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Nonreciprocal electronic transport in PdCrO2: Implication of spatial inversion symmetry breaking
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Noncollinear spin structures, such as helimagnetic structures, have been gathering attention because of their
nontrivial magnetic transport induced by topological effects. For a precise determination of spin structure,
in addition to traditional neutron diffraction measurements, the time-reversal-odd rectification of electronic
transport, which is referred to as nonreciprocal electronic transport, provides useful information because of the
symmetry sensitivity. We observed nonreciprocal electronic transport below the Néel temperature in an itinerant
antiferromagnet, PdCrO2, with a 120◦ spin structure. This implies breaking of spatial inversion symmetry owing
to the magnetic ordering. Possible spin structures are discussed based on the magnetic field dependence of
nonreciprocal transport.
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I. INTRODUCTION

Noncollinear spin structures frequently give rise to un-
usual magnetotransport properties. For example, the fictitious
field originating from scalar spin chirality deflects an electric
current, giving rise to the unusual magnetic field depen-
dence of Hall conductivity [1]. To explore the mechanisms
of such properties, an accurate determination of magnetic
structure is essential. While neutron scattering measurements
are the most powerful method for determining magnetic order,
other experimental probes sensitive to the magnetic symmetry
also provide valuable information and are promising for fur-
ther refinement. In particular, the second-harmonic generation
(SHG) of light has played a significant role in the identifica-
tion of noncentrosymmetric magnetic structures [2,3].

Another class of symmetry sensitive probes is nonrecip-
rocal unidirectional responses [4,5]. When spatial inversion
and time-reversal symmetries are simultaneously broken in
some materials, the response to a stimulus moving along a
direction become different from that to reversely moving one.
In the case of electronic transport, Rikken and coworkers
first showed that the nonreciprocity can be deduced by the
substitution of current I for the wave vector k in the expansion
of diagonal conductivity based on the Onsager’s relation [6]

σ (k, H ) = σ (0, 0) + αkH + . . .

→ σ (I, H ) = σ (0, 0) + αIH + . . . . (1)

Here, σ (k, H ) is an electrical conductivity at k and magnetic
field H , and α is a proportionality constant. They suggested
that α should be nonzero for chiral materials and its sign
dependent on the chirality, and experimentally demonstrated
these features for a macroscopically twisted object. Subse-
quently, nonreciprocal electronic transport under magnetic
field has been reported for several materials with noncen-
trosymmetric crystal structure such as BiTeBr, MnSi, and
Te [7–9]. In CrNb3Se6, the nonreciprocal electronic trans-

port was observed to be considerably enhanced below the
helimagnetic ordering temperature [10]. Quite recently, Jiang
et al. showed that the magnetic breaking of spatial inversion
symmetry can also induce the nonreciprocal electronic
transport in a magnetic field for a helimagnet MnP with cen-
trosymmetric crystal structure [11]. In general, for symmetry
broken materials, the resistivity ρ depends on the sign of the
electric current as follows:

ρ = ρ1 + ρ2 j, (2)

where j is the electric current density and ρ1 and ρ2 are
constant tensors. Either the time-reversal or spatial inversion
operation changes the sign of ρ2. In this case, the electric field
E is expressed as

E = ρ1 j + ρ2 j2. (3)

This equation suggests that the nonreciprocal electronic trans-
port can be viewed as the transport version of SHG. Similarly
to the optical case, the tensor ρ2 is quite sensitive to the
magnetic symmetry [2]. Therefore, it should be useful for
probing noncentrosymmetric magnetic structures.

In the present work, we study the magnetic structure of
the itinerant noncollinear antiferromagnet PdCrO2 in terms
of nonreciprocal electronic transport. We show the crystal
and magnetic structures of PdCrO2 in Fig. 1(a). PdCrO2 has
a centrosymmetric delafossite crystal structure consisting of
Pd and Cr triangular lattices and interstitial oxygen. Below
the antiferromagnetic transition temperature TN = 37 K, Cr
magnetic moments show so-called 120◦ antiferromagnetic
order in a plane parallel to the c-axis [12,13]. The non-
linear anomalous Hall effect emerges below approximately
20 K. Its origin was proposed to be the spin chiral-
ity mechanism [14–16]. While a recent neutron diffrac-
tion measurement suggests staggered stacking of 120◦
magnetic structures with different chiralities [13], further
refinement seems useful for examining the unconven-
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FIG. 1. (a) Crystal and magnetic structure of PdCrO2. Large and small spheres show Cr and Pd atoms, respectively. Oxygen is not shown
for clarity. Arrows on Cr atoms represent one possible 120◦ magnetic structure [model 1 shown in Fig. 6(d)]. Transparent circles stand for the
helical planes. (b) Scanning electron microscope (SEM) image of the sample device. The device was sculpted out of a single crystal using a
focused ion beam (FIB). Electrical contacts between the sample and electrodes were made from FIB-deposited Pt (Ptdep). (c) Top view of the
device structure and experimental setup. The electric current is along the a-axis of the crystal. The c-axis is orthogonal to the device plane.
(d) Temperature dependence of the electrical resistivity. The data reported by Takatsu et al. [17] is reproduced for comparison. Inset shows the
derivative of resistivity for the present sample.

tional magnetic transport in this system. Here, we ob-
served finite nonreciprocal electronic transport below the
Néel temperature, implying breaking of spatial inversion
symmetry due to magnetic order. Possible magnetic structures
are discussed based on the magnetic field angle dependence of
nonreciprocal electronic transport.

II. EXPERIMENT

We grew single crystals of PdCrO2 utilizing the flux
method. The details were almost the same as those reported
in the literature [17]. For the precise measurement of non-
reciprocal electronic transport, large electric current density
is needed. For this purpose we extracted a small rectangular
piece from a single crystal and microfabricated it by using
focused ion beam (FIB) techniques [18]. To obtain larger
electric current densities, the sample cross section was further
reduced, as shown in Figs. 1(b) and 1(c). We measured the
linear resistivity and nonreciprocal electronic transport with
the standard four-probe method in a superconducting magnet.
An AC electric current was applied along the thin rectangular
bar with approximately 1.0 × 1.85 μm2 cross-sectional area,
which was parallel to the crystal a-axis. We measured the first
and second harmonic voltages between upper or lower pairs
of electrodes with a distance of 20 μm by using a lock-in
amplifier with a frequency of 11.15 Hz. According to Eq. (3),
the second harmonic signal corresponded to the nonrecipro-
cal electronic transport, while the first one corresponded to
ordinary resistivity [7]. The sample device was rotated in the
superconducting magnet so that magnetic fields were applied
along various in-plane crystal axes.

Figure 1(d) shows the temperature dependence of lin-
ear resistivity for the fabricated device. The amplitude of
the applied current density was 5.4 × 107 A/m2, which was
much smaller than that in the measurement of nonreciprocal
electronic transport. The linear resistivity exhibited metallic
temperature dependence and a kink around TN . While the
residual resistivity was larger than that in the previous report
[17], the temperature dependence was almost the same. The
inset shows the derivative of resistivity. A clear peak was
discerned at TN = 37 K, which also coincides with the pre-
vious report [17]. These observations indicate that the sample
degradation due to the FIB fabrication was minimal. In the
measurement of nonreciprocal electronic transport, the sam-
ple resistance was used for estimating the sample temperature,
taking the effect of Joule heating into account.

III. RESULTS AND DISCUSSION

Before discussing the nonreciprocal electronic transport,
let us discuss the temperature and magnetic field dependence
of magnetoresistance to study the nature of magnetotrans-
port in this system. Figure 2 shows the magnetoresistance
�ρ1/ρ1 = [ρ1(H ) − ρ1(0)]/ρ1(0) below 51 K for H ⊥ j and
H ‖ j. For both configurations, �ρ1/ρ1 increased with tem-
perature below around 30 K and decreased in the higher
temperature range. The magnitude for the H ⊥ j case was
much larger than that for the H ‖ j case. Figures 3(a) and 3(b),
respectively, show the temperature dependence of �ρ1/ρ1 at
respective magnetic fields for H ‖ j and H ⊥ j. For H ‖ j,
�ρ1/ρ1 showed a broad maximum around TN , while the
maximum temperature was lower for H ⊥ j. �ρ1/ρ1 for
both configurations seemed to vanish when the tempera-
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FIG. 2. Magnetic field dependence of the magnetoresistance
�ρ1/ρ1 in (a) H ‖ j and (b) H ⊥ j.

ture approached 0 K. Above the maximum temperature, the
decrease was quite gradual. These temperature dependencies
suggest the relation to the antiferromagnetism. The anisotropy
of magnetoresistance is relatively large in this material. In
conventional metals, such anisotropy may be caused by the
difference of carrier dynamics parallel and perpendicular to
a magnetic field; the magnetic field deflects carriers moving
along the perpendicular direction owing to the Lorentz force,
but does not have the same result on those moving along
the field. If this is the case, the magnetoresistance should
become larger as the scattering rate or resistivity is decreased
following the so-called Kohler’s rule [19]. Nevertheless, in
the present case, as the temperature is decreased below
30 K, the resistivity decreases and the magnetoresistance also
decreases. Therefore, we cannot ascribe the origin of

FIG. 3. (a,b) Temperature dependence of magnetoresistance
�ρ1/ρ1 in (a) H ‖ j and (b) H ⊥ j. The vertical dashed line
represents the Néel temperature.

anisotropy to the Lorentz force. Hence, we ascribed the origin
to the modification of anisotropic magnetic structure in the
magnetic field. When the magnetic field is applied, the mag-
netic moments are tilted to the field direction, and the Zeeman
energy is reduced. The Zeeman energy gain is maximum
when the helical plane is perpendicular to the magnetic field.
Therefore, the helical plane tends to rotate in a magnetic field
so as to be perpendicular to the mangetic field. Such helical
plane rotations are generally observed in helimagnets [20,21].
In PdCrO2, studies of neutron diffraction and magnetic torque
probed the magnetic transtion relevant to the helical plane
rotation at around 7 T below 1.5 K [22]. At higher temper-
ature, the helical plane rotation should emerge in the lower
field region, but the transition signature may be smeared out
because the in-plane anisotropy is smaller than the thermal
energy [23]. The strong anisotropy of magnetoresistance
seems to be reflected in the difference of resistivities parallel
and perpendicular to the helical plane. In fact, the temperature
dependence of magnetoresistance seems to be reflected by
the evolution of antiferromagnetic correlation. The possible
origins of magnetoresistance are spin scattering and magnon
scattering. In the first case, the incomplete magnetic ordering
scatters the carriers and magnons do in the second case. In any
case, the magnetoresistance should increase with decreasing
temperature in the high temperature region above TN owing
to the evolution of antiferromagnetic correlation, and decrease
toward the lowest temperature because of either the comple-
tion of antiferromagnetic ordering or the dominance of elastic
scattering.

Next, let us move on to the nonreciprocal electronic trans-
port. We measured the second harmonic resistivity with a
current density of 1.0 × 109 A/m2 to study the nonrecipro-
cal electronic transport. According to previous works [5,6],
the component of second harmonic resistivity showing an-
tisymmetric magnetic field dependence corresponds to the
nonreciprocal electronic transport, while the symmetric com-
ponent includes extrinsic effects such as problems related to
the electrical contacts. To extract the intrinsic component, we
antisymmetrize the second harmonic resistivity as

ρ2ω
asym = [ρ2ω(H ) − ρ2ω(−H )]/2, (4)

where ρ2ω is the second harmonic resistivity. Figure 4(a)
shows the magnetic field dependence of nonreciprocal elec-
tronic resistivity ρ2ω

asym at various temperatures for H ‖ j and
H ⊥ j. While the nonreciprocal signal was hardly observed
above TN for both configurations, noticeable signals began
to grow with decreasing temperature from TN . For H ‖ j,
a positive signal increased in the high field region. At low
temperatures, linear-like field dependence was observed. On
the other hand, a step-like positive signal was discerned be-
low TN for H ⊥ j. At low temperatures, negative linear field
dependence appeared. To discuss the temperature dependence
in more detail, we plot the average of ρ2ω

asym between 4.5 T and
6 T for H ‖ j, and that between 0.5 T and 2 T for H ⊥ j as
functions of temperature in Figs. 4(b) and 4(c). It is clear from
these figures that nonreciprocal electronic transport evolves
rapidly below TN . This implies that the magnetic order broke
the spatial inversion symmetry. Nevertheless, we have to note
that a small but nonzero signal was observed above TN , al-
though the crystal structure is reported to be centrosymmetric.
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FIG. 4. (a) Magnetic field dependence of the nonreciprocal electronic resistivity ρ2ω
asym at various temperatures for H ‖ j and H ⊥ j. While

the negative field data obtained by Eq. (4) are merely the copy of the positive field data, we also plot the data at negative fields just for clarity
of the figure. Vertical offsets are added also for the clarity. The dashed lines represent the zero levels. (b,c) Temperature dependence of the
averaged nonreciprocal electrical resistivities in (b) H ‖ j and (c) H ⊥ j. For H ‖ j, the data above 4.5 T are averaged, while the averaged
region is 0.5 T � H � 2 T for H ⊥ j. The vertical thin dashed line represents the Néel temperature. The thick dashed lines are merely guides
for the eyes. (d) ρ2ω

asym at 14 K after the phase transition with the application of parallel magnetic field H and electric current j(+poling), that
after the transition with antiparallel H and j (-poling), and that after the transition without H and j (no poling).

Perhaps symmetry breaking at the contacts or edges of the
sample caused the extrinsic voltages. Around 15 K, ρ2ω

asym for
both the configurations begins to decrease with decreasing
temperature. Because the magnetoresistance is suppressed in
this temperature range, the change of transport characteristics
may cause the temperature change. Another point that we have
to take into account is the effect of magnetic domains. In gen-
eral, when the inversion symmetry is broken at the magnetic
ordering temperature, there should be magnetic domains that
are converted to each other by the spatial inversion operation.
The example is shown in Appendix B. The equally distributed
domains should cancel the nonreciprocal electronic transport
signal. In reality, we observed a finite signal below TN , in-
dicating unequal volumes of these magnetic domains. Jiang
et al. [11] controlled the helicity domain of the helical spin
structure in MnP by means of the simultaneous application
of the magnetic field and electric current in the course of

the magnetic transition. We also tried to control the mag-
netic domain with a magnetic field and DC electric current.
Figure 4(d) shows ρ2ω

asym at 14 K for H ‖ j after the magnetic
transition with a magnetic field of 6 T and electric current den-
sity of 3.2 × 109 A/m2, together with that after the magnetic
transition without any external stimuli. As clearly shown in
the figure, the nonreciprocal transport signal was not affected
by the application of a magnetic field and electric current
in the course of the phase transition. Therefore, the domain
volumes ratio relevant to the spatial inversion symmetry
seems fixed by some effects such as stress, and cannot be
controlled by the external fields [24]. While the sign and
magnitude of nonreciprocal electronic transport may depend
on the samples in this case, the temperature and magnetic field
dependencies should be reproducible.

To understand the magnetic symmetry in more detail,
we investigated the magnetic field angle dependence of
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FIG. 5. (a) Nonreciprocal electronic resistivity at 18 K as a
function of magnetic field with various angles θ . The sign definition
of θ is shown in Fig. 1(c). Vertical offsets are added for clarity. The
dashed lines represent the zero levels. (b) Image of helical plane rota-
tion in a tilted magnetic field. (c) Angle dependence of nonreciprocal
electronic resistivity averaged in the magnetic field range of 0.5 T
� H � 2 T at 18 K.

nonreciprocal electronic transport. Figure 5(a) shows the
nonreciprocal electronic transport at 18 K as a function of
magnetic fields in various directions. When the magnetic field
was perpendicular to the electric current, a step-like increase
of the nonreciprocal electronic transport was observed. The
magnitude of the step gradually decreased as the magnetic
field direction became closer to that of the electric current.
Figure 5(c) shows the average of nonreciprocal electronic
transport at 18 K between 0.5 T and 2 T as a function of the
magnetic field angle, showing sin θ -like angle dependence.
As mentioned above, the helical plane is readily rotated in a
magnetic field so as to be perpendicular to the magnetic field,
as shown in Fig. 5(b). Therefore, the magnetic field angle can
be viewed as the angle of the helical plane.

Then let us discuss possible spin structures based on
the magnetic field dependence. From a previous report on
a neutron diffraction experiment [12,13], it is quite certain
that a 120◦ spin structure is realized at zero magnetic field.
The chirality of the 120◦ structure in a Cr layer is oppo-
site to those in neighboring layers [13]. Namely, two layers
of 120◦ spin structures with different signs of chirality are
alternately stacked along the c-axis. Hereafter, we discuss
the nonreciprocal electronic transport in the alternating-
chirality magnetic structures that are consistent with the
neutron diffraction experiment and R3̄m symmetry [13] (see
Appendix C). The simplest structure with alternating chirality
is shown in Fig. 6(c). In this case, the spin angles of three
sublattices of 120◦ spin structures are the same for each layer,
but the order of the three angles is different: S1, S2, S3, S1, . . .,

for odd layers and S1, S3, S2, S1, . . ., for even layers. When the
helical plane is perpendicular to the a-axis, the magnetic point
group is 2′/m′, which is the centrosymmetric one and nonre-
ciprocal transport should vanish. In this crystal structure, there
are two other axes equivalent to the a-axis in the plane (θ =
60◦ and 120◦). Therefore, if this magnetic structure were re-
alized, the nonreciprocal transport would be suppressed in the
small magnetic field along these axes, which is different from
the present observation. Figure 6(d) shows an alternating-
chirality spin structure with lower symmetry. This is close
to one of possible spin structures proposed by Takatsu et al.
[13], but slightly modified so as to be expressed by two mag-
netic wave vectors (−2/3, 1/3, 0) and (1/3,−2/3, 1/2) (see
Appendix C). In this case, the spin moments in the odd layers
are not parallel to any moments in the even layers, while all
the helical planes are parallel to each other. The magnetic
point group becomes 2′ when the helical plane is perpen-
dicular to the a-axis. In this magnetic symmetry, the spatial
inversion and time-reversal symmetries are both broken, and
therefore nonreciprocal electronic transport may emerge even
at zero magnetic field. According to a symmetry analysis
(Appendix A), the nonreciprocal transport is allowed when
the electronic current is perpendicular to the principal
axis of 2′ symmetry, which corresponds to the nor-
mal direction of the helical plane. In contrast, when
the current is parallel to the principle axis, the nonre-
ciprocal transport is forbidden. We here speculate that
the observed step-like structure may be explained based
on this symmetry. In this magnetic state, the magnetic
structure after the time-reversal operation is discriminated
from the original one (see Appendix B). Then, the signs of
nonreciprocal transport for these two states should be opposite
to each other. In a certain magnetic field, one of these two
states is favored, and the other is favored in the reversed
field. Therefore, the step-like feature of nonreciprocal trans-
port around zero field is expected. When H is parallel to the
θ = 0◦ direction, the helical plane is normal to the a-axis and,
therefore, the nonreciprocal transport along the a-axis is for-
bidden. On the other hand, it is allowed at θ = 60◦ and 120◦.
The magnetic symmetry becomes lower but the extrapolated
θ dependence may be expected when the magnetic field is not
parallel to the principle axes of the crystal structure. Thus, the
observed θ dependence can be qualitatively explained. Never-
theless, it is not certain at present and needs to be investigated
how effectively domain control is achieved in a low magnetic
field. In spite of the time-reversal symmetry breaking, the
magnetic domains do not have net magnetization. The higher-
order magnetic susceptibility couples to the magnetic field,
but, at present, we are not so sure how effectively the magnetic
field control the time-reversal symmetry. In Fig. 6(e), an even
lower symmetry candidate of the spin structure is depicted.
The neutron diffraction study suggests that this is the most
plausible structure [13]. This is realized by alternating rotation
around the c-axis of the spin structure shown in Fig. 6(d). In
this case the magnetic point group is 1, irrespective of the
helical plane angle. The magnetic field angle dependence of
nonreciprocal transport cannot be explained, at least in terms
of symmetry, based on this model. Our measurement suggests
that symmetry lowering from model 2 should be small so that
the nonreciprocal transport is suppressed at θ = 0.
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FIG. 6. (a) Image of the 120◦ spin structure and helical planes. The numbers 1, 2, 3 stand for the order of three cyclic spins along the
a-axis. When two spins out of the three are exchanged, the chirality is reversed. Two chiral states are denoted as chirality + and chirality −.
(b) Illustration of Cr magnetic layers. A, B, C, D, E, F, and so on are labels for the layers. The 120◦ spin structures in layers A, C, and E
have chirality −, and those in layers B, D, and F have chirality +. (c) Illustration of simple 120◦ magnetic structure with staggered chirality
(model 1). Odd layers and even layers have opposite chirality, but helical planes are parallel to each other and the angles of the three spins are
the same for all layers. (d) Illustration of lower-symmetry magnetic structure with staggered chirality (model 2). The angles of three spins for
layers A, C, and E are different from those for layers B, D, and F. All the helical planes are parallel. (e) Illustration of even lower-symmetry
magnetic structure with staggered chirality (model 3). The helical planes for layers A, C, and E are not parallel to those for B, D, and F in this
case.

IV. CONCLUSION

In conclusion, we observed nonreciprocal electronic
resistivity below TN . This implied that the antiferromagnetic
order breaks the spatial inversion symmetry. A possible 120◦
structure with alternating chirality was discussed based on
the angular dependence of nonreciprocal transport while the
complete understanding of magnetic field dependence was
not achieved with this model at present. To our knowledge,
there have been no previous studies of magnetic structures
based on nonreciprocal electronic transport. The present result
may pave the way to a new direction in magnetic symmetry
research.
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APPENDIX A: SYMMETRY ANALYSIS OF
NONRECIPROCAL ELECTRONIC TRANSPORT IN THE 2′

MAGNETIC POINT-GROUP SYMMETRY

In the magnetic systems, the nonreciprocal electronic
transport should strongly depends on the magnetic symme-
try. For this reason, the magnetic field dependence does not
follow a simple linear relation [10,11]. In the 2′ magnetic
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FIG. 7. Four magnetic domains of model 2 in Fig. 6(d).
Domain − + and Domain + − are transformed by spatial inversion
(I) and time-reversal (T ) operations from Domain + +, respectively.
Domain − − is by the combination of I and T operations.

point group symmetry, the magnetic structures before and
after the time-reversal operation are discriminated from each
other and the conductivity should also depend on which
structure is realized. We labeled them as η = ±1 and de-
duced the nonreciprocal electronic conductivity similarly to
the Rikken’s method mentioned above as

σ (k, η) = σ + αkη + . . .

→ σ (I, η) = σ + αIη + . . . . (A1)

The second term seems to correspond to the spontaneous
nonreciprocal electronic transport. When the electric current
is parallel to the principle axis of 2′ symmetry, 180◦ rotation
of the system around the current direction does not change the
conductivity, but η should be reversed. Thus, the nonrecipro-
cal electronic transport vanishes when the current is parallel
to the principle axis. If it is not parallel, there is no relation
that forbids the nonreciprocal transport. While Neumann’s
Principle for space-time symmetry cannot be applied to trans-
port properties, the selection rule obtained above is similar to
that based on Neumann’s Principle [25].

APPENDIX B: MAGNETIC DOMAINS FOR MODEL 2

In this system, there are many possible magnetic domains.
As examples, we show the possible magnetic domains in the
model 2. In this case, there are three equivalent helical plane
directions. For each helical plane direction, there are four
magnetic domains. As shown in Fig. 7, the time-reversal or
spatial inversion operation transforms one into another.

APPENDIX C: TWO WAVE VECTORS’ DESCRIPTION
OF MAGNETIC MODELS

Based on the neutron diffraction experiment and R3̄m
space group symmetry, Takatsu et al. showed that a
magnetic domain should be expressed with two wave vectors
q1 = (−2/3, 1/3, 0) and q2 = (1/3,−2/3, 1/2) [13]. Here

we confirm that our spin models satisfy the constraint. In
model 3, spins at 1, 2, 3 Cr sites for A, C, E layers are

SA1 = cos φ1ez − cos α1 sin φ1ey

− sin α1 sin φ1ex, (C1)

SA2 = cos (φ1 − 2/3π )ez − cos α1 sin (φ1 − 2/3π )ey

− sin α1 sin (φ1 − 2/3π )ex, (C2)

SA3 = cos (φ1 + 2/3π )ez − cos α1 sin (φ1 + 2/3π )ey

− sin α1 sin (φ1 + 2/3π )ex. (C3)

Spins for B, D, F layers are

SB1 = cos φ2ez + cos α2 sin φ2ey

− sin α2 sin φ2ex, (C4)

SB2 = cos(φ2 − 2/3π )ez + cos α2 sin(φ2 − 2/3π )ey

− sin α2 sin(φ2 − 2/3π )ex, (C5)

SB3 = cos(φ2 + 2/3π )ez + cos α2 sin(φ2 + 2/3π )ey

− sin α2 sin(φ2 + 2/3π )ex. (C6)

Here, ex, ey, ez are the basis of a Cartesian coordinate system
and ex ‖ (1, 0, 0) and ez ‖ (0, 0, 1). By the Fourier transfor-
mation, these spins can be expressed as

S(R) = S1 cos(q1 · R − φ2) + S2 sin(q1 · R − φ2)

+ S3 cos(q2 · R − φ2) + S4 sin(q2 · R − φ2), (C7)

where R is the positions of 18 Cr spin moments in a unit cell

RA1 = (−2/3,−4/3, 1/6), RB1 = (0, 0, 1/2),

RC1 = (−1/3,−2/3, 5/6), RD1 = (−2/3,−4/3, 7/6),

RE1 = (0, 0, 3/2), RF1 = (−1/3,−2/3, 11/6),

RX2 = RX1 + (1, 0, 0),

RX3 = RX1 + (2, 0, 0) (X = A, B,C, . . . , ). (C8)

The constant vectors S1, S2, S3, S4 are

S1 = S

2
{[1 + cos(φ1 − φ2)]ez − cos α1 sin(φ1 − φ2)ey

− sin α1 sin(φ1 − φ2)ex}, (C9)

S2 = S

2
{sin(φ1 − φ2)ez + [cos α1 cos(φ1 − φ2) − cos α2]ey

+ [sin α1 cos(φ1 − φ2) + sin α2]ex}, (C10)

S3 = S

2
{sin(φ1 − φ2)ez + [cos α1 cos(φ1 − φ2) + cos α2]ey

+ [sin α1 cos(φ1 − φ2) − sin α2]ex}, (C11)

S4 = S

2
{[1 − cos(φ1 − φ2)]ez + cos α1 sin(φ1 − φ2)ey

+ sin α1 sin(φ1 − φ2)ex}. (C12)

Thus, we successfully described the spin structure of model 3
with the two wave vectors. Because the models 1 and 2 are the
particular cases of model 3, they can also be expressed.
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