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This paper is a continuation and a partial summary of our analysis of the pairing at a quantum-critical
point (QCP) in a metal for a set of quantum-critical systems, whose low-energy physics is described by an
effective model with dynamical electron-electron interaction V (�m ) = (ḡ/|�m|)γ (the γ model). Examples
include pairing at the onset of various spin and charge-density-wave and nematic orders and pairing in SYK-type
models. In previous papers, we analyzed the physics for γ < 2. We have shown that the onset temperature for
the pairing Tp is finite, of order ḡ, yet the gap equation at T = 0 has an infinite set of solutions within the
same spatial symmetry. As the consequence, the condensation energy Ec has an infinite number of minima. The
spectrum of Ec is discrete, but becomes more dense as γ increases. Here we consider the case γ = 2. The γ = 2
model attracted special interest in the past as it describes the pairing by an Einstein phonon in the limit when the
dressed phonon mass ωD vanishes. We show that for γ = 2, the spectrum of Ec becomes continuous. We argue
that the associated gapless “longitudinal” fluctuations destroy superconducting phase coherence at a finite T ,
such that at 0 < T < Tp, the system displays pseudogap behavior of preformed pairs. We show that for each gap
function from the continuum spectrum, there is an infinite array of dynamical vortices in the upper half-plane of
frequency. For the electron-phonon case, our results show that Tp = 0.1827ḡ, obtained in earlier studies, marks
the onset of the pseudogap behavior, while the actual superconducting Tc vanishes at ωD → 0.
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I. INTRODUCTION

This work presents a continuation and a partial summary
of our analysis of the interplay between non-Fermi liquid
(NFL) physics and superconductivity for a set of quantum-
critical (QC) itinerant systems, whose low-energy dynamics
can be described by an effective model of spin-full electrons
with dynamical interaction on the Matsubara axis V (�m) =
(ḡ/|�m|)γ (the γ model). Examples include pairing near
spin-density-wave, charge-density-wave, and Ising-nematic
instabilities in isotropic and anisotropic 3D and 2D systems,
pairing of fermions at a half-filled Landau level, pairing
of dispersion-less fermions randomly coupled to phonons,
and so on. We listed the examples in the first paper in the
series, Ref. [1], and discussed earlier works. In that and
subsequent papers [1–4], hereafter called papers I–IV, we
analyzed the γ model with exponents 0 < γ < 2. We rational-
ized Eliashberg-type approach, solved generalized Eliashberg
equations, and found that the solution with a nonzero pairing
gap develops below a finite Tp, which for a generic γ = O(1)
is of order ḡ. The corresponding gap function �(k, ωm) can
be roughly approximated as �(ωm) f (k), where a normal-
ized f (k) has a particular spatial symmetry (d− wave, s+−,
etc.), and �(ωm) is a sign-preserving function of Matsubara
frequency, whose amplitude increases with decreasing T . At
T = 0, �(0) is of order Tp (the ratio �(0)/Tp is a γ -dependent
number [5,6]). In this respect, the pairing at a QCP is similar

to pairing away from a QCP, when V (�m) saturates at a finite
value at �m = 0. However, on a more careful look, we found
qualitative difference between the two cases. Namely, away
from a QCP, Eliashberg gap equation at T = 0 has at most a
finite number of solutions with a given spatial symmetry. At
a QCP, it has an infinite number of solutions for �(ω), i.e.,
the condensation energy, Ec, has an infinite number of local
minima. The solutions �n(ωm), labeled by an integer n, are
topologically distinct in the sense that �n(ωm) changes sign n
times along the positive Matsubara axis, and each such point
is a vortex in the upper half-plane of frequency.

The ultimate goal of our studies of the γ model is to
understand how the existence of an infinite set of solutions
affects the interplay between pairing [i.e., the appearance of
a nonzero �(ω)] and a true superconductivity. In a conven-
tional Eliashberg theory (ET) of SC out of a noncritical Fermi
liquid, phase fluctuations are small in the same parameter
that allows one to neglect vertex corrections. In this situa-
tion, the onset temperature for the pairing, Tp, and the actual
superconducting Tc nearly coincide. To address a possible
reduction of superconducting Tc by phase fluctuations, one
then has to include the effects not incorporated into ET, e.g.,
a localization of electrons when the interaction exceeds the
fermionic bandwidth. We analyze whether the emergence of
an infinite number of solutions for the gap at a QCP gives
rise to a substantial reduction of Tc/Tp ratio already when
the interaction is smaller than the fermionic bandwidth. For
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γ < 2, which we analyzed in papers I–IV, the spectrum of the
condensation energies Ec,n is discrete, and Ec,0 is the largest.
In this situation, the physics at small T is determined by
a single solution �0(ωm), and phase fluctuations are weak.
We showed, however, that the set becomes more dense at
γ increases: the ratios (Ec,n+1 − Ec,n)/Ec,n get progressively
smaller.

In this paper, we analyze the case γ = 2. We argue that
for this γ , the set of the gap functions and the spectrum of
the condensation energies become continuous. Specifically, at
γ = 2 − δ, and δ = 0+, �n(ωm) with n < 1/δ become equal
to �0(ωm) for all ωm > 0, and Ec,n become equal to Ec,0,
while �n(ωm) and Ec,n with infinite n > 1/δ form a contin-
uous, one-parameter gapless spectra, �ξ (ωm) and Ec,ξ . Here
ξ , is a continuous variable, that runs between zero and infinity
and depends on how the double limit n → ∞ and δ → 0 is
taken (we define ξ such that the minimum of Ec,ξ is at ξ = 0,
and Ec,∞ = 0). We argue that fluctuation corrections to su-
perconducting order parameter from Ec,ξ destroy long-range
superconducting order at any finite T . We emphasize that this
holds for itinerant fermions, in the limit when the interaction is
smaller than the bandwidth, and the ET is rigorously justified.

We present a corroborative evidence that the γ = 2 model
is critical. It comes from the analysis of the gap equation
on the real frequency axis and in the upper half-plane of
frequency, z = ω′ + iω′′, ω′′ > 0. The gap function �(z) gen-
erally cannot be obtained from �(ωm) by just replacing iωm

by z as such gap function is not guaranteed to be analytic.
To obtain an analytic function, one has to perform a more
sophisticated analysis [7–10]. As a consequence, �(ω) on the
real axis can be quite different from �(ωm). For the γ model,
some difference is expected on general grounds, particularly
for γ > 1, because while the interaction V (�m) on the Mat-
subara axis is positive (attractive) for all γ , the one on the real
axis is complex, V (�) = eiπγ /2 sgn�/|�|γ , and its real part
V ′(�) = (ḡ/|�|)γ cos πγ /2 becomes repulsive for γ > 1.

In paper IV, we compared the forms of �n(ωm) and �n(ω)
for 1 < γ < 2. We found that at small ω,ωm < ḡ and at large
ω,ωm > ḡ(| ln (2 − γ )|/(2 − γ ))1/2, the two gap functions
transfer into each other under a rotation iωm → ω. How-
ever, at intermediate ḡ<ω,ωm<(| ln (2 − γ )|/(2 − γ ))1/2,
�n(ωm) = an/|ωm|γ is a sign-preserving function of fre-
quency, while �n(ω) = |�n(ω)|eiηn(ω) oscillates, and its phase
ηn(ω) winds up by 2πkγ , where kγ is an integer, which
depends on γ , but not on n. We extended the analysis to
complex z in the upper frequency half-plane and showed that
there exists an array of k dynamical vortices, centered at some
complex zi.

Here we show that for γ = 2, the gap functions on the real
axis form a continuous set, each �ξ (ω) oscillates up to an infi-
nite frequency, and its phase winds up by an infinite number of
2π . Accordingly, the number of vortices at zi becomes infinite,
and the array of zi extends up to an infinite frequency, where,
we argue, each �ξ (ω) develops an essential singularity. We
show that for each gap function from the set, the density of
states (DoS) Nξ (ω + i0) has an infinite number of maxima
and minima, and does not recover the normal state form up
to ω = ∞. For the solution with ξ = 0, which was studied
before [7–9,11,12], N (ω + i0) reduces to a set of δ functions
at some ωi.

We combine the results for γ = 2 and earlier results for
γ < 2 (papers I–IV) and present the phase diagram of the
γ model for γ � 2, Fig. 16. For all γ , the ground state is
a superconductor with a finite superfluid stiffness ρs, and
the onset temperature for the pairing, Tp, is finite. How-
ever, superconducting Tc decreases with γ and vanishes for
γ = 2. In between Tp and Tc, the system displays a pseudogap
(preformed pairs) behavior. One feature of this phase is “gap
filling” behavior, as T increases towards Tp. In the next paper
we consider the case γ > 2. We show that the behavior at a
finite T remains largely the same as for γ = 2, however new
physics emerges at T = 0 and gives rise to a reduction and
eventual vanishing of ρs even in the ground state.

The model with the pairing interaction V (�m) =
(ḡ/|�m|)2 attracted a substantial attention on its own as it
describes the pairing, mediated by an Einstein boson, in the
limit where the effective (dressed) Debye frequency ωD van-
ishes.1 Electron-phonon model at ωD → 0 has been studied
before by a large number of authors [7–9,13–16]. We use the
results of these studies, particularly the works by Karakozov,
Maksimov, and Mikhailovsky [7], Marsiglio and Carbotte [8],
and Combescot [9] as the input for some of our calculations.
This limit is often termed strong coupling as the dimensionless
coupling constant λ = (ḡ/ωD)2 diverges at ωD → 0. How-
ever, the interaction ḡ is still assumed to be smaller than
the Fermi energy EF . Indeed, ET includes contributions to
all orders in λ within the ladder approximation, but neglects
vertex corrections to ladder series. The latter hold in powers
of Migdal-Eliashberg parameter λE = ḡ2N0/ωD = λ(N0ωD),
where N0 ∼ 1/EF in the DoS per unit volume. For small
enough ḡ/EF , λE remains small even when λ is large. From
this perspective, the strong coupling limit of the ET is the dou-
ble limit in which ωD and ḡ/EF tend to zero simultaneously,
such that λE remains small. In physical terms, the smallness
of λE � λ comes about because in a process that gives rise to
a vertex correction, fermions are forced to vibrate at a phonon
frequency, far away from their own resonance, while in the
processes, which form series in λ, fermions are vibrating near
their resonance frequencies. The smallness of λE also allows
one to neglect the renormalization of the bosonic propagator
by fermions, both in the normal and in the superconducting
state.

Previous studies have found that a nonzero gap function
emerges at Tp ≈0.25ωDe−1/λ at weak coupling (Refs. [17–23])
and at Tp = 0.1827ḡ at strong coupling [8,9,14,24].2 To un-
derstand the interplay between the onset of pairing and Tc, one
has to also compute superfluid stiffness, ρs. At weak coupling,
ρs ∼ EF � Tp [25–30]. In this situation, Tc and Tp almost co-
incide. At strong coupling, the situation is more complex. At
T = 0, the ρs ∼ Tp/λE (see below). Within the validity of ET,
this stiffness exceeds Tp. If we were to neglect the continuum

1The model also describes strong coupling limit of the interac-
tion between dispersion-less fermions and phonons (SYK-Yukawa
model), Refs. [10–12,24].

2This formula was originally obtained semi-analytically by Allen
and Dynes [14]. They expressed it as Tp ∼ ωD

√
λ to emphasize

that at strong coupling Tp becomes larger than ωD. Given that λ =
(ḡ/ωD )2, their formula reduces to Tp ∼ ḡ.
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spectrum of the condensation energy, we would obtain that
Tp and Tc again also coincide, as thermal corrections to SC
order parameter are of order T/ρs and hence remain small
for all T < Tp. Including the additional corrections from the
continuum of Ec,ξ , we find that thermal corrections actually
hold in powers of T/(ωDλE ) and become of order one at T ∼
ωDλE , which we identify with the actual Tc. At small ωD/ḡ,
this Tc is much smaller than Tp, even if we set λE = O(1).
In between T = Tp and Tc, the system displays a preformed
pairs behavior. When ωD increases and becomes of order ḡ, the
pseudogap region shrinks and the system gradually recovers
BCS-like behavior (Fig. 15).

The structure of the paper is the following. In Sec. II, we
present the Eliashberg gap equations that we use in this paper.
In Sec. III, we discuss the solution of the gap equation along
the Matsubara axis at T = 0 and γ → 2. We first obtain, in
Secs. III A and III B, the exact solution of the linearized gap
equation, �∞(ωm), which changes sign an infinite number
of times between ωm = 0 and ωm ∼ ḡ, and sign-preserving
solution �0(ωm), which tends to a finite value at ωm → 0. At
larger ωm > ḡ, both �∞(ωm) and �0(ωm) scale as 1/|ωm|2. In
Sec. III C, we obtain the solutions of the nonlinear gap equa-
tion in the order-by-order expansion in the gap magnitude and
show that they form a one-parameter continuum set �ξ (ω),
for which �∞(ωm) and �0(ωm) are the two limiting cases. In
Sec. IV, we analyze the properties of the gap function �(ω)
along the real frequency axis. We first obtain, in Sec. IV A, the

exact solution of the linearized gap equation on the real axis,
�∞(ω), and show that it oscillates not only at ω < ḡ, but also
at ω > ḡ, with a different period. In Sec. IV B, we consider the
real-frequency form of �0(ω), which does not change sign on
the Matsubara axis. We use as an input the results from earlier
works [7–9], which demonstrated that �0(ω) = |�0(ω)|eiη(ω)

oscillates at ω > ḡ, and argue that the phase η(ω) winds up
by an infinite number of 2π between ω = O(ḡ) and ω = ∞.
In Sec. IV C we present a one-parameter continuum set of
�ξ (ω), which in the two limits reduces to �∞(ω) and �0(ω).
In Sec. V, we extend �ξ (ω) into the upper frequency half-
plane (ω → z) and show that for each ξ , there is an infinite
array of vortices in the upper frequency half-plane and an
essential singularity at |z| = ∞. In Sec. VI, we consider the
gap equation at a finite ωD. We argue that the number of
vortices becomes finite and the high-frequency behavior of the
gap function becomes regular; however, this holds only above
a frequency, which scales inversely with ωD. In Sec. VII,
we consider fluctuation corrections to superconducting order
parameter �〈eiη〉 We argue that the ground state is a super-
conductor, however corrections to 〈eiη〉 become O(1) already
at T � ωD. We identify this scale with the actual supercon-
ducting Tc and discus pseudogap behavior in between Tp ∼ ḡ
and Tc. In Sec. VIII, we combine the results for γ = 2 and for
γ < 2 from papers I–IV and obtain the full phase diagram of
the γ model for γ � 2. We present our conclusions in Sec. IX.
Some technical aspects are discussed in Appendices.

II. ELIASHBERG EQUATIONS

The Eliashberg gap equation for the γ model is obtained by combining the equations for the pairing vertex � and the
self-energy . The two equations are obtained in a standard way, by summing up ladder series and neglecting vertex corrections
(see paper I and the text below for justification). On the Matsubara axis, we have (� = �(ωm),  = (ωm)):

�(ωm) = ḡγ πT
∑

m′

�(ωm′ )√
(ωm′ + (ωm′ ))2 + �2(ωm′ )

1(|ωm − ωm′ |2 + ω2
D

)γ /2 ,

(ωm) = ḡγ πT
∑

m′

ωm′ + (ωm′ )√
(ωm′ + (ωm′ ))2 + �2(ωm′ )

1(|ωm − ωm′ |2 + ω2
D

)γ /2 . (1)

Introducing �(ωm) = �(ωm)ωm/(ωm + (ωm)) and substituting into (1), we obtain after a simple algebra the equation that
contains only �(ωm):

�(ωm) = ḡγ πT
∑

m′

�(ωm′ ) − �(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )

1(|ωm − ωm′ |2 + ω2
D

)γ /2 . (2)

For γ = 2, this reduces to

�(ωm) = ḡ2πT
∑

m′

�(ωm′ ) − �(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )

1

|ωm − ωm′ |2 + ω2
D

. (3)

This is the same equation as for the interaction with an Einstein phonon [7–9,11–16,24,31–33]. As we said, we consider the limit
ωD → 0. The self-action term with m′ = m in the right-hand side (r.h.s.) of (3) can be safely eliminated because the numerator
vanishes at m = m′. Setting then ωD = 0, we obtain the gap equation at a QCP:

�(ωm) = ḡ2πT
∑
m′ �=m

�(ωm′ ) − �(ωm)ωm′
ωm√

(ωm′ )2 + �2(ωm′ )

1

(ωm − ωm′ )2
. (4)

At T = 0, πT
∑

m′ �=m → (1/2)
∫

dω′
m.
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The gap equation on the real axis is more conveniently expressed in terms of

D(ω) = �(ω)/ω. (5)

The equation has the form [9]

D(ω)ωB(ω) = A(ω) + C(ω), (6)

where

A(ω) = − ḡ2

2

∫ ∞

0
dω′ D(ω′)√

1 − D2(ω′)
AT ,

AT = tanh ω′
2T + tanh ω

2T

(ω′ + ω)2
+ tanh ω′

2T − tanh ω
2T

(ω′ − ω)2
− 1

T cosh2 ω
2T

ω′

(ω′)2 − ω2
,

B(ω) = 1 + ḡ2

2ω

∫ ∞

0
dω′

[
 1√

1 − D2(ω′)

]
BT , (7)

BT = tanh ω′
2T + tanh ω

2T

(ω′ + ω)2
− tanh ω′

2T − tanh ω
2T

(ω′ − ω)2
+ 1

T cosh2 ω
2T

ω

(ω′)2 − ω2
,

C(ω) = −i
ḡ2π

2
√

1 − D2(ω)

[
dD(ω)

dω
tanh

ω

2T
− T

(
dD2(ω)

dω2
+

(
dD(ω)

dω

)2 D(ω)

1 − D2(ω)

)]
,

where the integrals are principal values. At T = 0, the expressions simplify to

A(ω) = −ḡ2
∫ ∞

0

dω′

(|ω| + ω′)2
 D(ω′)√

1 − D2(ω′)
,

B(ω) = 1 + ḡ2

|ω|
∫ ∞

0

dω′

(|ω| + ω′)2
 1√

1 − D2(ω′)
, (8)

C(ω) = −i
π ḡ2

2
√

1 − D2(ω)

dD(ω)

dω
sgnω,

and the gap equation becomes

−i
π ḡ2

2

dD(ω)
dω√

1 − D2(ω)
sgnω = D(ω)ω

(
1 + ḡ2

|ω|
∫ ∞

0

dω′

(|ω| + ω′)2
 1√

1 − D2(ω′)

)
+

∫ ∞

0

dω′

(|ω| + ω′)2
 D(ω′)√

1 − D2(ω′)
. (9)

The functions A(ω) and B(ω) can be equivalently expressed in terms of the solution of the gap equation on the Matsubara
axis [8,9,33]:

A(ω) = 2πT
∞∑

m=0

�(ωm)√
�2

m + �2(ωm)

ω2
m − ω2(

ω2
m + ω2

)2 ,

B(ω) = 1 + 4πT
∞∑

m=0

1√
�2

m + �2(ωm)

ω2
m(

ω2
m + ω2

)2 . (10)

This simplifies numerical calculations: the recipe is to first solve for the gap at the Matsubata points ωm = πT (2m + 1) and then
use Eqs. (10) as an input for the calculation of D(ω) on the real axis.

III. GAP EQUATION ALONG THE MATSUBARA
AXIS AT T = 0

In papers I–IV, we analyzed the gap equation for γ < 2
and found that at T = 0 it has an infinite, discrete set of solu-
tions at �(ωm) = �n(ωm). A gap function �n(ωm) changes
sign n times between ωm = 0 and ωm = O(ḡ) and decays
as 1/|ωm|γ at larger frequencies. The two end points of the
set are the sign-preserving solution �0(ωm) and the solu-
tion of the linearized gap equation �∞(ωm), which changes
sign an infinite number of times. The existence of this in-

finite set is a distinct feature of the pairing at a QCP.
Away from a QCP, the number of solutions becomes finite
(n = 0, 1 . . . , nmax), and far away from a QCP only the n =
0 solution remains, like in a conventional BCS/Eliashberg
theory.

Here we extend this analysis to γ = 2. We show that for
this γ , the set of gap functions becomes �ξ (ωm), where 0 �
ξ � ∞ is a continuous variable. We first analyze the two end
points, �∞(ωm) and �0(ωm), and then obtain the gap function
for arbitrary ξ .
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A. Linearized gap equation

The linearized gap equation at T = 0 is obtained from (4)
by assuming that the gap function is infinitesimally small,
�(ωm) = �∞(ωm). In terms of D∞(ωm) = �∞(ωm)/ωm, we
have

D∞(ωm) = ḡ2

2ωm

∫
dω′

m

D∞(ω′
m) − D∞(ωm)

(ωm − ωm′ )2
sgnω′

m. (11)

One can verify that the leading term in D∞(ωm) at small
ωm � ḡ is obtained by neglecting the l.h.s. of (11), i.e., by
solving∫ ∞

0
dω′

m

[
D∞(ω′

m) − D∞(ωm)

(ωm − ωm′ )2
+D∞(ω′

m) + D∞(ωm)

(ωm + ωm′ )2

]
= 0.

(12)
This approximation is equivalent to neglecting the bare ω

in the fermionic propagator in comparison with the NFL
fermionic self-energy without the self-action term, (ωm) =
−ḡ2/ωm.

The solution of (12) is

D∞(ωm) = 2εRe[ei(β ln ( |ωm |
ḡ )2+φ)]sgnω

= 2ε cos

(
β ln

( |ωm|
ḡ

)2

+ φ

)
sgnω, (13)

where ε is an infinitesimally small real overall factor, φ is a
phase factor, which is arbitrary at this stage, and β = 0.38187
satisfies πβ tanh(πβ ) = 1 and is the solution of∫ ∞

−∞
dx

|x|2iβ − sgnx

(x − 1)2
= 0, (14)

The function D∞(ωm) is scale-invariant (an arbitrary phase
factor φ can be absorbed into the prefactor for ω under the
logarithm). This is the consequence of the fact that ḡ falls off
from the gap equation (11), once we neglect D∞(ωm) in the
l.h.s.

We now analyze the full gap equation. By power counting,
the r.h.s of (11) is of order D∞(ωm)(ḡ/|ωm|). This justifies
neglecting D∞(ωm) in the l.h.s. for |ωm| < O(ḡ), but for larger
frequencies it must be kept.

We obtained the exact solution of Eq. (11). The derivation
parallels the one for smaller γ in papers I and IV. We skip the
details and present the final result:

D∞(ωm) = ε
ḡ

ωm

∫ ∞

−∞
dkbke−ik ln (ωm/ḡ)2

, (15)

where

bk = e−iIk

[cosh(π (k − β )) cosh(π (k + β ))]1/2 (16)

and

Ik = 1

2

∫ ∞

−∞
dk′ ln |εk′ − 1| tanh π (k′ − k + iδ), (17)

εk′ = πk′ tanh(πk′). (18)

Here β � 0.38187 is the same as in Eq. (13).
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FIG. 1. D∞(ωm ) as a function of ωm/ḡ. The scale is logarithmic
for ωm < ḡ and linear at ωm > ḡ.

At ωm � ḡ, the exact D∞(ωm) has the form of Eq. (13)
with some particular φ. At ωm � ḡ, D∞(ωm) does not
oscillate and decreases as 1/(ωm)3 (�∞(ωm) decreases
as 1/(ωm)2). We plot the exact D∞(ωm) in Fig. 1. The
crossover between the two forms occurs at ωm ∼ ḡ, as
expected.

The corrections to Eq. (13) at small ωm hold in pow-
ers of |ωm|/ḡ; the leading correction scales as (|ωm|/ḡ)2.78.
The corrections to 1/(ωm)3 at large ωm hold in powers of
ḡ/|ωm|; the leading correction scales as (ḡ/|ωm|)5 ln(|ωm|/ḡ).
We present the details of the analysis in Appendix B.
There, we also show that at ωm � ḡ there exists an ex-
ponentially small, oscillating component D∞;u(ωm) in the
form

D∞;u(ωm) ∝ 2
√

2εe−(|ωm|/ḡ)2
cos

[
(π2 − 2)

2π

( |ωm|
ḡ

)2

+ π

4

]
.

(19)

This term is the contribution to D∞ from large k and k′ in
Eqs. (16) and (17), It is completely irrelevant on the Matsub-
ara axis, but we will see that it gives the dominant contribution
to D∞(ω) on the real axis.

B. Nonlinear gap equation. Sign-preserving solution

We now analyze the full nonlinear gap equation, Eq. (4).
We first search for a “conventional” sign-preserving solution
�0(ωm)

The analytical analysis uses the same computational
steps as in paper IV and we will be brief. We use the
identity

∫ ∞

−∞
dω′

m

1 − ω′
m

ωm

|ωm − ω′
m|γ = 0, (20)
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valid for γ > 1, and re-express Eq. (4) as

�0(ωm)

⎡
⎣1 − ḡ2

2

∫ ∞

−∞
dω′

m

1 − ω′
m

ωm

|ωm − ω′
m|2

⎛
⎝ 1√

�2
0(ω′

m) + (ω′
m)2

− 1

�0(ωm)

⎞
⎠

⎤
⎦ = ḡ2

2

∫ ∞

−∞
dω′

m

�0(ω′
m) − �0(ωm)

|ωm − ω′
m|2

√
�2

0(ω′
m) + (ω′

m)2
.

(21)

Both integrals in (21) are infra-red convergent and are determined by ω′
m � �(ω′

m). In the limit ωm → 0, Eq. (21) reduces to

�0(0)

⎡
⎣1 − ḡ2

∫ ∞

0
dω′

m

√
�2

0(ω′
m) + (ω′

m)2 − �0(0)

�0(0)
√

�2
0(ω′

m) + (ω′
m)2|ω′

m|2

⎤
⎦ = ḡ2

∫ ∞

0

dω′
m (�0(ω′

m) − �0(0))√
�2

0(ω′
m) + (ω′

m)2|ω′
m|2

. (22)

We assume and then verify that �0(ω′
m) ≈ �0(0) for ω′

m �
�0(ω′

m), relevant for both integrals in (22). Substituting into
(22), we find

1 ≈ ḡ2
∫ ∞

0
dω′

m

√
�2

0(0) + (ω′
m)2 − �0(0)

�0(0)
√

�2
0(0) + (ω′

m)2|ω′
m|2

. (23)

The integral can be evaluated analytically and yields �0(0) =
ḡ. Substituting further �0(ω′

m) = ḡ into the r.h.s. of (21), we
find that �0(ωm) varies quadratically with ωm at small ωm and
for ωm � ḡ remains comparable to �0(0). In the opposite limit
of large ωm, the prefactor for �0(ω) in the l.h.s. of (21) is
approximately 1, and in the r.h.s. of this equation 1/|ωm|2 can
be pulled out from the integral. This yields

�0(ωm) ≈ Q

(
ḡ

|ωm|
)2

, (24)

where

Q =
∫ ∞

0

dω′
m�0(ω′

m)√
�2

0(ω′
m) + (ω′

m)2
. (25)

The integral is determined by ω′
m ∼ ḡ and is of order ḡ. Then

�0(ωm) ∼ ḡ3/|ωm|2 at high frequencies. The full gap function
is sign-preserving. We show the numerical result for �0(ωm)
in Fig. 2. At small ωm we find �0(0) ≈ 0.75ḡ. This fully
agrees with the earlier result, Ref. [8]. We note in passing that
the first numerical evidence that �0(0) scales with ḡ has been
obtained in Ref. [34].

C. Continuous set of solutions. Expansion in the gap magnitude

The solutions �∞(ωm) and �0(ωm) (or, equivalently,
D∞(ωm) and D0(ωm)) also exist for γ < 2. For such γ , these
two solutions are the end points of a discrete set of topolog-
ically distinct solutions �n(ω). We argue below that the set
becomes continuous for γ = 2. For a continuous set, there is
no one-to-one correspondence between a particular member
of the set and integer n, and we will show how this correspon-
dence gets lost at γ = 2 − 0.

Comparing D∞(ωm) and D0(ωm), we see that they have
the same form 1/(ωm)3 for ωm > ḡ, but are very different
for ωm < ḡ. We therefore focus on the range ωm < ḡ and use
to our advantage the fact that we know the analytic form of
D∞(ωm) in this range, Eq. (13). We use this D∞(ωm) as an
input and expand it in powers of D2(ω′

m) in the r.h.s. of the

gap equation (4). Specifically, we will be searching for the
solution of (4) in the form

D(ωm) =
∞∑
j=0

D(2 j+1)(ωm), (26)

where

D(1)(ωm) = D∞(ωm) = 2ε cos f (ωm)sgnωm (27)

with

f (ωm) = β ln

( |ωm|
ḡ

)2

+ φ. (28)

We will see that D(2 j+1) ∼ ε2 j+1.
Substituting D(ωm) from (26) into (4) and expanding in

D2(ω′
m) in the r.h.s. of (4), we obtain the set of equations,

which express D(2 j+1) for a given j in terms of D(2 j+1) with
smaller j. For j = 1, we have

D(3)(ωm)ωm − ḡ2

2

∫
dω′

m(D(3)(ω′
m) − D(3)(ωm))

× sgnω′
m

(ωm − ω′
m)2

= K3(ωm), (29)

FIG. 2. Sign-preserving solution �0(ωm ) of the nonlinear gap
equation along the Matsubara axis. We obtained �0(ωm ) by solving
the nonlinear gap equation numerically and taking the limit T → 0.
At ωm < ḡ, �0(ωm ) remains comparable to ḡ; at larger frequencies it
decays as 1/ω2

m.
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where the source term is

K3(ωm) = − ḡ2

4

∫
dω′

m(D(1)(ω′
m) − D(1)(ωm))

× [D(1)(ω′
m)]2 sgnω′

m

(ωm − ω′
m)2

. (30)

The source term is of order ε3, hence D(3) ∝ ε3 (D(5) ∝ ε5 and
so on). Substituting D(1)(ωm) from Eq. (27) and evaluating the
integrals, we find the source term for D(3) as the sum of the
two terms, K3 = K3a + K3b, where

K3a(ωm) = −ε3 ḡ

ωm
cos (3 f (ω))(2πβ coth(2πβ )

− 3πβ tanh(3πβ ))sgnωm (31)

and

K3b(ωm) = −ε3 ḡ

ωm
cos ( f (ω))

1 + sinh2(πβ )

sinh2(πβ )
sgnωm. (32)

Solving for D(3) we find that the first term gives rise to
ε3 cos (3 f (ω)), while the second term accounts for the renor-
malization of the prefactor for ln(ω2

m) in f (ωm) in (28) To
order ε2, the dressed f (ωm), which we label fε (ωm), becomes

fε (ωm) = βε ln

( |ωm|
ḡ

)2

+ φε, (33)

where

βε = β(1 − ε2/2) ≈ β(1 − ε2)1/2. (34)

The full D(ωm) to order ε3 is

D(ωm) = 2(ε cos fε (ωm) + Q3ε
3 cos 3 f (ωm))sgnωm, (35)

where

Q3 = 2πβ coth (2πβ ) − 3πβ tanh (3πβ )

2(1 − 3πβ tanh (3πβ ))

= 5 − (πβ )2

16
≈ 0.222. (36)

Expanding to next order, we find (i) ε5 cos 5 f (ωm) term with
the prefactor Q5 = 0.043, (ii) O(ε4) corrections to βε in (34)
[βε = 1 − 0.5ε2 + 0.806ε4)], and (iii) O(ε2) corrections to
Q3 (Q3 → Q3,ε) and to the argument of cos 3 f (ωm) in (35).
We verified that the last correction changes cos 3 f (ωm) to
cos 3 fε (ωm) with the same fε as in (33). This is the strong
indication that the series contain the same fully renormalized
fε (ωm) in each term. Combining the results, we obtain, for
ωm � ḡ, D(ωm) = Dε (ωm),

Dε (ωm) = 2ε(cos fε (ωm) + Q3,εε
3 cos 3 fε (ωm)

+ Q5,εε
5 cos 5 fε (ωm) + · · · )sgnωm. (37)

We emphasize that a continuous set of solutions exists only for
γ = 2. Applying the same perturbative analysis for γ < 2, we
find that the expansion holds in ε2(ḡ/|ωm|)2−γ and breaks at
a finite ωmin ∼ ḡε2/(2−γ ) (see Appendix A for more detail).
At smaller ωm, �(ωm) saturates, and D(ωm) ∝ 1/ωm. The
forms of D(ωm) at ωm < ωmin and ωm > ωmin match only for
a discrete set of ε = εn, which implies that for γ < 2 the

FIG. 3. The gap function �n(ωm ) for γ<2 and γ=2. For γ < 2,
�n(ωm ) changes sign n times. As γ gets close to 2, the frequency
region where these n sign changes happen, shrinks to progressively
smaller ωm = 0, and at γ = 2 − 0, �n(ωm ) with finite n collapse into
�0(ωm ) at all ωm > 0. The continuum set of �ξ (ωm ) at γ = 2 − 0
emerges from �n(ωm ) with n → ∞, and the continuous parameter ξ

is determined by how the double limit n → ∞ and γ → 2 is taken.
As the consequence, all �ξ (ωm ) with ξ > 0 change sign infinite
number of times between ωm = 0 and ωm ∼ ḡ. The solution of the
linearized gap equation is the ξ → ∞ limit of this set.

solutions of the full nonlinear gap equation form a discrete
set.

Because fε (ωm) contains ln ω2
m, each Dε (ωm) from (37)

changes sign an infinite number of times down to ωm = 0,
i.e., in our original classification the gap functions from the set
are different realizations of n = ∞. At ωm = 0, each Dε (ωm)
has an essential singularity as neither limωm→0 Dε (ωm) nor
limωm→0 1/Dε (ωm) exist.

For a generic ε, Eq. (37) is valid for ωm < ḡ. At larger ωm,
Dε (ωm) = Dε/|ωm|2. We expect that for every ε, the crossover
to proper high-frequency behavior can be achieved by fixing
the phase factor φε in (33) (see paper I for a similar analysis
for the linearized gap equation for γ < 1).

Next, we see from Eq. (34) that β2
ε decreases with in-

creasing ε. It is natural to expect that it vanishes at some
εcr = O(1). The expansion in (37) holds only as long as βε is
real, as there is no solution of the non-linear gap equation for
imaginary βε (see paper I for detailed discussion on this). For
ε � εcr, βε is small, and the range, where D(ωm) oscillates,
is confined to small ωm � ḡe−π/βε . By properly taking the
double limit ε → εcr and ωm → 0, one can obtain an infinite
set of gap functions, which change sign a given number of
times in the immediate vicinity of ωm = 0. At ε = εcr all
these gap functions coincide with �0(ωm) at any ωm > 0. This
agrees with the observation in paper IV that as γ increases
towards 2, the region, where �n(ωm) with finite n change sign,
gets confined to progressively smaller ωm, while at larger ωm,
all �n(ωm) with n = 0, 1, 2 . . . nearly coincide. We illustrate
this in Fig. 3. For consistency with the notations in previous
sections, it is convenient to introduce ξ = (εcr − ε)/ε and
label the continuum set of the gap functions by �ξ (ωm). Then
the end point solutions ε → 0 and ε = εcr are �∞(ωm) and
�0(ωm).
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It is beyond the ability of the order-by-order expansion
to determine the form of �ξ (ωm) near ξ = 0. On general
grounds, we expect that corrections to fε (ωm) → fξ (ωm) in
(33) become relevant starting already from small frequencies,
and that at ξ = 0, the gap function coincides with �0(ωm),
which we found in the previous section. A way to reproduce
this behavior is to assume that at ξ → 0, the series for D(ωm)
in (37) become geometrical [Q2n+1ε

2n+1
cr ≈ (−1)n]. In this

case,

Dξ (ωm) ∼ cos fξ (ωm)

α2 + cos2 fξ (ωm)
sgnωm, (38)

where α ∼ ξ 2 and fξ (ωm) ∼ √
α ln ḡ/|ωm| + f ∗(ωm), where

f ∗(ωm) is a regular function of ωm, which at low frequen-
cies reduces to π/2 + O(ωm/ḡ). For any ξ > 0, this Dξ (ωm)
changes sign an infinite number of times, but at ξ = 0,
Dξ=0(ωm) ∼ ḡ/ωm, as we expect. We also note that between
the nodes (the vortex points), Dξ (ωm) from (38) is large,
of order 1/ξ . Extending this D(ωm) to complex frequencies,
z = ω′ + iω′′, we find that there exist antivortices at small
z in the lower frequency half-plane. At ξ = 0, vortices and
antivortices annihilate at z = 0, leaving a regular gap function
�0(ωm).

In Appendix C, we consider the extended γ− model with
nonequal interactions in the particle-particle and particle-hole
channels and introduce M �= 1 as a measure of the difference
of the two interactions. For the extended model, there is a
critical Mmax, below which the ground state is a non-Fermi
liquid with � = 0. For γ = 2, Mmax = 0. We obtain the set
of �ξ (ωm) at small ωm at M = 0+ and show that all gap
functions from the continuous set appear simultaneously with
the overall magnitude M1/2.

We next analyze the condensation energy Ec. We define Ec

as the difference between the actual ground state energy E�

at a finite �(ωm) and the would be ground state energy of the
normal state, E�=0. The expression for Ec for γ = 2 has been
obtained before [32,35–37] and we just copy it here:

Ec = −N0

∫ ∞

0
dωmωm

(
√

1 + D2(ωm) − 1)2√
1 + D2(ωm)

− N0ḡ2
∫ ∞

0
dωmdω′

m

(
√

1 + D2(ωm) − √
1 + D2(ω′

m))2√
1 + D2(ωm)

√
1 + D2(ω′

m)

× ωmω′
m(

ω2
m − (ω′

m)2
)2 . (39)

This formula has been derived with the use of (4) and is
therefore valid only for the solutions of the gap equation. Both
terms in (39) are negative, i.e., any solution of the gap equa-
tion lowers the ground state energy compared to the normal
state.

Substituting (37) into (39), we find that Ec = Ec,ξ is a
continuous function of ξ . At ξ � 1,

Ec,ξ = −aN0
ḡ2

ξ 4
, (40)

FIG. 4. (a) The condensation energy Ec the solutions of the
Eliashberg gap equation for γ < 2. Ec = Ec,n is a discrete function
of a number of a solution, n. The largest condensation energy is
for n = 0. (b) The condensation energy Ec,ξ for γ = 2. Ec,ξ is a
continuous function of the parameter ξ . The condensation energy at
ξ = 0 is the accumulation point of all Ec,n from γ < 2 with finite
n = 0, 1, . . . Every other point on the curve Ec,ξ comes from the limit
n → ∞, and different ξ correspond to different ways how the double
limit n → ∞ and γ → 2 is taken. In the limit ξ → ∞, Ec is the
condensation energy for infinitesimally small gap function �∞(ωm ).

where a = O(1). It is natural to expect that |Ec,ξ | increases
with decreasing ξ and reaches a maximum at ξ = 0, see
Fig. 4.3

In the next two sections, we present corroborative evidence
for the special, critical behavior of the γ model with γ = 2
from the analysis of the gap function on the real frequency
axis and in the upper half-plane of frequency.

IV. GAP EQUATION ALONG THE REAL
FREQUENCY AXIS

As we said in Introduction, the analysis of the gap equation
for the γ model along real frequency axis should generally
be more revealing than the analysis along the Matsubara
axis, because the pairing interaction on the real axis V (�) =
(cos(πγ /2) + isgn(�) sin(πγ /2))(ḡ/|�|)γ is complex. The
real part of the interaction becomes repulsive for γ > 1, and
the imaginary part vanishes at γ = 2 for any nonzero �. This
makes the γ = 2 case special.

We present the results for �(ω) on the real axis in the
same order as in previous section: we first obtain the solution
of the linearized gap equation, which we label �∞(ω), then
analyze the solution �0(ω), and then show that there is a
one-parameter continuous set of solutions �ε (ω) in between
�∞(ω) and �0(ω).

A. Linearized gap equation in real frequencies

The linearized gap equation in real frequencies is obtained
by taking the limit �(ω) → 0 in (9). We again introduce

3The second term in (39) diverges logarithmically at ξ = 0 if we
use D0(ω) ≈ �(0)/ω at small frequencies. This divergence comes
from the putative normal state energy E�=0 while the ground state
energy E� remains finite. For ξ > 0, both E�=0 and E� have loga-
rithmic singularities, which cancel out in Ec = E� − E�=0.
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D∞(ω) = �∞(ω)/ω and re-write the gap equation as

D∞(ω) = − ḡ2

ω

[
i
π

2

dD∞(ω)

dω
sgnω + D∞(ω)

ω

+
∫ ∞

0

dω′

(|ω| + ω′)2
D∞(ω′)

]
, (41)

where  stands for the real part. The D∞(ω) term in the
l.h.s. of (41) is the analog of D∞(ωm) in the l.h.s. of the
gap equation (11) on the Matsubara axis, and, like there, it
originates from the bare ω term in the fermionic Green’s
function. Neglecting this term, we find that the solution
of (41) is

D∞(ω) = −2iε cos

[
β

(
ln

(
ω

ḡ

)2

− iπsgn(ω)

)
+ φ

]
, (42)

where β = 0.38187 the same as in (13), and ε is infinitesi-
mally small. We note that this D∞(ω) can be obtained from
D∞(ωm), Eq. (13), by rotating from iωm to ω + i0. In explicit
form,

D′
∞(ω) = 2ε sin

(
β ln

(
ω

ḡ

)2

+ φ

)
sinh(πβ )sgnω,

D′′
∞(ω) = −2ε cos

(
β ln

(
ω

ḡ

)2

+ φ

)
cosh(πβ ). (43)

Observe that D′
∞(−ω) = −D′

∞(ω) and D′′
∞(−ω) = D′′

∞(ω),
as it should be. The relation∫ ∞

0
dx

x2iβ

(x + 1)2
= 2πβ

sinh(2πβ )
= 1

sinh2(πβ )
, (44)

is useful for the verification that D∞(ω) satisfies Eq. (41)
without D∞(ω) in the l.h.s. Using another relation∫ ∞

0
dx

xiβ

x − 1
= iπ coth(πβ ), (45)

one can verify that D′
∞ and D′′

∞ satisfy KK relations:

2

π

∫
dx

D′
∞(x)x

x2 − ω2
= −D′′

∞(ω),
2ω

π

∫
dx

D′′
∞(x)

x2 − ω2
= D′

∞(ω),

(46)
where the integrals are principle values.

We next consider |ω| > ḡ. To obtain D∞(ω) in this region,
we take as an input the exact solution on the Matsubara axis
and analytically continue it to the real axis. By construction,
this can be done by replacing ωm by (−iz)—the function
�∞(z) is guaranteed to be analytic in the upper half-plane
of frequency. However, because we don’t have the exact an-
alytical expression for D∞(ωm) for an arbitrary ωm, we have
to replace ωm by −i(ω + i0) in Eq. (15) and obtain �∞(ω)
by integrating over k. For small ω < ḡ, we find, after this
integration, series of corrections to (42) in powers of ω/ḡ.
For large ω > ḡ, the largest contribution to �∞(ω) comes
from the continuation of the universal oscillating term �∞;u,
Eq. (19). Upon rotation to the real axis, this term splits into
two. One remains exponentially small, but in the other the
exponential factor cancels out. As a result, on the real axis
we have (see Appendix B for details)

D∞;u(ω) ∼
√

2εe
i
π [( ω

ḡ )2+ln ( ω
ḡ )2]. (47)

FIG. 5. Real and imaginary parts (a) and the phase η∞(ω)
(b) of D∞(ω). The periodicity of oscillation is set by [(ω/ḡ)2 +
ln(ω/ḡ)2]/π .

Other contributions contain powers of ḡ/|ω| and are smaller.
Neglecting them, we obtain D∞(ω) = D∞;u(ω) at ω � ḡ.

Comparing this form with (42), we see that both
D′

∞(ω) and D′′
∞(ω) continue oscillating at ω > ḡ, but with

the period set predominantly by (ω/ḡ)2 rather than by
ln (ω/ḡ)2. In Fig. 5, we plot real and imaginary parts
of D∞(ω) and the phase of the gap, η∞(ω), defined
via D∞(ω) = |D∞(ω)|eiη∞(ω), or, equivalently, via η∞(ω) =
Im ln D∞(ω) = Im ln �∞(ω). We see that the phase winds up
an infinite number of times between ω = 0 and O(ḡ) and be-
tween O(ḡ) and ∞. Oscillations at ω < ḡ are directly related
to oscillations of �∞(ωm) on the Matsubara axis, and there
is one-to-one correspondence between each phase winding by
2π on a real axis and a vortex on the Matsubara axis. Os-
cillations and phase winding at ω > ḡ are present on the real
axis, but not on the Matsubara axis. It is natural to relate this
discrepancy to the fact that the pairing interaction is attractive
on the Matsubara axis, but on the real axis, V ′(�) is repulsive,
and a nonzero D∞(ω) comes from V ′′(�) ∝ δ(�2) (see more
on this below).

B. The function D0(ω)

We now consider the opposite limit of the real-axis partner
of sign-preserving D0(ωm). At ωm < ḡ, D0(ωm) ≈ �0(0)/ωm,
and D0(ω) on the real axis must also be close to D0(0)/ω at
ω < ḡ. At larger ωm > ḡ, we will see that D0(ωm) and D0(ω)
are very different: D0(ωm) decays as 1/ω3

m, while D0(ω) does
not decay and oscillates in sign.
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FIG. 6. �0(ω) = ω/ sin φ0(ω) for φ0(ω) given by (49). The real
part of the gap �′

0(ω) diverges at the set of points where φ0(ω) = pπ ,
p = 1, 2 . . . The imaginary part �′′

0 (ω) is a set of δ functions at these
points. The behavior of �′

0(ω) has been obtained in Refs. [7–9,11].

The solution of the gap equation along the real axis for ω >

ḡ has been found by Combescot [9], who build his analysis on
earlier results by Karakozov, Maksimov, and Mikhailovsky
[7] and by Marsiglio and Carbotte [8]. We follow Ref. [9]
below.

It is convenient to introduce φ0(ω) via D0(ω) =
1/ sin φ0(ω) and re-express the gap equation (9) at T = 0 as
the equation on φ(ω). The equation is

dφ0(ω)

dω
= 2

π ḡ2
[ωB(ω) − A(ω) sin φ0], (48)

where A(ω) and B(ω) are given by Eq. (8). The initial con-
dition for φ0 is φ0(ḡ) ≈ ḡ/�0(0) = O(1), consistent with
φ0(ω) ≈ ω/�0(0) at ω < ḡ.

At ω � ḡ, B(ω) ≈ 1 + ḡ2/ω2 and A(ω) ≈ −αḡ3/ω2,
where α ≈ 1.27 (Ref. [9]). The A(ω) term can then be ne-
glected if φ0(ω) is real, as we will assume and then verify.
Without this term, Eq. (48) can be solved easily, and the
result is

φ0(ω) ≈ 1

π

(
ln

(
ω

ḡ

)2

+
(

ω

ḡ

)2

+ C

)
, (49)

where C = ḡ/�0(0) − 1/π . We see that φ0(ω) is real, as
we anticipated. We note that this φ0(ω) coincides with the
argument of the exponent for D∞(ω) in (47)

The function

D0(ω) = 1

sin φ0(ω + i0)
(50)

is a sign-changing function of ω, whose real part almost
diverges at a set of frequencies where φ0(ω) = pπ , and p =
1, 2 . . . is an integer. The imaginary component D′′

0 (ω) is a set
of δ functions at these frequencies. We plot the gap function
�0(ω) = ωD0(ω) in Fig. 6.

To analyze the phase winding, we again introduce the
phase factor via D0(ω) = |D0(ω)|eiη0(ω) and consider how
η0(ω) varies at ω � ḡ. The imaginary component D′′

0 (ω) in
(50) is infinitesimally small, except in the vicinity of ωp,
where φ0(ωp) = pπ . We use Eq. (49) for φ0(ω) and express

FIG. 7. Variation of the phase of the gap η0(ω) (�0(ω) =
|�0(ω)|eiη0(ω)). We restrict η0(ω) to (−π, π ). Phase slips of η0(ω)
continue up to infinite frequency.

D0(ω) near each such point as

D0(ω) ≈ π ḡ2

2

(−1)pωp

ω2
p + ḡ2

1

ω − ωp + iδ
. (51)

Then

eiη0(ω) = (−1)p ω − ωp − iδ√
(ω − ωp)2 + δ2

. (52)

We plot η0(ω) in Fig. 7. We see that the phase rapidly changes
by π around each ωp. If we restrict η0(ω) to (−π, π ), we
find that the phase jumps by 2π in between ωp and ωp+1. The
number of ωp is infinite, hence the number 2π jumps is also
infinite. We reiterate that behavior has no analog the Matsub-
ara axis, where D0(iωm) is real and positive for ωm > 0, hence
η0 = 0.4

C. The one-parameter set of gap functions

We follow the same strategy as in the analysis on the
Matsubara axis and expand the nonlinear gap equation (9) in
powers of D2. We search for the solution in the form

D(ω) =
∞∑
j=0

D(2 j+1)(ω), (53)

where D(1)(ω) = D∞(ω) and higher-order terms are obtained
by solving Eq. (9) iteratively. For ω < ḡ, we use Eq. (42) for
D∞(ω). The computational steps are the same as in Sec. III C,
and we obtain

Dε (ω) = −2iε(cos f̃ε (ω) + ε2Q3,ε cos 3 f̃ε (ω)

+ ε4Q5,ε cos 5 f̃ε (ω) + . . . ), (54)

4For a generic γ , �0(ωm ) and �′′
0 (ω) are related by Cauchy

formula: �0(ωm ) = (2/π )
∫ ∞

0 dω�′′
0 (ω)ω/(ω2 + ω2

m ). For γ < 2,
typical ω are of order ωm, and to reproduce �0(ωm ) ∝ 1/|ωm|γ one
needs �′′

0 (ω) = sin(πγ /2) sgnω/|ω|γ . The case γ = 2 is an excep-
tion here because 1/ω2

m dependence of �0(ωm ) is obtained by pulling
1/ω2

m out of the denominator in the Cauchy formula. The remaining
integral is determined by ω = O(ḡ) rather than O(ωm ). Because of
this, the fact that �0(ωm ) ∝ 1/ω2

m at large frequencies does not imply
that �′′(ω) must behave as 1/ω2.
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where Qi,ε are the same as in (37) and

f̃ε (ω) = βε

(
ln

(
ω

ḡ

)2

− iπsgnω

)
+ φε. (55)

This Dε (ω) could also be obtained directly from (37) by
replacing ln ω2

m by ln ω2 − iπ in each term in (37).
We recall that the continuous set exists for ε � εcr. For

any ε < εcr, D(ω) oscillates an infinite number of times down
to ω = 0. As ε approaches εcr, log-oscillations shift to pro-
gressively smaller frequencies. At ε = εcr, βε vanishes and
log-oscillations disappear. The behavior of D(ω) at ω → 0 at
ε → εcr depends on how the double limit ω → 0 and ε → εcr

is taken.
Like we did in Sec. III C, we introduce ξ = (εcr − ε)/ε

and re-express �ε (ω) as �ξ (ω). The two limits ε = 0 and
ε = εcr now correspond to ξ = ∞ and ξ = 0, respectively.
This brings the notations in line with the ones we used in
Secs. IV A and IV B.

On the Matsubara frequency, all �ξ (ωm) behave in the
same way at ωm > ḡ: �ξ ∝ 1/ω2

m. On the real axis, the depen-
dence on ξ is more complex. To see this, we use the solution of
the linearized gap equation D(1) ∝ ieiφ0(ω) with φ0(ω), given
by (49), and evaluate D(2n+1) in order-by-order expansion of
the nonliner gap equation in D2. Collecting the series, we
obtain the closed form expression

Dξ (ω) = −2ieiφ0(ω)

1 + ξ − e2iφ0(ω)/(1 + ξ )

= 1

sin[φ0(ω) + i ln(1 + ξ )]
. (56)

This expression can be equivalently obtained by solving
Eq. (48) for φ(ω) with the initial condition φ(ḡ) = ḡ/�0(0) +
i ln (1 + ξ ).

The parameter ξ runs between 0 and ∞. For ξ = 0,
Eq. (56) yields D0(ω) = 1/ sin φ0(ω), which agrees with (50)
(one should add i0 to ω in this case). At ξ → ∞, we recover,
by construction, the solution of the linearized gap equation.
For any ξ , including ξ = 0, Dξ (ω) oscillates up to an infinite
frequency, and its phase ηξ (ω) winds up by an infinite number
of 2π between ω ∼ ḡ and ω = ∞.

We see therefore that in both limits ω � ḡ and ω � ḡ, the
solutions of the nonlinear gap equation form a continuous one-
parameter set, Eqs. (54) and (56). We conjecture that for any
value of ξ , one can use a free phase factor φξ in (55) to merge
small-ω and large-ω expressions into a single Dξ (ω).

D. Density of states

The fermionic DoS is defined as N (ω)=(−N0/π )ImGl (ω),
where N0 is the DoS in the normal state and

Gl (ω) = −iπ

√
1

1 − D2(ω)
(57)

is a retarded Green’s function, integrated over the dispersion.
In a BCS superconductor, N (ω) ∝ Reω/

√
ω2 − �2 van-

ishes at ω < �, has an integrable singularity at ω = � + 0,
and is nonzero for all ω > � because quasiparticle

states in a BCS superconductor form a continuum ω =
±

√
�2 + (εk − μ)2. In our case, the form of N (ω) = Nξ (ω)

strongly depends on ξ . At small ω < ḡ, Nξ (ω) remains finite
down to ω = 0 for all ξ > 0. In this respect, all such solutions
describe gapless superconductivity. The gap function �0(ω)
tends to a finite �0(0) at small ω, and the corresponding
N0(ω) vanishes, like in BCS superconductor. We show this
in Fig. 8(a).

At ω > ḡ, �ξ (ω) is given by (56), and Nξ (ω) =
N0� tan[φ0(ω) + i ln (1 + ξ )]. For ξ > 0, Nξ (ω) oscillates
around N0 up to ω = ∞. The amplitude of the oscil-
lations increases with decreasing ξ . For ξ = 0, N0(ω) =
N0δ/(cos2 φ0(ω) + δ2), where δ = 0+. This DoS consists of
a set of δ functions at the points ωk , for which φ0(ωk ) =
π/2 + kπ (k is an integer) (Refs. [9,11,12]). We show this
in Fig. 8(b). In Fig. 8(c) we show Nξ (ω) in the whole range of
frequencies.

The function N0(ω) is the true DoS at T = 0, as the ξ = 0
solution has the lowest condensation energy. It is different
from the DoS in a BCS-type superconductor, which is nonzero
at all ω > � and approaches N0 at ω → ∞. We emphasize
that a qualitative distinction holds only for γ = 2. For smaller
γ , the DoS for the n = 0 solution evolves as a function of fre-
quency, but still remains nonzero at all ω > � and approaches
N0 at infinite ω (see paper IV).

In a BCS superconductor, a continuous N (ω) at ω > �

is the consequence of the fact that fermionic energy Ek is a
continuous function of the normal state dispersion εk , Ek =√

ε2
k + �2 . The form of N0(ω) as a set of δ-functional peaks

raises the issue whether fermionic energies get quantized at
γ = 2. To address this issue, we compute the total weight
of each level: Nk = (1/2π )

∫
N0(ω)/N0, where the integration

is confined to the vicinity of ωk . Using φ0(ω) ≈ ω2/π , we
obtain Nk = 1/

√
8(1 + 2k). We see that Nk < 1 for all k. Be-

cause of this, ωk cannot be viewed as true quantized fermionic
energy levels, as a fermion is necessary distributed between ωk

with different k.

V. GAP FUNCTION IN THE UPPER
FREQUENCY HALF-PLANE

Comparing Dξ (ω) and Dξ (ωm), we see that they are similar
at small frequencies, but very different at ω,ωm > ḡ. Indeed,
on the real axis, the phase ηξ (ω) winds up by an infinite
number of 2π between ω = O(ḡ) and ω = ∞, while near
the Matsubara axis, ηξ (ωm) = 0 in this frequency range. The
discrepancy implies that phase winding must end somewhere
between the real and the Matsubara axis. We now argue that
there is a set of vortices in the upper frequency half-plane, at
|z| � ḡ and the phase winding drops by 2π each time the axes
of z passes through a vortex upon rotation away from the real
axis.

We use the Cauchy relation

�(z) = 2

π

∫ ∞

0
dx

x�′′(x)

x2 − z2
(58)

to extend the gap function �(x) = xD(x) from the real
axis to complex z = ω′ + iω′′ with ω′′ > 0. We use
Eq. (56) for the gap function as we expect vortices to
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FIG. 8. DoS Nξ (ω) for (a) ω < ḡ and (b) ω > ḡ and for different ξ . For all ξ > 0, Nξ (ω) remains finite down to ω = 0 (a gapless
superconductivity). For ξ = 0, the DoS N0(ω) vanishes at small ω and has a set of δ-functional peaks at ω > ḡ. In (c), we present the schematic
plot of the DoS at all frequencies.

be present at |z| > ḡ. Like before, we first consider the
cases ξ = 0 and ξ → ∞, and then extend the analysis to
arbitrary ξ .

A. Case ξ = 0

Using the expansion near φ(ωp) = pπ , Eq. (51), we ap-
proximate �′′

0 (ω) as

�′′
0 (ω) ≈ π2ḡ2

2

∞∑
p=1

(−1)p+1ω2
p

ω2
p + ḡ2

δ(ω − ωp). (59)

Substituting into (58), we obtain

�0(z) = π ḡ2
∞∑

p=1

(−1)p+1ω3
p

ω2
p + ḡ2

1

ω2
p − z2

. (60)

Here ωp is a solution of φ0(ωp) = π p, where φ0(ω) is given
by (49). We verified numerically that KK relations on the real
axis are satisfied, i.e., if we use (59), we reproduce with high
accuracy �′(ω). On the Matsubara axis, z = iωm, Eq. (60)
yields, at ωm � ḡ,

�0(ωm) = a
ḡ3

ω2
m

, (61)

where a = π
∑∞

p=1 [(−1)p+1ω3
p/((ω2

p + ḡ2)ḡ)]. Approximat-
ing ωp by ḡπ

√
p, we find a = 2.56. The number is somewhat

larger than 1.27, obtained by solving the gap equation on the
Matsubara axis (Ref. [9] and Sec. III B). The difference likely
comes from subleading terms in φ(ω).

We plot �0(z) for a generic z in the upper half-plane in
Fig. 9 We clearly see that there is a set of points, where
�′

0(z) = �′′
0 (z) = 0. These points are the centra of dynamical

vortices with anticlockwise circulation 2π . The vortices are
located along a particular line in the complex plane. The set
extends to an infinite frequency, i.e., the number of vortices
is infinite. This is consistent with an infinite phase winding
along the real axis. We verified that if we use a more accurate

form of ωp, the positions of the vortices shift a bit, but their
number remains infinite.

To see how the winding number changes once we rotate
from the real to the Matsubara axis, we introduce z = |z|eiψ

(ψ = 0 along the positive real semi-axis and π/2 along
the Matsubara axis) and check the winding of the phase of
�0(z) = |�0(z)|eiη0(z) between |z| ∼ ḡ and |z| → ∞ along the
directions in the upper frequency half-plane, specified by ψ .
We show the results in Fig. 10.

We see that for any ψ > 0, the phase η0(z) winds for |z|
below a certain value, and then saturates. At larger |z|, both
�′

0(z) and �′′
0 (z) scale as 1/|z|2 with no oscillations. Counting

the total phase winding δη0 between |z| = O(ḡ) and |z| = ∞,
we see that δη0 = 2πs, where s is an integer. It decreases by
one every time the direction set by ψ passes through a vortex.
The winding vanishes at some ψ � π/4.

FIG. 9. �0(z) in the upper half-plane. (Top) ln |�0(z)|. Blue
spots mark the locations of dynamical vortices, where |�0(z)|=0.
(Bottom) The phase of the gap η0(z) defined via �0(z) =
|�0(z)|eiη0(z). The phase slips by 2π upon crossing a white line in
the direction from near-white to dark-blue. The white lines are the
locations of points where �′′

0 (z) = 0 and �′
0(z) < 0.
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FIG. 10. Phase variation η0(|z|, ψ ) along different paths spec-
ified by ψ , defined via z = |z|eiψ . Along real axis, ψ = 0; along
Matsubara axis, ψ = π/2. Along the real axis the phase η0(ω) winds
up an infinite number of times, i.e., the winding number (the number
of 2π phase slips) is infinite. For a finite ψ , phase winding ends at
some finite |z|, and the winding number becomes finite.

B. Case ξ = ∞
We next consider the opposite limit ξ = ∞. The form of

�∞(z) can be obtained starting from (15) and replacing ω2
m

by |z|2ei(2ψ−π ). This gives

�∞(z) ∝
∫ ∞

0
dk(bke−ik ln |z|2/ḡ2+(2ψ−π )k

+ b−keik ln |z|2/ḡ2−(2ψ−π )k ), (62)

where bk is defined in (16). We obtain �∞(z) by numerical
integration. We plot its phase η∞(z) in Fig. 11. We again see
that there is an infinite array of vortices. The array extends
to an infinite frequency, where it approaches the real axis.
The vortex arrangement in Fig. 11 is remarkable similar to
that in Fig. 9 for ξ = 0. Moreover, if we approximate φ(ω)
by the leading term (ω/ḡ)2/π , we find that the positions of
the vortices are at the same zi in both cases. We can see this
by comparing Fig. 12(a) where ξ → ∞ and Fig. 12(c) where
ξ → 0. The gap function �ξ (z) are very similar in these two
cases, despite that the overall factors are different. The vortex
positions for these two cases are almost identical, as can be
seen from Fig. 12(d).

C. Arbitrary ξ

The same infinite array of vortices exists for all 0<ξ<∞.
As an example, in Fig. 12(b) we show the gap function for

FIG. 11. The phase η∞(z) of �∞(z) in the first quarter of the
complex plane of frequency (ω′ > 0, ω′′ > 0).

ξ = 1. We clearly see that there is an infinite array of vortices,
similar to the ones for ξ = ∞ and ξ = 0, and the positions of
vortices are almost indistinguishable, see Fig. 12(d). Analyti-
cally, if we use Eqs. (56) and (58), we find that the positions
of vortices are independent on ξ .

D. Essential singularity

There is another consequence of the existence of an infinite
array of vortices – each gap function �ξ (z) has an essen-
tial singularity at |z| = ∞. Indeed, one can reach |z| = ∞
from the set of vortex points, where �ξ (z) = 0, or from
the real axis, where �ξ (ω) oscillates, and the amplitude of
the oscillations does not vanish at ω → ∞, hence neither
lim|z|→∞ �ξ (|z|) nor lim|z|→∞ 1/�ξ (|z|) exist. We emphasize
that an essential singularity is only present for γ = 2. For
smaller γ , phase winding and associated vortices exist only
at |z| smaller than a certain, γ− dependent value. At larger
|z|, �(z) scales as 1/|z|γ and vanishes at |z| = ∞ no matter
how this limit is reached.

Further, for γ = 2, the very existence of a nonzero �ξ (z)
for a generic z away from vortex points, is ultimately related to
an essential singularity at |z| = ∞. The argument is that the
set of vortex points is complete, hence one can analytically
continue the gap function from this set to the upper half-plane
of frequency in the same way as �(z) is obtained from a dis-
crete set of Matsubara points ωm = πT (2m + 1) in standard
diagrammatic calculations for interacting fermions. If this an-
alytical continuation was unique, we would obtain �(z) ≡ 0,
because �(z) = 0 at the vortex points. For a nonzero �ξ (z),
the extension must be multi-valued. A rigorous mathematical
argument is that this is the case when the end point of the
set, |z| = ∞, goes outside the domain of analyticity. This is
exactly what we have because of an essential singularity at
|z| = ∞.

We conjecture that the multi-value nature of the extension
is the reason why the set of �(ω) is a continuous one at γ = 2.
This is plausible, particularly if the vortices are at the same zi

for all ξ , as Fig. 12 seems to indicate. However, at the moment,
we cannot prove this.
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FIG. 12. [(a)–(c)] Gap functions �ξ defined in (56) for different ξ in the frequency upper half-plane. Here we take φ(ω) ≈ (ω/ḡ)2/π.

(d) Comparison of the vortex positions for different ξ obtained by approximating φ(ω) by (ω/ḡ)2/π . The results suggest that the positions of
the vortices almost do not depend on the value of ξ .

VI. FINITE ωD

A. Gap equation at a finite ωD

We now consider the case when the bosonic mass is small
but finite. By analogy with the phonon case we call this mass
ωD. On the Matsubara axis, �0(ωm) changes little compared
to the case ωD = 0. The set of �n(ωm) still exists at small
ωD, but becomes discrete and holds up to a finite nmax. In
particular, there is no solution of the linearized gap equation at
T = 0 for any nonzero ωD. The value of nmax can be estimated
by noticing that if we, e.g., depart from the solution on the
Matsubara axis at ωD = 0 and compute corrections due to
finite ωD, these corrections increase at small ωm and become
O(1) at ωm ∼ ωD. A simple experimentation shows that this
sets nmax at

nmax ∼ ḡ

ωD
. (63)

On the real axis, the gap equation still has the form
D(ω)ωB(ω) = A(ω) + C(ω), and A(ω) and B(ω) remain the
same as in (8), up to irrelevant small corrections. However,
C(ω) changes to

C(ω) = −i
π ḡ2

2ωD

D(ω − ωD) − D(ω)√
1 − D2(ω − ωD)

sgnω. (64)

Expanding to first order in ωD and introducing, as before,
D(ω) = 1/ sin φ(ω), we obtain after straightforward algebra

that the gap equation reduces to

φ̇ − ωD

2
((φ̇)2 tan φ(ω) + φ̈)

= 2

π ḡ2
[ωB(ω) − A(ω) sin φ(ω)] + · · · , (65)

where dots stand for the terms with higher powers of ωD. A
similar equation at a finite T instead of finite ωD has been
obtained by Combescot [9].

For definiteness, let’s consider the case ξ = 0. At ω � ḡ,
B(ω) and A(ω) from (8) can be approximated by B(ω) ≈
1 + ḡ2/ω2 and A(ω) ≈ −1.27ḡ3/ω2. To understand the effect
of ωD we use as an input the solution at ωD = 0, φ(ω) ≈
ω2/(π ḡ2) + iδ. Substituting this input into (65), expanding
near ω = π ḡ/

√
2, where φ(ω) = π/2, expressing φ(ω) =

φ′(ω) + iφ′′(ω), and solving for φ′′(ω), we find that it jumps
to O(ωD) once ω exceeds π ḡ/

√
2. The same happens at

all ωn = π ḡ/
√

2(2n + 1)1/2, where tan φ′(ω) = 0. After n
jumps, φ′′(ω) becomes

φ′′(ω) = πωD√
2ḡ

n∑
m=1

√
2m + 1 ≈ 2πωD

3ḡ
n3/2 ≈ 2ωD

3π2

ω3

ḡ4
.

(66)
A more accurate, nonperturbative analysis of (65) shows

that φ′′(ω) appears slightly before φ′(ω) reaches π/2. This
smoothes up the jumps, but the functional form of φ′′(ω) in
(66) remains intact. When both φ′ and φ′′ are non-zero, D(ω)
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FIG. 13. The gap function �(ω) (a) and the variation of its phase
η(ω) at ωD = 0.02ḡ. From (69).

is a complex function of frequency:

D′
0(ω) = ω

sin φ′(ω) cosh φ′′(ω)

sin2 φ′(ω) + sinh2 φ′′(ω)
sgnω (67)

and

D′′
0 (ω) = −ω

cos φ′(ω) sinh φ′′(ω)

sin2 φ′(ω) + sinh2 φ′′(ω)
(68)

At ω > 3π2ḡ4/(2ωD), φ′′(ω) becomes larger than one. At
such frequencies, both D′(ω) and D′′(ω) oscillate with pro-
gressively decreasing magnitudes, approximately as the real
and the imaginary parts of

−2ieiω2/(π ḡ2 )e
− 2ωD

3π2 ḡ
(ω/ḡ)3

, (69)

and the phase η0(ω) gradually winds up as ω increases. We
show this in Fig. 13. This behavior holds as long as |A(ω)| �
ω, i.e., ω < ωmax, where

ωmax ∼ ḡ

(
ḡ

ωD
ln

ḡ

ωD

)1/3

. (70)

At even larger frequencies, the A(ω) term cannot be neglected,
and the forms of φ′(ω) and φ′′(ω) change. We show the full
numerical solution of Eq. (65) in Fig. 14. We see that at ω >

ωmax, φ′′(ω) keeps increasing, while φ′(ω) saturates. A simple
analysis shows that Eq. (65) is satisfied, up to corrections of
order ωD, if

φ′′(ω) = 3 ln
ω

ḡ
+ 0.45, φ′(ω) = −π

2
+ 2mπ, (71)

where m is an integer. Substituting this complex φ(ω) into
�0(ω) = ω/ sin φ(ω) ≈ −2iωeiφ(ω), we see that at ω > ωmax,
the real part of the gap function gradually decreases as

�′
0(ω) = 1.27ḡ3

ω2
. (72)

To obtain �′′
0 (ω) at these frequencies, we need to keep the

ωD term in the l.h.s. of (65) and obtain the correction to (71),
which we label as φ̃. Solving perturbatively for φ̃(ω), we
obtain

φ̃(ω) = f

(
ω

ωmax

)
eiω2/(π ḡ2 ), (73)

FIG. 14. (a) Numerical solution of Eq. (65) for a complex φ(ω) at ωD = 0.02ḡ. [(b) and (c)] Asymptotic forms of φ′(ω) and φ′′(ω). At
ω < ωmax, φ′(ω) increases as ω2, while φ′′(ω) first displays a step-like behavior and then increases as ω3, with ωD in the prefactor. At ω > ωmax,
φ′(ω) saturates at (2m − 1/2)π , where m = 19 for our chosen ωD, and φ′′(ω) increases logarithmically. The corrections to asymptotic values
oscillate with the period set by ω2/π . In the numerical solution, we neglected φ̈ term in (65) compared to (φ̇)2 and verified that this is a valid
approximation.
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where f (. . . ) is a decreasing function of the argument. The ω2

oscillations of φ̃(ω) are clearly visible in the numerical results
for φ′ and φ′′ in Fig. 14. Substituting (73) into (68), we obtain

�′′
0 (ω) ∼ ḡ3

ω2
f

(
ω

ωmax

)
cos

ω2

π ḡ2
. (74)

One can verify that an integer m in (71) determines the number
of 2π variations of η0(ω) on the real axis and, equivalently, the
number of vortices at complex zi. The value of m decreases
one-by-one as ωD increases and ωmax decreases. That m is
finite implies that there is no essential singularity at |z| = ∞.
Indeed, at the largest frequencies, �(ω) ∝ 1/ω2.

For completeness, we verified that higher-order terms in
ωD, which we neglected in the l.h.s. of (65), become important
at frequencies ω ∼ ḡ2/ωD, which well exceed ωmax and are
therefore irrelevant to our purposes.

VII. DRESSED SUPERFLUID STIFFNESS

In this section, we analyze superfluid stiffness and thermal
corrections to a superconducting order parameter. As we dis-
cussed in Introduction, we consider the γ = 2-model as the
double limit ωD → 0, EF → ∞, such that Migdal-Eliashberg
parameter λE = ḡ2N0/ωD remains small (N0 ∼ 1/EF is the
DoS per unit volume in the normal state). Accordingly, in the
analysis below we keep ωD small, but finite.

A. Bare stiffness

A superfluid stiffness is the ratio of the excess energy Eη

due to inhomogeneous variation of the phase of a supercon-
ducting order parameter �(r) = �eiη(r) and

∫
dr(∇η(r))2:

Eη = ρs
∫

dr(∇η(r))2. In the momentum space,

Eη = ρs

∑
q

q2η2
q. (75)

A way to compute ρs is to choose ηq = δq,q0 and extract
ρs as the prefactor for q2

0 term in the particle-particle bubble
(the sum of GG and FF terms) at zero frequency and finite q
(see Refs. [28,30,38]).

At ωD/ḡ > 1, the system is in a weak coupling limit, and
superfluid stiffness at T = 0 is a fraction of the Fermi energy,
ρs(T = 0) = EF /(4π ) (Refs. [28,30]). This stiffness is much
larger than Tc [39]. At T > 0, ρs(T ) drops and vanishes at Tc,
but at weak coupling a drop of ρs occurs only in the immediate
vicinity of Tc.

At small ωD/ḡ, strong mass renormalization m∗/m = 1 +
ḡ2/ω2

D changes the stiffness to

ρs(T = 0) ∼ EF
ωD�(0)

ḡ2
∼ Tp

λE
, (76)

where Tp ∼ �(0) is the onset temperature of the pairing. As
long as λE � 1, ρs(T = 0) > Tp.

We now relate the stiffness to the strength of thermal phase
fluctuations of �(r) = �eiη(r). For this, consider the correla-
tor

〈η(r)η(0)〉 =
∫

D[η]η(r)η(0)e−ρs
∫

dr(∇η(r))2/T∫
D[η]e−ρs

∫
dr(∇η(r))2/T

. (77)

We assume that in equilibrium η(r) = 0 and expand 〈eiη(r)〉 as
1 − 〈η2(r)〉/2. Transforming (77) to the momentum space, we
obtain 〈�(r)〉 = �(1 − 〈η2〉), where

〈η2〉 = 1

N

∑
q

∏
q′

∫
dηq′η2

q e−ρsq2η2
q′ /T

∏
q′

∫
dηq′ e−ρsq2η2

q′ /T
, (78)

where N is the number of particles in the system. Evaluating
the integrals, we obtain the conventional result [40]

〈η2〉 = T

ρs

1

N

∑
q

1

q2
. (79)

We assume for simplicity that spatial dimension D is larger
than 2, in which case the sum converges. By order of magni-
tude we then have

〈η2〉 ∼ T

ρs(T )
. (80)

As long as ρs(T ) > T , fluctuation corrections to the order
parameter are small. This does not hold in the immediate
vicinity of the onset temperature of the pairing, Tp, but as long
as ρs(0) � Tc, the T range, where fluctuations are strong and
destroy phase coherence, is quite narrow, i.e., superconducting
Tc remains close to Tp. We see that this holds even when ωD

is small and the reduction of ρs by mass renormalization is
strong.

B. Dressing of ρs by soft longitudinal fluctuations

We now argue that in our case the expression for 〈η2〉 is dif-
ferent due to the presence of a continuum gapless spectrum of
condensation energy, Ec,ξ , where, we remind, ξ runs between
0 and ∞, and the bottom of the spectrum is at ξ = 0. We will
need states near the bottom of the continuum, at ξ � 1. For
such states, we assume

Ec,ξ = Ec,0 + b1N0Nḡ2ξ 2, (81)

where b1 = O(1) and N is the total number of particles. We
will also need superfluid stiffness ρs,ξ for the states near
the bottom of the continuum. Evaluating the particle-particle
susceptibility for a generic �ξ (ωm) and extracting the q2 term,
we obtain

ρs,ξ ∼ EF
ωD

ḡ2

∫
dωm

D2
ξ (ωm)

1 + D2
ξ (ωm)

. (82)

For ξ = 0, the integral is determined by ωm ∼ ḡ, where
D0(ωm) ∼ 1. This yields ρs,0 ∼ EF ωD/ḡ ∼ Tp/λE , as in (76).
For states with ξ > 0, the magnitude of �ξ (ωm) is reduced,
and the stiffness gets smaller. We assume that for the states
near the bottom of the continuum, the stiffness is obtained by
expanding to first order in ξ :

ρs,ξ = ρs,0(1 − b2ξ ), (83)

where b2 = O(1) is positive. The extra energy of a given state
ξ due to phase variation is

Eη,ξ = ρs,ξ

∑
q

q2η2
q. (84)

We assume (see reasoning below) that all states near the
bottom of a continuum contribute to the variation of the phase,
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i.e., the averaging in 〈(ηq)2〉 is over both ηq and ξ with the
weight factor e−Eξ /T , where

Eξ = Ec,ξ + Eη,ξ = E0 + δEξ (85)

and

E0 = Ec,0 + ρs,0

∑
q

q2η2
q,

δEε = b1N0g2ξ 2 − b2ρs,0ξ
∑

q

q2η2
q. (86)

If we neglected δEξ , we would obtain the same result as
before:

〈η2〉 = T

ρs,0

1

N

∑
q

1

q2
. (87)

Keeping δEξ we find that 〈η2〉 has an additional overall fac-
tor, which we label as IT . Dropping for simplicity numerical
prefactors b1 and b2, we obtain after integrating over ηq′

IT =
∫

dξe−N f (ξ ) 1
1−ξ∫

dξe−N f (ξ )
, (88)

where

f (ξ ) = N0ḡ2

T
ξ 2 − ξ

2
. (89)

We assume that the measure of the integration over ξ is non-
singular. The linear in ξ term in f (ξ ) comes from integration
over ηq′ with q′ �= q [see Eq. (78)]. Each integration over q′
yields 1/

√
1 − ξ , and the product of the integrals over all q′

yields 1/(1 − ξ )N/2 = e−(N/2) ln (1−ξ ) ≈ e(N/2)ξ .
At small T , the function f (ξ ) in (89) has a minimum at

ξ=T/(4N0ḡ2) ∼ T/(4ωDλE ). Then IT =1/(1 − T/(4ωDλE ))
and

〈η2〉 ∼ T λE

Tp

1

1 − T
4ωDλE

. (90)

We see that the renormalizations coming from the low-energy
states of the continuum spectrum of the condensation energy
hold in powers of T/ωD. With these renormalizations, the
fully dressed stiffness is

ρs(T ) = Tp

λE

(
1 − T

4ωDλE

)
. (91)

We see from that the value of ρs(T ) at T → 0 and ωD → 0
depends on the order of limits. At T = 0, ρs(0) = Tp/λE is
finite and exceeds Tp. At ωD → 0, the corrections to stiffness
rapidly increase with T , and ρs(T ) becomes comparable to
T at T ∼ ωDλE . For the largest λE ∼ 1, at which our theory
is valid, this holds at T ∼ ωD. It is tempting to associate this
temperature with the actual Tc above which the system looses
long-range phase coherence.

Further, there is an analogy between finite ωD and finite
2 − γ , as the two have similar effect on the gap function (see
paper IV). Replacing ωD by ḡ(2 − γ ), we find that at ωD = 0
and γ < 2, superconducting Tc ∼ ḡ(2 − γ ).

Before concluding this Section, we elaborate on our as-
sumption that the averaging over phase fluctuations should
include low-energy states from the continuum spectra of the

FIG. 15. The phase diagram of the γ model for γ = 2 in vari-
ables (T/ḡ, ωD/ḡ), where ωD is the mass of a pairing boson. Tp is the
onset temperature of the pairing, and Tc is the actual superconducting
transition temperature, below which the system establishes phase
coherence. In between the system displays pseudogap behavior, in
which fermionic pairs are formed, but there is no macroscopic phase
coherence. The dashed line separates the two regimes within the
pseudogap phase – the one at higher T , where the system behavior
is chiefly determined by fermions with the two lowest Matsubara
frequencies ±πT , and the one at lower T , when fermions with all
Matsubara frequencies contribute to the pairing. In these two regimes
the system displays gap filling and gap closing behavior, respectively.

condensation energy. Consider the case γ < 2, when the spec-
trum is still discrete and the n = 0 solution has the lowest
condensation energy Ec,0. The energies Ec,n�1 are close to
Ec,0, yet the solutions with different n are topologically dis-
tinct as �n(ωm) has n vortices. These other states contribute
to the renormalization of the phase of �0(ωm) only if the
tunneling amplitude between the states n = 0 and n > 0 is
nonzero, which requires the barrier between Ec,0 and Ec,n

to be small. The height of the barrier depends on the path
along which a state without a vortex transforms into a state
with a vortex at some small ωm. A vortex can either come
from ωm = ∞, in which case the barrier is high, or via a
creation of a vortex-antivortex pair at ωm = 0, in which case
it is low. For a generic γ < 2, �n(z) are regular at small z in
the complex plane, hence one should not expect an antivortex
nearby. However, for γ → 2, our candidate �ξ (z), Eq. (38),
possess antivortices at small z in the lower frequency half-
plane. In this situation, it is natural to expect that, the barriers
between Ec,0 and Ec,n with n > 0 are low, hence our reasoning
is justified.

VIII. PHASE DIAGRAM OF THE γ MODEL

A. γ = 2, finite ωD

In Fig. 15, we present the phase diagram for γ = 2 for
nonzero ωD and T . At ωD = 0, the true transition temperature
into a SC state is zero, although the onset temperature for
the pairing, Tp is finite. At finite ωD, Tc is finite but much
smaller than Tp, at least for small ωD. In between Tc and
Tp, the system displays pseudogap behavior: The spectral
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FIG. 16. The phase diagram of the γ model for a generic γ < 2
at a finite T and vanishing ωD. For any γ < 2, the true SC transition
temperature Tc is finite, but is smaller than the onset temperature for
the paring, Tp. In between Tc and Tp, the system displays a pseudogap
behavior. There are two distinct behaviors in the pseudogap regime,
like in Fig. 15: close to Tp, the spectral function and the DoS display
gap filling behavior, while close to Tc, the behavior becomes more
conventional and the gap frequency shifts to a smaller value as T
increases.

function and the DoS display a peak at a finite frequency, but
the spectral weight below the peak remains finite. Close to
Tp, the pairing is mainly induced by fermions with the two
lowest Matsubara frequencies ±πT (Refs. [43,44,49]). In this
situation, the position of the peak in the spectral function and
the DoS increases linearly with T , and the gap fills in as T
approaches Tp. In the T range near Tc, fermions with all Mat-
subara frequencies contribute to the pairing, and the positions
of the maxima in the spectral function and the DoS move to
smaller frequencies as T increases (gap closing behavior). We
show the DoS in the two regimes in Fig. 18 below.

B. ωD = 0, 0 < γ � 2

In Fig. 16, we show the phase diagram for the γ model
with 0 < γ � 2, at ωD = 0 and finite T . This phase diagram
is based on the results of this work and previous works (papers
I–IV). For γ < 2, we found earlier the largest condensation
energy is for sign-preserving solution of the gap equation
(n = 0 in our classification). Still, for any γ > 0, there exists
an infinite set of topologically distinct solutions for the gap
(all with the same symmetry), labeled by integer n. This gener-
ates a discrete spectrum of the condensation energy Ec,n. The
spectrum is sparse near the bottom at small γ , but becomes
dense and flattens up at the bottom as γ approaches 2. At
γ � 2, the corrections to superconducting order parameter
from the states with n �= 0 are small at low T , but rapidly
increase with increasing T and destroy phase coherence at
Tc ∼ ḡ(2 − γ )/λE . For γ � 2, Tc � Tp, and there exists a
wide intermediate temperature range where the system dis-
plays a pseudogap behavior. By continuity, we expect that the
pseudogap region to exist for all γ > 0 albeit with a smaller
width.

C. Properties of the pseudogap phase

1. toy model for γ = 2

Let’s start with γ = 2. At T = 0 the DoS is the set
of δ functions [Fig. 17(a)]. At a finite T , two new fea-
tures appear. First, �0(ω) decreases with increasing ω

and displays no oscillations above ωmax, similar to the
case with finite ωD discussed in Sec. VI. As a result,
δ-functional peaks in the DoS at larger frequencies get
broadened and eventually disappear. Second, other Dξ (ω)
from the continuum spectrum of condensation energies
contribute to the DoS with Boltzmann factors. For all
these solutions, Im�ξ (ω) remains finite down to ω = 0.
As a result, the DoS also becomes nonzero at the smallest ω

(this phenomenon is often called a gapless superconductivity
[31,32,41,42]) We model both effects by introducing a phe-
nomenological �(ω) = ω/ sin(ia + (ω/ḡ)2(1 + ib)), where a
and b increase with T . We show the corresponding DoS in
Figs. 17(b) and 17(c).

2. Gap filling versus gap closing

We argue, based on earlier works [43,44], that there are two
different regimes of system behavior within the pseudogap
phase. At low T , the position of the peak in the DoS scales
with �0(0) and decreases as T increases (the gap “closes”
with increasing T ). At higher T , the peak in the DOS shifts
to higher frequencies and the spectral weight below the peak
increases (gap “fills in” with increasing T ). We illustrate this
in Fig. 18. This last behavior is at least partly related to the fact
that in some finite range of T below Tp, the gap function on
the Matsubara axis is strongly peaked at the first Matsubara
frequencies ±πT (Refs. [43,44]). On the real axis, the cor-
responding �(ω) displays ω/T scaling. For such �(ω), the
peak frequency in the DoS increases linearly with T .

At a finite ωD and/or 2 − γ , the “gap filling” behavior
holds in some range between the onset temperature of the
pairing Tp and a finite superconducting Tc (Fig. 18). To esti-
mate the crossover temperature between the two regimes, we
compare the actual Tp with the one obtained by neglecting the
contributions from fermions with ωm = ±πT . We show the
results in Fig. 19. We see that for γ = 2 the onset temperature
without ±πT fermions is strongly reduced – it is about 1/7
of the actual Tp ∼ 0.18ḡ. This implies that the “gap filling”
behavior holds in a wide range below Tp and crosses over to
“gap closing” behavior only near Tc.

IX. CONCLUSIONS

In this paper, we extended our earlier analysis of the γ

model to γ = 2. The γ = 2 model describes, among other
cases, the pairing, mediated by an Einstein boson, in the
limit when the bosonic mass ωD tends to zero. On the real
axis, the effective interaction in this limit V (�) = −ḡ2/�2

is repulsive, and, at a first glance, should not give rise to
pairing. However, the same interaction on the Matsubara
axis, V (�m) = ḡ2/�2

m, is attractive, and earlier calculations
on the Matsubara axis found that the onset temperature of the
pairing, Tp, tends to a finite value Tp = 0.1827ḡ at ωD → 0
(Tp = 0.1827ωD

√
λ in terminology of Ref. [14], which is the

same expression because λ = ḡ2/ω2
D). The issue we discussed

184508-18



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 103, 184508 (2021)

FIG. 17. The density of states, N (ω), at different temperatures, for a toy model with �0(ω) = ω/ sin(ia + ω2(1 + ib)), where a and b are
two parameters, which increase with T . (a) The T = 0 limit, a = b = 10−4. The DoS has a set of δ-functional peaks. (b) A finite but small T ,
a = b = 0.05. The first few peaks are well defined, but the peaks at large frequencies get overdamped and disappear. (c) A higher temperature,
a = b = 0.25. The peak at the smallest frequency is still present, at about the same frequency as at T = 0, but other peaks are washed out, and
the spectral weight below the peak increases, i.e., the DoS at low frequencies fulls in.

in this paper is whether this Tp is close to the actual supercon-
ducting Tc, or Tc is smaller, and there is a range of pseudogap
behavior between Tc and Tp. We argued that the actual Tc

scales with ωD and is much smaller than Tp when ωD/ḡ is
small.

To prove this, we solved the nonlinear gap equation at T =
0 and ωD = 0 and found a continuum of solutions, governed
by a single parameter ξ (0 � ξ � ∞). This in turn gives rise
to a continuum spectrum of condensation energy, Ec,ξ , which
can be viewed as a continuum gapless spectrum of “longitudi-
nal” gap fluctuations. An infinite set of the gap functions and
the condensation energies exists already for γ < 2, but is a
discrete one. For γ = 2, this spectrum becomes continuous in
a manner similar to how a discrete set of energy levels in a
finite size crystal becomes a continuous vibration spectrum
when system size becomes infinite. In our case, 1/(2 − γ )
plays the role of a system size.

Without the contribution from the gapless longitudinal
branch, superfluid stiffness ρs(T = 0) is larger than Tp, and
thermal corrections to superconducting order parameter scale
approximately as T/ρs(0) and remain small at all T < Tp.
However, upon including contributions from the longitudinal
branch, we found that thermal corrections become of order
one already at much smaller T ∼ ωD. We identified this tem-
perature with the actual superconducting Tc. We emphasize
that Tc vanishes at ωD = 0, and the behavior of the stiffness
depends on the order in which the double limit ωD → 0 and
T → 0 is taken. This strongly suggests that the γ = 2 model
is critical at T = 0. At smaller γ , the ground state is not
critical at ωD = 0, and Tc ∼ ḡ(2 − γ ). It is finite but at γ � 2
is still much smaller than Tp ∼ ḡ.

We presented collaborative evidence that the γ = 2 model
is critical, from the analysis of the continuum set of gap func-
tions along real frequency axis and in the upper half-plane of
frequency. We found that for each solution, there is an infinite
array of 2π vortices in the upper frequency half-plane. The
array of vortices stretches up to an infinite frequency, where
each gap function from the continuous set has an essential
singularity. We speculated that different gap functions from

the continuous set are different extensions from the array of
vortices, onto the upper half-plane of frequency.

At a finite ωD, the set of gap functions becomes discrete
and contains only a finite number of solutions, all of which
behave regularly in the high-frequency limit. The number of
vortices also becomes finite. Still, at small ωD/ḡ, the system
behavior over a wide frequency range mimics that at ωD = 0.

We showed the phase diagram of the γ = 2 model in
variables T and ωD in Fig. 15 and the phase diagram of the
γ model at ωD = 0 in in variables T and γ in Fig. 16. In
both cases, there is range of pseudogap behavior between the
onset temperature of the pairing Tp and the actual Tc. In the
pseudogap region, the bound pairs are formed, but there is
no macroscopic phase coherence. We argued that in most of
the pseudogap regime, the DoS and other observables display
“gap filling” behavior, in which the peak position remains at
a finite frequency up to Tp, while the states below the peak
gradually fill in.

In the next (last) paper in the series, we consider the behav-
ior of the γ model for γ > 2 and show that the new physics
emerges at T = 0, which gives rise to a reduction and eventual
vanishing of the superfluid stiffness in the ground state.
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FIG. 18. The temperature evolution of the DoS N (ω). For γ < 2 (top), there is a SC order at T < Tc. In this regime and in the pseudogap
state at T � Tc, the temperature variation of N (ω) resembles that in a conventional BCS superconductor, i.e. when T increases, the position
of the maximum in N (ω) moves to a smaller frequency. At larger T within the pseudogap phase, N (ω) displays gap filling behavior when the
peak position increases with increasing T and N (ω = 0) increases towards its normal state value. For γ = 2 (lower panel), Tc = 0, but the two
different regimes of pseudogap behavior are present.
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APPENDIX A: EXPANSION IN D2(ωm)
FOR γ = 2 AND γ < 2

In this Appendix, we present some details of the analysis
of the nonlinear gap equation for γ = 2 and elaborate on the
claim in the main text that a continuous set of gap func-
tions exists only for γ = 2, while for smaller γ , the set is a
discrete one.

1. γ = 2

We begin with γ = 2. Consider first the limit of small
frequencies ωm � ḡ. For such ωm, �(ωm) in the l.h.s. of the
gap equation (4) can be neglected, as its inclusion leads to
terms with extra (ωm/ḡ)2. This approximation is equivalent
to neglecting ωm compared to the self-energy (ωm) and is
similar to the “no ωm” approximation, used in the studies
of SYK-type models [45–47]. The nonlinear gap equation at
T = 0 without �(ωm) in the l.h.s reduces to

∫
dωm′

D(ωm′ ) − D(ωm)√
1 + D2(ωm′ )

sgnω′
m

|ωm − ωm′ |2 = 0 (A1)

where, we recall, D(ωm) = �(ωm)/ωm.
The linearized gap equation is obtained from (A1) by ne-

glecting D2(ωm′ ) in the denominator. The exact solution of the
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FIG. 19. The onset temperature of the pairing, obtained without
including Matsubara frequencies ωm = ±πT . For γ = 2, this tem-
perature is roughly 1/7 of the actual Tp,0.

linearized gap equation is Eq. (13):

D(ωm) = 2ε cos

(
β ln

( |ωm|
ḡ

)2

+ φε

)
sgnω, (A2)

where ε is an arbitrary overall factor, φε is yet undetermined
constant, and β = 0.38187 satisfies πβ tanh(πβ ) = 1.

We now expand Eq. (A1) in powers of D2. We will be
searching for the solution in the form

Dε (ωm) = 2
∞∑

n=0

ε2n+1Q2n+1

× cos

(
(2n + 1)

(
βε ln

( |ωm|
ḡ

)2)
+ φε

)
. (A3)

Substituting into (A1) and collecting contributions at each
order in ε2n+1, we find that Dε (ωm) given by (A3) does satisfy
Eq. (A1), and that all integrals are ultraviolet convergent,
i.e., there is no need for regularization. The calculations are
lengthy, but straightforward. We checked explicitly that βε is
the same in all terms in (A3) and is related to the original β

by

βε = β

(
1 − ε2

2
+ 0.806ε4 + · · ·

)
. (A4)

The numerical coefficients are Q3 = 0.222 + O(ε2), Q5 =
0.043 + O(ε2). We cited this result and Eqs. (A3) and (A4)
in Sec. III C.

At larger frequencies, we need to keep �(ωm) in the l.h.s.
of (4). In the opposite limit ωm � ḡ, the leading term in
Dε (ωm) is obtained by pulling 1/ω2

m from the integrand in the
r.h.s.. Then we obtain

Dε (ωm) = aε

ω3
m

, (A5)

where

aε = ḡ2

2

∫
dωm′

D(ωm′ )√
1 + D2(ωm′ )

sgnωm. (A6)

FIG. 20. The comparison between the behavior of βε in the
γ = 2 model and βN in the model with γ < 1, extended to N > 1.

Substituting this form of D(ωm) into the integrand in the r.h.s,
we find that the integral is ultra-violet convergent, i.e., the
solution (A6) is self-consistent.

The two solutions have to merge at ωm ∼ ḡ. For the lin-
earized gap equation (the limit ε → 0), we verified that this
does happen for a certain value of φε in (A3). We conjecture
that the same holds for other ε, i.e., for a certain φε , Dε (ωm)
smoothly evolves between (A3) and (A6). We did similar
analysis in paper I. There, we demonstrated that for arbitrary
φε , Dε (ω) of Eq. (A3) approaches the constant at ωm → ∞,
while the desired term (Dε (ωm) ∝ 1/|ωm|γ+1 for a generic γ )
is the subleading one. For a particular φε , a constant vanishes,
and the high-frequency behavior becomes the expected one.

We see from (A4) that βε decreases with increasing ε,
while the overall magnitude of �(ωm) increases. It is natural
to expect that βε = 0 at some critical ε = εcr. We explored
this in the main text.

Another way to argue for the existence of εcr is to depart
from the opposite limit ε � 1, where D(ωm) is supposed to
be large. In this case, we introduce �(ωm) = 1/D(ωm) and
re-express the gap equation as

∫
dωm′

�(ωm′ ) − �(ωm)√
1 + �2(ωm′ )

1

|ωm − ωm′ |2 = 0 (A7)

Note the absence of sgnω′
m in the integrand. At small �,

we neglect the �2(ωm′ ) in the denominator and search for
the solution in the form �(ωm) = sgnωm|ωm/ḡ|b. Substituting
into (A7) we find b = ±1, i.e.,

�(ωm) =
(

A1
ḡ

|ωm| + A2
|ωm|

ḡ

)
. (A8)

The first term does not satisfy the normalization condition
and has to be discarded (see paper I for the details on this).
This leaves no parameter to adjust in order to match with
the behavior at high frequencies. This implies that there is no
solution for the gap at large ε.

There is a similarity between this analysis and the analysis
in paper I, where we considered the γ model for γ < 1 and
extended it using a continuous variable N to make interactions
in the particle-hole and particle-particle channels nonequiva-
lent. There, we found that there exists Ncr, which separates
oscillating and nonoscillating solutions, and only oscillating
solutions are compatible with high-frequency behavior. Here,
ε plays the same role as N . We illustrate this in Fig. 20.
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FIG. 21. Determination of the temperature Tp,1, at which the
n = 1 solution develops in the γ = 2 model. Mc ∼ 103 is the largest
value of the Matsubara number, used in this numerical calculation.
Extrapolating Mc to ∞ yields a finite value Tp,1 � 3.6827×10−3ḡ.

2. γ < 2

We now extend this approach to γ < 2. The gap equation
for D(ωm) at ωm � ḡ has the same form as in (A1), only
|ωm − ωm′ |2 in the denominator is replaced by |ωm − ωm′ |γ .
The solution of the linearized equation for D(ωm) is

D(ωm) = 2ε

(
ḡ

|ωm|
)1−γ /2

cos

(
βγ ln

( |ωm|
ḡ

)γ

+ φ

)
sgnω,

(A9)

where βγ is some regular function of γ . As before, we search
for the solutions in the form

Dε (ωm) = 2
∞∑

n=1

(
ε

(
ḡ

|ωm|
)1−γ /2)2n+1

Q2n+1

× cos

[
(2n + 1)

(
βγ ,ε ln

( |ωm|
ḡ

)γ

+ φε

)]
.

(A10)

Substituting into (A9), we find that the integrals that deter-
mine Q2n+1 now contain infra-red divergencies. The only way
to eliminate the divergencies is to assume that �ε tends to a
finite value at ωm → 0. But this is only possible for a discrete
set of finite ε. We also note in passing that because the actual
expansion parameter is ε(ḡ/|ωm|)1−γ /2, the expansion of βγ ,ε

in powers of ε yields βγ ,ε = βγ (1 + a(ε(ḡ/|ωm|)1−γ /2)2). For
a �= 0, this gives rise to additional terms, which are not
matched by the terms in Eq. (A10). The only option then is
to set a = 0, i.e., leave βγ ,ε equal to its bare value βγ .

The outcome is that the continuous set of gap functions
exists only for γ = 2. For smaller γ , this set is discrete. We
also emphasize that the distinction between γ = 2 and γ < 2
holds only at T = 0. At any finite T , the set of gap functions
is a discrete one for all γ � 2, and the solutions with different
n from the set vanish at different temperatures Tp,n. In Fig. 21,
we show the results of high-accuracy numerical calculation of
Tp,1 for γ = 2. We see that Tp,1 � 3.6827×10−3ḡ is finite.

APPENDIX B: THE GAP FUNCTION �∞

The exact solution of the linearized gap equation at zero
temperature has been derived for 0 < γ < 1 in paper I and
1 < γ < 2 in paper IV. Here we extend the analysis of paper
IV to γ = 2.

We first solve for the gap function �∞(ωm) along the
Matsubara axis. Following the same computational steps as
in the analysis for γ < 2, we obtain D∞(ωm) = �∞(ωm)/ωm

in the form

D∞(ωm) = ε
ḡ

ωm

∫ ∞

−∞
dkbke−ik ln (ωm/ḡ)2

, (B1)

where ε is an infinitesimal number

bk = e−iIk

[cosh(π (k − β )) cosh(π (k + β ))]1/2 (B2)

and

Ik = 1

2

∫ ∞

−∞
dk′ ln |εk′ − 1| tanh π (k′ − k + iδ), (B3)

Here εk′ = πk′ tanh(πk′) and β � 0.38187 is the solution of
πβ tanh (πβ ) = 1. We cited these results in Eqs. (15)–(17) in
the main text.

The integrals (B3) and (B1) can be computed numerically.
We showed the result for D∞(ωm) in Fig. 1 in the main text.
The function D∞(ωm) oscillates at ωm < ḡ and decays as
1/|ωm|3 at ωm > ḡ.

1. Series expansion

The integral in Eq. (B3) can be evaluated by closing the
integration contour along an infinite arc in the complex plane
of frequency. For |ωm| < ḡ, the arc must be in the upper half-
plane, and for |ωm| > ḡ, in the lower half-plane. The integral
is equal to the sum of the contributions from each pole of the
function bk in the upper or lower half-plane. The position of
these poles are obtained from the representation of bk as an
infinite product of the Gamma functions (see papers I and IV
for details on this):

bk = �(1 − ik)

�(1 + ik)
�

(
1

2
+ i(k + β )

)
�

(
1

2
+ i(k − β )

)
∞∏

m=1

�
(

1
2 + i(k − iβm)

)
�(1 + m − ik)

�
(

1
2 − i(k + iβm)

)
�(1 + m + ik)

. (B4)

Here βm > 0 are the solutions of πβm tan(πβm) = −1. There
is an infinite set of such βm, specified by an integer m =
0, 1, 2, . . . Each βm is located within the interval 1/2 + m <

βm < 3/2 + m. Viewed as a function of complex k, bk has
poles from individual � functions in the upper half-plane
at k = ±β + i(n + 1/2) and k = iβm + i(n + 1/2), n, m =
0, 1, 2, . . ., and in the lower half-plane, at k = −i(n + 1)
and k = −i(1 + m + n), where n = 0, 1, 2, . . . and m =
1, 2, . . . .

2. |ωm| < ḡ

For |ωm| < ḡ, the relevant poles are at k= ± β+i(n + 1/2)
and at k = iβm + i(n + 1/2), n = 0, 1, 2, . . . . This yields

184508-22



INTERPLAY BETWEEN SUPERCONDUCTIVITY AND … PHYSICAL REVIEW B 103, 184508 (2021)

series expansion for D∞(y) with y = (|ωm|/ḡ)2 in the form

D∞(y) = Re
∞∑

n=0

e(iβ ln y+φ)C<
n yn +

∞∑
n,m=0

D<
n,my(n+βm ). (B5)

The leading term in (B5) at small ωm comes from the contri-
bution of the poles at k = ±β + i/2

D∞(y) = C<
0 cos (β ln y + φ). (B6)

The first subleading term comes from the contribution of the
pole at k = i(1/2 + β0) and scales as yβ0 , where β0 � 0.89.

In the direct perturbation expansion in y, the series in yn

[the first term in (B5)] come from fermions with internal
y′ ∼ y and form the “local” series. The second term in (B5)
is the sum of contributions from fermions with y′ = O(1),
which for y � 1 can we regarded as “nonlocal”. The total
D∞(y) = D∞,L(y) + D∞,NL(y).

The coefficients C<
n in (B5) can be obtained analytically, as

we already found in papers I and III for γ � 1 and paper IV
for 1 < γ < 2. At γ = 2, the result takes a very simple form

C<
n = C<

0
in

βnn!
. (B7)

Substituting this into Eq. (B5), we find that the first term (the
local contribution) becomes

D∞,L(y) ∝ cos [β(ln y − y) + φ]. (B8)

It oscillates with the periodicity set by β ln y for y � 1, i.e.,
|ωm| � ḡ, which is the right behavior of the gap function at
small frequencies, see (B6).

We note, however, that the first subleading term in (B8)
scales as y sin(β ln y). This contribution is smaller than the
actual subleading term, which scales as y0.89 and does not
oscillate. This implies that, besides the leading term, the form
of �∞(y) is determined by nonlocal corrections.

3. |ωm| > ḡ and logarithmic correction

For y > 1, i.e., |ωm| > ḡ, relevant poles are in the lower
half-plane. According to Eq. (B4), a pole at k = −i(n + 1)
(n = 0, 1, 2, . . . ) is of order n + 1, namely a simple pole at
n = 0, a double pole at n = 1, etc. The leading term in the
limit of |ωm| → ∞ is the contribution from a simple pole at
k = −i (n = 0), This contribution accounts for 1/y behavior
of �∞(y) at large y. However, the subleading terms from the
rest poles contain extra logarithms on top of powers of 1/y:

�∞(y) =
∞∑

n=0

C̃>
n y−2(1+n)(ln y)n, (B9)

To demonstrate the presence of the logs, consider as an
example the contribution from the double pole at k = −2i.
We shift γ to 2 − δ, δ > 0 and then take the limit δ → 0. The
expression for bk for γ � 2 is presented in paper IV. Using it,
we find that a double pole splits into two simple poles at z1 =
−2i and z2 = −(2 + δ/2)i. In the neighborhood of the two
poles, the function bk takes the form ∼1/(z − z1)/(z − z2).
The contribution from these two poles is obtained by circling
out a loop C enclosing z1 and z2. Evaluating the integral and

taking the limit δ → 0, we obtain

√
y lim

δ→0+

ḡ

ωm

∮
C

dz
1

(z + 2i)(z + (2 + δ/2)i)
e−iz ln(y1−δ/2 )

= 2π
ln y

y2
. (B10)

Similarly, the triple pole at k = −3i gives rise to (ln y)2/y3,
etc. Collecting the contributions from every pole on the lower
half-plane, we obtain (B9).

4. The universal oscillating term at large y

We now show that the high-frequency form of D∞(ωm)
contains an additional oscillating contribution. This contri-
bution is exponentially small on the Matsubara axis, but, as
we will see, it becomes the dominant one on the real axis.
To extract this contribution, we note that for large |ωm|/ḡ, the
argument of the cosine function, Ik + k ln y, passes through
extremum at k ∼ k∗ = y/π . Expanding around this point and
evaluating the Gaussian integral, we obtain the universal piece
D∞;u(y) in the form

D∞;u(y) = 2
√

2εe−y cos

[
(π2 − 2)

2π
y + π

4

]
. (B11)

We see that D∞;u(y) is exponentially small, yet this oscillating
term is present. The total D∞(y) is the sum of (B9) and (B11).

5. D∞(y) along real axis

Let’s now transform from Matsubara to real axis. We use ω

instead of y for better transparency. By construction, the gap
function along the real axis is obtained by replacing iωm →
ω + i0+ in the integrand in the r.h.s. of Eq. (B1). Under this
transformation, ln(|ωm|/ḡ)2 transforms into ln(|ω|/ḡ)2 − iπ .
The integral in Eq. (B1) splits into two parts:

D∞(ω) = ε
ḡ

ω

∫ ∞

0
dk

× e−πke−iIk−ik ln(|ω|/ḡ)2 + eπkeiIk+ik ln(|ω|/ḡ)2

√
cosh(π (k − β )) cosh(π (k + β ))

.

(B12)

Evaluating each integral by expanding near the point where
Ik ± k ln(|ω|/ḡ)2 passes through extremum and approximat-
ing the denominator in (B12) by its form at large k, we find
that the first term is small in e−2πk , while in the second term
the exponential factor cancels out. Ignoring the first term, we
obtain

D∞;u(ω) ≈
√

2εe
i
π

[( ω
ḡ )2+ln( ω

ḡ )2]
. (B13)

Other contributions to D∞(ω) contain powers of ḡ/ω and are
smaller. As a result, on the real axis, D∞(ω) ≈ D∞;u(ω) at
ω � ḡ.

The same calculation can be carried out for an arbi-
trary complex frequency z = ω′ + iω′′ in the upper frequency
plane. For this, one has to replace iωm by z ≡ |z|eiψ (0 <

ψ < π ) in the integrand in the r.h.s. of (B1). This changes
ln(|ωm|/ḡ)2 to ln(|z|/ḡ)2 + i(2ψ − π ) and gives �∞(z),
which we presented in Eq. (62) in the main text.
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APPENDIX C: EXTENDED γ MODEL

In papers I–III and other works [43,44,48–54], we and
others extended the γ model to in-equal interactions in the
particle-particle and particle-hole channels. This was done by
adding a factor 1/N to the interaction in the particle-particle
channel and leaving the interaction in the particle-hole chan-
nel intact. The advantage of extending the model to N �= 1
is that superconducting order in the ground state exists for
N < Ncr, while for larger N the ground state is a non-Fermi
liquid. By analyzing the gap equation near this point, one
can obtain useful information about how a discrete set of
solutions emerges. In paper III, we argued that the extension

to N �= 1 makes sense for γ < 1, while for γ � 1, the model
with N �= 1 possesses singularities, not present in the original
γ model. We proposed another way to extend the model with
γ > 1, which is free from singularities. The idea is to first
explicitly cancel out singularities in the original γ model
with γ > 1, and only then extend the model to M �= 1 by
making interactions in the particle-particle and particle-hole
channel in-equivalent. The extended model is then free from
singularities, and one can obtain critical Mcr, where super-
conducting order disappears at T = 0 (by our construction, it
exists at M > Mcr). In this Appendix, we analyze the extended
γ model for γ = 2. We show that a continuous set of solutions
for the gap equation emerges at Mcr + 0.

We first briefly describe the extension procedure. The two coupled Eliashberg equations are for the pairing vertex �(ωm) and
the self-energy (ωm). For γ = 2, the equations are

�(ωm) = ḡ2πT
∑
m′ �=m

�(ωm′ )√
̃2(ωm′ ) + �2(ωm′ )

1

|ωm − ωm′ |2 ,

̃(ωm) = ωm + ḡ2πT
∑
m′ �=m

̃(ωm′ )√
̃2(ωm′ ) + �2(ωm′ )

1

|ωm − ωm′ |2 , (C1)

where ̃(ωm) = ωm + (ωm). At T = 0, the r.h.s. of each of the two equations contains a divergent integral
∫

dx/x2. To
regularize the divergencies, we keep the temperature small but finite and set T = 0 at the end of calculations. At a finite T ,
the sum over m′ is nonsingular as singular self-action term with m′ = m cancels out by the same reason as the contributions from
nonmagnetic impurities.

We then introduce

�̄(ωm) = �(ωm)

(
1 − ḡ2 ζ (2)

(2πT )

1√
̃2(ωm) + �2(ωm)

)
,

¯̃(ωm) = ̃(ωm)

(
1 − ḡ2 ζ (2)

(2πT )

1√
̃2(ωm) + �2(ωm)

)
. (C2)

where ζ (2) = π2/6 = ∑∞
n=1 1/n2. Because �(ωm)/̃(ωm) = �̄(ωm)/ ¯̃(ωm), Eqs. (C1) can be re-expressed solely in terms of

�̄(ωm) and ¯̃(ωm):

�̄(ωm) = ḡ2πT
∑
m′ �=m

⎛
⎝ �̄(ωm′ )√

¯̃
2
(ωm′ ) + �̄2(ωm′ )

− �̄(ωm)√
¯̃

2
(ωm) + �̄2(ωm)

⎞
⎠ 1

|ωm − ωm′ |2 ,

¯̃(ωm) = ωm + ḡ2πT
∑
m′ �=m

⎛
⎝ ¯̃(ωm′ )√

¯̃
2
(ωm′ ) + �̄2(ωm′ )

−
¯̃(ωm)√

¯̃
2
(ωm) + �̄2(ωm)

⎞
⎠ 1

|ωm − ωm′ |2 . (C3)

These equations are now free from singularities at T = 0, when the summation over Matsubara numbers is replaced by the
integration over ωm.

We now extend the modified Eliashberg equations (C3) by multiplying the interaction in the particle-particle channel by a
factor 1/M:

�̄(ωm) = ḡ2

2M

∫
dω′

m

⎛
⎝ �̄(ω′

m)√
¯̃

2
(ω′

m) + �̄2(ω′
m)

− �̄(ωm)√
¯̃

2
(ωm) + �̄2(ωm)

⎞
⎠ 1

|ωm − ω′
m|2 . (C4)

The gap function �(ωm) is expressed via �̄(ωm) and ¯̃(ωm) in the same way as via the original �(ωm) and ̃(ωm): �(ωm) =
ωm�̄(ωm)/ ¯̃(ωm). The equation on �(ωm) is

�(ωm) = ḡ2

2M

∫
dω′

m

|ωm − ω′
m|2

(
�(ω′

m) − M �(ωm )
ωm

ω′
m√

�2(ω′
m) + (ω′

m)2
− �(ωm)(1 − M )√

�2(ωm) + ω2
m

)
. (C5)
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Absorbing 1/M into ḡ2
M = ḡ2/M, introducing a dimensionless ω̄m = ωm/ḡM , D(ω̄m) = �(ω̄m)/ω̄m and re-arranging, we obtain

from (C5)

D(ω̄m)

(
ω̄+1−M

2

∫
dω̄′

m

|ω̄m − ω̄′
m|2

(
sgnω̄m√

1+D2(ω̄m)
− sgnω̄′

m√
1 + D2(ω̄′

m)

))
= 1

2

∫
dω̄′

m

|ω̄m−ω̄′
m|2

D(ω̄′
m) − D(ω̄m)√

1 + D2(ω̄′
m)

sgnω̄′
m. (C6)

Both integrals in (C6) are free from singularities and infra-red convergent.
For infinitesimally small D(ω̄m), Eq. (C6) becomes

D(ω̄m)

(
ω̄m + 1 − M

ω̄m

)
= 1

2

∫
dω̄′

m

D(ω̄′
m) − D(ω̄m)

|ω̄m − ω̄′
m|2 sgnω′

m, (C7)

At small ω̄m, the solution of the gap equation is

D(ω̄m) = 2ε cos
(
βM ln ω̄2

m + φ
)
sgnωm, (C8)

It has the same form as Eq. (13), but now β2
M = M/π2. This form implies that Mcr = 0.

We now assume that M is small and solve the nonlinear gap equation. Our key intension is to check whether we still have a
continuum of solutions. For this purpose, it is sufficient to focus on small ω̄m, when we can neglect bare ω̄m in the l.h.s. of (C6).

As in Sec. III C, we search for the solution of (C6) in the series in ε2 for both D(ω̄m) and β. To leading order in M, we obtain

D(ω̄m) = 2ε

π
M1/2 ln ω̄2

m(1 − 3ε2 + · · · )1/2, (C9)

where dots stand for ε4 and higher order terms. The M1/2 dependence (same as (M − Mcr )1/2 as Mcr = 0) is an expected one. The
logarithmic dependence on frequency is consistent with the result in paper I, where we obtained ln ω̄

γ
m dependence at N = Ncr.

However, there such dependence exists only for N = Ncr, while here we have an infinite set of solutions with the same frequency
dependence, but different amplitudes, parametrized by ε. All solutions appear simultaneously at M = 0+.

A complimentary piece of evidence for multiple solutions comes about if we simplify the l.h.s. of (C6) by dropping D2 terms
in the denominator of the (1 − M ) term. The gap equation then reduces to

D(ω̄m)

(
ω̄ + 1 − M

2ω̄

)
= 1

2

∫
dω̄′

m

|ω̄m − ω̄′
m|2

D(ω̄′
m) − D(ω̄m)√

1 + D2(ω̄′
m)

sgnω̄′
m. (C10)

The full gap equation for the original γ model is reproduced if we set M = 1, so Eq. (C10) can be viewed as another extension
of the original model. The solution of the linearized gap equation is the same as before, with β2

M = M/π , hence Mcr = 0. At
M → 0, the expansion in ε2 now yields, to leading order in M ≡ M − Mcr:

D(ω̄m) = 2ε

(
cos fM (ω̄m) − ε2

16M
cos 3 fM (ω̄m) + · · ·

)
, (C11)

where

fM (ω̄m) = βM,ε ln ω̄2
m + φ (C12)

and

β2
M,ε = β2

M

(
1 − 3ε2

M
+ · · ·

)
. (C13)

We see that the expansion holds in powers of ε2/M and is valid up to ε ∼ (M )1/2, at which β2
M,ε vanishes. At larger ε, β2

M,ε

becomes negative, and the solution disappears (there is no normalized solution of the linearized gap equation). We see that there
is again an infinite set of solutions, specified by ε, which runs between 0 and εcr = O(

√
M ).
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