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Department of Theoretical Physics and Astrophysics, Faculty of Science, Pavol Jozef Šafárik University,

Park Angelinum 9, 040 01 Košice, Slovakia

(Received 25 January 2021; revised 15 April 2021; accepted 3 May 2021; published 14 May 2021)

A quantum spin- 1
2 antiferromagnetic Heisenberg trimerized chain with strong intradimer and weak monomer-

dimer coupling constants is studied using the many-body perturbation expansion, which is developed from the
exactly solved spin- 1

2 Ising-Heisenberg diamond chain preserving correlations between all interacting spins of
the trimerized chain. It is evidenced that this perturbation approach is superior with respect to the standard
perturbation scheme developed from a set of noninteracting spin monomers and dimers, and its accuracy
even coincides, up to a moderate ratio of the coupling constants, with state-of-the-art numerical techniques.
The Heisenberg trimerized chain shows the intermediate one-third plateau, which was also observed in the
magnetization curve of the polymeric compound Cu3(P2O6OH)2 affording its experimental realization. Within
the modified strong-coupling method we have obtained the effective Hamiltonians for the magnetic field
range from zero to the one-third plateau, and from the one-third plateau to the saturation magnetization. The
unconventional second-order perturbation theory provides extremely accurate results for both critical fields of the
intermediate one-third plateau up to a moderate ratio of the coupling constants as convincingly evidenced through
a comparison with numerical density-matrix renormalization group data. It is shown that the derived effective
Hamiltonian also provides at low enough temperatures sufficiently accurate results for magnetization curves
and thermodynamic properties as corroborated through a comparison with quantum Monte Carlo simulations.
Using the results for the effective Hamiltonian, we additionally suggest a straightforward procedure for finding
the microscopic parameters of one-dimensional trimerized magnetic compounds with strong intradimer and
weak monomer-dimer couplings. We found the refined values for the coupling constants of Cu3(P2O6OH)2

by matching the theoretical results with the available experimental data for the magnetization and magnetic
susceptibility in a wide range of temperatures and magnetic fields.

DOI: 10.1103/PhysRevB.103.184415

I. INTRODUCTION

Low-dimensional quantum Heisenberg spin models show
exceptionally diverse magnetic behavior due to the compe-
tition between several factors: strong quantum fluctuations,
breaking of full translational symmetry, frustrated interac-
tions, and external fields [1]. The most pronounced feature
in such systems is the emergence of fractional plateaus in the
magnetization curve [2]. The possibility of observing the frac-
tional magnetization plateaus in one-dimensional quantum
spin models is governed by the Oshikawa-Yamanaka-Affleck
rule [3]. In agreement with this rule, the one-third plateau
was observed in the magnetization curve of the polymeric
compound Cu3(P2O6OH)2, which represents an experimental
realization of the spin- 1

2 Heisenberg trimerized chain [4–9].
To the best of our knowledge, the trimerized Heisenberg chain
appeared as a first example for which the quantum mag-
netization plateau was theoretically predicted [10], and the
difference between the quantum and classical fractional mag-
netization plateaus can also be analyzed on this paradigmatic
example [11].

In view of its complexity, the quantum Heisenberg
trimerized spin chain was studied mainly by numerical meth-
ods such as, for instance, exact diagonalization [10], the
transfer-matrix renormalization group technique [12], or the
density-matrix renormalization group method [13]. Exact so-
lutions are available only for some limited versions of the
model such as, for instance, XY [14–16] and Ising-Heisenberg
trimerized chains [17]. Among other analytical approaches
one can mention series expansions for the plateau boundaries,
which were found using the strong-coupling expansion from
the limit of noninteracting dimers and trimers [18].

The asymmetric Heisenberg diamond chain represents a
paradigmatic example of the trimerized spin chain with frus-
trating interactions, which is widely studied due to its relation
to azurite (see, e.g., Refs. [19–21]). The strong-coupling
approach turned out to be a powerful tool for the study
of low-temperature properties of the asymmetric Heisenberg
diamond chain [22]. This approach takes into account the
quantum corrections to the flat-band picture of magnon exci-
tations inherent in the case of a symmetric diamond chain and
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provides a relatively good description of the magnetization
curve in the field range outside magnetization plateaus [22]. A
further improvement of this approach was given in Ref. [23],
where the localized-magnon approach was developed at high
enough magnetic fields.

Recently, a strong-coupling approach was developed from
the exactly solved Ising-Heisenberg model on symmetric di-
amond [24] and orthogonal-dimer [25] chains. It has been
verified that the modified calculation procedure shows a no-
ticeable improvement with respect to the expansion around
the limit of noninteracting dimers due to the fact that the
unperturbed Hamiltonian already accounts for interdimer
correlations between z components of spins in addition
to all intradimer correlations. Thus the application of the
strong-coupling expansion from the exact solution for the
Ising-Heisenberg model seems to be quite a promising tool
also for the trimerized antiferromagnetic Heisenberg chain,
which corresponds to the extremely asymmetric case of the
diamond chain. The aim of this paper is twofold. First, we
would like to use the quantum antiferromagnetic Heisenberg
trimerized chain as a relatively simple example for the anal-
ysis of the perturbative expansion about the exact solution of
the Ising-Heisenberg model. Second, we will show how the
suggested approach can be implemented for the evaluation
of the microscopic parameters of the polymeric magnetic
compound Cu3(P2O6OH)2 [4–6,9] serving as its experimental
realization.

The plan of the paper is as follows. In Sec. II, we con-
sider the perturbation theory about the Ising-Heisenberg limit
and compare derived results with other numerical approaches.
Here, we also calculate thermodynamic quantities for the ef-
fective and original models in order to verify the validity of the
established approach. All the numerical density-matrix renor-
malization group (DMRG) [26] and quantum Monte Carlo
(QMC) [27] simulations were performed by adapting routines
from the Algorithms and Libraries for Physics Simulations
(ALPS) project [28]. In Sec. III the results derived for the
effective model are used to find the microscopic parameters of
the polymeric compound Cu3(P2O6OH)2, which provide an
appropriate description of its magnetic properties. The most
important findings are summarized in Sec. IV.

II. PERTURBATION THEORY ABOUT THE
ISING-HEISENBERG DIAMOND CHAIN

Let us consider the quantum spin- 1
2 Heisenberg trimerized

chain [see Fig. 1(a)] described by the following Hamiltonian:

H =
N∑

i=1

[
J1s1,i · s2,i + J2(s2,i · s3,i + s3,i · s1,i+1)

− h
(
sz

1,i + sz
2,i + sz

3,i

)]
, (1)

where sα
m,i = (sx

m,i, sy
m,i, sz

m,i ) is the quantum spin 1
2 attached to

the mth site of the ith unit cell, J1 > 0 and J2 > 0 are two
different antiferromagnetic interactions hereinafter referred
to as the intradimer and monomer-dimer coupling constants,
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FIG. 1. A schematic illustration of the spin- 1
2 Heisenberg trimer-

ized chain [Eq. (1)] (a) and the spin- 1
2 Ising-Heisenberg diamond

chain [Eq. (2)] (b) used for its effective description within the devel-
oped strong-coupling approach.

respectively, h = gμBB is the external magnetic field in energy
units, g is the Landé g factor, μB is the Bohr magneton, N
is the number of unit cells, and periodic boundary conditions
are implied henceforth. The intradimer coupling constant J1 is
imposed to be substantially stronger than the monomer-dimer
one J2, i.e., J1 � J2, since we are interested in the regime of
weakly coupled spin dimers and monomers. It is worthwhile
to note that the opposite limit of weakly coupled spin trimers
(J1 � J2) has been considered recently as well [29].

The standard perturbation expansion would start from the
limit of noninteracting dimers and monomers as, for instance,
was done in Ref. [22]. In this paper we would like to take
into account at least some of the correlations between dimeric
and monomeric spins quite rigorously. It is important to stress
that the choice of the unperturbed Hamiltonian is not a triv-
ial task. The initial guess, based on our preceding work on
the orthogonal-dimer chain [25], would be the spin- 1

2 Ising-
Heisenberg trimerized chain, where the weaker bonds J2 are
chosen to be of the Ising type [17]. However, this quantum
spin-chain model exhibits a substantial zero plateau, which
cannot be destroyed perturbatively by the XY part of the
monomer-dimer coupling constant J2, and thus it would show
nonphysical behavior at sufficiently small magnetic fields.
Hence one has to search for such a model among the class
of exactly solvable spin chains that is reminiscent of basic
properties of the Heisenberg trimerized chain (1). In this re-
gard, the spin- 1

2 Ising-Heisenberg diamond chain [30] with the
macroscopically degenerate ground state in zero field seems
to be more appropriate for a development of the many-body
perturbation theory, which takes into account spin correlations
between z components quite rigorously. In what follows we
will therefore divide the initial Hamiltonian (1) into two parts
H = HIH + V , where the unperturbed part HIH corresponds
to the exactly solved spin- 1

2 Ising-Heisenberg diamond chain
[see Fig. 1(b)] [30],

HIH =
N∑

i=1

[
J1s1,i · s2,i + Jz

2

2

(
sz

1,i + sz
2,i

)(
sz

3,i−1 + sz
3,i

)

−h′
3∑

m=1

sz
m,i

]
, (2)
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and the perturbed part V contains the rest of the total Hamil-
tonian (1),

V =
N∑

i=1

[
Jxy

2

∑
α=x,y

(
sα

2,is
α
3,i + sα

3,is
α
1,i+1

)

+ Jz
2

2

(
sz

1,i−sz
2,i

)(
sz

3,i−1−sz
3,i

)−(h−h′)
3∑

m=1

sz
m,i

]
. (3)

In the above, the parameter h′ denotes the critical field of
the Ising-Heisenberg diamond chain at which the ground
state changes. It will be defined separately for two particular
cases with the ground-state macroscopic degeneracy emergent
either at zero or saturation field. Note furthermore that we
have formally distinguished the xy and z components of the
monomer-dimer coupling constant, which are ultimately set
equal to each other, Jxy

2 = Jz
2 = J2, in order to recover the

isotropic nature of this exchange interaction. The ground state
of the spin- 1

2 Ising-Heisenberg diamond chain (2) is rather
simple for J2 < J1 (see Ref. [30] and the derivation in Ap-
pendix A), because it only contains two ground states referred
to as the monomer-dimer (MD) phase (A6) and the saturated
paramagnetic (SAT) phase (A7) coexisting together at the
saturation field hc = J1 + Jz

2/2.
In the following we will adapt the standard many-body

perturbation scheme for the Hamiltonian H = H0 + V , which
can be recast into the perturbed part V and the unper-
turbed part H0 with rigorously known eigenenergies E (0)

i

and eigenvectors |�(0)
i 〉 derived from the eigenvalue equation

H0|�(0)
i 〉 = E (0)

i |�(0)
i 〉 [31]. If P denotes the projection op-

erator on the subspace of states corresponding to the lowest
eigenstate E (0)

i of the unperturbed model given by the Hamil-
tonian H0 and Q = 1 − P, then the perturbative expansion can
be formally written for the effective Hamiltonian acting in this
subspace:

Heff = PHP + PV Rs

∞∑
n=0

[(QV − δE0)Rs]
nQV P,

Rs = Q
1

E (0)
0 − H0

=
∑
m �=0

∣∣�(0)
m

〉〈
�(0)

m

∣∣
E (0)

0 − E (0)
m

, (4)

where δE0 = E0 − E (0)
0 .

In this paper we will restrict ourselves to the second-
order perturbative expansion, which will take into account
the zeroth-, first-, and second-order contributions to the ef-
fective Hamiltonian: H (0)

eff = PH0P, H (1)
eff = PV P, and H (2)

eff =
PV RsV P, respectively. The main originality of the developed
perturbation method lies in the choice of the unperturbed part
of the Hamiltonian H0, which is identified with the Hamil-
tonian HIH of the spin- 1

2 Ising-Heisenberg diamond chain
defined by Eq. (2). It is evident that the unperturbed Hamil-
tonian HIH pertinent to this exactly solved model preserves
correlations between all interacting spins of the quantum spin
chain, which is opposite to the unperturbed Hamiltonian cor-
responding to a set of noninteracting monomers and dimers
being the starting ground for the standard perturbation theory.

At sufficiently low magnetic fields the ground state of
the spin- 1

2 Ising-Heisenberg diamond chain is the MD phase,

which becomes macroscopically degenerate in zero field due
to a paramagnetic (free) character of the monomeric spins s3,i

effectively decoupled by singlet states of the dimeric spins
s1,i-s2,i (see Appendix A). Of course, any nonzero magnetic
field lifts the macroscopic degeneracy of the MD phase, which
will be restored just at the saturation field hc where the dimeric
spins s1,i-s2,i undergo a change from the singlet dimer to the
polarized triplet state. Owing to this fact, we have to distin-
guish two particular cases requiring separate considerations:
(a) small enough magnetic fields h � hc and (b) higher mag-
netic fields sufficiently close to the saturation field hc.

A. Low-field region, 0 � m � 1/3

The perturbative treatment of V up to the second order re-
sults in the following effective Hamiltonian (see Appendix B
for more details):

Heff =
N∑

i=1

(
Jeff s3,i · s3,i+1 − hsz

3,i

)
,

Jeff = J2
2

2J1 − J2
> 0. (5)

At sufficiently low fields the spin- 1
2 Heisenberg trimerized

chain can thus be effectively described by the antiferromag-
netic spin- 1

2 Heisenberg chain with the effective coupling
constant Jeff given by Eq. (5). The saturation field of the
effective spin- 1

2 Heisenberg chain given by the Hamiltonian
(5) is known exactly, and it corresponds to the lower critical
field of the 1/3-plateau phase

hl
1/3 = 2Jeff = 2J2

2

2J1 − J2
, (6)

at which all monomeric spins s3,i become fully polarized in
the magnetic field.

B. High-field region, 1/3 � m � msat

Next, we will consider the high-field region where the mag-
netization changes from 1/3 plateau to the saturation value.
At the saturation field hc the spin- 1

2 Heisenberg trimerized
chain is macroscopically degenerate because the dimeric spins
s1,i-s2,i may be either in singlet or polarized triplet state. In this
particular case, the application of the many-body perturbation
theory leads to the effective spin- 1

2 XXZ Heisenberg chain
(see Appendix C for more details):

Hxxz
eff =

N/2∑
i=1

[
Jz

eff s̃
z
i s̃

z
i+1 + Jxy

eff

(
s̃x

i s̃x
i+1 + s̃y

i s̃y
i+1

) − h̃s̃z
i

]
,

Jxy
eff = J2

2

2(2J1 − J2)
> 0,

Jz
eff = J2

2J1
Jxy

eff ,

h̃ = h − J1 − J2

2
− J2

2

4J1
. (7)

Note that the quasispin operators s̃α
i act in the space, where

|↓̃〉i (|↑̃〉i) corresponds to the singlet state |0〉i (the polarized
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FIG. 2. The ground-state phase diagram of the spin- 1
2 Heisen-

berg trimerized chain. Solid lines correspond to the series expansion
adapted according to Ref. [18], dashed lines show the second-order
strong-coupling approach developed from the monomer-dimer limit
[21,22], dotted lines correspond to the second-order perturbation
theory developed from the spin- 1

2 Ising-Heisenberg diamond chain
(this paper), and symbols represent the DMRG simulations of the
original Heisenberg trimerized spin chain (1) with the number of
cells L = 28 (the number of kept states was 800). The tiny 1/3
plateau for the DMRG simulations at J2/J1 = 1 is the result of the
finite-size effect, and it obviously disappears in the thermodynamic
limit.

triplet state |1〉i) of the ith dimeric unit s1,i-s2,i. The ground-
state magnetization of the spin- 1

2 Heisenberg trimerized chain
can be expressed in terms of new operators according to the
following formula:

m = 1

3N

N∑
i=1

3∑
m=1

〈
sz

m,i

〉 = 1

3N

N∑
i=1

(
1 + 〈

s̃z
i

〉)
. (8)

The critical fields of the effective spin- 1
2 XXZ Heisenberg

chain are known exactly to be h̃± = ±(Jz
eff + Jxx

eff ). Thus one
gets the following results for the saturation field and the upper
critical field of the 1/3-plateau phase:

hSAT = J1 + J2

2
+ J2

2

2J1 − J2
,

hu
1/3 = J1 + J2

2
− J3

2

2J1(2J1 − J2)
. (9)

C. Comparison with other theories

The spin- 1
2 Heisenberg distorted diamond chain and the

spin- 1
2 Heisenberg trimerized chain as its special limiting

case were previously studied in Refs. [18,22,23]. In the case
J2 < J1 it exhibits two gapped phases corresponding to the
1/3 plateau and the saturation, and the gapless quantum
spin liquid phases where the magnetization changes contin-
uously in a field (see Fig. 2). The ground-state phase diagram
shown in Fig. 2 compares the critical fields obtained within
four different calculation schemes: the series expansion (solid
lines) [18], the second-order strong-coupling approach devel-
oped from the monomer-dimer limit (dashed lines) [21,22],
the second-order perturbation scheme developed in this pa-
per from the spin- 1

2 Ising-Heisenberg diamond chain (dotted
lines), and the numerical DMRG simulations (symbols). The

 0
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

m

h/J1

J2/J1=0.2 0.4 0.6

trimerized chain
effective model

FIG. 3. The zero-temperature magnetization curves of the spin- 1
2

Heisenberg trimerized chain for three different values of the interac-
tion ratio J2/J1 = 0.2, 0.4, and 0.6. Solid lines correspond to DMRG
simulations of the original Heisenberg trimerized spin chain (1),
while dashed lines were calculated with the help of the effective
models (5) and (7).

series expansion for the critical fields [18] is very accurate
except for the lower critical field hl

1/3 of the 1/3-plateau
phase, which starts to considerably decay from the most
accurate DMRG data above J2/J1 � 0.5. Surprisingly, the
second-order perturbation theory developed from the exactly
solved spin- 1

2 Ising-Heisenberg diamond chain also produces
quite precise results for the critical fields in a wide range
of the parameter space J2/J1 � 0.6. With the exception of
the saturation field, the present perturbation theory provides
significantly better results for the critical fields in comparison
with the strong-coupling approach developed up to the second
order from the limit of noninteracting monomers and dimers
[21,22]. This simpler strong-coupling approach provides for
sufficiently small fields the effective spin- 1

2 Heisenberg chain

with the isotropic coupling constant Jeff = J2
2

2J1
{see Eq. (5.6)

in Ref. [22]}, while for high enough fields it provides the ef-

fective spin- 1
2 XX chain with the coupling constant Jxy = J2

2
4J1

{see Eqs. (7)–(10) in Ref. [21]}. It is therefore of particular in-
terest to compare the precisions of both perturbative methods:
The aforementioned results coincide with our results in the
second order with respect to the coupling ratio J2/J1. As far as
higher values of the interaction ratio J2/J1 are concerned, the
1/3 plateau disappears within the presented unconventional
perturbative scheme at J2/J1 ≈ 0.8, while the simpler strong-
coupling method preserves this plateau until J2/J1 = 1. It is
also worthwhile to remark that the effective model (7) and the
respective critical fields (9) derived in the high-field regime
coincide with the results of the localized-magnon approach
when considering the limit of the trimerized chain [23].

Zero-temperature magnetization curves obtained from the
DMRG simulations of the original spin- 1

2 Heisenberg trimer-
ized chain (1) are compared in Fig. 3 with analogous
magnetization data obtained with the help of the effective
models (5) and (7) being valid in the low- and high-field range,
respectively. It can be seen from Fig. 3 that the magnetization
data obtained from the effective models show a reliable agree-
ment with the magnetization curves of the spin- 1

2 Heisenberg
trimerized chain even up to relatively large values of the
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FIG. 4. A comparison between the magnetization curves of the
spin- 1

2 Heisenberg trimerized chain obtained by using QMC simula-
tions of the original model (1) and the effective models (5) and (7) at
three different temperatures kBT/J1 = 0.05, 0.1, and 0.2 for J2/J1 =
0.4 (a) and J2/J1 = 0.6 (b). QMC simulations were performed for
the number of unit cells L = 120, whereas 5×105 QMC steps were
used for thermalization and an additional 5×106 QMC steps were
used for statistical averaging.

interaction ratio J2/J1 ≈ 0.6, whereas the largest discrepancy
can be detected in the vicinity of the saturation field.

D. Thermodynamic properties

Although the main accent of a description based on the ef-
fective Hamiltonians (5) and (7) lies in a simpler ground-state
analysis, the effective models are capable of describing ap-
propriately the low-temperature thermodynamics as well. The
validity of this perturbative approach depends on the energy
gap between the ground and excited states of the unperturbed
model so that the temperature range for its applicability is
restricted to T � �E = J1 ± ( J2

2 − h). In the following, we
will examine in detail to what extent the effective models
given by the Hamiltonians (5) and (7) are capable of de-
scribing thermodynamic properties of the spin- 1

2 Heisenberg
trimerized chain at nonzero temperatures with reasonable ac-
curacy. For this purpose, we have calculated a few isothermal
magnetization curves of the spin- 1

2 Heisenberg trimerized
chain using the QMC simulations of the original model (1)
and the effective models (5) and (7), respectively. The re-
sults of QMC simulations presented in Fig. 4 show a good
agreement between the magnetization data of the original and
effective models up to temperature T/J1 � 0.2, below which
excited states with higher energies ignored in the effective
Hamiltonians (5) and (7) are not as important.

 0
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J2/J1=0.2

0.4

0.6
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 0
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 0.15

 0  0.2  0.4  0.6  0.8  1
Tχ

kBT/J1

J2=0.2 0.4

0.6

(b)

FIG. 5. Temperature variations of the zero-field susceptibility χ

(a) and the zero-field susceptibility times temperature product χT
(b) of the spin- 1

2 Heisenberg trimerized chain for three different
values of the interaction ratio J2/J1 = 0.2, 0.4, and 0.6. QMC simula-
tions were performed for the number of unit cells L = 120, whereas
107 QMC steps were used for thermalization and an additional
2×107 QMC steps were used for statistical averaging. Solid lines
correspond to the original model (1), dotted lines correspond to the
effective model (5), and dashed lines come from first-order linked
cluster expansion given by Eq. (13).

Figure 5(a) compares the zero-field susceptibility of the
original (1) and effective (5) models at sufficiently low tem-
peratures. It is evident that the zero-field susceptibility of
the effective model (5) exhibits a low-temperature maximum
at the same temperature as the initial model (1), whereas
its height is just slightly overestimated. Similarly, the low-
temperature peak of the specific heat can also be reasonably
approximated by the effective model (5); see Fig. 6. The low-
temperature peak of the specific heat is indeed satisfactorily
reproduced not only for a sufficiently weak coupling constant
between the monomeric and dimeric spins J2/J1 = 0.2, but
also for its moderate value J2/J1 = 0.4. The effective model
(5) provides a reasonable estimate of the low-temperature
specific heat even for a relatively strong value of the interac-
tion ratio J2/J1 = 0.6 when the low-temperature maximum is
superimposed in the form of a shoulder on a round maximum
originating from the intradimer excitations.

In addition, we have also performed thermodynamic per-
turbation theory starting from the limit of noninteracting
dimers and monomers to find the asymptotic behavior of ther-
modynamic quantities at sufficiently high temperatures. To
this end, we have divided the total Hamiltonian into two parts,
the part involving the noninteracting dimers and monomers in
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FIG. 6. Temperature dependence of the zero-field specific heat of
the spin- 1

2 Heisenberg trimerized chain for three different values of
the interaction ratio J2/J1 = 0.2, 0.4, and 0.6. QMC simulations were
performed for the number of unit cells L = 120, whereas 107 QMC
steps were used for thermalization and an additional 2×107 QMC
steps were used for statistical averaging. Solid lines correspond to the
original model (1), dotted lines correspond to the effective model (5),
and a dashed line indicates the contribution of isolated spin dimers
[33] as given by Eq. (14).

a magnetic field,

H (0)
md =

N∑
i=1

[
J1s1,i · s2,i − h

(
sz

1,i + sz
2,i + sz

3,i

)]
, (10)

and the part incorporating the coupling J2 between the
monomeric and dimeric spins,

H (1)
md =

N∑
i=1

[J2(s2,i · s3,i + s3,i · s1,i+1)]. (11)

Then, the free energy can be found using the linked cluster
expansion (see, e.g., Ref. [32]):

F = F0 − 1

β
ln〈σ (β )〉0,

σ (β ) = Tτ exp

(∫ β

0
dτH (1)

md (τ )

)
, (12)

where β = 1/(kBT ), kB is Boltzmann’s constant, T is the
absolute temperature, 〈· · · 〉0 denotes the thermodynamic av-
eraging over the decoupled monomer-dimer model (10),
and H (1)

md (τ ) = exp(τH (0)
md )H (1)

md exp(−τH (0)
md ). Within the first-

order expansion, we have obtained the following expression
for the zero-field susceptibility:

χ = g2μ2
Bβ

3

[
1

4
+ 2

3 + exp(βJ1)
− βJ2

3+ exp(βJ1)

]
, (13)

where g is the gyromagnetic factor and μB is the Bohr mag-
neton. Analogously, the specific heat in the first-order linked
cluster expansion coincides with the zero-field specific heat of
the decoupled model [33]:

C = 3β2J2
1 exp(−βJ1)

[1 + 3 exp(−βJ1)]2
. (14)

The results (13) and (14) of the linked cluster expansion
for the susceptibility and specific heat are shown in Figs. 5(b)
and 6 together with the QMC data. The susceptibility (13)
closely follows the QMC results for the trimerized chain down
to moderate temperatures kBT/J1 ≈ 0.5. On the other hand,
the round high-temperature maximum of the specific heat
perfectly coincides with the dimer contribution (14) for small
enough values of the interaction ratio J2/J1.

III. THEORY VERSUS EXPERIMENT

The magnetic compound Cu3(P2O6OH)2, which represents
an experimental realization of the spin- 1

2 Heisenberg trimer-
ized chain [4–6], affords a suitable test bed for verification
of the efficiency of the developed perturbation theory. Before
doing so, let us summarize here the main outcomes reported in
previous experimental studies [4–6]. High-field magnetization
measurements on the magnetic compound Cu3(P2O6OH)2 re-
vealed the presence of the intermediate 1/3 plateau, which
is detected in a low-temperature magnetization curve above
12 T. A temperature dependence of the magnetic susceptibil-
ity displays a round maximum with the peak height χmax =
0.0154 emergent at Tmax ≈ 3.25 K [4], while the gyromag-
netic g factor was determined by electron spin resonance
(ESR) measurements as g = 2.12 [4]. The distinct inelastic
peak at ω = 9.8 meV = 113.7 K, which is only weakly de-
pendent on the wave vector, was detected by inelastic neutron
scattering [5,6].

First, we will exemplify how the susceptibility data mea-
sured in a wide range of temperatures may provide sufficient
information for the evaluation of the microscopic parameters
of the spin- 1

2 Heisenberg trimerized chain. It is worthwhile
to recall that the susceptibility of the spin- 1

2 Heisenberg
chain with the coupling constant Jeff has the peak χH

max ≈
0.147/Jeff at kBT H

max/Jeff ≈ 0.640824 [34]. A similar finding
was also reported for the maximum of the specific heat:
CH

max ≈ 0.35/Jeff at kBT c
max/Jeff ≈ 0.481 [35]. Since the spin- 1

2
Heisenberg trimerized chain can be faithfully represented at
low enough temperatures by the effective spin- 1

2 Heisenberg
chain (5), one may immediately find the effective coupling Jeff

when comparing the results of Ref. [34] with the position of
susceptibility maximum observed in experiment:

Jeff/kB ≈ Tmax/0.640 824 = 5.071 595 321 K. (15)

According to Eq. (5), the effective coupling Jeff/kB ≈ 5.071 K
provides a useful relation connecting the intradimer J1 and
dimer-monomer J2 coupling constants. Another independent
relation connecting both coupling constants can be obtained
from the high-temperature behavior of the susceptibility times
temperature product χT . At very high temperatures the para-
magnetic behavior prevails, and thus the product χT tends to

the Curie constant C = Ng2μ2
BS(S+1)
3kB

, where S is the spin of the
magnetic unit. However, the sizable exchange coupling may
have a significant effect even at relatively high temperatures
T ∼ 200–300 K, where the product χT seems to be still far
from being saturated. To get an appropriate description of the
high-temperature susceptibility, one may take advantage of
the first-order linked cluster expansion within the thermody-
namic perturbation theory as given by Eq. (13). Implementing
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FIG. 7. The isothermal magnetization curve of Cu3(P2O6OH)2

recorded at T = 1.6 K and the respective theoretical prediction made
by the QMC simulations of the spin- 1

2 Heisenberg trimerized chain
with L = 120 spins for the fitting set of the parameters: J1/kB =
102.67 K, J2/kB = 29.83 K, g = 2.2 (5×104 QMC steps were used
for thermalization, and an additional 5×105 QMC steps were used
for statistical averaging).

the nonlinear least-squares (NLLS) Marquardt-Levenberg al-
gorithm implemented in GNUPLOT [36] for the fitting of the
susceptibility data by Eq. (13) while simultaneously tak-
ing into consideration the validity of Eqs. (5) and (15), we
have found for the magnetic compound Cu3(P2O6OH)2 the
following set of microscopic parameters: g = 2.2, J1/kB =
102.67 K, J2/kB = 29.83 K. According to this fitting set,
the intermediate 1/3 plateau should appear in the magnetic
field range between 10.14 and 79 T. Note furthermore that
two different sets of the coupling constants were previ-
ously suggested for the magnetic compound Cu3(P2O6OH)2,
namely, J1/kB = 98 K, J2/kB = 28 K [4] and J1 = 111/kB K,
J2/kB = 30 K [5,6]. To reach better quantitative agreement
with the low- and high-temperature susceptibility data of
Cu3(P2O6OH)2, the developed strong-coupling method taking
advantage of the concept of the effective coupling Jeff has
allowed us to refine both coupling constants.

The spin- 1
2 Heisenberg trimerized as well as uniform

chains are both amenable to the QMC simulations, whereas
the relevant QMC data for the low-temperature magnetization
curve and temperature dependence of the magnetic suscep-
tibility are compared in Figs. 7 and 8 with the relevant
experimental data reported previously for Cu3(P2O6OH)2.
It can be seen from Fig. 8 that the measured data for the
magnetic susceptibility are closely followed in the whole
temperature range by the theoretical results of the QMC sim-
ulations obtained for the found fitting set of the interaction
parameters. On the other hand, it follows from Fig. 7 that
the theoretical results for the magnetization coincide well
with the experimental data only for sufficiently low mag-
netic fields, while they overestimate the experimental data
at higher magnetic fields. One plausible explanation for this
discrepancy is the adiabatic heating of the sample during
the magnetization process, which can be supported by the
theoretical magnetization data calculated at slightly higher
temperatures. Finally, it is worthwhile to remark that the
effective spin- 1

2 Heisenberg chain (5) also predicts the low-
temperature peak of the specific heat at T ≈ 2.44 K, and

 0

 0.1

 0.2

 0.3

 0.4

 0  50  100  150  200  250  300

T
χ

T [K]

 0

 0.005

 0.01

 0.015

 0  5  10  15  20

χ

FIG. 8. The temperature dependence of the susceptibility times
temperature product for Cu3(P2O6OH)2. The experimental data
(solid lines) are compared with the theoretical data (dashed lines),
which were obtained by the QMC simulations of the spin- 1

2 Heisen-
berg trimerized chain with L = 120 spins for the fitting set of the
parameters: J1/kB = 102.67 K, J2/kB = 29.83 K, g = 2.2. The green
short-dashed line in the main panel is the result of the thermodynamic
perturbation theory (13), while the dash-dotted line in the inset dis-
plays the QMC data for the effective model (5).

a similar feature has also been experimentally observed in
Ref. [4].

IV. CONCLUSIONS

To summarize, it has been shown that the strong-coupling
approach can be substantially improved for the quantum
Heisenberg chain when considering the perturbation about
the exact solution of its Ising-Heisenberg counterpart. The
improvement of the many-body perturbation scheme over
the standard strong-coupling method closely relates to the
fact that the unperturbed Hamiltonian of the Ising-Heisenberg
model accounts for correlations between all interacting spins
and it does not split the investigated quantum spin system
into smaller noninteracting fragments. The paradigmatic ex-
ample, the spin- 1

2 Heisenberg trimerized chain, for which
the many-body perturbation theory was formulated about the
exact solution of the spin- 1

2 Ising-Heisenberg diamond chain,
serves in evidence of this statement. As a matter of fact, the
upper and lower critical fields of the intermediate one-third
plateau of the spin- 1

2 Heisenberg trimerized chain derived
within the unconventional perturbation theory are in perfect
agreement with the numerical DMRG data up to relatively
high values of the coupling ratio J2/J1 � 0.5 in contrast
with the standard perturbation expansion developed from the
monomer-dimer limit. In addition, we have also analyzed the
applicability of the effective-model approach for an investiga-
tion of magnetization curves and thermodynamic properties
at finite temperatures, whereas a plausible agreement with
the numerical QMC data was observed at sufficiently low
temperatures kBT/J1 � 0.2. Besides, we have found that the
effective description based on the modified perturbation the-
ory reproduces well the temperature position of the peaks
experimentally detected in the susceptibility and specific heat
data. However, the height of the susceptibility peak is slightly
higher for the effective model than for the original model.
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Last but not least, we have suggested a relatively sim-
ple procedure to determine the microscopic parameters
for magnetic compounds with strong intradimer and weak
monomer-dimer coupling, which provide suitable experimen-
tal realizations of the spin- 1

2 Heisenberg trimerized chain.
The idea of how to unambiguously determine both cou-
pling constants of the spin- 1

2 Heisenberg trimerized chains is
based on the combination of the low- and high-temperature
behavior of the magnetic susceptibility. The applied proce-
dure gave for the prototype of the trimerized spin chain
Cu3(P2O6OH)2 the following set of microscopic parame-
ters: J1/kB = 102.67 K, J2/kB = 29.83 K, g = 2.2, which
refines the parameter sets reported in previous studies [4–6].
However, the suggested procedure can also be applied for
an appropriate description of magnetic and thermodynamic
properties of other polymeric compounds which have a mag-
netic structure of the spin- 1

2 Heisenberg trimerized chain
such as, for instance, copper-based coordination polymers
Cu3(OH)4SO4 [37,38], [Cu3Cl4(C4H9NO2)4(H2O)2](ClO4)2

[39], and [Cu3(acetate)6(imidazole)2] [40].
It is our hope that this paper opens up further possibili-

ties for a more accurate investigation of other fully quantum
Heisenberg spin models on the grounds of the unconventional
perturbation theory developed from exactly solved Ising-
Heisenberg spin systems (see Ref. [41] for methodological
details and a substantial survey of the literature on the exactly
solved Ising-Heisenberg models). For instance, the spin- 1

2
Heisenberg tetrameric chain with a regular alternation of two
ferromagnetic and two antiferromagnetic exchange couplings
as a theoretical model of the polymeric compound Cu(3-
chloropyridine)2(N3)2 represents another valuable example
of a quantum spin chain, where the perturbation expan-
sion could be straightforwardly derived from the respective
exact solution of a tetramer Ising-Heisenberg bond alternat-
ing chain [42]. Moreover, it turns out that the nature of
the unconventional fractional magnetization plateaus of the
two-dimensional Shastry-Sutherland model, one of the most
challenging and widely discussed problems of modern quan-
tum magnetism, can also be interpreted within the many-body
perturbation theory developed from the exact solution for
a spin- 1

2 Ising-Heisenberg model on the Shastry-Sutherland
lattice [43,44].
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APPENDIX A: EXACT SOLUTION OF THE
ISING-HEISENBERG DIAMOND CHAIN

Let us utilize the method based on the projection op-
erators in order to find the exact solution for the spin- 1

2
Ising-Heisenberg diamond chain given by the Hamiltonian
(2), which can be decomposed into the sum of local Hamil-
tonians HIH = ∑

i H (0)
i , each of them related to a four-spin

diamond cluster:

H (0)
i = J1s1,i · s2,i + Jz

2

2

(
sz

1,i + sz
2,i

)(
sz

3,i−1 + sz
3,i

)
− h

[
sz

1,i + sz
2,i + 1

2

(
sz

3,i−1 + sz
3,i

)]
. (A1)

As the first step, it is advisable to introduce the dimer-states
basis for strongly coupled spin pairs,

|0〉i = 1√
2

(|↑〉1,i|↓〉2,i − |↓〉1,i|↑〉2,i ),

|1〉i = |↑〉1,i|↑〉2,i,

|2〉i = 1√
2

(|↑〉1,i|↓〉2,i + |↓〉1,i|↑〉2,i ),

|3〉i = |↓〉1,i|↓〉2,i, (A2)

and the respective projection operators on these dimer states
[45],

Aab
i = |a〉i〈b|i. (A3)

The correspondence between the spin and projection opera-
tors can be found by a straightforward calculation (see, for
instance, Ref. [45]). The four-spin diamond cluster Hamil-
tonian (A1) becomes diagonal in terms of new projection
operators as it can be rewritten as follows:

H (0)
i = J1

(
1

4
− A00

i

)
+

[
Jz

2

2

(
sz

3,i−1 + sz
3,i

) − h

]

× (
A11

i − A33
i

) − h

2

(
sz

3,i−1 + sz
3,i

)
. (A4)

Owing to this fact, one can perform the decoration-iteration
transformation for the dimer spins in order to obtain the statis-
tical mechanics of the spin- 1

2 Ising-Heisenberg diamond chain
quite rigorously [30]. In this paper we are mostly interested in
the ground-state properties. For this purpose, it is necessary to
find eigenenergies of the four-spin cluster Hamiltonian (A1),
whose two lowest possible eigenvalues are given in the nota-
tion E (0)

i (sz
3,i−1, li, sz

3,i ):

E (0)
i (↑, 0,↑) = −3J1

4
− 1

2
h,

E (0)
i (↑, 1,↑) = J1

4
+ Jz

2

2
− 3

2
h, (A5)

where li is the index pertinent to the eigenstates of the ith
dimer (li = 0 is assigned to the singlet state and li = 1 to
the polarized triplet state). If the local state with the minimal
energy is known, we are able to find the corresponding ground
state by extending the relevant eigenstate to the whole system.
Since the coupling constant J2 is supposed to be much smaller
than J1, we limit ourselves only to the part of the ground-state
phase diagram in the parameter space J2 < J1. At sufficiently
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low magnetic fields 0 � h < hc ≡ J1 + Jz
2/2 the ground state

is the MD phase described by the following eigenvector:

|MD〉 =
N∏

i=1

|0〉i|sz〉3,i. (A6)

The monomer-dimer state (A6) is macroscopically degener-
ate in zero field, since the monomeric spins are completely
free (paramagnetic) as they are isolated through nonmagnetic
singlet dimers |0〉i. However, this ground-state degeneracy is
completely lifted by any nonzero magnetic field being respon-
sible for a full polarization of the monomeric spins s3,i. At
high enough magnetic fields h > hc the ground state corre-
sponds to the SAT phase with all spins being fully aligned to
the magnetic field direction given by the eigenvector

|SAT〉 =
N∏

i=1

|1〉i|↑〉3,i. (A7)

The spin- 1
2 Ising-Heisenberg diamond chain also becomes

macroscopically degenerate due to an energy equivalence of
the singlet state |0〉i and the polarized triplet state |1〉i at the
saturation field h = hc, which determines the phase boundary
between the MD and SAT ground states.

APPENDIX B: PERTURBATION THEORY
FOR SMALL MAGNETIC FIELDS

In this Appendix we will develop the perturbation theory
applicable for the spin- 1

2 Heisenberg trimerized chain at suf-
ficiently small magnetic fields. To this end, one should take
for the unperturbed spin- 1

2 Ising-Heisenberg diamond-chain
model (2) the following value of the field term: h′ = 0. For
further convenience, the perturbed part of the Hamiltonian can
be decomposed into a sum of the local terms V = ∑N

i=1(Vi +
Vi,i+1), which can be explicitly written in terms of the projec-
tion operators as

Vi,i+1 = Jz
2

2

(
A20

i + A02
i

)(
sz

3,i−1 − sz
3,i

)
+ Jxy

2

2

(
s+

3,i−1s−
1,i + s+

2,is
−
3,i + H.c.

)
,

Vi = −h
(
A11

i − A33
i + sz

3,i

)
. (B1)

The projection on the ground state can be constructed as
P0 = ∏

i A00
i . The first-order contribution to the effective

Hamiltonian is as follows:

H (1)
eff = P0V P0 = −h

∑
i

sz
3,i. (B2)

To obtain the perturbation terms up to second order, one needs
to calculate first the action of the perturbation term on the
projection operator

Vi,i+1P0 =
{

Jz
2

2
A20

i

(
sz

3,i−1−sz
3,i

)+ Jxy
2

2
√

2

[
A30

i (s+
3,i−1−s+

3,i )

+ A10
i (s−

3,i−s−
3,i−1)

] − hsz
3,i

}
P0, (B3)

as well as the excitation energies �E (sz
i−1, li, sz

i ) =
E (sz

i−1, li, sz
i ) − E (sz

i−1, 0, sz
i ) for a change of the singlet

state (li = 0) of the ith dimer to any triplet state (li = 1, 2, 3):

�E
(
sz

i−1, 1, sz
i

) = J1 + Jz
2

2

(
sz

i−1 + sz
i

)
,

�E
(
sz

i−1, 2, sz
i

) = J1,

�E
(
sz

i−1, 3, sz
i

) = J1 − Jz
2

2

(
sz

i−1 + sz
i

)
. (B4)

Inserting these results into Eq. (4) and assuming the isotropic
limit Jxy

2 = Jz
2 = J2, one gets the second-order perturbation

term

Heff = Jeff

N∑
i=1

s3,i · s3,i+1,

Jeff = J2
2

2J1 − J2
> 0, (B5)

which gives after complementing the first-order contribution
(B2) the effective Hamiltonian (5) considered in Sec. II A.

APPENDIX C: PERTURBATION THEORY
FOR HIGH MAGNETIC FIELDS

The perturbation theory for high magnetic fields is based
on the expansion near the saturation field hc = J1 + Jz

2/2,
where the magnetization of the unperturbed spin- 1

2 Ising-
Heisenberg diamond-chain model (2) exhibits a discontinuous
jump from the 1/3 plateau to the saturation value. The pro-
jection operator for this degenerate state can be written as
P0 = ∏

i(A
00
i + A11

i )|↑〉3,i〈↑|3,i. The first-order term can be
easily calculated as

H (1)
eff = P0V P0 = −(h − hc)

∑
i

(
A11

i + 1

2

)
. (C1)

To get the second-order perturbation term, it is necessary to
calculate first the action of the perturbed term on the projec-
tion operator,

Vi,i+1P0 =
{

Jz
2

4

(−A20
i +A20

i+1

) − Jxy
2

2
√

2

(
A10

i +A10
i+1

)
s−

3,i

− (h − hc)

(
A11

i + 1

2

)}
P0, (C2)

which gives after compiling all calculations the following
result for the second-order term:

H (2)
eff =

(
Jxy

2

)2

4

∑
i

P0

{
−A00

i A00
i+1

J1
−A00

i A11
i+1+A11

i A00
i+1

2J1 − Jz
2

+ A01
i A10

i+1 + A10
i A01

i+1

2J1 − Jz
2

}
P0. (C3)

Next, let us introduce the pseudospin formalism identify-
ing the singlet (triplet) state of the dimer with |↓̃〉i (|↑̃〉i),
i.e., A00

i = 1
2 − s̃z

i , A11
i = 1

2 + s̃z
i , A01

i = s̃−
i , A10

i = s̃+
i . Im-

posing Jxy
2 = Jz

2 = J2, the second-order contribution (C3) to
the effective Hamiltonian can be rewritten in terms of the
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pseudospin operators as follows:

H (2)
eff =

∑
i

[
Jxy

eff

(
s̃x

i s̃x
i+1+s̃y

i s̃y
i+1

)+Jz
eff s̃

z
i s̃

z
i+1 + h2s̃z

i

]
,

Jxy
eff = J2

2

4J1
(
1 − J2

2J1

) > 0,

Jz
eff = J2

2J1
Jxy

eff > 0,

h2 =
(
Jxy

2

)2

4J1
. (C4)

The first-order (C1) and second-order (C4) terms are summed
up in the effective Hamiltonian given by Eq. (7).
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Lett. 112, 37002 (2015).
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