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Motivated by the recent findings of unconventional superconductivity in CoSi2/TiSi2 heterostructures, we
study the effect of interface-induced Rashba spin-orbit coupling on the conductance of a three-terminal T-shaped
superconducting device. We calculate the differential conductance for this device within the quasiclassical
formalism that includes the mixing of triplet-singlet pairing due to the Rashba spin-orbit coupling. We discuss
our result in light of the conductance spectra reported by S.-P. Chiu et al., arXiv:2012.13679 for CoSi2/TiSi2

heterostructures.
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I. INTRODUCTION

The search for platforms that can host Majorana zero
modes (MZMs) has been one of the major topics driv-
ing current condensed-matter research because MZMs, being
localized quasiparticles that obey non-Abelian braiding statis-
tics, are the essential ingredient for topological quantum
computing [1–6]. Early proposals for creating MZMs involve
spin triplet superconductivity, while almost all known su-
perconductors belong to the spin singlet class with a few
possible exceptions such as UPt3. As a result, a variety of in-
genious heterostructures of superconducting nanowires have
been proposed and observed to generate the required p-wave
pairing component, taking advantage of broken time-reversal
and inversion symmetries [7–10]. MZMs have also been pro-
posed inside a vortex of a topological superconductor [11];
the experimental observation of a MZM in some iron-based
superconductors is along this line [12,13]. Fu and Kane [14]
proposed that the proximity of the s-wave superconductor
on the surface of a three-dimensional topological insulator
may serve the same purpose to generate MZMs due to the
spin-momentum locking. Their proposal has been confirmed
experimentally [15].

To distinguish between singlet and triplet superconductors,
in addition to nuclear magnetic resonance [16] and muon spin
rotation (μSR) probe, a T-shaped proximity structure junction
was proposed to probe the presence of triplet superconductiv-
ity [17]. The proposed device consists of two normal metal
wires combined to form the letter T. This three-terminal de-
vice is connected to a superconductor at the free end of the
leg (see Fig. 1). As shown in Ref. [17], a chiral p-wave or
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an ordinary p-wave state gives a zero-bias conductance peak
(ZBCP) in response to bias voltage between the open ends of
the bar of the T.

Recent experimental results reported by Chiu et al. have
been argued to be consistent with the occurrence of chiral
p-wave pairing in CoSi2/TiSi2 heterostructures [18]. Chiu
et al. support their claim with conductance spectroscopy data
for CoSi2/TiSi2 superconductor-normal-metal (SN) tunnel
junctions. In these heterostructures, CoSi2 is the supercon-
ducting component which becomes superconducting below
1.5 K. The conductivity of the SN tunnel junctions agrees with
the theoretical calculations based on the Blonder-Tinkham-
Klapwijk (BTK) model for a chiral p-wave superconductor
[19]. However, there is a sharp zero-bias peak in the conduc-
tance spectra of the SN junction which cannot be described
within the BTK theory.

Chiu et al. further substantiated their interpretation with
conductance spectra based on three-terminal T-shaped prox-
imity devices similar to the one sketched in Fig. 1, which
again show ZBCPs. As noted in Ref. [18], a distinction be-
tween ordinary and chiral p-wave superconductors based on
solely experimental conductance spectra is hardly feasible.
The observation of hysteresis behavior in the magnetoresis-
tance below the superconducting transition temperature Tc of
the CoSi2/TiSi2 junctions, however, further vindicates their
claim of chiral p-wave in the CoSi2/TiSi2 heterostructures.
The findings of Ref. [18] are intriguing for a few reasons. The
superconductivity in CoSi2 was discovered in 1952 [20]; the
theoretical estimate of Tc based on phonon-mediated pairing
appears to agree well with the experimental Tc [21]. The
specific heat data below the superconducting state suggest
conventional s-wave pairing [22]. This material does not ap-
pear to be located in the vicinity of magnetism; therefore,
there is no reason to expect it to be a chiral p-wave super-
conductor, at least in the bulk limit.
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FIG. 1. Schematic illustration of a T-shaped junction. The three-
terminal proximity device consists of a diffusive normal metal (NM)
part attached to a superconductor (SC). The blue area indicates the
diffusive normal metal (NM) part of the device, while the orange area
shows the SC part.

It is worth noting that a strong spin-orbit coupling (SOC),
exceeding the superconducting gap of CoSi2 by more than
a factor 30, was reported in CoSi2 by the same group [18].
Having in mind this strong SOC, we propose the substrate-
induced Rashba SOC as a source of p-wave pairing in this
system. It is known that SOC-induced pairing does not break
the time-reversal symmetry [23], and the presence of the SOC
also leads to mixing of the triplet and singlet components.
In the context of noncentrosymmetric superconductors, the
tunneling conductance for SN junctions has been studied in
systems with SOC [24–28]. However, the effect of the SOC
and the conductance for a mixed-parity superconductor in a
T-junction device is not known. The original T-junction study
did not include the SOC, and the ZBCP for a chiral p-wave
superconductor is expected to be weak [17].

In this paper, we investigate the effect of the singlet-triplet
mixing on the conductance spectra of the T-shaped junctions.
In the context of CoSi2/TiSi2 heterostructures, we focus on
substrate-induced SOC in a superconductor, which results in
the “sp” pairing state, where the singlet component has s-wave
symmetry and the triplet component has p-wave symmetry. In
principle, triplet and singlet components can have anisotropic
structures due to the orbital form factors and because the
bands crossing the Fermi energy derive from the 3d orbitals
of Co [21]. Thus, we also consider the “df ” and “d p” pairing
states, which have additional orbital form factors compatible
with dx2−y2 and dxy functions, which lead to dx2−y2 and dxy

structures for the singlet components and effectively f -wave-
and p-wave-like structures for the triplet components, respec-
tively. The df state was proposed for a few heavy-electron
noncentrosymmetric systems [29,30], and the d p state was
suggested for LaAlO3/SrTiO3 heterointerfaces [26].

II. MODEL AND FORMALISM

We model the CoSi2/TiSi2 T-shaped junction of Ref. [18]
in terms of the two-dimensional proximity devices depicted
schematically in Fig. 1. The transport in the normal metal
(NM) part is assumed to be diffusive and is the experimen-
tally relevant regime. The height d and the width w are very
small compared to its length Lx/y in either direction, and
its dimensions are assumed to be very small compared to

the coherence length ξ0 ≡ h̄vF /π� (i.e., w, d � ξ0), where
vF and � are the Fermi velocity and the superconductivity
gap, respectively. Within the ambit of these assumptions, this
structure can be thought of as a set of two one-dimensional
wires joined to form the shape of the letter T. The leg of this
T-shaped junction is attached to a clean superconductor. The
ends of the horizontal section of this junction are subjected to
a bias voltage eV . We consider the case where the SOC exists
in the superconducting component of this structure due to its
broken inversion symmetry.

The kinetic part of the Hamiltonian reads

Hk = ξk + HSOC,k. (1)

Here ξk is the electronic dispersion relation for the fermions,
and the SOC term is

HSOC,k = α(σ × k) · ẑ = αAk · σ, (2)

where α is the Rashba SOC coupling constant and σ is
(σx, σy, σz), where σx/y/z are the Pauli matrices in spin space.
We consider the Rashba SOC that is induced along the growth
direction, which is chosen to be the ẑ direction in the T-shaped
junction. In this case, the normal to the relevant interface is
along the ẑ axis, and the SOC vector is

Ak = (ky,−kx, 0) = |k|(sin φk,− cos φk, 0), (3)

where φk is the angle in the two-dimensional momentum
space.

Diagonalizing the Hamiltonian results in a splitting of the
original band into two helical bands with different spin struc-
tures. The energies of these two bands are ξk ± α|k|. The
changes in the density of states and the Fermi velocities are of
the order of αpF /EF , where pF and EF are the Fermi momen-
tum and the Fermi energy of the original band. For realistic
systems, the SOC energy is generally very small compared
to the Fermi energy. Therefore, we ignore these differences
in the density of states and the Fermi velocities between the
helical bands, and we take these parameters to be the same as
the original band for our subsequent calculations.

We assume that the superconducting component is con-
fined in the two-dimensional plane and that it has dimensions
that are very large compared to the coherence length; hence,
we treat it like a homogeneous system and ignore any kind
of inverse proximity effect due to the junction formation.
We adopt the quasiclassical Keldysh formalism to carry out
the conductance calculations [31], where the quasiclassical
Green’s function consists of retarded, advanced, and Keldysh
components. Each of these components is a 4 × 4 matrix in
the Nambu-spin space. We denote the 4 × 4 Green’s function
in this space by ·̌, and ·̂ denotes the 2 × 2 Green’s functions
in the spin basis. The advanced and Keldysh components can
be obtained from the retarded component, on which we focus
in the following. Following Ref. [32], the quasiclassical re-
tarded Green’s function in a superconductor without inversion
symmetry can be expressed as

ǧ =
(

gIσI + gIIσII ( fIσI + fIIσII )iσy

−iσy( f̄IσI + f̄IIσII ) σy(ḡIσI + ḡIIσII )σy

)
, (4)
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where σI/II = (σ0 ± Ak · σ )/2, gI/II(ε) = ε/
√

ε2 − �2
I/II,

fI/II(ε) = �I/II/
√

ε2 − �2
I/II, ḡI/II = −gI/II, and f̄I/II = fI/II.

The general gap structure for a system with the SOC is [33]

�̂ = [�s	s(φk ) + �t	t (φk )Ak · σ]iσy. (5)

Here the SOC vector Ak acts like the d vector, and �s (�t ) is
the gap magnitude of the singlet (triplet) component. Since
SOC energy is very large compared to Tc in any realistic
material, we ignore any kind of interband pairing between
the helical bands [34]. The gaps on two helical bands are
�I/II = �s	s ± �t	t . The angular anisotropy of the gaps is
embedded in 	s and 	t . The simplest case is 	s = 	t = 1,
which is referred to as the sp state, where the singlet compo-
nent is an isotropic s-wave state and the triplet component has
p-wave structure. Such states have been proposed for various
noncentrosymmetric superconductors; self-consistent model
calculations have found stable ground states with singlet- or
triplet-dominant components depending on the strength of
pairing in the respective channels [33]. Here we use �s/t

as parameters in our calculations. Apart from this, the other
possibilities are the df state, where 	s = 	t = cos 2φk , and
the d p state, with 	s = 	t = sin 2φk . We focus on the sp
state, which is more relevant in the context of CoSi2/TiSi2

heterostructures. The gap function is parameterized as

�̂ = �0

(
1√

1 + r2
+ r√

1 + r2
Ak · σ

)
iσy, (6)

where �0 is
√

�2
s + �2

t [35]. Here the parameter r ∈ [0,∞)
is the ratio of the triplet component to the singlet component.

The Cooper pairs from the superconducting side can tunnel
into the diffusive NM, and this effect is included through
the boundary conditions, which are used to solve the Usadel
equations on the NM side. We treat the barrier between the
NM and the superconductor as a spin-independent barrier.
This assumption is justified because the SOC is very small
compared to the Fermi energy [27]. We first calculate the
retarded component of the quasiclassical Green’s function ǧR

n
and then construct the advanced and Keldysh components us-
ing ǧR

n . The subscript n denotes the normal metal. The Usadel
equations for ǧR

n are

D∂�(ǧR
n∂�ǧR

n ) + i
[
ετ̌3, ǧR

n

] = 0, (7)

where D is the diffusion constant of the normal metal, � de-
notes the spatial direction x or y, and τ̌3 is diag(1, 1,−1,−1).
The normalization condition for the quasiclassical Green’s
function is ǧR

nǧR
n = 1̌. These equations are supplemented by

the boundary conditions: ǧR
n = τ̌3 at the diffusive metal and

electrode interface (±Lx, 0), and ǧR
n∂yǧR

n = 0̌ at the crossing
point (0,0), where the last condition reflects current conserva-
tion [36]. The boundary condition at (0, Ly) depends on the
nature of the gap in the superconductor. We use the boundary
condition derived by Nazarov for interfaces with arbitrary
transparency [37], which was generalized for unconventional
superconductors by Tanaka et al. [38–42]. In this approach,
the interface is modeled as a δ function potential barrier

Hδ(y − Ly), which has the transmission probability

T (φ) = 4 cos2 φ

4 cos2 φ + Z2
, (8)

where φ is the angle measured with respect to the normal
to the interface, which is the y axis in the geometry we
consider, and Z is a dimensionless parameter given by Z =
2mH/k2

F . Here m is the effective mass, and kF is the Fermi
momentum. A large value of Z gives an interface with poor
transparency, whereas Z = 0 characterizes a transparent in-
terface. The boundary condition at the SN interface can be
expressed as

Lyǧn
∂ ǧn

∂y

∣∣∣
y=Ly

= 2�〈[ǧn, B̌(φ)]〉φ, (9)

where ǧn on the right-hand side of Eq. (9) is the quasiclassical
Green’s function in the NM region evaluated at (0, Ly) and �

is the ratio of the normal metal resistance RN and the interface
resistance RB. The angular average on the right-hand side of
Eq. (9) is defined as

〈· · · 〉φ =
∫ π/2
−π/2 dφ(· · · ) cos φ∫ π/2
−π/2 dφT (φ) cos φ

. (10)

Note that the angle φ in the boundary condition is measured
with respect to the interface normal. The matrix function B̌ in
Eq. (9) is

B̌(φ) = (−T ′[ǧn, Ȟ−1
− ] + Ȟ−1

− Ȟ+ − T ′2ǧnȞ−1
− Ȟ+)−1

× [−T ′(1̌ + Ȟ−1
− ) + T ′2ǧnȞ−1

− Ȟ+
]
, (11)

T ′(φ) = T (φ)

2 − T (φ) + 2
√

1 − T (φ)
, (12)

Ȟ± = 1

2
[ǧ(φ) ± ǧ(π − φ)]. (13)

Note that the boundary condition itself depends on the solu-
tion at the boundary. To calculate the differential conductance,
we first calculate the current. For the current calculation, we
need the Keldysh component of the quasiclassical Green’s
function,

ǧK = ǧRȟ − ȟǧA, (14)

where the advanced component is

ǧA = −τ̌3(ǧR)†τ̌3 (15)

and the spin-resolved distribution function ȟ is a diago-
nal matrix diag( fL↑ + fT ↑, fL↓ + fT ↓, fL↑ − fT ↑, fL↓ − fT ↓)
[43], where fT ν and fLν are the transverse and longitudinal
distribution functions and ν is the spin index. In the T-shaped
junction, a bias voltage V is applied at x = +Lx, and at the
other end the voltage is kept at zero. Therefore, the equilib-
rium spin-resolved distribution functions at these two ends are

fT↑/↓

∣∣∣
x=Lx,y=0

= 1

2

[
n f (

ε−
2T

) − n f (
ε+
2T

)
]
, (16)

fT↑/↓

∣∣∣
x=−Lx,y=0

= 0. (17)

Here n f is the Fermi-Dirac distribution function, and ε± =
ε ± eV . The transverse component of the distribution function
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FIG. 2. Differential conductance for a T-shaped junction attached to a superconductor under the influence of Rashba SOC. The parameter
r is the ratio of the triplet component to singlet component of the order parameter. The interface quality parameter � is set to 20. The ratio of
lengths along the two spatial directions Ly/Lx is 0.1, 0.5, and 1 in (a), (b), and (c), respectively. The differential conductance is calculated in
the zero-temperature limit.

will be the same for both spin components at the normal
electrode. The charge current density is

JE (x, T ) = eN0D

8

∫ ∞

−∞
dεTr

[
τ̂3(ǧR∂xǧK + ǧK∂xǧA)

]
. (18)

Here N0 is the total density of states at the Fermi level. The
differential conductance can be obtained by evaluating the
derivative of the charge current density with respect to the bias
voltage; we numerically solve the Usadel equations in the nor-
mal metal and with the aforementioned boundary conditions.
Since the boundary condition at the SN interface involves the
solutions at the interface, we start with a guess solution and
obtain the final solution using the fixed-point iteration method.

III. RESULTS AND DISCUSSION

We consider a good interface between NM and SC and fix
� at a value of 20. The interface barrier parameter Z is set
to 2. A larger value of � represents a good-quality surface,
which is essential for the formation of a sizable proximity
effect. Figure 2 shows the differential conductance for the
T-shaped device, where the superconducting portion is under
the influence of the substrate-induced Rashba SOC for several
values of the parameter r, indicating the relative strength of
the triplet component. The magnitude of the gap is 0.05Eth,
where Eth is the Thouless energy for the half wire along the
x̂ direction, i.e., Eth ≡ h̄D/L2

x . For the proximity problem,
the characteristic energy scale in the NM is the Thouless
energy, which is inversely proportional to the square of the
device length. A smaller device is usually better for observing
proximity effect related physics.

For large values of r, the triplet component dominates.
In this regime we find that the differential conductance is
similar to that in the p-wave case [17]. In general, for a three-
dimensional system, a ẑ Rashba SOC gives �s ± �t sin θ ,
where θ is the polar angle. Therefore, a triplet-dominated sys-
tem will have horizontal line nodes. However, in our study we
consider a two-dimensional system where the gaps on the two
helical bands are �s ± �t . Thus, in the triplet-dominant limit
(r > 1), we have isotropic unequal gaps on two bands with
opposite chiralities. A ZBCP is expected for a chiral p-wave
superconductor [17]; however, it is expected to be weaker than
a p-wave system. We find that the height of the peak is com-

parable to that of a p-wave system. Unlike in chiral p-wave
superconductors, the time-reversal symmetry is not broken in
the case considered here. The origin of the peak is the symme-
try of the induced pairing in the NM. In the diffusive metal, the
isotropic s-wave state can survive due to impurity scattering,
which kills any other kind of superconducting state. In the
superconducting side of the junction, both triplet and singlet
components are even functions of frequency. Therefore, the
triplet component leaks odd frequency, even parity, and spin
triplet pairs, and the odd frequency nature of these induced
pairs gives rise to a ZBCP [41,44,45]. In the case of two he-
lical bands with an opposite-chirality triplet state, the spectral
weight of the ZBCP is larger than that expected for a chiral
superconductor. The ZBCP becomes sharper as the length of
the leg Ly attached to the superconductor increases; therefore,
a T-shaped junction with a shorter leg provides a better chance
of ZBCP detection. We find that a ZBCP forms as long as the
triplet component is stronger. For the special case of r = 1,
for which triplet and singlet components are equal, we still
find a ZBCP in the differential conductance, albeit with a
reduced height and width. Since one of the bands has a zero
gap in this limit, the height of the peak decreases; the origin
of the reduced width in the ZBCP for smaller r is the presence
of even frequency, the spin singlet, and even-parity pairs,
which come from the singlet component in the mixed-parity
superconducting state. Such pairs reduce the density of states
at the Fermi level, which reduces the conductivity. However,
induced pairs also increase conductivity in the diffusive metal;
this increase comes through a Maki-Thompson-like process
[46]. These two countereffects cancel at zero energy. The
finite-energy maximum in the conductivity near the Thouless
energy scale arises due to different decay patterns of these
two effects. The negative contribution from the loss of density
of states decays exponentially, while the Maki-Thompson-like
contribution decays nonexponentially over the energy scale of
Eth. These two opposite contributions result in a dip in the
limit of a pure singlet superconductor (r � 1) in the T-shaped
junction. In the singlet-dominated regime (0 < r < 1), we
find both a dip from the singlet component and a weak ZBCP
from the triplet component. Figure 3 shows the evolution
of the conductance peak to a dip in the strong-singlet limit.
The width and height of the ZBCP decrease rapidly with a
diminishing triplet component.
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FIG. 3. The differential conductance for a T-shaped junction of
a d p superconductor for several values of r with a larger singlet
component. The length along the ŷ direction is 0.5Ly.

Next, we consider df and d p states which possess
anisotropic orbital components. For the df state, 	s and 	t

are modeled by cos 2φk . For this gap function, there are two
line nodes at an angle ±π/4 with respect to the interface
normal ŷ axis. Since we have already shown that a T-shaped
junction with shorter leg length is better for observing the
ZBCP, we fix the value of Ly at 0.5Lx and consider a good
quality interface with � = 20 and Z = 2 for our differen-
tial conductance calculations with anisotropic form factors.
Figure 4 shows the differential conductance for a T-shaped
junction attached to a df -symmetry superconductor. We find
behavior for a df superconductor qualitatively similar to that
of the sp superconductor which was discussed above. This
qualitative similarity between sp and df superconductors can
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FIG. 4. The differential conductance for a T-shaped junction of
a df superconductor for several values of r. The length along the ŷ
direction is 0.5Ly. The orientation of the dx2−y2 orbital form factor is
shown in the main plot. The leg of the T junction is taken along the
ŷ direction, and the voltage is applied along the x̂ direction.

FIG. 5. The differential conductance for a T-shaped junction of
a d p superconductor for several values of r. The length along the ŷ
direction is 0.5Ly. The orientation of the dxy orbital form factor is
shown in the main plot. The leg of the T junction is taken along the
ŷ direction, and the voltage is applied along the x̂ direction.

be understood by examining the phase shift in the gap func-
tions of incoming and outgoing quasiparticle trajectories at the
interface. For the dx2−y2 orbital function, the incoming �(φ)
and the outgoing �(π − φ) are qualitatively the same as the
sp superconductor. The nodal line of the dx2−y2 form factor is
at an angle of ±π/4, so there is no additional sign change
due to this anisotropic factor, and the triplet component is
effectively the same as for the sp superconductor. However,
the dx2−y2 form factor reduces the height of the ZBCP in the
triplet-dominated regime (r � 1), and in the strong-singlet
regime r < 1, the tiny peak that we find for the sp supercon-
ductors is smeared, and the line shape is similar to an s-wave
superconductor.

In contrast, we find a qualitatively different behavior for the
d p state; as shown in Fig. 5, there is a splitting of the ZBCP
with reduced heights. For a dxy orbital factor, the nodal line
is along the interface normal; therefore, for all the incoming
gap functions the dxy form factor gives a sign change to the
outgoing gap function. The triplet component has an addi-
tional chiral p-wave factor, which also gives a sign change
between the incoming and outgoing gap functions, which gets
canceled by the sign change from the dxy factor; hence, there
is no overall sign change. This is qualitatively equivalent to
an extended s-wave state. For triplet-dominant cases, a ZBCP
with splitting is the outcome of this lack of sign change. In the
case of an s-wave superconductor, two opposite contributions
to the conductivity exist: while the loss of density of states
reduces the conductivity, Maki-Thompson-like processes re-
sult in an enhancement. For isotropic s-wave systems, these
two effects cancel at zero energy. However, the additional
anisotropy from the orbital form factor may not give an exact
cancellation, which could lead to an increased conductivity at
the zero energy in comparison with a pure isotropic s-wave
superconductor. In the limit of a strong-singlet component,
we find featureless conductivity. This is expected because the
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nodal line is parallel to the interface normal, and in such an
orientation no proximity effect occurs [47].

IV. CONCLUDING REMARKS

In this paper, we have studied the conductance of T-shaped
junctions connected to a superconductor under the influence
of a strong Rashba SOC generated by the underlying sub-
strate. The d vector in the superconducting state is determined
by the SOC. The superconducting state is a mixed-parity state
with both singlet and triplet components. We calculated the
tunneling conductance for this system within the quasiclas-
sical formalism. The effect of the superconducting order is
included through Nazarov-Tanaka boundary conditions. We
looked at the effect of the device size on the zero-bias con-
ductance peak. In agreement with earlier work, we found that
smaller device dimensions result in larger full width at half
maximum (FWHM) of the ZBCPs. Moreover, we showed that
both triplet and singlet components affect the conductance.

Specifically, we considered sp, df , and d p pairing states.
The sp and df states produce ZBCPs whenever the triplet
component is stronger than the singlet one. The peak is weaker
in the case of df superconductors due to the anisotropic dx2−y2

orbital form factor. In the strong-singlet limit, we found a dip
structure in the conductance spectrum. For the sp state, in the
regime where a finite, but small, triplet component coexists
with a large singlet component, we predicted a weak ZBCP
on top of the dip structure. This ZBCP disappears quickly
with the decreasing triplet strength. For the df state, the weak
ZBCP disappears rapidly already when the triplet component
becomes smaller than the singlet component. In contrast, we
found a ZBCP splitting for the d p state, which happens be-
cause the triplet component does not cause a sign change
in the incoming and outgoing gaps. Thus, we conclude that
making interfaces with different crystallographic orientations
of the superconductor will be useful for drawing concrete
conclusions in systems, where anisotropic orbital form factors
are likely to be present.

In the context of the recent experimental results for
CoSi2/TiSi2 heterostructures [18], we believe that the sp
state is consistent with the experiments. We have performed
our calculations for device sizes that are comparable to the
experimental setup. We found that in the triplet-dominant
regime, the opposite-chirality superconductivity on the two
helical bands gives a ZBCP in the conductance of the T
junction. This peak is quite robust and stronger than the

peak expected for the usual chiral p-wave superconductor
[17]. Therefore, we think that the CoSi2/TiSi2 heterostruc-
ture is a triplet-dominant (�singlet < �triplet) superconductor.
The conductance for an SN junction composed of such a
triplet-dominant mixed-parity sp superconductor and a nor-
mal metal junction was studied earlier [24] and agrees with
the CoSi2/TiSi2 tunnel junction data, barring the sharp feature
at zero energy.

One of the major issues with our description of the
CoSi2/TiSi2 heterostructures is the lack of the time-reversal
symmetry breaking (TRSB) that has been observed up to
Tc. The TRSB in the mixed-parity superconductors was pre-
dicted earlier [48,49]; however, it is expected to happen at a
lower temperature below Tc. Twin boundaries can also cause
TRSB, if the triplet and singlet components are comparable
in magnitude [50]. Another possible explanation for the hys-
teresis observed in the magnetoresistance data is the Zeeman
field induced supercurrent. In a superconductor with broken
inversion symmetry, an in-plane Zeeman field gives rise to
a supercurrent flow along the direction perpendicular to it
[51,52]. We think that μSR experiments on CoSi2/TiSi2 het-
erostructures will provide ubiquitous evidence of TRSB.

We have considered a simple one-band model for CoSi2 to
qualitatively understand CoSi2/TiSi2 heterostructures. How-
ever, it is a multiband system, which could be a possible origin
of the TRSB. We leave this issue of TRSB for future study.
We conclude that the CoSi2/TiSi2 heterostructure is a s + p
mixed-parity superconducting state with a dominant p-wave
component. Such a mixed-parity superconductor with a dom-
inant triplet component is a topologically nontrivial system
and is similar to a quantum spin Hall system [53,54]. It hosts
topologically protected Andreev bound states, which carry
spin currents, therefore constituting an important platform for
further research.
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