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Spin-orbit-coupled depairing of a dipolar biexciton superfluid
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We consider quantum phase transitions in a system of bright dipolar excitons which can form bound pairs
(dipolar biexcitons). The biexciton energy is tuned from negative to positive values through the scattering
threshold. At sufficiently large density an exciton superfluid transforms into a superfluid of biexcitons. With
the average relative momenta of excitons in the pairs being beyond the light cone, the transition is accompanied
by a reduction of the photoluminescence intensity. Effective magnetic fields due to the long-range exchange
splitting of exciton states shift the position of the gap in the elementary excitation spectrum to a circle of
degenerate minima in the k space. Closing the gap results in the formation of exciton stripes polarized linearly
along the direction of their translational symmetry. In the biexciton energy vs density phase diagram the novel
phase intervenes between the dark biexciton and radiative exciton superfluids. We conclude that formation of
a BCS-like biexciton condensate induces correlated alignment of the effective magnetic fields and excitonic
spins. We outline important differences in the predicted mechanism from the phenomenon of spin-orbit-coupled
Bose-Einstein condensation.
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I. INTRODUCTION

Excitonic molecules (biexcitons) have attracted great in-
terest since the very beginning of the quest for Bose-Einstein
condensation (BEC) in solids [1]. The concept of a biexciton
is an extension of the analogy between an exciton and a
hydrogen atom to the case of two quasiparticles: exchange
of the constituent fermions in the spin-singlet configuration
stabilizes a bound state of bosons [2–7]. At low temperatures
a biexciton condensate should compete with a condensate of
unpaired excitons [8].

With the advent of semiconductor technology, well-
resolved biexciton lines have been observed in photolumi-
nescence (PL) of quantum wells (QWs) [9–11] and, more
recently, atomically thin layers of transition metal dichalco-
genides (TMDs) [12–16]. Bilayer structures or wide single
QWs subjected to a transverse electric field host dipolar ex-
citons with long radiative lifetimes τ and high cooling rates
[15–26]. The inset in Fig. 1 shows schematically a pair of
dipolar excitons each composed of an electron and a hole
residing in spatially separated layers. A dipolar exciton pos-
sesses a permanent dipole moment oriented in the transverse
direction (the z axis). In addition, it also has a pseudospin
defined by z projections of the fermionic spins and valley
indices. Among a great variety of excitonic species only the
so-called bright excitons characterized by two possible pseu-
dospin states (|↑〉 or |↓〉) may recombine, emitting a photon
(right- or left-circularly polarized, respectively) [27]. The typ-
ical biexcitonic PL line corresponds to a bound state of two
bright excitons with opposite spins (i.e., |↑〉 and |↓〉).

For large separation between the layers dipolar repulsion
prevents formation of biexcitons and favors excitonic BEC
[28,29]. Before completely disappearing, however, a dipolar

biexciton has been predicted to transform into a resonance
[30,31]. As opposed to a true bound state, the resonance
may have a positive energy ε and a finite width β defined
by tunneling of excitons under the dipolar potential barrier
(Fig. 1). As one increases the density, a resonantly paired
exciton superfluid (X) undergoes a quantum phase transition

FIG. 1. Sketch of the two-body interaction potentials for excitons
with parallel (dashed line) and antiparallel (solid line) spins. The
latter features a biexciton resonance with energy ε and natural width
β defined by tunneling of excitons under the barrier due to the dipolar
repulsion. The inset in the top right corner shows orientations of the
effective magnetic field �(k) with respect to the exciton wave vector
k. The field �(k) couples the |↑↓〉 and |↑↑〉 (or |↓↓〉) scattering
channels. The bottom inset shows a pair of dipolar excitons (X)
formed of spatially separated electrons (e) and holes (h).
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to a superfluid of biexcitons (XX). The dipolar biexcitons are
stabilized in the media by mean-field repulsion, with single
excitons occurring only as gapped elementary excitations of
the superfluid [32].

Extended spatial and temporal coherence, which may be
accessed by shift-interferometry measurements of the PL
[18,19,26], is suppressed in the XX phase due to the relative
motion of excitons within a molecule [30]. For the same
reasons, one may expect suppression of the PL intensity:
as the effective binding tightens, the excitons are extruded
outside of the “light cone” [33]. The latter defines a circle of a
radius q0 in two-dimensional (2D) momentum space, inside of
which a bright exciton can recombine, emitting a photon [27].
Beyond the light cone the exciton dispersion acquires fine
structure due to the long-range exchange interaction between
the electron and the hole [34–37]. The effect of the long-range
exchange on pairing of dipolar excitons is a challenging ques-
tion which has not been addressed until now.

The exciton Hamiltonian accounting for the long-range
exchange can be written as

Ĥ0 =
∑

p,σ,σ ′=↑,↓
[Tpδσσ ′ − h̄�(p) · Sσσ ′]â†

σ,pâσ ′,p, (1)

where the first term Tp = h̄2 p2/2m + h̄υp/2 is modified ki-
netic energy and the second term has the form of interaction
of the exciton pseudospin

S = 1

2
(σxnx + σyny + σznz ), (2)

with the 2D effective magnetic field

�(p) = −υp(nx cos 2ϕ + ny sin 2ϕ). (3)

Here σx, σy, and σz are the Pauli matrices, p and ϕ are the polar
coordinates of the 2D wave vector of exciton translational
motion p, and

υ = (τq0)−1. (4)

By virtue of the symmetry with respect to the time reversal
and bosonic nature of excitons, the magnetic field (3) is an
even function of p (Fig. 1).

The lower-energy eigenstate of (1) is a plane wave with its
pseudospin

|ϕ〉 = −e−iϕ |↑〉 + eiϕ |↓〉 (5)

pointing in the direction of �(p). Such pseudospin orienta-
tion corresponds to the exciton linear polarization lying in
the structure plane and being transverse with respect to p.
The dispersion of the transverse exciton E⊥(p) = h̄2 p2/2m
is split from the upper branch E‖(p) = h̄2 p2/2m + 	LT(p)
polarized along p by the amount 	LT(p) = h̄υp, known as
the longitudinal-transverse (LT) splitting [35–37].

In contrast to the single-particle dispersions in the pres-
ence of conventional spin-orbit (SO) coupling [38–43], the
functions E⊥(p) and E‖(p) are monotonous. This excludes
exotic phases predicted [44] and subsequently realized [45,46]
in SO-coupled atomic Bose- Einstein condensates. Moreover,
for dipolar excitons the exchange splitting is small due to

reduced overlap between the electron and hole wave func-
tions [long exciton lifetime τ in Eq. (4)]. Surprisingly, as we
demonstrate in this paper, weak SO coupling of the type (1)
may alter dramatically bosonic BCS-BEC phase transition.
We show that in a dipolar biexciton superfluid the microscopic
fields �(p) unify to produce a new efficient pair-breaking
mechanism. The fields shift the position of the gap in the
XX elementary excitation spectrum from p = 0 to a circle of
rotonlike minima at |p| = p0. The value of p0 is defined by
the balance between the kinetic energy and interaction of the
exciton spin with a collective exchange field. As one closes the
new gap (e.g., by decreasing the exciton density n), the fields
�(p) spontaneously align all in the same direction, and de-
pairing of the biexciton superfluid occurs in a superposition of
p0 and −p0 plane-wave excitonic condensates spin polarized
along �(p0) [Eq. (16)]. We denote this phase as �-X-XX.
The polarized excitonic stripes in the �-X-XX phase orig-
inate from SO-coupled depairing of a BCS-like condensate
of loosely bound excitonic molecules. The wave vector p0

[Eq. (14)] has its maximum value at the �-XX/�-X-XX
phase transition boundary and approaches the light cone q0 as
one further decreases the density. At that point the �-X-XX
phase turns into the radiative exciton superfluid X.

II. THE MODEL

The full many-body Hamiltonian reads Ĥ = Ĥ0 + V̂ ,
where

V̂ = 1

2S

∑
p1,p2,q,σ,σ ′

â†
σ,p1+qâ†

σ ′,p2−qVσσ ′ (q)âσ,p1
âσ ′,p2

(6)

is the two-body interaction in a binary mixture of interacting
bosons and Vσσ ′ (q) = ∫

e−iqrVσσ ′ (r)dr. The potentials V↑↑(r)
and V↓↓(r) are repulsive at all distances, whereas V↑↓(r) fea-
tures a resonance, characterized by its energy ε and width
β (Fig. 1). The resonance emerges from a true bound state
as the distance between the electron-hole layers d crosses
the threshold value on the order of the electron Bohr radius
ae = h̄2κ/mee2 [31]. We note parenthetically that the generic
potential V↑↓(r) can be employed to model resonant pairing
in a large variety of fermionic [47–49] and bosonic [50–52]
systems. Throughout this paper we assume ε � β.

For a typical MoS2-based heterostructure the momentum
cutoff imposed by the light cone corresponds to a pair energy
on the order of ε ∼ 10 μeV. At the X-XX transition one
has ε ∼ μ. The chemical potential of a 2D exciton conden-
sate can be estimated by using the transcendental formula
μ = 4π/ ln(Ea/2μ)h̄2n/m [53], where m is the exciton mass
and Ea = h̄2/ma2, with a being on the order of the exci-
ton Bohr radius aX. We thus obtain nmin ∼ 1010 cm−2 for
the reference exciton density separating the radiative and
dark regimes. At such densities the system shares analo-
gies with gaseous atomic superfluids [54,55]. For ε > 0
the long-range dipolar repulsion between the excitons may
induce coherent crystallization of a resonantly paired su-
perfluid via the roton instability [31,56] (also predicted for
pancake atomic condensates [57]). Possible competition of
the �-X-XX phase with the dipolar supersolid will be the
subject of our future work. As we shall see, the �-X-XX
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FIG. 2. Sketches of the two possible phase diagrams of a reso-
nantly paired exciton condensate with β = 0 in the radiative regime
(|ε| < 1 in units of h̄2q2

0/m). Depending on whether
√

gXgB < gXB

or
√

gXgB > gXB, the transition to the biexciton phase (XX) at
ε > 0 may be either of the first or the second kind, respectively.
The second-order transition occurs via an intermediate mixed phase
(X-XX), where a fraction of biexcitons is dissolved in the exciton
superfluid (X).

phase penetrates also into the region ε < 0, where the
potential V↑↓(r) is characterized by vanishingly small scat-
tering amplitude and the dipolar crystallization is prevented
by the background repulsion in the other two channels. We
expect the corresponding domain in the phase diagram (see
Fig. 3 below) to be the most suitable for neat observation of
the phenomena predicted in the present work.

As one increases ε toward its upper positive bound (pre-
sumably on the order of the biexciton binding energy, 10 meV
[12]), the characteristic exciton density approaches nmax ∼
1012 cm−2. Although it is presently unclear whether the res-
onance remains narrow in this limit, working with such a
dense quasicondensate characterized by large μ represents
several advantages. First, such density corresponds to the rel-
atively high Berezinskii-Kosterlitz-Thouless (BKT) transition
temperature TBKT ∼ 10 K [58]. Second, the disorder present
in moderate-quality samples is screened by the repulsive in-
teractions [59]. At the same time, since we are concerned
with d ∼ ae, the dipolar repulsion is not strong enough to
crystallize the superfluid [58,60–62].

III. RADIATIVE REGIME

It is instructive to discuss first the infinitely narrow reso-
nance limit (β = 0) of the radiative dilute X and XX phases.
The exchange splitting is absent, and we may describe the
ground state by the following system of Gross-Pitaevskii

FIG. 3. The phase diagram of a paired exciton condensate with
spin-orbit coupling. We adopt units of h̄2q2

0/m, where q0 corresponds
to the boundary of the light cone. The insets show exemplary spectra
of elementary excitations in the biexciton phase [�-XX, dark gray;
Eq. (13)]. Red dashed lines account for the exchange term in the
kinetic energy in Eq. (11). Closure of the rotonlike gap defines a
second-order phase boundary with a new �-X-XX phase (magenta)
characterized by smectic order and transverse linear polarization of
excitons [Eq. (16)]. The hatch in the vicinity of |ε| = 0 marks the re-
gion where the magnitude of p0 becomes inferior to q0. In the region
ε > 0 the μ = ε/2 line marks a boundary with the radiative exciton
superfluid X (light gray). We have used the parameters typical for
a MoS2 homobilayer. More details can be found in Appendixes B
and C.

equations:

2μ�B = (ε + gB|�B|2 + g↑B|�↑|2 + g↓B|�↓|2)�B,

μ�σ = (gσ↑|�↑|2 + gσ↓|�↓|2 + gσB|�B|2)�σ ,
(7)

where �σ and �B stand for the exciton and biexciton order
parameters, respectively, and σ = {↑,↓}. One has 2|�B|2 +
|�↑|2 + |�↓|2 = n. The effective interactions gσσ ′ account
for both the short-range part and the dipolar tail of the bare
potentials Vσσ ′ (r) [53]. We omit the momentum-dependent
correction due to the dipolar tail assuming that this cor-
rection is small compared to the mean contact part. This
way, we exclude the dipolar-supersolid scenario from the
consideration [30,31,61]. The phenomenologically introduced
potentials gσB and gB are positive constants on the order
of gσσ ′ . By symmetry, we assume g↑↑ = g↓↓ ≡ gX, g↑B =
g↓B ≡ gXB, and |�↑| = |�↓|. Miscibility of excitons with dif-
ferent spins requires g↑↓ < gX. We may let g↑↓ ≡ 0 without
loss of generality.

Solving the system (7) yields the phase diagram shown
in Fig. 2. The region ε < 0 corresponds to a true bound
state. Condensation here occurs directly into the XX phase,
with the condensate density growing as |�B|2 = (2μ − ε)/gB.
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Signatures of such a second-order transition in the exciton
thermodynamics were reported in Ref. [10].

In the region ε > 0 the condensation starts in the X phase
at the second-order phase transition line μ = 0. Depending
on whether

√
gXgB < gXB or

√
gXgB > gXB, the subsequent

transition to the XX phase may be either of the first or the
second kind, respectively. The second-order transition occurs
via an intermediate mixed phase (X-XX), where a fraction
of biexcitons is dissolved in the X superfluid. The X/X-XX
second-order boundary is located at μ = ε/(2 − gXB/gX). As
one increases the chemical potential μ, the biexciton fraction
grows, and at

μ = ε/(2 − gB/gXB) (8)

the X-XX mixture continuously turns into the XX superfluid.
Assuming that the effective interactions are inversely pro-

portional to the reduced mass of the particle relative motion

[53], one may conclude that the transition should be first order
(dashed line in Fig. 2). This result is modified dramatically by
the long-range exchange, as we shall see below.

IV. SO-COUPLED DEPAIRING OF A DIPOLAR
BIEXCITON SUPERFLUID

We now consider |ε| � h̄2q2
0/m. In this case the excitons

are subjected to the exchange fields [Eq. (1)]. We notice that at
the two-body level the exchange field �(p) couples the |↑↑〉
and |↓↓〉 repulsive scattering channels to the |↑↓〉 pairing
channel. One may also say that the exchange destroys a biex-
citon by flipping the spin of either of the two excitons. This
motivates us to consider the following BCS-like Hamiltonian
(rigorous derivation is given in Appendix A):

Ĥ� = EB +
∑

p,σ=↑,↓
ξpâ†

σ,pâσ,p + gX

2S

∑
p1,p2,q,σ

â†
σ,p1+qâ†

σ,p2−qâσ,p1
âσ,p2

−
∑

p

h̄[�B(p) + �B(−p)] · (S↑↓â†
↑,pâ†

↑,−p + S↓↑â†
↓,pâ†

↓,−p) −
√

h̄2nBβ

2πm

∑
p

â†
↑,pâ†

↓,−p + H.c. (9)

Here

EB = (ε − 2μ)NB + gBN2
B

2S
(10)

is the (grand canonical) energy of the molecular condensate
and

ξp = h̄2 p2

2m
+ h̄υp

2
+ gXB|�B|2 − μ (11)

is the energy of unpaired excitons in the mean-field potential
produced by the molecules. The occupation number NB is
related to the molecular order parameter by |�B|2 = NB/S ≡
nB. The last term accounts for the natural width β of the
resonance due to dissociation through the dipolar potential
barrier [31].

The molecular condensate unifies the microscopic ex-
change fields (3) into a macroscopic field

�B(p) = √
NBφp�(p), (12)

flipping the spins of unpaired excitons. In the relevant limit of
small exchange splitting of the single-particle states the wave
function of the exciton relative motion φp can be obtained
from the one-channel Schrodinger equation (A7). By virtue
of the spherical symmetry of V↑↓(r) the phase of φp does not
depend on p. Our choice of the sign of the last term in (9)
corresponds to this phase being zero.

A. The pair-breaking excitation spectrum

In the SO-coupled XX phase (which from now on we shall
call �-XX) one may neglect the interaction between unpaired
excitons [the third term in the Hamiltonian (9)]. The standard
Bogoliubov–de Gennes approach then yields the spectrum of

elementary excitations

ε(±)
p =

√√√√√ξ 2
p −

⎡
⎣

√
h̄2nBβ

2πm
± 2|h̄�

(s)
B (p) · S↑↓|

⎤
⎦

2

, (13)

where we have introduced the short-hand notation �
(s)
B (p) ≡

�B(p) + �B(−p). To develop a feel for the effect of the
exchange term on the biexciton superfluid we let β → 0.
In this limit, the spectrum (13) consists of a single branch.
The gap at p = 0 is given by ξ0 and would close precisely
at the second-order phase transition boundaries identified in
the previous section. This happens, however, only for suf-
ficiently small exciton dipole moment. As the bound state
approaches the scattering threshold, the collective exchange
field becomes increasingly large due to growth of the molec-
ular radius aB =

√
h̄2/m|ε|. Thus, assuming paB  1, one

has φp =
√

4πa2
B/S , which upon substitution into Eq. (12)

yields �B(p) = υp
√

4πnBa2
B . For aB � aX the spin-flip term

|h̄�B(p) · S↑↓| may outweigh the exchange contribution to
the kinetic energy [the second term in Eq. (11)] already in
the dilute regime naX  1. Depairing of excitons at finite
momentum accompanied by alignment of their spins along
�B(p) then costs less energy than ξ0: the gap shifts to a
circle of rotonlike minima at |p| = p0. The magnitude of p0 is
defined by the balance between the interaction of the exciton
spin with �B(p) and the massive part of the kinetic energy
[the first term in Eq. (11)]. The divergent behavior of �B(p)
at |ε| → 0 is regularized by accounting for the full momen-
tum dependence of the wave function φp (Appendix B). The
results are presented in Fig. 3. The insets show exemplary
spectra at two points on the phase diagram. On the ε > 0 side
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FIG. 4. The magnitude of the wave vector p0 as a function of
the chemical potential μ along the line ε = 4 of the phase diagram
shown in Fig. 3. Units of h̄2q2

0/m are used. In the �-XX phase
(dark gray area) the magnitude of p0 corresponds to the rotonlike
minimum in the pair-breaking excitation spectrum. In the �-X-XX
phase (magenta) the wave vector p0 defines the period and the local
orientation of the exciton stripes pictured schematically in the inset.
The transverse arrow depicts the linear polarization of excitons. The
magnitude of p0 here is a solution of Eq. (14).

the observed behavior extends far beyond the light-cone area
(hatched): the strength of the exchange field �B(p) at decreas-
ing aB is maintained by the increase of the biexciton density.
Closure of the new gap defines a second-order transition to an
exotic phase, whose nature will be elucidated below.

B. The �-X-XX phase

In contrast to the X-XX mixture discussed for the radia-
tive regime in Sec. III, the X component of the �-X-XX
phase represents a superposition of plane-wave condensates.
The corresponding mean-field energy density can be obtained
from Eq. (9) by substituting âσ,p/

√
S → �σ,±qδp,±q, where

δp,q = 1 for p = q and δp,q = 0 otherwise. Canonical trans-
formation of the resulting quadratic form shows that the
minimum of the energy is achieved by the choice �σ,q =
�∗

−σ,−q and �↑,q = −e−2iϕ�↓,q, with |q| = p0 being the so-
lution of

∂

∂q
|�(s)

B (q) · S↑↓| − h̄q

2m
= υ

4
(14)

and |�↑,±q| = |�↓,±q| ≡ |�X|, where

|�X| =

√√√√√
h̄2nBβ

2πm + 2|h̄�
(s)
B (p0) · S↑↓| − ξp0

8gX
. (15)

The exciton order parameter

�X(r) = i|�X| sin(p0 · r + θ − ϕ0) |ϕ0〉 (16)

has a periodical spatial structure and spin polarization given
by Eq. (5) with ϕ ≡ ϕ0. Here ϕ0 is the polar angle of p0. The
magnitude of p0 is on the order of a−1

B at the �-XX/�-X-XX
phase boundary and rapidly decreases as one lowers the chem-
ical potential (Fig. 4). We tentatively associate such behavior

with expansion of the size of bosonic “Cooper pairs” consti-
tuting the XX component.

The phase θ = Arg(�↑,q) is due to the broken UN (1) sym-
metry associated with conservation of the total number of
particles N = N↑ + N↓ + 2NB (neither N↑ + N↓ nor N↑ − N↓
is conserved separately in our resonantly paired model with
SO coupling). In addition to the gauge symmetry, the exciton
density wave (16) breaks rotational O(2) and translational Tp0

symmetries, similar to the smectic phase of liquid crystals.
Orientational ordering is accompanied by alignment of the
microscopic magnetic fields �(p0) according to the diagram
shown in the inset of Fig. 1. These add up with the molecular
field �B(p0) to induce the macroscopic spin texture S (r) =
|�X|2 〈ϕ0| S |ϕ0〉 sin2(p0 · r + θ − ϕ0).

The �-X-XX phase has two Goldstone modes, ϕ0 and θ ,
the latter standing simultaneously for smectic phonons in the
exciton order parameter (16) and for the superfluid phase of
the BCS-like biexcitonic component. The transition from this
phase to the normal state thus falls into the O(3) universality
class and is expected to be smeared by fluctuations [63,64]. At
T > 0 the density modulations would be destroyed, whereas
the orientational order would persist in domains defined by
thermal activation of dislocations [65]. A possible remedy is
to break explicitly either of the two continuous symmetries:
application of an external (electric or magnetic) field in the
structure plane or injecting the pair coherence into the system
by light would stabilize the new phase up to the standard BKT
point.

Smearing of the stripes by quantum and thermal fluctua-
tions should produce a small fraction of polarized excitons
inside the light cone. This would produce a weak PL sig-
nal polarized linearly along the stripes. The crystalline order
then should be signaled by the appearance of a higher-energy
“umklapp” emission blueshifted by h̄2 p2

0/2m. As one reduces
the molecular fraction NB, the magnitude of p0 [Eq. (14)]
approaches the light cone. At that point the �-X-XX phase
merges with the radiative exciton condensate X. Detailed in-
vestigation of this latter phase transition is outside the scope
of the present study and will be given elsewhere.

C. The role of the finite natural width β of the resonance

Before we conclude, let us briefly comment on the role of
the natural width β of the discrete biexciton level ε. At first
glance, the assumption ε � β might be safely replaced by
β = 0. This indeed provides a correct understanding of the
impact of the exchange interaction on the elementary excita-
tions and the phase diagram of a dipolar biexciton superfluid,
as exemplified by Figs. 3 and 4. The necessity of keeping finite
β stems from the symmetry considerations given in Sec. IV B.
In fact, the tunneling of excitons under the dipolar potential
barrier locks the relative phase between the X and XX com-
ponents, thus reducing the total number of symmetries to be
broken spontaneously. This makes possible the existence of
disordered domains of the �-X-XX phase at T > 0 (schemat-
ically illustrated in the inset of Fig. 4). In the considerations
given in Secs. IV A and IV B, such a reduction of symmetry
manifests itself as lifting of the degeneracy of the excitation
spectrum and of the ground state, respectively.
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In the radiative regime, the phase diagram accounting for
the finite β was worked out in Ref. [30]. By comparing that
result with the diagram shown in Fig. 3, one may conclude
that the latter will remain unchanged unless the boundary
of the radiative X-XX phase bulges beyond the correspond-
ing �-X-XX boundary. In the region ε < 0 broadening of
the level may be induced by a constant contribution to the
effective magnetic field acting on the exciton spin (e.g., by
application of an external in-plane magnetic field). Here it
may transform the segment of the line separating the �-X-XX
phase from the vacuum into a first-order boundary (provision-
ally marked by the dashed line in Fig. 3) [30].

Finally, we notice that part of our findings remains valid
also in the limit of a broad resonance (β � ε). The description
involving the last term in Eq. (9) here does not apply. In all
equations one should let β ≡ 0 identically and consider only
the region of a true bound state ε < 0.

V. CONCLUSIONS AND OUTLOOK

Our consideration reveals that the molecular coherence at
the BCS-BEC phase transition induces spontaneous alignment
of (pseudo)spins and effective magnetic fields associated with
the constituent bosons. In contrast to the phenomenon of
SO-coupled BEC [41–46], this genuinely many-body effect
does not require the presence of a finite-momentum minimum
in the single-particle dispersion. The effect is suppressed on
the BEC side of the transition by the mean-field repulsive in-
teractions. A rotonlike feature in the pair-breaking excitation
spectrum of the molecular BEC may be considered a precursor
of the effect.

The proposed setting of bright dipolar excitons in TMDs
and QWs provides the neatest demonstration of the phe-
nomena due to smallness of the exchange splitting of the
single-exciton states and monotonous character of their dis-
persions. However, our finding goes far beyond this particular
scenario. First, our idea applies immediately to microcavity
polaritons, where even SO coupling appears naturally due
to both photonic and excitonic TE-TM splittings [66–68]. A
polariton gas possessing the required pair correlations may be
generated by using an appropriate excitation source (e.g., a
radiative biexcitonic condensate XX). Second, bosonic BCS-
BEC transition was recently demonstrated in ultracold atoms
[69], revitalizing the subject [50–52]. These achievements
together with the progress in simulation of SO coupling in
neutral atoms [45,46,70,71] look promising for atomistic re-
alization of the model considered in our work.
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APPENDIX A: DERIVATION OF THE SO-COUPLED TERM
IN THE BCS-LIKE BOSONIC HAMILTONIAN

In order to derive the SO-coupled term appearing in the
BCS-like Hamiltonian presented in the main text, we first

consider single-particle Hamiltonians of the form

Ĥi = h̄2

2

(
m−1

∗ k̂
2
i m−1

LT k̂
2
−,i

m−1
LT k̂

2
+,i m−1

∗ k̂
2
i

)
, (A1)

which possess the useful property

Ĥ1 + Ĥ2

= h̄2

4

(
m−1

∗ K̂
2

m−1
LT K̂

2
−

m−1
LT K̂

2
+ m−1

∗ K̂
2

)
+ h̄2

(
m−1

∗ k̂
2

m−1
LT k̂

2
−

m−1
LT k̂

2
+ m−1

∗ k̂
2

)
.

(A2)

Here the index i labels the particles,

m−1
∗ = m−1 + m−1

LT ,

where m is the particle mass, k̂±,i = k̂x,i ± ik̂y,i, and we
have introduced K̂ = k̂1 + k̂2, K̂± = k̂±,1 + k̂±,2, k̂ = (k̂1 −
k̂2)/2, k̂± = (k̂±,1 − k̂±,2)/2. The spin basis is |↑〉 and |↓〉.
The Hamiltonians of the type (A1) govern the dynamics
of the lower exciton-polaritons in planar semiconductor mi-
crocavities. Derivation of a BCS-like Hamiltonian for the
single-particle Hamiltonians (A1) will be presented below.
The BCS-like pairing Hamiltonian for the �-X-XX and �-
XX phases of excitons, which is of interest in this work, can
be obtained along the same lines in the particular case of zero
center-of-mass momentum of the pairs. The corresponding
passage will be discussed at the end of this Appendix.

In the second quantization the general form of the pairing
Hamiltonian reads

Ĥ = 1

2

∑
σ1σ2σ3σ4

∑
k,K,q,Q

Hk,K,q,Q
σ1σ2σ3σ4

Ĉ†
σ2σ1,q,QĈσ3σ4,k,K, (A3)

where the pair annihilation operator Ĉσσ ′,k,K stands either
for a pair of free particles with the same spin, Ĉσσ,k,K ≡
âσ,−k+K/2âσ,k+K/2, or for the molecular operator, Ĉ↑↓,k,K =
Ĉ↓↑,k,K ≡ B̂K . In the latter case the summation in (A3) over
k (q) is consistently absent. The matrix elements are defined
as

Hk,K,q,Q
σ1σ2σ3σ4

=
∫

ψ∗
σ2σ1

(r, R)Ĥψσ3σ4 (r, R)drdR, (A4)

with r = r1 − r2 and R = (r1 + r2)/2. The wave functions are
taken as

ψσσ (r, R) = 1

S
eikr+iKR |σσ 〉 (A5)

for free particles and

ψ↑↓(r, R) = 1√
S

eiKRϕ↑↓(r) |↑↓〉 (A6)

for the molecules. Here the function ϕ↑↓(r) is a solution of the
Schrodinger equation(

h̄2k̂
2

m∗
+ V↑↓(r)

)
ϕ↑↓(r) = εϕ↑↓(r), (A7)

where the 2D potential V↑↓(r) is assumed to be spherically
symmetric. Upon substitution of

ϕ↑↓(r) = 1√
S

∑
k

φkeikr (A8)
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into Eq. (A7) one gets(
ε − h̄2k2

m∗

)
φk = 1

S

∑
q

V↑↓(q − k)φq, (A9)

which shows that the phase of the function φk does not depend
on k.

The operator Ĥ in Eq. (A4) is a sum of a free part con-
structed by the Kronecker summation of the single-particle
Hamiltonians (A1) and the two-body interaction:

Ĥ = Ĥ1 ⊕ Ĥ2 + V̂, (A10)

where

V̂ =

⎛
⎜⎝

V↑↑(r) 0 0 0
0 V↑↓(r) 0 0
0 0 V↓↑(r) 0
0 0 0 V↓↓(r)

⎞
⎟⎠. (A11)

The diagonal contribution has three terms. The first one,

1

2

∑
σ,k,K

(
h̄2K2

4m∗
+ h̄2k2

m∗

)
Ĉ†

σσ,k,KĈσσ,k,K,

is just the overall kinetic energy in a subsystem of free parti-
cles counted by pairs. This term can be recast in the standard

form ∑
σ,k

h̄2k2

2m∗
â†

σ,kâσ,k.

The second term is the two-body interaction between the
particles with alike spins:

1

2S

∑
k,q,K,σ

â†
σ,−q+K/2â†

σ,q+K/2Vσσ (k − q)âσ,−k+K/2âσ,k+K/2.

This term can be approximated by [53]
g

2S

∑
k,q,K,σ

â†
σ,−q+K/2â†

σ,q+K/2âσ,−k+K/2âσ,k+K/2,

where g is the effective potential and we omit the momentum-
dependent correction due to the dipolar tail of the bare
potential assuming that this correction is small compared to
the contact part. This excludes the dipolar-supersolid scenario
from the consideration [30,31,61].

The last diagonal term

∑
K

(
h̄2K2

4m∗
+ ε

)
B̂†

K B̂K

is the energy of free molecules.
By collecting the off-diagonal terms one obtains

h̄2

mLT

∑
k,K

[(
K2

−
4

+ k2
−

)
φkB̂K â†

↑,−k+K/2â†
↑,k+K/2 +

(
K2

+
4

+ k2
+

)
φkB̂K â†

↓,−k+K/2â†
↓,k+K/2 + H.c.

]
.

The molecular condensate is characterized by macroscopic occupation of the molecular state with K = 0. Following the
Bogoliubov prescription, one may let B̂K = √

NBδK0, where δK0 = 1 for K = 0 and δK0 ≡ 0 otherwise. One may then see that
the pair coherence enhances dramatically the effective magnetic field due to the LT splitting. For large molecular occupation
number NB � 1 one may have a sizable effect even for vanishingly small LT splitting of the single-particle states. The use of
a single equation [(A7), where one may let m∗ = m] for the determination of the bound state energy and wave function is fully
justified in this case.

Finally, we notice that the requirement for the single-particle Hamiltonians of the type (A1) to possess the property (A2) may
be relaxed if, in considering the molecules, one limits oneself to only the K = 0 state. Thus, for a radiative doublet of excitons
with k � q0, where q0 is the boundary of the light cone, one may write

Ĥ =
∑
σ,k

(
h̄2k2

2m
+ h̄υk

2

)
â†

σ,kâσ,k + g

2S

∑
k,q,K,σ

â†
σ,−q+K/2â†

σ,q+K/2âσ,−k+K/2âσ,k+K/2

+ εNB + h̄υ
√

NB

∑
k

(
ke−2iϕφkâ†

↑,−kâ†
↑,k + ke2iϕφkâ†

↓,−kâ†
↓,k + H.c.

)
. (A12)

Assuming h̄υk  ε, one may omit the exchange term in the
exciton kinetic energy and use Eq. (A7) (where one should let
m∗ = m) for the calculation of φk.

APPENDIX B: CALCULATION OF THE PAIR-BREAKING
EXCITATION SPECTRUM AND THE �-XX/�-X-XX PHASE

BOUNDARY

In the limit β → 0 the elementary excitation spectrum (13)
takes the form

εp =
√

ξ 2
p − 4|h̄�

(s)
B (p) · S↑↓|2. (B1)

To obtain a consistent description in the vicinity of the scat-
tering threshold |ε| → 0 where the molecular radius aB =√

h̄2/m|ε| diverges, one should account for the momentum
dependence of the wave function φp. For aB � Re, where Re

is the characteristic radius of the microscopic potential V↑↓(r),
the normalized solution of the two-body problem (A7) takes
the generic form

ϕ↑↓(r) = 1√
πa2

B

K0(r/aB), (B2)
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where K0(x) is the modified Bessel function of the second
kind. This yields

φp =
√

4π

S

aB

1 + (paB)2
. (B3)

This equation provides the proper behavior of the molecular
exchange field equation (12) as a function of the density nB

to be employed in Eq. (B1). However, because of too cumber-
some expressions produced by Mathematica in our attempt to
find the minimum of Eq. (B1) with the ansatz (B3), we had to
replace (B3) by a slightly modified form:

φp =
√

4π

S

aB√
1 + (paB)4

. (B4)

We then verify a posteriori that (B3) yields quantitatively
similar results [by direct evaluation of Eq. (B1) at several
points once the approximate location of the phase boundary
has been worked out using Eq. (B4)].

By substituting Eq. (12) with φp given by (B4) and Eq. (11)
with nB = (2μ − ε)/gB (see Sec. III), one gets

ε(ν,σ )
p (Ep, μ, ε)

=
√(Ep

2
+ σμ − ε

2 − σ

)2

− 2ν(2μ − ε)

2 − σ

Ep

|ε|
(

1 + Ep

|ε|
)−2

,

(B5)

where Ep = h̄2 p2/m and we have defined

ν = 8π h̄2υ2

gXB
(B6)

and

σ = 2 − gB

gXB
. (B7)

We have omitted the exchange term h̄υp/2 assuming it is
small compared to ε. This assumption is justified for dipo-
lar excitons characterized by a relatively long lifetime τ .
The minimum E�(μ, ε) of the function (B5) is then rep-
resented by the unique real root of a quintic polynomial.
We substitute E�(μ, ε) back into (B5) to get a family of
functions ε

(ν,σ )
� (ε, μ) ≡ ε(ν,σ )

p [E�(μ, ε), μ, ε] defined on the
plane μ versus ε. We then graphically obtain solutions of
ε

(ν,σ )
� (ε, μ) = 0 in this plane.

The solution used to trace the �-XX/�-X-XX boundary
in Fig. 3 has been obtained for ν = 10 (in units of h̄2q2

0/m)
and σ = 1. This value of ν can be realized, e.g., with τ = 100
ps and gXB = g̃h̄2/m, where m is the exciton mass in MoS2

and g̃ = 1. The known value of the bright exciton lifetime in a
monolayer of MoS2 amounts to several picoseconds [37]. It is
quite plausible that this value may be increased by two orders
of magnitude when going to a homobilayer structure. The
choice g̃ ∼ 1 is justified a posteriori by evaluating the well-
known expression g̃ = 4π/ ln(Ea/2μ) for the relevant values
of μ in Fig. 3. Here Ea = h̄2/ma2, with a being on the order of
aX (see, e.g., Ref. [53] and references therein). The interaction
constant gX is assumed such that the first-order ray anticipated
in Sec. III falls into the area occupied by the �-X-XX phase
in Fig. 3 and, consequently, is irrelevant. Finally, by using the
relation nB = (2μ − ε)/gB one can estimate nB ∼ 1011 cm−2

for the biexciton density at the �-XX/�-X-XX phase
boundary.

APPENDIX C: THE PERIOD OF THE EXCITON STRIPES
IN THE �-X-XX PHASE

The energy density of the �-X-XX phase reads

E�−X−XX

S
=

⎛
⎝ξq −

√
h̄2nBβ

2πm
− 2|h̄�

(s)
B (q) · S↑↓|

⎞
⎠|�X|2

+ 4gX|�X|4 + EB

S
,

(C1)

where EB is given by Eq. (10). Minimization with respect to q
yields Eq. (14). Neglecting the υ/2 term and using the ansatz
(B4), one gets (in the notations adopted in Appendix B)

∂

∂Eq

√
ν(2μ − ε)Eq

2(2 − σ )|ε|(1 + E2
q /ε2)

= 1

4
. (C2)

By introducing x ≡ Eq/|ε| one may reduce this equation to

∂

∂x

√
x

1 + x2
= 1

4
f (μ, ε), (C3)

where

f (μ, ε) ≡ |ε|
√

2(2 − σ )

ν(2μ − ε)
(C4)

is a monotonously decreasing function of the chemical po-
tential μ. One can see that x = 1 at f = 0 and x → 0 at
f → +∞. The asymptotic solution x → 0 at 2μ → ε + 0
defines the boundary with the radiative X-XX phase (light
gray area on the phase diagram shown in Fig. 3).
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