N/2N/2�
L
]
gedge

N/2 0 + �Rgedge
0 N/2

[
�Lgedge

N/2 N/2�
L
]
gedge

N/2 0�
Rgedge

00 , (C6)

T LG−1N/2 � �Lgedge
N/2 0

[
�Rgedge

00 �R
]
gedge

0 N/2�
Lgedge

N/2 N/2 + [
�Lgedge

N/2 N/2�
L
]
gedge

N/2 0

[
�Rgedge

00 �R
]
gedge

0 N/2, (C7)

where the Matsubara frequency in the argument is omitted. The leading contribution to the Josephson current is given by

I (3) = − ie

h̄

t8
tunnelV

2|�R�L|
βt4

SC

τ 2(1 − τ 2)2 sin θR sin θL

×
∑
ωn

([
gedge

0 N/2

]
33

[
gedge

N/2 0

]
11e−iδϕ − [

gedge
0 N/2

]
11

[
gedge

N/2 0

]
33eiδϕ

) ω2
n(

ω2
n + |�R|2)(ω2

n + |�L|2)(ω2
n + V 2

)2 , (C8)

where δϕ is defined in (23). The two terms in the parentheses of the right-hand side of (C8) represent the interference between
two current-carrying channels.

In the limit of low temperature, the summation over the Matsubara frequency is replaced by the integral
∑

ωn
→ (β/2π )

∫
dω.

Since

[
gedge

0 N/2

]
33

[
gedge

N/2 0

]
11 = [

gedge
0 N/2

]
11

[
gedge

N/2 0

]
33 = 1

2v2

1

cos[Nμ/v] − cosh[Nωn/v]
(C9)

decays exponentially by an energy of 2πv/N as a function of the Matsubara frequency ωn, the denominator of the second line
of (C8) is approximated, by assuming that 2πv/N � |�R(L)|,V , as (ω2

n + |�R|2)(ω2
n + |�L|2)(ω2

n + V 2)2 � |�R�L|2V 4. Then,
the Josephson current is given by (24), where

F (a) = − 3

4π2

∫
dz

z2

cos 2πa − cosh z
(C10)

is a periodic function F (a + 1) = F (a) that takes unity when a = 0 and 1
2 when a = 1

2 (Fig. 10).
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APPENDIX D: LENGTH AND CHEMICAL POTENTIAL ASYMMETRY

When two regions separated by contact points to the two superconductors have different length and chemical potential
[Fig. 8(b)], the eigenenergies are determined by scattering theory of plane waves at two boundaries. Let the coordinate of
the right contact be denoted by j = 0 and that of the left contact by j = N1. Consider plane waves in the two regions

ψ ( j) =
{

Aeik1 j ( j ∈ [0, N1]),
Beik2 j ( j ∈ [N1, N]),

(D1)

whose Hamiltonian is defined by H1(2) = vk1(2) − μ1(2). The momenta for an eigenenergy ε satisfy vk1 − μ1 = vk2 − μ2 =
ε. Combined with the boundary conditions of the wave function at j = 0 and N1 given by A = Beik2N , Aeik1N1 = Beik2N1 , the
eigenenergies are the same as those of the symmetric system

εs = 2πsv

N
− μ̃ (s ∈ Z), (D2)

where the chemical potential is replaced by μ̃ = (μ1N1 + μ2N2)/N . The corresponding momenta are k1s = 2πs/N + (μ1 −
μ2)N2/Nv and k2s = 2πs/N + (μ2 − μ1)N1/Nv.

In the absence of the tunneling to superconductors, the unperturbed Green’s function of the electron between the two contact
points is given by

[
gedge

N10 (iωn)
]

11 =
∑
ss′

ψs(N1)ψ∗
s′ (0)

δss′

iωn − εs

= 1

N

∑
s

exp

[
i
μ1 − μ2

v

N1N2

N

]
e2π isN1/N

iωn − εs

= 1

2v
ei(μ1−μ2 )N1N2/Nv ei(iωn+μ̃)(N1−N2 )/2v

sin[N (iωn + μ̃)/2v]
, (D3)

[
gedge

0N1
(iωn)

]
11 = 1

2v
e−i(μ1−μ2 )N1N2/Nv e−i(iωn+μ̃)(N1−N2 )/2v

sin[N (iωn + μ̃)/2v]
. (D4)

The unperturbed Green’s function in an asymmetric geometry is slightly different from that in the symmetric geometry (A2) by
a phase factor depending on the difference of the chemical potential μ1 − μ2. Substituting the unperturbed Green’s function into
(C6) and (C7), the resulting expression of the Josephson current is (C8) where μ and δϕ are replaced by μ̃ and δϕ̃ defined in
(25).
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