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Searching for and investigating supersolids is a long-term outstanding problem in physics. In addition to the
solid element 4He and cold atoms as potential candidates for the supersolid, the quantum system of light realized
by circuit quantum electrodynamics is also a promising platform. In this paper, we propose a supersolid phase,
i.e., a superradiant supersolid of light, where superradiant, superfluid, and solid orders coexist. We theoretically
simulate the extended Jaynes-Cummings-Hubbard model describing the circuit quantum electrodynamics sys-
tems, mainly by the large-scale worm quantum Monte Carlo method, and find that a superradiant supersolid
phase exists on triangular lattices due to the antiferromagnetic correlation between photons via light-atom
coupling. We also confirm that the previous supersolid of light given by Bujnowski et al. [Phys. Rev. A 90,
043801 (2014)] is not stable. The phase transition between our superradiant supersolid phase and the superradiant
solid phase can be continuous (first order) and above (below) the “symmetry point.” This is not the same as
the pure Bose-Hubbard model on triangular lattices. The results herein could help in the search for a new
superradiant supersolid phase in circuit quantum electrodynamic experiments and other light-matter coupling
systems.
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I. INTRODUCTION

The supersolid (SS) phase is one of the most paradoxical
predictions of quantum theory and has attracted great interest
for decades [1–4]. It can simultaneously possess both su-
perfluid and solid features, although these characteristics are
always mutually exclusive. This extraordinary phase breaks
the phase invariance of the superfluid and the continuous
translational invariance [5]. It was first assumed that it might
emerge in solid 4He in 1970 [3]. However, after decades of
theoretical and experimental efforts [6], proof of a SS phase
in solid 4He is still elusive [7–10]. Recently, a breakthrough
occurred in ultracold quantum matters, where two groups
declared observations of the SS phase with cavity-mediated
interactions [11] and spin-orbit coupling [12] and another
three independent groups reported the generation of the SS
phase through dipolar interactions [13–15]. However, the va-
lidity of the claim that it has been observed preliminarily in
cold atoms needs better confirmation [16].

Apart from the 4He and cold-atom experiments, the quan-
tum fluid of light as another quantum simulation candidate has
been developed extensively [17]. It is universally known that
light obeys the wave-particle duality, and it can be defined as a
collection of photons generated by a light source which freely
spread until absorbed. If frequent collisions between photons
can occur, this might lead to collective fluidlike behavior in
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the many-photon system, where the photon-photon interaction
can be implemented by light-matter coupling. One of the
promising media for the study of quantum fluids of light is the
circuit quantum electrodynamics (CQED) system, which can
be realized by an array of coupled cavities based on supercon-
ducting Josephson junctions [18,19]. The tight confinement
of microwaves on a chip naturally results in an extremely
strong atom-photon coupling, offering a new platform for SS
experiments [20].

The CQED system can theoretically be described by
the Jaynes-Cummings-Hubbard (JCH) model [21–25], where
many interesting phenomena in light-matter coupling systems
have been predicted [26–30], such as superfluid-insulator tran-
sitions of polaritons [26], fractional quantum Hall physics
[31], quantum transport [32], quantum-state transmission
[33], on-site disorder [28,34], etc. However, exploration of the
physics of the JCH model on lattices is still a challenge, even
when using reliable large-scale simulations with the quantum
Monte Carlo (QMC) method. For example, the nature of the
superfluid-insulator transition was misunderstood, and was
found to have three-dimensional XY universality, as reported
by Hohenadler et al. [35]. At the same time, the photon-atom
coupling leads to a superradiant superfluid [36] or superradi-
ant solid [37] in Bose systems and the superradiation-normal
phase transition in a Fermi gas [38] trapped in a single cavity.

Naturally, the following question arises: by extending the
single-cavity case to the lattices of a cavity array with various
geometries, can one expect the JCH model to possess a new
phase, superradiant SS (SRSS)? SRSS is expected to have
superradiation, superfluid, and solid orders simultaneously.
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The basic issue of this paper is to explore whether or not
the SRSS phase exists, how the phase transition properties
are different from the pure Bose-Hubbard (BH) model [39],
and how to realize the SRSS phase both theoretically and
experimentally.

Reference [40] showed the SS phase of light in the JCH
model by using the cluster mean-field (CMF) method [41–43].
Given that the CMF method ignores quantum fluctuations,
the authors of this reference expected a reliable method to
vindicate their findings. Two of the authors of Ref. [44] used
the density matrix renormalization group method [45,46] to
give an interesting paired SS phase for the JCH model on
different ladders. Furthermore, on two-dimensional triangular
lattices, they presented a preliminary phase diagram also using
the CMF method. Although the cluster size has up to 36 sites,
we still need more reliable methods to confirm the stability of
the SS phase. At any rate, there are still unsolved problems,
including the unmentioned superradiant properties of the SS
phase.

To address these questions, we first map the problem to
a BH model [39] on a two-layer geometry, where one layer
describes the photon and the other describes the atom exci-
tation [47]. We then use the large-scale worm QMC method
[48–51], to simulate the model in various geometries. We
find that for bipartite lattices, there is no SS phase in the
extended JCH model. The SS phase previously predicted by
the CMF method [40] is not stable; that is, the transition
between the solid phase and the superfluid phase is actually
of first order with obvious jumping of the order parameters
such as superfluid stiffness and structural factors with larger
lattices. To search for a SRSS phase of light, the JCH model on
the two-dimensional triangular lattices is studied, and a stable
SRSS phase of light is found. We also use the compressibility
of photons and atom excitation to analyze the superradiant
properties of the SS phase. The phase transition type of the
SRSS phase to the solid phase is not completely the same as
the ones from the pure BH model, especially on triangular
lattices. For example, the (1/3)-filled superradiant solid (SII)
to the SRSS phase can be first order, and this has not been
reported, as discussed in detail in Sec. IV.

The outline of this paper is as follows: Section II intro-
duces the model, its difference from the pure BH model, the
methods, and the measured quantities. Section III shows the
results on bipartite lattices such as one-dimensional (1D) and
two-dimensional (2D) square lattices. Section IV gives the
results of the JCH models on triangular lattices. Section V
shows how the experimental realization of the model is made
and the expression of its parameters. Conclusions are made
in Sec. VI. In Appendix A, a one-dimensional chain and a
square lattice are illustrated. In Appendixes B and C, we
compare the results from both the WQMC and exact diag-
onalization (ED) methods and also show the details of the
CMF methods.

II. MODEL, METHODS, AND THE
MEASURED QUANTITIES

A. Model and its mapping

The extended JCH model includes a repulsion between
excitations of the adjacent cavities with strength V , which is

FIG. 1. The mapped two-layer triangular lattices for the JCH
model, where the top and bottom layers are denoted as photon and
atom layers, respectively. The hopping of the photons t , atom-photon
coupling U , and interactions between atom excitations V are la-
beled. A one-dimensional chain and a square lattice are illustrated in
Appendix A.

different from the atom-atom repulsion interaction. The model
has many cavities, and each cavity can be considered a site in
the lattices. In each cavity, there is a two-level atom. Simulta-
neously, photon tunneling between cavities is considered.

To simulate the model conveniently, the model is mapped
onto a pure BH model in two-layer geometries, e.g., two-layer
triangular lattices, as shown in Fig. 1, where the top layer and
bottom layer describe the state of the photon and the level
of the atom, respectively. For a specific site r = (x, y), if the
two-level atom sits in the ground state, then the state at (x,
y, z = 1) should be empty, and the excited state should be
occupied. Similarly, the state at (x, y, z = 2) describes the
photon number in each cavity.

In comparison to the pure BH model, the interaction and
hopping between layers are different. In the photon layer,
only photon hopping without repulsion exists, and in the atom
layer, only repulsion without the hopping term exists. The
extended JCH Hamiltonian is defined as

H =
∑

i

(
H JC

i − μni
) − t

∑
〈i, j〉

(a†
i a j + H.c.) +

∑
〈i,j〉

Vnσ
i nσ

j ,

(1)

where the total number of excitations is ρ ≡ ∑
i ni =∑

i(n
σ
i + na

i ), μ is the chemical potential, a†
i and ai are, re-

spectively, the photon creation and annihilation operators at
lattice site i, and the term (a†

i a j ) with strength t represents
the photon hopping between cavities. The on-site coupling
between the photons and the atom on each site i can be
described by the JC Hamiltonian H JC

i ,

H JC
i = ωna

i + εnσ
i + U (a†

i σi + aiσ
†
i ), (2)

where U is the atom-photon coupling strength and represents
the tunneling between layers, ω is the frequency of the model
of the photon creation and annihilation operators at lattice site
i, and ε is the transition frequency between two energy levels.
For simplicity, we make the restriction ω = ε = 0. Operators
na

i = a†
i ai and nσ

i = σ
†
i σi are the photon number and the num-

ber of excitations of the atomic levels, respectively. The Pauli
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matrices σ
†
i (σi) represent the raising (lowering) operators for

the atom levels.

B. Differences from the BH model

In 1970 [52] and 1973 [53], a lattice Hamiltonian was
theoretically applied to investigate SS. In recent decades,
experiments on optical lattices in cold-atom systems make
it possible to synthesize and investigate the SS phase in the
laboratory, where the BH models became the most popular
model for studying SS. Exploration of the BH model and its
variations is quite extensive. This includes the two-component
BH model [54–56], the paired BH model [57–62], and the
BH model with next-nearest-neighbor interactions [63,64].
Other efforts, such as the Bose-Fermi mixture [65,66], the
fermion system [67], the spin system [68,69], spin-orbit cou-
pled systems [70], and dipolar bosons [71], are also attractive
possibilities.

As discussed in the last section and described in Fig. 1, the
JCH can be mapped to the unconventional BH model on two
layers. In the first layer, there is no interaction term, while in
the second layer there is no tunneling between adjacent sites.
At the same time, there is tunneling between layers. However,
the SRSS phase can emerge in the both upper and bottom
layers through the interaction induced by the atom-photon
coupling.

C. Methods and the quantities measured

The conclusive results are mainly obtained by the WQMC
method, and the details can be found in Refs. [48–51]. Here, in
the real simulations, the inverse temperature β = 1/kbT takes
larger values, namely, β = 100, 500, . . . , 1500, to allow the
systems to converge to the ground state.

We have tried a stochastic series expansion QMC method
[72,73]. However, due to local atom-photon coupling and the
no-hopping term between each atom layer, the updating effi-
ciency is very slow in low-temperature regimes. The needed
quantities for the WQMC algorithm are as follows:

(I) The local photon density ρa
i = 〈na

i 〉, and local atom
excitation ρσ

i = 〈nσ
i 〉.

(II) The superfluid stiffness [74]

ρs =
d∑

r=1

L2−d〈Wr〉2

2dβt
, (3)

where Wr is the winding number of the photons in the upper
layer in the x or y direction. The stiffness characterizes the
nondiagonal long range order of the system.

(III) The structural factor of photons is given by

S(Q)/N = 〈ρQρ
†
Q〉, (4)

where ρQ = (1/N )
∑

i na
i exp(iQri ), N = L × L is the total

number of physical sites for 2D systems, and N = L for 1D
systems. For a one-dimensional lattice, the wave vector is
at Q = (π, 0). In real space, the density of excitation obeys
configurations of the form (101010 · · · ) or (010101 · · · ). The
phase here is called the solid I (SI) phase. For square lattices,
the solid with Q = (π, π ) is also called the SI phase.

For two-dimensional triangular lattices, the wave vector
is at Q = (4π/3, 0), and excitation densities obey configura-
tions of the form (001001 · · · ) or (110110 · · · ). The densities
are 1/3 and 2/3 and are called the SII phase and SIII phase,
respectively.

(IV) The momentum distribution is given by

n(Q) = 1

N

∑
j, j′

〈a†
j a j′ 〉eiQ(r j−r j′ ). (5)

(V) The compressibility of photons and atom excitation is
defined as [37]

κ
a(σ )
T = β

N
〈(Na(σ ) )2〉 − 〈Na(σ )〉2, (6)

where Na(σ ) = ∑
na(σ )

i . The two terms can be extracted from
the structure factor S(qx, qy) at qx = 0 and qy = 0 and the
average of number of photons (or atom excitations). The
compressibility is used to identify superradiation, which is
a collection of photons and atom excitations, and is directly
related to the fluctuation of the total number of photons (atom
excitations).

The quantities ρ, S(π )/L, and energy density E are cal-
culated by ED and the WQMC methods. The results are
consistent with each other and are shown in Appendix B.
In the SRSS phase, S(Q)/N , ρ

x(y)
s , and κ

a(σ )
T are nonzero in

the thermodynamic limit. Moreover, the global phase diagram
is plotted with 	 = 〈a〉 in the CMF frame, as illustrated in
Appendix C for completeness.

III. RESULTS FOR THE JCH MODEL ON
BIPARTITE LATTICES

In this section, we focus on the results of the JCH models
on both the 1D and square lattices.

A. Phase diagram and details of the 1D JCH model

For the 1D hard-core extended JCH model, the maximum
number of photons is restricted to be one in each cavity. It
is well known that the number of photons is not fixed in a
grand-canonical ensemble [35]. Therefore, the soft-core pho-
ton system has been checked, and the physics does not change
[44].

Figure 2 shows the CMF phase diagram [41–43], which
contains the empty, SI, SS, superfluid (SF) and Mott insulator
(MI) phases, by plotting 	 in the plane (t/U , μ/U ).

As discussed in Ref. [24], in the regime at a large hopping
t/U , the ground state energy becomes negative and can be
made arbitrarily small by increasing the total number of exci-
tations. Here, since the maximum number of photons is fixed,
the SF phase remains stable.

The green dashed line labels the position scanning by
WQMC, and the red triangles are the phase boundaries given
by the WQMC method. In Figs. 3(a)–3(c), the results of ex-
citation densities ρ, the structural factor S(π )/L of photons,
and superfluid stiffness ρx

s are shown as a function of μ/U
with system sizes up to L = 96 and a thermodynamic limit
L = ∞ with the sufficiently low temperature β = 1500.

In the interval −0.933 < μ/U < −0.903, three quantities
have platforms with S(π/L) �= 0 and ρx

s = 0, and the phases
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FIG. 2. Phase diagram and a detailed description of 	 for the
1D hard-core extended JCH model with V/U = 0.4 by the CMF
method. The green dashed line labels the position scanning, and the
red triangles are the phase boundaries given by the WQMC method.

are all SI. By doping vacancies or excitations on the SI
phase, S(π )/L converges to zero, and ρx

s becomes nonzero at
L → ∞. The behavior of the jump at those two ends of the
platform represents clear first-order transitions between the
SF and SI phases, and obviously, no SS phase exists. The SS
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FIG. 3. Simulation results from WQMC method for (a) excita-
tion densities ρ (up to L = 96), (b) structural factors S(π )/L, and
(c) superfluid stiffness ρs as a function of μ/U with system sizes
L = 8, 16, 24, 32, 40, 48, and ∞ at parameters V/U = 0.4 and
t/U = 0.05.

0.26

0.28

0.3

ρ i

(a) μ/U=-0.88

ρa

i
ρσ

i

0.20

0.30

ρ i

(b) μ/U=-0.92

0 16 32 48 64
i

0.22

0.24

ρ i

(c) μ/U=-0.94

FIG. 4. Local photon density ρa
i , local atom excitation density

ρσ
i , and solitonic signature in the upper and bottom layers as a

function of position i with V/U = 0.4 and t/U = 0.05. (a) μ/U =
−0.88, with on-site excitation density ρ > 1/2. (b) μ/U = −0.92,
with ρ = 1/2. (c) μ/U = −0.94, with ρ < 1/2.

phase is unstable against the phase separation, similar to the
pure BH models [75–78]. Furthermore, the phase transition
points from the empty phase to the SF phase. The predictions
of the CMF and WQMC methods are completely the same at
μ/U = −1.05.

B. Beats or solitons in the SF phase

In the regime −1.05 < μ/U < −0.933, S(π )/L is not zero
for a finite system size [see Fig. 3(b)]. To further understand
S(π )/L, we illustrate the local photon densities ρa

i and the
local atom excitation density ρσ

i as a function of position i
under different values of chemical potential μ in Fig. 4. The
commensurate density distribution arises in Fig. 4(b), which
confirms the periodic ground state long-range crystalline or-
der in the solid phase. The on-site excitation density in the
solid phase is calculated to be ρ = 1/2, including both pho-
tons and atoms. Therefore, the local photon density ρa

i in the
upper layer oscillates between 0.19 and 0.31 with the average
value being 0.25.

As shown in Figs. 4(a) and 4(c), changing the chemical
potential μ (or the removal/addition of photons) gives rise
to the soliton patterns [79,80]. Only the uniform density os-
cillation is seen, and no beats or soliton patterns appear in
Fig. 4(b). The number of solitons increases as the photons are
further added or removed. Meanwhile, the density oscillation
becomes weak. In other words, starting with the SI phase and
changing the chemical potential μ leads to a solitons + SF
crossover instead of the SS phase. In the thermodynamic limit,
the crossover region vanishes, and the system experiences
first-order transitions immediately.
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FIG. 5. Simulation results from the WQMC method of superfluid
stiffness ρs as a function of β for the hard-core 1D JCH model.
The parameters are V/U = 0.4, μ/U = −1, and t/U = 0.05, and
the system sizes are L = 16, 32, 40, and 48.

At the end of this section, the value of β is discussed.
Usually, for the BH model, the ground state is reached if
βt > L. For the JCH model, through careful checking, β

should be much larger than L/t . In particular, for L = 48,
ρs should reach convergence here at β = 48/0.05 ≈ 1000.
However, as shown in Fig. 5 with L = 16, 32, 40, and 48, the
temperature should be sufficiently low enough for a ground
state. Therefore, in this section, β is chosen to be 1500.

C. Hard-core JCH model on square lattice

Although the square lattice is a bipartite lattice, the physics
between the 1D and 2D models may be different. To verify
this, we still need to perform comprehensive WQMC simula-
tions on the 2D geometries. Various global phase diagrams in
the CMF frame were shown in Ref. [40].

As shown in Fig. 6, we also set t at the fixed value t/U =
0.025 and then measure ρ, S(Q)/N , and ρs as a function of
μ/U . In a manner similar to that of the 1D model, we still
see the SI phase (0,1,0,1) order in both directions, and the
wave vector is Q = (π, π ) in the range of −1.960 < μ/U <

−1.698, with signatures ρ = 0.5, S(Q)/N �= 0, and ρs = 0.
At the two ends of the SI phase, S(Q)/N and ρs change dis-
continuously, which clearly indicates that no SS phase exists
in the square lattices.

The histogram for ST (Q)/N obtained at the phase transi-
tion point in Fig. 6(d) shows two peaks which indicate the
first-order transition between the SI and SF phases. Here, the
total structure factor ST (Q)/N is defined by replacing na

i with
nσ

i + na
i as a signature of the double peaks and is thus more

clear.

IV. RESULTS FOR THE JCH MODELS ON
TRIANGULAR LATTICES

A. Phase diagram and scanning the cut

The BH model on triangular lattices has been studied ex-
tensively [81–86]. Figure 7 shows the phase diagram obtained
from the CMF method, which contains the empty, SII, SIII,
MI (ρ = 1), SS, and SF phases in the plane (t/U , μ/U ). The
colored symbols denote the numerical results obtained by the
WQMC method. The phase diagram of the pure BH model on
triangular lattices has been obtained [81,82] and is symmetric
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Q
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12x12x2

(b)
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0
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ρ s
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8x8x2
12x12x2

(c)

0 0.05 0.1 0.15 0.2 0.25
S

T
(Q)/N

1000

10000

1e+05
P(

S T(Q
)/N

)

(d) 12x12x2  μ/U=-1.6999

FIG. 6. Simulation results from the WQMC method for (a) ρ,
(b) S(Q)/N , and (c) ρs as a function of μ/U for the JCH model
on the square lattices. The parameters are t/U = 0.025, β = 1000,
with L = 4, 8, 12. Dashed regimes are for first-order transitions.
(d) Histogram of ST (Q)/N obtained at the phase transition point
μ/U = −1.6999 for system size L = 12.

FIG. 7. The triangular lattice phase diagram and a detailed de-
scription of 	 for the 2D JCH model with V/U = 0.4 by the CMF
method. The red triangles are the phase boundaries given by the
WQMC method, and the green dashed line labels the cut scanning
with μ/U = −0.77.
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∞

(c)

0.018 0.0245
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0
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σ)

/ β

κ
T

a
/ β

2.5κ
T

σ
/ β

(d)

15x15x2

9x9x2

∞

12x12x2

FIG. 8. Simulation results from the WQMC method for (a) ρ,
(b) S(Q)/N , (c) ρs, and (d) κ

a(σ )
T /β as a function of t/U for the JCH

model on triangular lattices. The parameters are μ/U = −0.77, β =
500, and the system sizes are L × L × 2, where L = 6, 9, 12, and 15.

about the particle-hole symmetric point μ/V = 3. Here, for
the JCH model, the phase diagram is not symmetric due to
the atom-photon coupling, and a similar symmetric point can
be found between the SII and SIII phases, which locates itself
at about μ/U = −0.775 (green dashed line) via the WQMC
method. In a manner similar to that of the pure BH model,
the solid-SF transition is first order, and the SF-MI transitions
are continuous. Surrounded by the two types of solid phases
and the SF phase, the SS phase emerges in the closed regime
illustrated by lines with triangles, as shown in Fig. 7.

Figure 8 shows the WQMC simulations for ρ, ρs, S(Q)/N ,
and κ

a(σ )
T /β as a function of t/U . In the regimes of t/U <

0.018, the systems are trapped in the SIII (ρ = 2/3) solid
phase, with a signature of S(Q)/N �= 0 and ρs = 0. When t/U
increases, induced vacancies lead to the decrease from the
excitation density, and both S(Q)/N and ρs are nonzero. In
particular, in the region of 0.018 � t/U � 0.0245, the system
sits in the SS phase stably in some special parameter regime
of the triangular JCH model.

In Fig. 8(d), the nonzero κ
a(σ )
T in the whole plotted regime

means that the SF, solid, and SS phases possess the superradi-
ant property; namely, the SS phase is actually a SRSS phase.

B. S(Q)/N and n(Q)

Examples of the structure factor are shown in Figs. 9(a)
and 9(b), with L = 6 and 12, respectively. The two peaks of
S(Q)/N with the maximum value are located at (0,0) because

FIG. 9. Distribution of S(qx, qy) and momentum distribution
n(qx, qy) for the SRSS phase on triangular lattices of size L × L × 2.
(a) S(qx, qy), L = 6. (b) S(qx, qy), L = 12. (c) n(qx, qy), L = 6.
(d) n(qx, qy), L = 12. The parameters are μ/U = −0.77, β = 500,
t/U = 0.015.

of a partial translational invariance of the densities on lattices.
In the SRSS phase at μ/U = −0.77, t/U = 0.015, we ob-
serve a second maximum at Q = (4/3π, 0), with a

√
3 × √

3
diagonal long-range order of 2/3 filling [81,82]. This peak
indicates the presence of a density ordering in the liquid phase,
which defines a SRSS phase. The momentum distribution in
Eq. (5) is also obtained as well as observed experimentally.
The two peaks of n(qx, qy) with maximum values are located
at (0,0), which is a sign of the SF phase, as shown in Figs. 9(c)
and 9(d).

C. The SRSS phase and the phase transitions

In the hard-core BH model on triangular lattices, it has
been verified that the SS-SF transition type is continuous or
first order, depending on the regimes of the chosen μ at the
“symmetry point” or deviation away from the symmetry point,
respectively [87,88].

In Fig. 10, we carefully examine the phase transitions
among the SII, SRSS, and SF phases, with respect to the devi-
ation from the symmetry point, i.e., the dashed line in Fig. 7.
When μ/U = −0.78 (pink line with circles) in Fig. 10(c),
the first-order phase transition occurs between the SII and
SRSS phases, confirmed by the bimodal distribution of total
structural factors ST (Q)/N in Fig. 10(d). This kind of phase
transition has not been reported for the pure BH model.

Simultaneously, the transition from the SRSS phase to
the SF phase is first order at μ/U = −0.80, as there is an
obvious jump of S(Q)/N at t/U = 0.031 [see the red line
in Fig. 8(c)]. However, the transition is still continuous when
μ/U = −0.78 and −0.79, the same as the case with μ/U =
−0.77.

V. EXPERIMENTAL REALIZATION

The important experimental realization of the extended
JCH model consists of inducing the interaction between pho-
tons or atom excitations, while the interaction between atom
excitations could induce decoherence [89]. Fortunately, as
shown in Fig. 11, Ref. [90] proposed that the cross-Kerr
interaction between photons can be realized by the coupling
between qubit 1 (blue box) and adjacent photon resonators
(red balls). Qubit 2 (green box) is inserted by us for the
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FIG. 10. Simulation results from the WQMC method for
S(Q)/N as a function of t/U for the JCH model on triangular lattices
with parameter β = 500; the fixed sizes are (a) L = 9, (b) L = 12,
and (c) L = 15. The colored lines denote different values of μ/U
near the phase. (d) Histogram of ST (Q)/N obtained at the phase
transition point μ/U = −0.78 and t/U = 0.017 for system sizes
L = 15 (orange) and 21 (purple). (e) Histogram of ST (Q)/N obtained
at the phase transition point μ/U = −0.80 and t/U = 0.038 for
system sizes L = 15 (orange) and 21 (purple).

purpose of light-matter coupling according to Ref. [91]. This
qubit is a superconducting Josephson junction, and it can act
as a two-level atom [89].

With the basic resonator parameters C and L, the basic
qubit parameters, i.e., capacitance CJ and Josephson energy
EJ , and the resonator-qubit mutual capacitance Cg, one can es-
timate the experimental realizable parameters for the extended
JCH model.

The coupling between the resonator (photon) and qubit
(atom) is

U = Cg

C


eVrms

(
EJ

2EU
C

) 1
4

, (7)

where C
 = C + CJ , Vrms = √
ω0/C is the rms voltage of

the vacuum field mode, and ω0 = 1/
√

LC is the resonant
frequency of the microwave photon. EU

C = e2

2(CJ+Cg) is the
charging energy of qubit 2, according to the parameters ex-
tracted from the work of Ref. [92] where the value of EU

C is
about 0.4 GHz.

FIG. 11. (a) Schematic diagram of the experimental realization
of the extended JCH model. The red ball is the photon resonator,
the blue box is superconducting qubit 1, and the green box is super-
conducting qubit 2. (b) Effective circuit diagram of the system. The
green qubit with capacitance CJ and Josephson energy EJ is matched
to the resonator by a comparably large gate capacitance Cg. Qubit 1
(blue) with the same CJ and EJ connects two resonators (red) which
are represented by the inductor L and capacitor C.

The cross-Kerr interactions between photons [90] can be
described as

V = −2CJ

C̃
EV

C ,

where EV
C = e2/(2C̃) is the charging energy of the nonlinear

element (qubit 1) and C̃ = C1 + 2CJ , 1/L̃ = 1/(2L1) + 1/LJ .
C1 and L1 are modified symbols of C and L, respectively.
Because when the photon resonator is coupled to qubit 2, the
basic resonant frequency of photons ω0 changes and can be

modified to be ω1 = ω0(1 + C2
g

C(CJ+Cg) ) = 1/
√

L1C1. Although
it is attractive (V < 0), the system could still get nonuniform
photon solids [93].

The hopping term [90] is described as

t = ω2�,

with ω2 = 1/
√

L̃C̃ and � = 2L1
2L1+LJ

− CJ
C1+2CJ

.

VI. CONCLUSION AND DISCUSSION

In conclusion, beyond the superradiant properties in the
single-cavity system [36–38], we have theoretically investi-
gated the hard-core JCH model on various lattices of cavity
arrays using the large-scale WQMC method. Through the
measurement of ρ, S(Q)/N , ρs, and κ

a(σ )
T /β, for a bipartite

lattice such as the one-dimensional chain and square lattices,
the previously found SS phase [40] is not reasonable.

We proposed the existence of the SRSS phase and found
that it exists on triangular lattices. Different from the pure
BH models, the (1/3)-filled solid (SII)-SRSS transition can be
obviously first order, depending on the regimes of μ chosen.

The possible CQED realization of the SRSS phase has
great advantages as the experiment can be easily designed and
synthesized artificially and duplicated to assemble large-scale
quantum systems and the light can be guided or confined
in optical fibers without cooling [18]. At the same time, the
distance between the cavities is comparably large, which is
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FIG. 12. The mapped two-layer one-dimensional chain and
square lattices from the JCH model, where the top and bottom layers
can be denoted as photon and atom layers, respectively. The hopping
of photons t , atom-photon coupling U , and interactions between
atom excitations V are labeled.

suitable for the manipulation and measurement of each cavity
separately [20].

The results in this paper could stimulate the search for the
new SRSS phase in circuit quantum electrodynamic experi-
ments and other light-matter coupling systems.
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APPENDIX A: THE GEOMETRIES OF
ONE-DIMENSIONAL CHAIN AND SQUARE LATTICES

In Fig. 12, we mapped the JCH model to a two-layer
triangular lattice. Therein, we show the JCH model geometry
of the one-dimensional chain and square lattices.

APPENDIX B: COMPARISON WITH
EXACT DIAGONALIZATION

Before the large-scale simulations, we compare the results
of small systems such as L = 4 using the WQMC method with
ED for parameters t/U = 0.05 and V/U = 0.4 (Fig. 13). We

-1 -0.8 -0.6μ/U
0

0.5

1

ρ MC  β=200
ED   β=100
ED   β=200
ED   β=300
ED   β=400
ED   β=500

(a)

-1 -0.8 -0.6μ/U
0

0.25

S(
π)

/L
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(b)

-1 -0.8 -0.6μ/U
-0.2
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E
MC  β=200
ED   β=100
ED   β=200
ED   β=300
ED   β=400
ED   β=500

(c)

FIG. 13. Comparison of the simulation results of the one-
dimensional JCH lattice with L = 4 from both the ED and WQMC
methods for (a) ρ, (b) S(π )/L, and (c) E for various temperatures
β = 100–500.

perform QMC at the fixed temperature β = 200, while ED is
done with β = 100, 200, 300, 400, and 500. Quantities such
as excitation densities ρ, the structural factors S(π )/L, and
the energy densities E are shown and are consistent with each
other.

APPENDIX C: CMF METHODS

In the CMF frame, the total Hamiltonian is taken to be
Htot = Hm f + Hed , where the exactly treated Hed is the Hamil-
tonian inside the cluster, such as the triangular lattice (ABC)
illustrated in yellow in Fig. 14.

FIG. 14. A triangular lattice by three sublattices, A, B, and C.
The triangle denoted in yellow is the cluster treated exactly. The
interaction and hopping illustrated by the red lines such as AB and
AC are decoupled approximately.
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The Hamiltonian Hm f is given by

Hm f = − qt
∑

i, j∈ce

[(a†
i + ai )	 j + (a†

j + a j )	i − 2	i	 j]

+ qV
∑

i, j∈ce

(
nσ

i ρσ
j + nσ

j ρ
σ
i − ρσ

i ρσ
j

)
. (C1)

Here, site A connects B and C by four red lines. Therefore,
on average, q should be equal to 2 for triangular lattices. The
symbol ce means sites along the edge of the yellow cluster.
The symbol 	i = 〈ai〉 is the superfluid order parameter, and
ρσ

i = 〈nσ
i 〉 is the number of atomic excitations.

TABLE I. Values of the order parameters for typical phases.

Solid SF SS MI

	 0 �= 0 �= 0 0
�	 �= 0 0 �= 0 0
�ρ �= 0 0 �= 0 0

In practice, we determine the self-consistent solutions of
ρσ

i and 	i by iterative calculation of the ground state of the
cluster system until the mean fields converge.

In Figs. 2 and 7, 	 is plotted as background for the phase
diagram (see Table I).
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