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We study a kagomelike spin- 1
2 Heisenberg ladder with competing ferromagnetic (FM) and antiferromagnetic

(AFM) exchange interactions. Using the density-matrix renormalization group based calculations, we obtain
the ground-state phase diagram as a function of the ratio between the FM and AFM exchange interactions. Five
different phases exist. Three of them are spin-polarized phases: an FM phase and two kinds of ferrimagnetic (FR)
phases (referred to as FR1 and FR2 phases). The spontaneous magnetization per site is m = 1

2 , 1
3 , and 1

6 in the
FM, FR1, and FR2 phases, respectively. This can be understood from the fact that an effective spin-1 Heisenberg
chain formed by the upper and lower leg spins has a three-step fractional quantization of the magnetization per
site as m = 1, 1

2 , and 0. In particular, an anomalous “intermediate” state m = 1
2 of the effective spin-1 chain

with the reduced Hilbert space of a spin from three to two dimensional is highly unexpected in the context
of conventional spin-1 physics. Thus, surprisingly, the effective spin-1 chain behaves like a spin- 1

2 chain with
SU(2) symmetry. The remaining two phases are spin-singlet phases with translational symmetry breaking in the
presence of valence bond formations. One of them is octamer-singlet phase with a spontaneous octamerization
long-range order of the system, and the other is period-4 phase characterized by the magnetic superstructure
with a period of four structural unit cells. In these spin-singlet phases, we find the coexistence of valence bond
structure and gapless chain. Although this may be emerged through the order-by-disorder mechanism, there can
be few examples of such a coexistence.

DOI: 10.1103/PhysRevB.103.184410

I. INTRODUCTION

The low-dimensional quantum magnets on geometrically
frustrated lattices have been studied extensively in the last
decades [1]. A variety of phases in such lattices originate from
the macroscopically degenerate classical ground states. The
quantum fluctuations may cause the spontaneous lift of de-
generacy, which is called “order-by-disorder” mechanism [2].
The representatives of this mechanism include the sponta-
neous breaking of the lattice translational symmetry, resulting
in the valence bond solid (VBS) state [3–6] as well as in
the magnetic long-range order [7–9], and that of the SU(2)
spin symmetry, resulting in the ferrimagnetic (FR) long-range
order [10,11]. Also, the quantum frustrations may cause dis-
ordered quantum phases as well; the quantum spin-liquid state
is one of such examples, which has been intensively studied
in the context of topological phases [12–16].

The frustration has another interesting aspect in one-
dimensional (1D) quantum spin systems. In general, the
inclusion of geometrical frustrations deserves an inclusion
of nonbipartite interactions in the system, whereby some
theorems based on the bipartite nature of the quantum spin
systems may be broken due to its quantum fluctuations. For
example, FR phases have often been discussed on the ba-
sis of the Lieb-Mattis (LM) theorem [17], which assumes
the bipartite lattice. The LM–type FR state is considered as
the coexistence of ferromagnetic (FM) and antiferromagnetic

(AFM) orders, and the total magnetization must be integer
quantized. However, in some 1D quantum spin systems, a
partially polarized FR phase, which is characterized by a grad-
uate change in the spontaneous magnetization, has been found
[11,18–20]. They are kinds of non-LM–type FR phase. It is
known that the coexistence of FM order and quasi-long-range
order of Tomonaga-Luttinger liquid plays an essential role
to realize such a partially polarized FR state [20]. Thus, 1D
quantum spin systems consisting frustrated FM and AFM
interactions should provide a platform for the discovery of
novel quantum phases of matter.

Recently, Dmitriev and Krivnov [21] studied a spin- 1
2

FM-AFM kagomelike ladder using the numerical exact-
diagonalization method on small clusters. The geometrical
structure of this model is shown in Fig. 1(a), where the rel-
evant FM-AFM exchange pattern is assumed to be in the
parameter region of J1 < 0, J2 > 0, and J3 > 0. When the
AFM exchange interaction on the upper and lower legs (J2)
and that between the two legs (J3) are both small in compar-
ison with the nearest-neighbor FM exchange interaction (J1),
this system is in a trivial FM phase. With increasing J2 and
J3, a phase transition from the FM to FR states was found at
J2 = J3 = 0.25|J1| based on the detailed analysis of the local-
ized magnon states. In the FR state, the total magnetization
of the system, i.e., total spin, is Stot/L = 1

3 , where L is the
number of sites in the system.
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FIG. 1. (a), (b) Lattice structure of the kagomelike Heisenberg
ladder with the exchange interactions J1, J2, and J3, where σ i and
ξi are called the upper and lower leg spins, respectively, and si is
called the axial (or central) spin. The kagomelike Heisenberg ladder
consists of corner-sharing triangles created by wrapping the kagome
lattice to form a cylinder. (c) Schematic ground-state phase diagram
of our model as a function of Jb = J2 = J3 (see the main text).
The abbreviations FM, FR, OS, and P4 denote the ferromagnetic,
ferrimagnetic, octamer-singlet, and period-4 phases, respectively.

The spin- 1
2 kagomelike ladder is a simplest spin

model to describe a part of magnetic properties of the
half-twisted ladder 334 compounds Ba3Cu3In4O12 and
Ba3Cu3Sc4O12 [22–26]. These compounds exhibit similar fas-
cinating phase diagrams with respect to the magnetic field
and temperature. Of particular interest is that a series of
spin-flop and spin-flip phase transitions as a function of the
magnetic field have been observed at low temperature. To
fully elucidate the nature of phase transitions, a deeper under-
standing of the ground state of the spin- 1

2 kagomelike ladder is
necessary.

In this paper, we study the ground state of spin- 1
2 FM-AFM

kagomelike ladder using the density-matrix renormalization
group (DMRG) methods. We focus on the case of J2 = J3 (≡
Jb) corresponding to the 334 compounds [22–26]. Based on
the numerical calculations of total spin, static spin structure
factor, spin-spin correlation functions, spin gap, dimer order
parameter, and string order parameter, we find five different
phases depending on Jb. Three of them are spin-polarized
phases with spin-rotation symmetry breaking: an FM phase
and two kinds of FR phases (referred as FR1 and FR2 phases).
The spontaneous magnetization per site is m = 1

2 , 1
3 , and

1
6 in the FM, FR1, and FR2 phases, respectively. This can
be understood from the fact that an effective spin-1 Heisen-
berg chain formed by the upper and lower leg spins has a
fractional quantization of the magnetization per site as 1,
1
2 , and 0. The origin of this anomalous quantization of the
magnetization is explained in detail below. The remaining

two phases are spin-singlet phases with translational sym-
metry breaking in the presence of valence bond formations.
One of them is octamer-siglet (OS) phase with a sponta-
neous octamerization long-range order of the system, and the
other is period-4 (P4) phase characterized by the magnetic
superstructure with a period of four structural unit cells. We
reveal the entire ground-state phase diagram of the system
as a function of Jb/|J1|, as is illustrated schematically in
Fig. 1(c).

The paper is organized as follows: In Sec. II, we explain
the spin- 1

2 FM-AFM kagomelike spin ladder and describe
the numerical methods applied. In Sec. III, we study the
total spin, spatial distribution of local magnetization, and
spin-spin correlation functions to figure out fundamental
features of the ground state. Then, we give the detailed dis-
cussion on each phase in Sec. IV. Summary is given in
Sec. V.

II. MODEL AND METHOD

A. Model

The spin- 1
2 kagomelike Heisenberg ladder is defined as

the three Heisenberg chains coupled with three types of
Heisenberg exchange interactions J1, J2, and J3. The lattice
structure and geometry of exchange interactions are illustrated
in Fig. 1(a). The nearest-neighbor exchange interaction J1 acts
between the axial (or central) and leg spins, and the interaction
J2 acts between the neighboring spins in the upper and lower
legs, while J3 acts between the upper and lower leg spins in
diagonal positions. The Hamiltonian is written as

H =
N∑

i=1

Hi, (1)

Hi = J1(si + si+1) · (σ i + ξi ) + J2(σ i · σ i+1 + ξi · ξi+1)

+ J3(σ i · ξi+1 + ξi · σ i+1), (2)

where si, σ i, and ξi are the spin- 1
2 operators on the axial,

upper-leg, and lower-leg sites in the unit cell i, respectively.
The system size L is given by L = 3N , where N is the to-
tal number of the unit cells in the system. For convenience,
we also use the notations Ss,i = si, Sσ,i = σ i, Sξ,i = ξi, and
Sα,i (α = s, σ, ξ ). In some cases, it is beneficial to consider
the system (2) divided into the axial-spin and leg-spin parts.
We refer them as “axial-spin subsystem” and “leg-spin sub-
system” hereafter.

We focus on the case where J1 is FM (J1 < 0), and J2

and J3 are both AFM (J2 > 0 and J3 > 0). In particular,
we further restrict ourselves to the case at J2 = J3, which
corresponds to the parameters for the half-twisted ladder
334 compounds Ba3Cu3In4O12 and Ba3Cu3Sc4O12 [22–26].
For simplicity, we define Jb as Jb = J2 = J3. Only few the-
oretical studies have so far been performed on this case:
Dmitriev and Krivnov [21] discussed the ground-state man-
ifold in the context of localized multimagnon states and
the special multimagnon complexes. They also found a dis-
continuous phase transition from FM phase with Stot/L = 1

2
to FR phase with Stot/L = 1

3 at Jb/|J1| = 0.25. Moreover,
motivated by the experimental observations for the half-
twisted ladder 334 compounds, Kumar et al. [25] studied the
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temperature- and field-dependent magnetism focusing on
the paramagnetic phase. Yet, little is known about the Jb-
dependent ground-state phase diagram of the spin- 1

2 kagome-
like ladder. Therefore, it is important to determine its ground
state for better understanding of the magnetic properties of the
half-twisted ladder 334 compounds.

A key factor to understand the ground state of spin- 1
2 FM-

AFM kagomelike ladder is a formation of effective spin-1
degrees of freedom with the upper and lower leg spins, i.e.,
Sσ,i and Sξ,i. Note that the system [Eq. (2)] is invariant under
interchange of the positions of Sσ,i and Sξ,i although it is
a natural consequence of the formation of effective spin-1
degrees of freedom. Therefore, the two spins Sσ,i and Sξ,i are
always equivalent and the correlation between the two sites is
1
4 independently of Jb/|J1|, i.e., Sσ,i · Sξ,i = 1

4 . As described
in detail below, the combination of spin-1 degrees of freedom
and order-by-disorder mechanism yields a variety of exotic
magnetisms.

Furthermore, if we consider various combinations of FM
or AFM parameters in the spin- 1

2 kagomelike Heisenberg
ladder, an unexpected geometrical frustration may give rise
to a huge variety of phases. For example, even in a simple
case of J1 > 0, J2 > 0, J3 = 0, several exotic phases have
been found: Waldtmann et al. [27] reported a LM–type FR
phase with magnetization per site of m = 1

6 at J2/J1 � 0.5
and a gapped period-6 VBS order at J2/J1 � 1.25. Also,
M-Aghaei et al. [28] identified some exotic gapless phases
in the region of 0.5 � J2/J1 � 1.25. The cases other than
J1 < 0, J2 > 0, J3 > 0 are beyond the scope of this paper,
but the systematic investigations appear to be intriguing future
studies.

B. DMRG methods

We employ the matrix-product-state (MPS) based DMRG
and infinite-size DMRG (iDMRG) methods to examine the
ground state of the spin- 1

2 FM-AFM kagomelike Heisenberg
ladder shown in Fig. 1(a). We use the ITensor libraries [29,30]
for numerical computations. Due to the severely frustrating
nature of the present model, the finite-size scaling analysis
may not be a straightforward task. We therefore use three
boundary conditions in complementary style: the periodic
boundary conditions (PBC) for the lattices with length up
to L = 114 (or N = 38) are used to avoid unphysical edge
effects. The open boundary conditions (OBC) for the lattices
with length up to L = 300 (or N = 100) are used to obtain
accurate numerical results. And, the iDMRG method (or the
infinite-size boundary condition), which is efficient for calcu-
lating commensurate phases, is also used to directly obtain
the physical quantities in the thermodynamic limit [31,32].
Since there are a number of nearly degenerate states around
the ground state due to the FM interaction J1 and strong
frustration, a relatively large number of density-matrix eigen-
states χ need to be kept in the renormalization procedure to
obtain accurate results. In this paper, we keep up to χ = 6000
density-matrix eigenstates, sweeping the MPSs until obtain-
ing the ground states within the errors of �E/L = 10−7|J1|
and �E/L = 10−10|J1| for the DMRG and iDMRG, respec-
tively. Furthermore, the extrapolation is made with respect to
χ when necessary.

(a)

(c)

(b)

FIG. 2. Finite-size scaling analysis of Stot/L calculated using the
(a) OBC and (b) PBC, where representative parameters for each
of the FM (red circles), FR1 (blue squares), OS (green triangles),
FR2 (purple diamonds), and P4 (cyan stars) phases are chosen.
(c) iDMRG results for 〈Sz

α,i〉 as a function of Jb/|J1|: 〈Sz
s〉 for the

axial spin and 〈Sz
σ 〉 = 〈Sz

ξ 〉 for the leg spins are shown by red circles
and blue squares, respectively. The z component of total spin is
fixed at the value of total spin in the ground state. The averaged
magnetization per site m = (〈Sz

s〉 + 〈Sz
σ 〉 + 〈Sz

ξ 〉)/3 is also shown by
black diamonds. Horizontal dotted lines indicate the magnetization
per site for the FR1 (m = 1

3 ) and FR2 (m = 1
6 ) phases calculated.

The regions of different phases are divided by different colors.

III. RESULTS OF CALCULATIONS

In this section, we study the total spin, spatial distribution
of local magnetization, and spin-spin correlation function as a
preliminary step in elucidating the ground state of our system
[Eq. (2)].

A. Total spin and magnetization

First, in order to see the parameter dependence of sponta-
neous magnetization, we calculate the total spin as a function
of Jb/|J1| using the DMRG method for OBC and PBC clus-
ters. The total spin can be estimated from the sum of spin-spin
correlation functions over the system, namely,

〈S2〉 = Stot (Stot + 1) =
∑

i, j

∑

α,β

〈Sα,i · Sβ, j〉, (3)

where S (= ∑
i

∑
α Sα,i) is the total spin operator. In Fig. 2(a)

[Fig. 2(b)], the finite-size scaling analysis of Stot/L calcu-
lated with the OBC (PBC) is performed for several values of
Jb/|J1|. Although the size dependence of Stot/L is not very
straightforward due to the strong frustration, we obtain the
same extrapolated values of Stot/L for the OBC and PBC in the
thermodynamic limit L → ∞: Stot/L = 1

2 , 1
3 , 0, 1

6 , and 0 for
Jb/|J1| = 0.2, 0.3, 0.4, 0.5, and 1.0, respectively. This coinci-
dence of the extrapolated values between OBC and PBC gives
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a good indication to confirm the validity of the finite-size scal-
ing analysis. As a result, we find that the ground state of our
system is categorized into five regions by the values of Stot/L
as a function of Jb/|J1|: (i) 0 � Jb/|J1| � 0.25 (Stot/L = 1

2 ),
(ii) 0.25 � Jb/|J1| � 0.33 (Stot/L = 1

3 ), (iii) 0.33 � Jb/|J1| �
0.43 (Stot/L = 0), (iv) 0.43 � Jb/|J1| � 0.60 (Stot/L = 1

6 ), (v)
0.60 � Jb/|J1| (Stot/L = 0). Since all of the obtained Stot/L
values indicate commensurate magnetic structures, we may
explicitly define the magnetic unit cell in the whole Jb/|J1|
region. It enables us to perform iDMRG simulation, which
works directly in the thermodynamic limit, by assuming
proper translational symmetry. Thus, we have confirmed the
thermodynamic-limit values of Stot/L between three indepen-
dent calculations, i.e., OBC, PBC, and iDMRG.

Next, we calculate the expectation value of the z compo-
nent of spin operator 〈Sz

α,i〉 to see the real-space distribution
of the local magnetization using the iDMRG method. For this
end, the z component of total spin is fixed at the value of total
spin in the ground state, i.e., Sz

tot = ∑
i

∑
α〈Sz

α,i〉 = Stot . In
Fig. 2 the iDMRG results for 〈Sz

α,i〉 are plotted as a function of
Jb/|J1|. At Jb/|J1| < 0.25, we find 〈Sz

s,i〉 = 〈Sz
σ,i〉 = 〈Sz

ξ,i〉 = 1
2

because the system is in a trivial FM phase due to the domi-
nant FM contribution by J1. Increasing Jb/|J1|, the FM order
collapses into an FR phase exhibiting Stot/L = 1

3 , which is
referred as FR1 phase. The phase transition between FM and
FR1 phases is of the first order. This is the same type of phase
transition as a FM-FR phase transition in the spin- 1

2 FM-AFM
delta chain [11,33]. In the FR1 phase, the axial spins are
nearly fully polarized and the leg spins are less polarized, i.e.,
〈Sz

s,i〉 > 〈Sz
σ,i〉 = 〈Sz

ξ,i〉, which is consistent with the previous
study [21]. Further increasing Jb/|J1|, the system goes into
an unpolarized phase with Stot = 0 at Jb/|J1| ≈ 0.33 and then
another type of FR phase with Stot/L = 1

6 , which is referred to
as FR2 phase, appears at Jb/|J1| ≈ 0.43. That is, the narrow
unpolarized phase is sandwiched between two FR phases.
This implies that the unpolarized state would be originated
from a formation of magnetic long-range order (LRO) induced
by disorder due to the enhancement of geometrical frustration
(see details in Sec. IV C). In the FR2 phase, while the axial
spins are largely polarized, the leg spins are only weakly po-
larized. Although this structure seems to be somewhat similar
to that in the FR1 phase, the origins of two FR phases are
completely different as explained in Secs. IV B and IV D. At
larger Jb/|J1| (�0.6), the system exhibits an unpolarized phase
with 〈Sz

s,i〉 = 〈Sz
σ,i〉 = 〈Sz

ξ,i〉 = 0 again. This result seems nat-
ural since the AFM interaction becomes dominant.

B. Spin structure factor

To see the periodicity of magnetic structure in each phase,
we calculate the static spin structure factor which is the
Fourier transform of the real-space spin-spin correlation func-
tion

Sαβ (q) = 1

N2

N∑

i, j=1

eiq(ri−r j )〈Sα, j · Sβ,i〉, (4)

where the distance between the neighboring unit cells is taken
to be unity. We here use a PBC cluster with N = 24, i.e.,
L = 72. In Figs. 3(a)–3(d), we show the DMRG results of

FIG. 3. DMRG results for the static spin structure factor Sα (q)
calculated using L = 72 PBC cluster. (a)–(d) Sα (q) with typical
values of Jb/|J1| for each phase: FR1 (Jb/|J1| = 0.3), OS (Jb/|J1| =
0.4), FR2 (Jb/|J1| = 0.5), and P4 (Jb/|J1| = 1.0). Bottom panels
show the contour map of Sα (q) for (e) the axial spins α = s and (f)
the leg spins α = σ = ξ as a function of Jb/|J1|. The four vertical
dashed lines correspond to phase boundary in the ground state.

Sαβ (q) for the FR1 (Jb/|J1| = 0.3), OS (Jb/|J1| = 0.4), FR2
(Jb/|J1| = 0.5), and P4 (Jb/|J1| = 1.0) phases. We note that
Sσσ (q) = Sξξ (q) = Sσξ (q) due to the lattice symmetry.

In the FR1 phase [Fig. 3(a)], both of Sss(q) and Sσσ (q)
have a sharp q = 0 peak reflecting the polarized axial and
leg spins, and Sσσ (q) has an additional relatively dull peak at
q = π . This two-peak structure of Sσσ (q) is a consequence of
the anomalous value of spontaneous magnetization Stot/L = 1

3
(see Sec. IV B).

In the OS phase [Fig. 3(b)], Sss(q) has its maximum
value at q = ±π/3, which suggests a commensurate magnetic
structure with a large superlattice with N = 6 unit cells, i.e.,
18 sites if the LRO is assumed. The dominant fluctuations
in the leg-spin subsystem are noted to be AFM since Sσσ (q)
is maximum at q = π . Nevertheless, Sσσ (q) has also small
shoulders at q = ±π/3. This implies that the leg spins take
part in the formation of the large superlattice structure. These
are consistent with the identified OS structure (see Sec. IV C).

In the FR2 phase [Fig. 3(c)], the overall structures of
Sαβ (q) look similar to those in the FR1 phase. The main
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difference is that the relative heights of q = 0 and π peaks
are inverted. The small peak at q = 0 corresponds to the weak
polarization of leg spins and the larger peak at q = π reflects
the AFM fluctuations in the leg-spin subsystem. However,
since the FM polarization in the axial-spin subsystem is LRO
and the AFM structure in the leg-spin subsystem is not LRO
as explained in the next subsection, the q = π peak of Sσσ (q)
disappears and q = 0 peak of Sss(q) remains finite in the
thermodynamic limit. This peak structure is similar to that of
a FR phase in the FM-AFM delta chain [11] because of the
same origin of spontaneous magnetization (see Sec. IV D).

In the P4 phase [Fig. 3(d)], the peaks of Sss(q) and Sσσ (q)
are located at q = ±π/2 and π , suggesting the period of
magnetic structure with four and two unit cells, respectively.
Since Sss(q) and Sσσ (q) have no common peak positions, it
may be considered that the magnetic structures of axial-spin
and leg-spin subsystems are essentially separated. Therefore,
although the interaction between axial-spin and leg-spin sub-
systems is considered to be weak, it is sufficient to collapse the
long-range behavior of topological string order of the leg-spin
subsystem, as further discussed in Sec. IV E. In Figs. 3(e)
and 3(f) the above results are summarized as intensity plots
of Sss(q) and Sσσ (q) with Jb/|J1|. We find that the dominant
peak position is unchanged within each phase. Therefore, the
periodicity would be a key factor to determine their magnetic
structures.

C. Spin-spin correlation function

In order to obtain further insight into the nature of each
phase, we examine the decay behavior of spin-spin correlation
functions for each of the axial-spin and leg-spin subsystems.
The spin-spin correlation function is defined by

Sα (r) = 〈Sα,i+r · Sα,i〉, (5)

where the distance between neighboring unit cells is taken to
be unity. In Fig. 4, we plot iDMRG results for the spin-spin
correlation function as a function of distance r. The results
for α = s and σ correspond to those for the axial-spin and
leg-spin subsystems, respectively. Note that the spin-spin cor-
relation functions for α = σ and ξ coincide because of the
lattice symmetry.

Figures 4(a) and 4(b) show Sα (r) for the FR1 and FR2
phases, respectively. We can clearly see the convergence of
Sα (r) to a finite value, reflecting the FR nature of these phases
at large enough r. The converged value is equal to the spin
polarization squared, i.e., Ss(r = ∞) → 〈Sz

s,i〉2 and Sσ (r =
∞) = Sξ (r = ∞) → 〈Sz

σ,i〉2, where 〈Sz
α,i〉 is the amount of

spontaneous magnetization shown in Fig. 2(c). We also look
at the oscillating part of spin-spin correlation function for the
leg-spin subsystem, which can be extracted via

Sz
σ (r) = 〈

Sz
σ,iS

z
σ,i+r

〉 − 〈
Sz

σ,i

〉〈
Sz

σ,i+r

〉
. (6)

The oscillating part Sz
σ (r) for the FR1 and FR2 phases is plot-

ted in Figs. 4(c) and 4(d), respectively. It is surprising that they
exhibit completely different behaviors: a power-law decay for
the FR1 phase and an exponential decay for the FR2 phase.
This means that the leg-spin subsystem is in a gapless and a
gapped ground states in the FR1 and FR2 phases, respectively.
The details are explained in Secs. IV B and IV D.

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

FIG. 4. iDMRG results for the spin-spin correlation function in
the real space, where red circles and blue squares correspond to Ss(r)
and Sσ (r), respectively. Note that Sξ (r) is equivalent to Sσ (r). Jb/|J1|
values for each phase are chosen: (a), (c) FR1 (Jb/|J1| = 0.3), (b),
(d) FR2 (Jb/|J1| = 0.5), (e), (f) OS (Jb/|J1| = 0.4), and (g), (h) P4
(Jb/|J1| = 1.0). In (c) and (d) only the oscillating part of the spin-spin
correlation function is plotted. The dotted straight lines indicate the
characteristic decays, namely, a power-law decay in the log-log plot
and and exponential decay in the semi-log plot.

In Figs. 4(e) and 4(f), the spin-spin correlation functions
for the OS phase are shown. Both Ss(r) and Sσ (r) exhibit
power-law behaviors and decay approximately as Sα (r) ∝
1/r. This clearly indicates a gapless nature of the OS state.
Actually, the spinon excitation from the OS ground state is
gapless as confirmed in the next subsection. The OS state has a
LRO with alternating alignment of octamer singlets and nearly
free axial spins. Considering the period of magnetic structure
with six structural unit cells, i.e., containing 18 spins, as found
by the static spin structure factor, it appears that the nearly
free axial spins are antiferromagnetically coupled and form a
spin- 1

2 Heisenberg chain. Thus, the power-law behavior with
Sα (r) ∝ 1/r is naively expected. Further details are given in
Sec. IV C.
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In Figs. 4(g) and 4(h), the spin-spin correlation functions
for the P4 phase are shown. It is interesting that the corre-
lation functions for the axial-spin and leg-spin subsystems
have completely different behaviors. For the axial spins, Ss(r)
exhibits an exponential decay indicating a gapped nature. In
the P4 phase, all the axial spins form valence bonds as a conse-
quence of order-by-disorder mechanism. Thus, the axial-spin
subsystem is gapped, which is consistent with the exponential
decay of Ss(r). For the leg spins, Sσ (r) exhibits an exponential
decay at short distance and a power-law decay at long dis-
tance. In the P4 phase, the leg-spin subsystem can be mapped
onto a spin-1 Heisenberg chain in the Sz = 0 sector. Ac-
cordingly, one may expect an exponential decay of spin-spin
correlation function since the Haldane-type VBS state may be
the prospective ground state. This seems to be consistent with
the exponential decay of Sσ (r) at short distance. However, in
fact, the Haldane-type VBS state is “weakly” collapsed due to
the weak interaction with the axial-spin subsystem. Therefore,
the behavior of Sσ (r) shows a crossover from an exponential
decay at short distance to a power-law decay at long distance.
This also means that it looks as if the Haldane-type VBS state
is stabilized at short range. In other words, the P4 state may
be regarded as a pseudogapped state. Further details are given
in Secs. IV E and IV F.

D. Spin gap

We here examine whether a spin excitation from the ground
state is gapped or gapless in each phase. To address this issue,
we define a spin gap �s as the energy difference between the
ground state and the first excited state with a flipped spin:

�s(L) = E0(L, Sz = Stot + 1) − E0(L, Sz = Stot ), (7)

� = lim
L→∞

�s(L), (8)

where E0(L, Sz ) is the ground-state energy of the system of
size L and the z component of total spin Sz. For the OS
and P4 phases, the ground state is in a singlet state and
we can simply take Stot = 0. On the other hand, a definite
treatment is required for the FR phases since the ground state
is macroscopically degenerate. Specifically, we set Stot = L/3
for the FR1 phase and Stot = L/6 for the FR2 phase to verify
a spin excitation above their degenerate ground state. Further-
more, to avoid underestimating the gap in association with
any free boundary effects, we adopt the PBC. In Fig. 5, we
show the size dependence of the spin gap �s(L) for the FR1
(Jb/|J1| = 0.3), FR2 (Jb/|J1| = 0.5), OS (Jb/|J1| = 0.4), and
P4 (Jb/|J1| = 1.0) phases. The spin gap extrapolated to the
thermodynamic limit is finite only for the FR2 phase and zero
for the other phases. This can be explained as follows.

In the FR1 phase, since the axial spins are fully polarized,
the calculated spin gap corresponds to a gap in the spin ex-
citation spectrum of the leg-spin subsystem. As described in
Sec. IV B, the leg-spin subsystem behaves like a critical SU(2)
Heisenberg chain. Thus, the leg-spin subsystem is gapless and
it is also consistent with the power-law decay of its spin-spin
correlation function Sσ (r).

In the OS phase, our system consists of octamer singlets
and residual nearly free spins (see Sec. IV C). The resid-
ual spins are weakly connected and form a critical SU(2)

FIG. 5. Finite-size scaling analysis of the spin gap �s(L).
The representative Jb/|J1| values for each phase are chosen: FR1
(Jb/|J1| = 0.3), OS (Jb/|J1| = 0.4), FR2 (Jb/|J1| = 0.5), and P4
(Jb/|J1| = 1.0). The lines show fitting results by polynomial func-
tions with respect to 1/L.

Heisenberg chain. Although a finite energy is required to
excite the octamer singlet, the excitation of residual spins is
gapless. A parabolic finite-size scaling of the spin gap, i.e.,
�s(L) ∝ 1/L2 is a typical feature of a critical Heisenberg
chain.

In the FR2 phase, the axial spins are fully polarized as
in the FR1 phase. Therefore, the finite spin gap indicates
a gapful nature of the leg-spin subsystem. It seems natural
to assume that the leg-spin subsystem is in a Haldane-type
VBS state because the translational symmetry is not broken
as shown below. This is indeed a possible scenario because
the leg-spin subsystem can be mapped onto an effective spin-1
Heisenberg chain in the Sz = 0 sector. If this is the case, the
finite spin gap and the exponential decay of Sσ (r) can be
reasonably explained. A simplest way to check the presence of
a Haldane-type VBS state is to see the edge states of an open
spin-1 chain [34]. To achieve this, we have calculated the spin
gap for two kinds of open chains (data not shown). One is a
simple open chain with remaining upper and lower leg spins
at the open edges. The other is also an open chain but either of
the upper or lower leg spins is removed at the open edges. This
is equivalent to replacing spin-1 degrees of freedom by spin- 1

2
degrees of freedom at the edges of a spin-1 open chain. We
have found that the spin gap is zero for the former open chain
and is finite for the latter open chain. The spin gap estimated
with the latter open chain coincides with that estimated with
PBC chain in the thermodynamic limit. This result provides
a solid numerical evidence for the presence of Haldane-type
VBS state.

In the P4 phase, the axial-spin and leg-spin subsystems
may be considered separately as their spin-spin correlation
functions show completely different behaviors [see Figs. 4(g)
and 4(h)]. As described in Sec. IV E, the axial-spin subsys-
tem is spontaneously dimerized and gapful while the leg-spin
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subsystem may be regarded as a kind of spin-1 Heisenberg
chain. However, if the leg-spin subsystem is in a Haldane-type
VBS state as in the FR2 phase, the spin gap � should be
finite. Hence, taking into account the power-law decay of
Sσ (r), the leg-spin subsystem seems to be in a Tomonaga-
Luttinger liquid state. Although it appears to be true that a
Haldane-type VBS state is stabilized in the FR2 phase, the
Haldane gap (� = 0.034|J1|) at Jb/|J1| = 0.4 is much smaller
than that for the corresponding pure spin-1 Heisenberg chain
� = 0.410 479Jb = 0.164|J1|. Thus, the Haldane-type VBS
state in the FR2 phase seems not to be very stable. On the
other hand, in the P4 phase, a Haldane-type VBS state is not
stabilized in a strict sense, but the tendency is seen as an
exponential decay of Sσ (r) at short distance. Thus, we find it
a delicate problem to identify the reason why a Haldane-type
VBS state is stabilized in the FR2 phase but not stabilized in
the P4 state, which is left as a future challenging issue.

IV. PHASES

In the previous section, based on the results of the spon-
taneous magnetization and magnetic period, we have shown
that the ground state of our system exhibits five different
phases, i.e., FM, FR1, OS, FR2, and P4, in the Jb/|J1| space. In
this section, we determine the microscopic magnetic structure
of each phase and reveal their origins. Especially, both the
similarities and differences between the FR1 and FR2 states
are elucidated in considerable detail. Furthermore, we show
numerical evidences for spontaneous translational symmetry
breaking, which is accompanied with valence bond formation
in the OS and P4 phases. We also clarify the reason why the
OS and P4 states have a gapless spin excitation in spite of the
valence bond formation.

A. Ferromagnetic (FM) phase (0 � Jb/|J1| � 1
4 )

In the limit of Jb/|J1| = 0, our system is in a trivial FM
ordered ground state. With increasing Jb/|J1|, the FM state
persists up to Jb/|J1| = 1

4 ; then, a first-order phase transition
from the FM to FR1 state occurs [21]. The critical value of
Jb/|J1| can be exactly estimated by the classical spin-wave
theory. The Fourier transform of our Hamiltonian (2) reads
as

H = 1

2

∑
q

JqSq · S−q (9)

with

Jq = 1
2 [−3J1 − 2Jb(1 − cos q)

±
√

[−J1 + 2Jb(1 − cos q)]2 − 4J1(1 + cos q)],
(10)

where Sq = (1/
√

N )
∑

α,i exp(−iqri )Sα,i and Sq = S∗
−q.

Since the system contains two kinds of spins, i.e., axial
and leg spins, the dispersion is split into two branches. The
minimum position of Eq. (10) changes from q = 0 to π at
Jb/|J1| = 1

4 , which is consistent with the FM critical value
estimated from the total spin. Then, Eq. (10) has a minimum
at q = π in the whole region of Jb/|J1| > 1

4 . However,
as shown above, the DMRG result for the static structure
factor Sα (q) exhibits switching among several peak positions

(c) m=1/3

(a)

3

4 6
2

1
5

Jb
J1

3

4 6

1
5

(b)

Sz = 1 Sz = 0 Sz = 1Sz = 0

2

FIG. 6. (a) A six-site PBC cluster of the kagomelike ladder,
which may be a minimal unit to describe the FR1 state. (b) Schematic
picture of the ground state of the six-site PBC cluster for 0.25 <

Jb/|J1| < 0.5, which corresponds to the FR1 state with Stot/L = 1
3 .

A blue ellipse denotes spin-triplet pair between an upper and a lower
spin, which corresponds to an effective spin-1 degrees of freedom
and a red arrow denotes a polarized spin. (c) Schematic representa-
tion of the magnetic moment distributions in real space for the FR1
phase, where the magnetization of each spin-triplet pair (denoted by
blue ellipse) is either m = 0 or 1. Note that the numbers of m = 0 and
1 are equivalent, namely, the averaged value is m = 1

2 , in the ground
state.

depending on the value of Jb/|J1|. This discrepancy implies
the importance of quantum effects in this system.

B. Ferrimagnetic-1 (FR1) phase (0.25 � Jb/|J1| � 0.33)

With increasing Jb/|J1|, the spontaneous magnetization
Stot/L drops down from 1

2 to 1
3 at Jb/|J1| = 0.25. The value

of Stot/L = 1
3 , which is maintained in the region of 0.25 �

Jb/|J1| � 0.33, indicates a commensurate FR state. We refer
to this state as FR1 state.

Let us then determine the magnetic structure of the FR1
phase. According to the Lieb-Schultz-Mattis (LSM) theo-
rem [35,36], a FR state with Stot/L is allowed only when a
number (S − Stot/L)nunit is an integer, where nunit is the num-
ber of sites in magnetic unit cell. Since (S − Stot/L)nunit =
(1/6)nunit in the FR1 phase, nunit needs to be a multiple
of 6. We thus consider a six-site periodic cluster (L = 6)
of our system (2) which may possibly be a minimal unit
to describe the FR1 state [Fig. 6(a)]. The Hamiltonian of
the six-site cluster can be easily diagonalized and we find
three ground states depending on Jb/|J1|: (i) FM state with
Stot/L = 1

2 (Jb/|J1| < 0.25), (ii) FR state with Stot/L = 1
3

(0.25 < Jb/|J1| < 0.5), and (iii) singlet state with Stot/L = 0
(Jb/|J1| > 0.5). Obviously, the state (ii) corresponds to the
FR1 state. The ground-state wave function of the state (ii) is
exactly written as

ψGS = 1
2 |↑〉1|↑〉2{|↑〉3|↑〉4(|↑〉5|↓〉6 + |↓〉5|↑〉6)

− (|↑〉3|↓〉4 + |↓〉3|↑〉4)|↑〉5|↑〉6}, (11)

independently of Jb/|J1|, where |s〉i denotes a spin state s of
site i. The site indices are assigned in Fig. 6(a). For conve-
nience, the magnetization direction is assumed to be along the
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z axis, i.e., five up and one down spins are contained in the
six-site cluster.

We here notice that two leg spins σ i and ξi, i.e., two spins at
sites 3 and 4 (as well as 5 and 6) in the six-site cluster, form a
spin-triplet pair, which leads to a resultant effective spin-1 site
Seff

i = Sσ,i + Sξ,i. In general, a spin-triplet pair state between
sites i and j can be mapped onto a spin-1 degree of freedom
via three Sz states:

|1〉i, j = |↑〉i|↑〉 j, (12)

|0〉i, j = (|↑〉i|↓〉 j + |↓〉i|↑〉 j )/
√

2, (13)

|−1〉i, j = |↓〉i|↓〉 j (14)

for Sz = 1, 0, and −1 states, respectively. Using this transfor-
mation, Eq. (11) can be expressed as

ψGS = |↑〉1|↑〉2︸ ︷︷ ︸
(I)

⊗ 1√
2

(|1〉3,4|0〉5,6 − |0〉3,4|1〉5,6)
︸ ︷︷ ︸

(II)

. (15)

Thus, the ground-state wave function of state (ii) can be sep-
arated into two parts: (I) the fully polarized axial spins, i.e.,
〈Sz

s,1〉 = 〈Sz
s,2〉 = 1

2 , and (II) an antisymmetric combination of
two spin states of two effective spin-1’s. It is striking that the
Sz = −1 state |−1〉i, j is completely projected out in part (II).
Since all the leg spins 3–6 are ferromagnetically coupled to
the polarized axial spins 1, 2, the FM interaction J1 behaves
like an external magnetic field on the leg spins, or like a uniax-
ial single-ion-type anisotropy to enhance the magnetization of
each effective spin-1 site [37]. By considering replacements
|1〉i, j �→ |↑〉 and |0〉i, j �→ |↓〉, we can easily recognize that
the part (II) has the same form as a spin-singlet pair state
in the spin- 1

2 system. Accordingly, the two spin-1 degrees of
freedom, each of which is exactly reduced to a SU(2) symme-
try with two states |1〉i, j and |0〉i, j , are antiferromagnetically
coupled. The state of part (II) is illustrated in Fig. 6(b).

As a result, if the system size is extended to infinity, the
leg spins Seff

i form a spin-1 AFM Heisenberg chain with
the reduced spin space to a SU(2) symmetry. And, the axial
spins are nearly fully polarized as also confirmed numerically
in Sec. III A. If all the axial spins are assumed to be fully
polarized, the effective spin-1 chain needs to contain the same
numbers of Sz = 1 and 0 sites to maintain Stot/L = 1

3 . This is
a natural consequence of the fact that the energy gain from
the exchange processes is maximized when the numbers of
Sz = 1 and 0 sites are equal, just as the SU(2) Heisenberg
chain has the lowest energy at Sz

tot = 0. Therefore, this ef-
fective spin-1 chain behaves like a critical SU(2) chain with
the reduced Hilbert space of a spin from three to two dimen-
sional. Accordingly, there is no magnetic order accompanied
by a translational symmetry breaking with alternating sites of
Sz = 1 and 0. This is consistent with the power-law decay of
the spin-spin correlation function for the leg-spin subsystem
Sσ (r).

Although we assumed a magnetic unit cell with N = 6 to
fulfill the LSM theorem, it is not the case that the FR1 state
obeys the LSM theorem because the magnetic unit cell is ill
defined in the FR1 phase.

(a)

(b)

octamer singlet
(c)

FIG. 7. (a), (b) Structure of the octamer singlet. (c) iDMRG
results for the spin-spin correlations as a function of Jb/|J1| around
the OS phase. The symbols and colors correspond to the lattice bonds
denoted in (a) and (b).

C. Octamer-singlet (OS) phase (0.33 � Jb/|J1| � 0.43)

A narrow spin-singlet (Stot = 0) phase appearing for
0.33 � Jb/|J1| � 0.43 is sandwiched between two FR phases.
It means that this Stot = 0 state is not a consequence of simple
melting of FR order by AFM Jb but attributed to a kind of
LRO stabilization. However, the possibility of magnetic order
can be ruled out by the power-law decay of the spin-spin cor-
relations Sα (r) ∝ 1/rα and 〈Sz

s,i〉 = 〈Sz
σ,i〉 = 〈Sz

ξ,i〉 = 0. Then,
the most likely LRO is a valence bond formation due to
the order-by-disorder mechanism. The representatives of such
valence bond formation are spontaneous dimerization orders
in the AFM-AFM J1-J2 chain [3] and in the FM-AFM J1-J2

chain [38]. In these systems the ground state is characterized
as a valence bond solid (VBS) state with an exponential decay
of spin-spin correlation and a finite gap in the spin excitation.
And yet, in our system, the spin-spin correlation decays in
power law and the first excitation is gapless. That is to say,
although our system at 0.33 � Jb � 0.43 is in an LRO state
associated with valence bond formation, it is not a simple VBS
state. In other wards, the system is not fully filled with the
valence bonds.

To determine the valence bond structure, we calculate
the real-space distribution of spin-spin correlation functions
〈Sα,i · Sβ, j〉. In Fig. 7(c) we plot the iDMRG results for
〈Sα,i · Sβ, j〉 as a function of Jb/|J1|. The symbols and colors
correspond to bonds shown in Figs. 7(a) and 7(b). Although
the bonds denoted by the red circle and blue square are ge-
ometrically equivalent, the correlations between these bonds
are split at 0.33 � Jb/|J1| � 0.43. Similarly, the correlations
among the bonds denoted by the green triangle, purple dia-
mond, and cyan star are also split in the same Jb/|J1| region.
This result clearly indicates that the translational symmetry is
spontaneously broken with the tripled unit cell, i.e., a three-
period magnetic unit cell containing nine spins. This situation
may be reasonably explained by assuming that eight spins
out of the nine spins in the magnetic unit cell, surrounded
by a yellow box in Fig. 7(a), form an OS state. In fact, we
have confirmed that the isolated octamer has a stable singlet
ground state with a finite excitation gap. The excitation gap
has its maximum value around Jb/|J1| = 0.4. This means that
the frustration of exchange interactions can indeed be relieved
by forming the octamer-singlet units. The details are discussed
in Appendix A.
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m=1/6(a)

S = 1

S = 1/2(c)

J1

JbS = 1

(b)

axial

leg

FIG. 8. (a) Schematic representation of the magnetic moment
distributions in real space for the FR2 phase, where the weakly
polarized spins are denoted by red shaded area. A red arrow denotes
an almost fully polarized spin. (b), (c) FM-AFM delta chain as an
effective model for the FR2 phase, where each basal spin is S = 1 as
a result of two S = 1

2 leg spins.

Nevertheless, there are extra axial spins between the
octamer units. The extra axial spin thus appears in ev-
ery three structural unit cells. Considering the sharp q =
±π/3 peaks of Sss(q) at 0.33 � Jb/|J1| � 0.43, it ap-
pears that the extra axial spins are antiferromagnetically
connected and an AFM Heisenberg chain is formed. Since
the Heisenberg chain is critical, the whole system should
be gapless in spite of gapped octamer singlets. It is consis-
tent with the power-law decay of the spin-spin correlations.
Thus, we conclude that the region 0.33 � Jb/|J1| � 0.43
is identified as the octamer-singlet phase. The phase tran-
sitions between the OS and two FR phases are of the
first order because these phases have completely different
symmetries.

D. Ferrimagnetic-2 (FR2) phase (0.43 � Jb/|J1| � 0.60)

Another FR phase different from the FR1 phase appears
at 0.43 � Jb � 0.60, where the total spin is Stot/L = 1

6 . This
phase is referred to as the FR2 phase. In the FR2 phase, the
axial spins are nearly fully polarized and the leg spins are
only weakly polarlized (see Fig. 2). The schematic magnetic
structure of the FR2 state is sketched in Fig. 8(a). Here, we are
aware of a spin model exhibiting a similar FR state. That is the
spin- 1

2 FM-AFM delta chain which consists of nearly fully po-
larized spin- 1

2 apical spins and weakly polarized spin- 1
2 basal

spins in its FR phase (we refer to this phase as “delta-FR”
phase hereafter) [33,39]. Interestingly, this delta-FR order is
not associated with geometrical symmetry breaking; instead,
the global spin-rotational symmetry is broken via the order-
by-disorder mechanism [11]. Actually, in the FR2 phase both
of the axial-axial and leg-leg spin-spin correlations converge
to finite positive values at the long distance [see Fig. 4(b)].
This indicates a global spin-rotational symmetry breaking
without any translational symmetry breaking. Moreover, the
kagome chain can be regarded as a FM-AFM delta chain if
we assume the resultant two leg spins to form S = 1 [see
Figs. 8(b) and 8(c)]. Namely, the basal spins are not S = 1

2 but
S = 1. It has been confirmed that this mapping of leg chains

into a single spin-1 Heisenberg chain is exact in the limit
of J1/Jb = 0 [12]. Nevertheless, since the FM fluctuations
between the apical and basal spins are essential to stabilize the
FR state, the FR mechanism associated with the global spin-
rotational symmetry breaking should work even in the the case
of spin-1 basal chain. Thus, we may expect that the FR2 state
is induced by the same order-by-disorder mechanism as the
delta-FR state.

Although the origin of the FR2 and delta-FR states are
identical, there is a discrepancy in the parameter range be-
tween them. While the delta-FR phase maintains at the large
limit of AFM interaction between the basal spins, the FR2
phase disappears only around Jb/|J1| = 0.60. We can think of
three possible reasons for this discrepancy: First, the S = 1
basal chain is more classical than the S = 1

2 one so that the
FM fluctuations with the apical spins are more suppressed.
Second, the weak FM order in the effective S = 1 basal chain
may be affected by the presence of pseudo-Haldane order
(see Sec. IV F). Third, even though in hindsight, the other
order-by-disorder phase, called as the period-4 phase, appears
at the larger AFM interaction Jb/|J1| (see also Sec. IV E).

As mentioned above, the translational symmetry is not
broken in the FR2 phase. Accordingly, the magnetic unit cell
is the same as the original structural unit, i.e., nunit = 3. In
that sense, one may say that the LSM condition for a FR sta-
bilization (S − Stot/L)nunit = (1/3)nunit = integer is fulfilled.
From this standpoint, the FR2 phase is different from the FR1
phase which is a non-LM FR one. However, the two FR phases
are similar in that the axial spins are nearly fully polarized.
This fact provides us with another insight that the fractionally
quantized spin state of the effective S = 1 chain, consisting of
the leg spins, is changed as 〈S〉 = 1, 1

2 , and 0 in the FM, FR1,
and FR2 phases, respectively. It can be interpreted as follows:
The leg spins feel the FM correlations with the polarized axial
spins like an external magnetic field. When the AFM inter-
action between leg spins, i.e., Jb/|J1|, is small, the leg spins
have full magnetization, leading to the FM phase. Then, the
magnetization of leg spins are reduced with increasing Jb/|J1|.
Interestingly, the change of magnetization is not continuous
but quantized. Nevertheless, it is consistent with the Marshall-
Lieb-Mattis theorem which prohibits a “halfway” magnetiza-
tion [17,40]. If the axial spins are directly coupled by AFM
interaction, a continuous change of magnetization may be
allowed as a consequence of the competition between the
spin polarizations and a critical Tomonaga-Luttinger-liquid
behavior [11,20].

Related to this issue, it would be informative to under-
stand the reason why the FR2-like state does not exist as a
ground state of the six-site cluster discussed in Sec. IV B [see
Fig. 6(a)]. Basically, the energy gain from the FM fluctua-
tions between axial and leg spins is essential to stabilize a
FR state. In the FR1 state, such FM fluctuations are simply
accomplished because the system consists of axial spins with
〈S〉axial = 1

2 and leg spins with 〈S〉leg = 1
4 . This state can be

clearly expressed even within the six-site cluster. On the other
hand, the leg spins need to be spontaneously polarized to
stabilize the FR2 state. To achieve this, the FM axial-leg fluc-
tuations favoring 〈S〉leg > 0 must exceed the competing AFM
intraleg exchange fluctuations favoring 〈S〉leg = 0. However,
the AFM exchange fluctuations are always dominant with a
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short chain so that the FR2 state cannot exist as a ground state
of the six-site cluster. This is one of the typical finite-size
effects and a certain chain length is required to obtain the
FR2 ground state. A similar discussion was given in the spin- 1

2
delta chain [11].

E. Period-4 (P4) phase (Jb/|J1| � 0.60)

At Jb/|J1| ≈ 0.6, the system goes again into an Stot = 0
phase from the FR2 phase. As mentioned above, a fourfold
magnetic structure is indicated by the sharp peaks of Sαβ (q)
at q = ±π for the leg chains and at q = ±π/2 for the axial
chain. One may naively imagine that this Stot = 0 state is a
spin liquid due to melting of FR2 order by AFM Jb. However,
given the exponential decay of spin-spin correlations between
the axial spins [Figs. 4(e) and 4(f)], we find it not to be a
simple spin liquid but a “gapped” state in association with
valence bond formation. Nevertheless, we note that the first
excitation above the ground state is in fact gapless as shown
in Sec. III D. Although this is seemingly puzzling, we may
solve it by looking at our system divided into two subsystems,
namely, a system of axial spins and that of leg spins. In
fact, both of the spin structure factor Sαβ (q) [Fig. 3(d)] and
spin-spin correlations Sα (r) [Figs. 4(e) and 4(f)] behave quite
differently between the axial-spin and leg-spin subsystems.

Let us then consider the effective models of the two subsys-
tems. As already mentioned above, a spin-1 AFM Heisenberg
chain provides a good approximation of the leg-spin subsys-
tem. The maximum value of Sσσ (q) at q = ±π [Fig. 3(f)]
reflects the dominant AFM fluctuation. It is known that the
ground state of spin-1 AFM Heisenberg chain is a gapped
state called Haldane VBS [41] or Affleck-Kennedy-Lieb-
Tasaki [42] state. In fact, the exponential decay of Sσ (r) at
short distance [Fig. 4(e)] exhibits a signature of the gapped
feature. However, it turns to a power-law decay at long
distance [Fig. 4(f)] because the Haldane VBS state is not a per-
fect long-range order due to the interaction with the axial-spin
subsystem. As shown in Figs. 4(e) and 4(f), the crossover from
exponential to power-law behaviors occurs around rcross ≈ 35
at Jb/|J1| = 1. With increasing Jb/|J1| the range of exponen-
tial decay, i.e., rcross, increases and the Haldane VBS state is
recovered in the limit of J1/Jb = 0. This point will be further
discussed in the next subsection.

On the other hand, a possible effective model for the axial-
spin subsystem is a frustrated FM-AFM Heisenberg chain
with nearest-neighbor FM coupling JNN

s and next-nearest-
neighbor AFM coupling JNNN

s [43]. The ground state of this
frustrated chain is either an FM state at JNNN

s /|JNN
s | < 1

4 or
an incommensurate spiral VBS state with valence bond for-
mation between third-neighbor sites at JNNN

s /|JNN
s | > 1

4 [38].
Let us estimate the effective exchange parameters within per-
turbation theory. Assuming an AFM alignment of leg-spin
subsystem as an unperturbed state, the second- and third-order
perturbations give

JNN
s ∼ J2

1

2Jb
, JNNN

s ∼ J2
1

J1 + Jb
(16)

[see Fig. 9(a)]. This leads to JNNN
s /|JNN

s | ≈ 2Jb/(J1 + Jb).
Hence, the range of Jb/|J1| � 0.60 for the P4 phase cor-
responds to the incommensurate spiral VBS phase of frus-

(c)

(b)

Odimer

(a)

FIG. 9. (a) Structure of effective exchange couplings JNN
s and

JNNN
s for the axial-spin subsystem (see text). (b) iDMRG results for

the spin-spin correlations as a function of Jb/|J1| in the P4 phase. The
symbols and colors correspond to the lattice bonds denoted in (c).
Cyan stars show the dimerization order parameter, which is estimated
by Eq. (17) and is equivalent to the difference between the values
denoted by red circles and blue squares.

trated FM-AFM Heisenberg chain. Meanwhile, as shown in
Fig. 3(d), a commensurate peak of Sss(q) at q = π/2 has been
obtained for Jb/|J1| = 1. In fact, the propagation number is
q = 0.4994π for JNNN

s /|JNN
s | = 1 (Jb/|J1| = 1) [44]. Thus,

the L = 72 PBC cluster used for Fig. 3(d) does not have
high enough resolution to detect such a tiny deviation from
q = π/2. In Appendix B, we confirm that the actual propaga-
tion number in the P4 phase is slightly less than |q| = π/2.

As discussed above, the ground state of axial-spin subsys-
tem in the P4 phase corresponds to an incommensurate spiral
VBS state of frustrated FM-AFM Heisenberg chain. We then
investigate whether valence bonds are actually formed in the
P4 state. To identify the possible structure of valence bond
formation, the short-range spin-spin correlations for the bonds
denoted in Fig. 9(b) are calculated. The iDMRG results for
short-range spin-spin correlations are plotted as a function
of Jb/|J1| in Fig. 9(c). We find that the spin-spin correlation
between next-nearest-neighbor axial spins is uniform in the
FR2 phase (Jb/|J1| � 0.60), which largely splits into two val-
ues [denoted by red circles and blue squares in Fig. 9(c)] as
soon as the system goes into the P4 phase (Jb/|J1| � 0.60).
This obviously means that the axial-spin subsystem is sponta-
neously dimerized, where the valence bond is formed between
next-nearest-neighbor axial spins coupled by JNNN

s in the ef-
fective model. This is different from the fact that a valence
bond is formed between third-neighbor sites in the frustrated
FM-AFM Heisenberg chain. In order to see the dimerzation
strength, we define the dimerization order parameter Odimer as

Odimer := |〈Ss,i · Ss,i+2〉 − 〈Ss,i · Ss,i−2〉|. (17)

The iDMRG result for Odimer is plotted as a function of
Jb/|J1| in Fig. 9(c). An abrupt occurrence of Odimer at the
boundary between FR2 and P4 phases indicates a first-order
phase transition, which is consistent with the discontinuous
changes of the total spin Stot at the phase boundary. With
increasing Jb/|J1|, the dimerization order parameter decreases
from its maximum at Jb/|J1| ≈ 0.6 and saturates at some value
in the limit of Jb/|J1| = ∞. This can be interpreted in terms
of the frustration ratio of the effective model, i.e., JNNN

s /|JNN
s |

of the frustrated FM-AFM Heisenberg chain. We estimate
JNNN

s /|JNN
s | = 0.75 at Jb/|J1| = 0.6. It is known that the
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frustration strength is maximum around JNNN
s /|JNN

s | = 0.75
in the frustrated FM-AFM Heisenberg chain [44]. Since the
dimerization order is a consequence of order by disorder, this
result is consistent with the fact that the dimerization order
parameter is maximum around Jb/|J1| = 0.6. Besides, the ap-
proach of frustration ratio to JNNN

s /|JNN
s | = 2 at Jb/|J1| = ∞

leads to the saturation of dimer order parameter. However,
the limit of Jb/|J1| = ∞ is not adiabatically connected to a
J1 = 0 point. The J1 = 0 point is singular and the dimer order
no longer exists because the axial-spin subsystem is just a
group of free 1

2 spins. This means that the inclusion of finite
J1 gives nonperturbative effects in the axial-spin subsystem.
The existence of such singularity may also be expected in the
AFM-AFM kagomelike chain [28], which needs to be studied
in the future. In the next subsection, we will give a further
discussion on this issue from the viewpoint of the string order
parameter.

As described above, our system can be considered as
the direct product of gapless leg-spin subsystem and gapped
axial-spin subsystem in the P4 phase. This decoupling of our
system is further supported by the fact that the spin-spin cor-
relation between axial and leg spins is very small, only of the
order of 0.01. Accordingly, we can routinely understand the
completely different behaviors of spin-spin correlation func-
tions between the axial-spin and leg-spin subsystems, namely,
the power-law decay of Sσ (r) [Fig. 4(f)] and the exponential
decay of Ss(r) [Fig. 4(e)] at long distance. Note that the whole
system is gapless as shown in Sec. III D.

F. Pseudo-Haldane state

At J1 = 0, our system is completely decomposed into the
leg-spin subsystem and free axial spins. The leg-spin subsys-
tem is equivalent to the so-called diagonal ladder with uniform
exchange couplings. Although the diagonal ladder has been
intensively studied in the context of columnar-dimer phase,
no positive numerical evidence for a dimerized state has so far
been found in the previous studies [45–48]. This is consistent
with our results and we have further confirmed that even the
inclusion of finite FM J1 does not derive any dimerized state.

Another interesting issue from the viewpoint of topo-
logical order is the hidden Haldane VBS order [49]. The
diagonal ladder with uniform exchange couplings, i.e., our
leg-spin subsystem at J1 = 0, is exactly mapped onto a spin-1
Heisenberg chain

H = Jb

N∑

i=1

Seff
i · Seff

i+1. (18)

Therefore, the appearance of Haldane VBS order as a hidden
Z2 × Z2 symmetry breaking is naturally expected. This order
can be revealed by a strong order parameter defined through a
nonlocal unitary transformation [49–52]. Let us then consider
what happens when FM J1 is switched on. To study this, we
calculate the z component of a nonlocal string correlation
function

Os,odd(r) = 〈(
σ z

i+r + ξ z
i+r

) ∏

i+r>k>i

eiπ (σ z
k +ξ z

k )
(
σ z

i + ξ z
i

)〉.

(19)

J1 = 0.0
Jb / |J1| = 5.0

0.3
0.5

2.0

0.7

1.0

(a) (b)

FIG. 10. (a) DMRG and iDMRG results for the z component
of a nonlocal string correlation function Os,odd(r) as a function of
distance r. The symbols represent OBC results with L = 300, and
lines represent the corresponding iDMRG results. The cyan sold line
shows the result for J1 = 0, where the system is decomposed into the
so-called diagonal ladder and free axial spins (see main text). The
other numbers inside the figure are the values of Jb/|J1|. (b) Finite-
size scaling analysis of the string order parameter Os,odd(r = N/2)
calculated using OBC clusters.

The string order parameter is defined as a value of Os,odd(r) at
long-distance limit r → ∞. In Fig. 10 we show the iDMRG
and DMRG results for the string correlation function as a
function of distance for several values of FM J1. At J1 = 0,
we can clearly confirm a long-range hidden VBS order with
a convergence to Os,odd(r → ∞) � 0.374 at long distance,
which is consistent with the previous study [53]. Surprisingly,
just by introducing small |J1| = 0.2 (Jb/|J1| = 5), the cor-
relation function turns to an exponential decay, although its
correlation length seems to be still very large. With further
increasing |J1|, the decay of Os,odd(r) becomes faster, keeping
its exponential behavior. Since the J1 = 0 point is singular
for the axial-spin subsystem, it may be a good guess that
the hidden Haldane VBS order in the leg-spin subsystem no
longer exists at any finite |J1|. However, more precise iDMRG
analysis of Os,odd(r) at semi-infinite distance, e.g., r ∼ 105, is
necessary to confirm it [54].

In Fig. 10(b), a finite-size scaling of Os,odd(r = N/2) is
shown. We recognize that the correlation length of Os,odd(r)
is maintained to be relatively long at |J1| � 1 (Jb/|J1| � 1).
The correlation length may roughly be estimated from the
change in slope of Os,odd(r = N/2) vs 1/L. For example, let
us see the case of Jb/|J1| = 1: The slope of Os,odd(r = N/2)
vs 1/L looks almost linear at 1/L � 0.01, which indicates a
short-range stability of the hidden VBS order. At 1/L � 0.01,
the value of Os,odd(r = N/2) goes toward zero with decreasing
1/L, which suggests a collapse of the long-range hidden VBS
order. From the changing point of slope, the correlation length
is roughly estimated as r = L/3 ∼ 33. It is indeed reason-
able that this correlation length agrees well to the crossover
distance of the spin-spin correlation functions Sσ (r), where
the change in Sξ (r) from exponential to power-law behaviors
occurs at rcross ≈ 35 [see Fig. 4(e) and Sec. IV E]. This means
that it looks as if a hidden VBS order is stabilized at r � rcross,
although the long-range order is actually collapsed by finite
|J1|. This unique feature makes our analysis to identify the
string order parameter difficult and the use of iDMRG is
necessarily required. A similar difficulty is seen, for example,
in the study of XY phase of spin-1 Heisenberg chain [55].

184410-11



YAMAGUCHI, OHTA, AND NISHIMOTO PHYSICAL REVIEW B 103, 184410 (2021)

This issue also reminds us of a different behavior in a similar
system; the AFM-AFM delta chain consisting of spin- 1

2 basal
and spin-1 apical sites [56]. In this system, the Haldane VBS
phase survives for small apical-basal interactions. To find the
reason why the different behaviors occur is left for the future.

G. Relevance to experiments

Finally, let us comment on the relevance of our re-
sults to the experimental observations for Ba3Cu3In4O12

and Ba3Cu3Sc4O12. These materials have a similar field-
temperature (B-T ) phase diagram [24–26]: At B = 0, these
materials exhibit a 3D AFM order indicated by a sharp peak
of the magnetic susceptibility and a jump of the specific heat
at low T . It would be originated from weak AFM interchain
couplings between the kagomelike chains. With increasing
B, these systems undergo a phase transition from the AFM
to spin-flop phase, and then to a fully polarized ferromag-
netic phase. Of particular interest is that two-step phase
transitions occur in the spin-flop phase at magnetic fields of
B1 ∼ 2.0 T and B2 ∼ 3.2 T in Ba3Cu3In4O12 [26]. At the
phase transitions, the experimental magnetization is M/Ms ∼
0.35 and 0.67 for B1 ∼ 2.0 T and B2 ∼ 3.2 T, respectively.
These magnetization values are close to those of the FR2
phase (M/Ms = 1

3 ) and of the FR1 phase (M/Ms = 2
3 ). Thus,

the two phase transitions in the spin-flop phase may corre-
spond to the instabilities of the two kinds of FR phase in the
kagomelike chain, namely, the difference of magnetic suscep-
tibility between the apical and leg spins. Further investigation
on the B-T phase diagram is beyond the scope of this paper
but is a fascinating open issue to be addressed in the future.

V. SUMMARY

Using the DMRG-based techniques, we studied the spin- 1
2

FM-AFM kagomelike ladder with FM coupling J1 be-
tween the axial and leg spins and AFM coupling between
the leg spins Jb. Based on the numerical calculations of
the total spin, static structure factor, spin-spin correlation
functions, spin gap, dimer order parameter, and string or-
der parameter, we found five different phases in the ground
state, depending on Jb/|J1|, as summarized in Fig. 1(c): (i)
FM (0 � Jb/|J1| � 0.25), (ii) FR1 (0.25 � Jb/|J1| � 0.33),
(iii) OS (0.33 � Jb/|J1| � 0.43), (iv) FR2 (0.43 � Jb/|J1| �
0.60), and (v) P4 (Jb/|J1| � 0.60) phases.

The FM, FR1, and FR2 phases are characterized by the
spontaneous spin-rotational symmetry breaking. The average
magnetization per site is m = 1

2 , 1
3 , and 1

6 in the FM, FR1,
and FR2 phases, respectively. A (nearly) fully polarization of
the axial spins is a common structure of these three phases;
the difference is attributed to a fractional quantization of the
leg-spin magnetization. Since the leg-spin subsystem can be
mapped onto an effective spin-1 Heisenberg chain with spin-1
degrees of freedom formed by the upper and lower leg spins,
the issue comes to the three-step magnetization for the effec-
tive spin-1 chain. First, in the FM phase, the effective spin-1
chain is trivially in a full polarization due to the dominant FM
interactions. Second, in the FR1 phase, the magnetization per
site in the effective spin-1 chain is 1

2 although only either 0 or
1 is generally allowed in a stable ground state. What happens

is that an unusual critical SU(2) state with the reduced Hilbert
space of a spin from three to two dimensional is achieved
to maximize the energy gain from both the exchange pro-
cesses and the FM correlations with the axial spins. Third,
in the FR2 phase, the magnetization in the effective spin-1
chain should essentially be 0 although it is actually small
finite because of the spin-rotational symmetry breaking. It is
surprising that, nevertheless, the Haldane-type VBS state is
present in the effective spin-1 chain. In fact, this small mag-
netization is a consequence of order by disorder to stabilize
the FR2 state, where the global spin-rotational symmetry is
broken, in order to lower the energy by the FM fluctuation
between the axial-spin and the leg-spin subsystems. This is
the same order-by-disorder mechanism as for an FR state in
the spin- 1

2 FM-AFM delta chain [11]. Thus, an anomalous
fractional quantization in a spin-1 Heisenberg chain as an
effective model for the leg-spin subsystem is a key factor to
understand the three kinds of polarized phases in the spin- 1

2
kagomelike ladder.

The remaining two phases are spin-singlet phases. One of
them is the OS phase, which is sandwiched between the FR1
and FR2 phases. It implies that this phase is not a consequence
of simple melting of FR state but a kind of spontaneous va-
lence bond formation from the order-by-disorder mechanism.
We performed a detailed analysis of the short-range spin-spin
correlations and identified a long-range order with alternating
alignment of octamer singlets and nearly free axial spins.
The nearly free axial spins are weakly antiferromagnetically
connected and a critical SU(2) chain is formed. Hence, this
state is gapless and also consistent with the period of magnetic
structure with six unit cells, i.e., containing 18 spins, indi-
cated by sharp peaks at q = ±π/3 in the static spin structure
factor for the axial-spin subsystem. We should note that this
AFM correlation is not LRO. The other spin-singlet phase
is the P4 phase characterized by the magnetic superstruc-
ture with a period of four structural unit cells. This phase
appearing at large AFM coupling Jb/|J1| may be accounted
for by the melting of FR state. Still, the magnetic structure
is not very simple. The axial-spin subsystem is gapped with
spontaneous dimerization. The leg-spin subsystem behaves
like a spin-1 Heisenberg chain at short distance and like a
critical chain at long distance. Accordingly, the string cor-
relation function exhibits an exponential decay but with a
long correlation length. The string order is recovered in the
limit of large Jb/|J1|. Thus, in the OS and P4 phases, we
detected the coexistence of valence bond structure and gapless
chain. Although this may be emerged through the order-by-
disorder mechanism, there can be few examples of such a
coexistence.

We also discussed the relevance of the spin- 1
2 FM-AFM

kagome ladder to the experimental observations of a se-
ries of field-induced spin-flop transitions in Ba3Cu3In4O12

and Ba3Cu3Sc4O12. Since the magnetization values at the
two spin-flop transitions are close to those of the FR2
phase (M/Ms = 1

3 ) and of the FR1 phase (M/Ms = 2
3 ).

Thus, the two phase transitions in the spin-flop phase may
correspond to the instabilities of the two kinds of FR
phase. Further investigations of the spin- 1

2 kagomelike lad-
der on the B-T parameter space are highly desired in the
future.
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APPENDIX A: SPIN POLARIZATION
IN THE OCTAMERIZED PHASE

In the main text, we have argued that our system (2) is
in the octamer-singlet ground state at 0.33 � Jb/|J1| � 0.43.
The stabilization of this state is attributed to a spontaneous
octamerization of the system with translational symmetry
breaking. More specifically, as shown in Fig. 11(a) an octamer
singlet and a nearly free spin are aligned alternately. Here, in
order to further confirm the octamerization, we give another
numerical evidence for the formation of octamer singlets with
the use of the difference of magnetic susceptibility between
the octamer singlet and nearly free spin. We apply the open
boundary conditions and keep the total number of site L equal
to L = 9n − 1, where n is an integer value, to be consistent
with the octamer-singlet ground state. With this setup, there
are n − 1 nearly free spins. If one spin is flipped in the
octamer-singlet ground state, the nearly free spin out of nine
spins should be first polarized.

In Fig. 11(b), we show an expectation value of the z com-
ponent of spin operator 〈Sz

i 〉 at Jb/|J1| < 0.4, where the system
size is set to be L = 44 = 9 × 5 − 1 with Sz

tot = 2. As we
intuitively expected, a substantial polarization is seen at four
sites corresponding to the nearly free spins (red filled circles);

(a) octamer residual spin

(b) 

FIG. 11. (a) A possible realization of octamer-singlet state with
an open cluster. (b) DMRG results for the expectation value of the z
component of spin operator 〈Sz

i 〉 in the Sz = 2 sector, as a function of
site index i. Jb/|J1| = 0.4 and L = 44 are chosen. Red circles, blue
squares, and green triangles represent s, σ , and ξ site, respectively.
Filled red circles denote the values of 〈Sz

i 〉 for nearly free spins at
i = 9n, where n is an integer.
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FIG. 12. Excitation gap, defined as an energy difference between
the Sz = 0 ground state and Sz = 1 excited state, of isolated octamer.
The red shaded area represents the octamer-singlet phase of the
kagomelike chain.

the other spins forming the octamer singlets are much less
polarized (open symbols). This result supports the octameriza-
tion of our system in the intermediate AFM coupling regime
0.33 � Jb/|J1| � 0.43.

We note that the nearly free spins are effectively antifer-
romagnetically coupled with each other since the period of
magnetic modulation is 12 sites because of sharp peaks of the
apical-spin structure factor Sss(q) at q = ±π/3. Nevertheless,
the AFM chain consisting of nearly free spins is critical, which
is consistent with the gapless behaviors shown in the main
text.

(a)

(b)

(c)

(d)

FIG. 13. DMRG results of static structure factor Sss(q) for the
axial spins in the kagomelike chain at Jb/|J1| = 0.8, where the open
boundary conditions are used. The maximum position is marked by
blue diamond and the corresponding q value is shown as qmax.
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APPENDIX B: EXCITATION GAP OF THE ISOLATED
OCTAMER SINGLET

In the main text, we have claimed a spontaneous formation
of octamer singlets through the order-by-disorder mechanism
at 0.33 � Jb/|J1| � 0.43. However, in fact, it is a nontrivial
question whether each octamer has a gapped excitation from
its singlet ground state. To confirm this, we calculate the
lowest energy of isolated octamer in the Sz = 0 and 1 sectors.
We then find that the energy for Sz = 0 sector is indeed lower
than that for the Sz = 1 sector at 0.31 � Jb/|J1| � 0.65. This
indicates that the isolated octamer has a singlet ground state
in this Jb/|J1| range. In Fig. 12, the energy difference between
the Sz = 0 ground state and Sz = 1 excited state is plotted as
a function of Jb/|J1|, which corresponds to an excitation gap
of the isolated octamer. The excitation gap has a maximum
around Jb/|J1| ∼ 0.4. In the octamer-singlet phase of the
kagomelike chain, the order-by-disorder mechanism works
to lower the frustration energy by spontaneously forming
octamer singlets. Thus, it appears that the excitation energy
directly reflects the stability of octamer-singlet phase. It is
quite reasonable that the octamer-singlet phase exists in a
Jb/|J1| region, where the excitation gap of isolated octamer is
maximized.

APPENDIX C: NEARLY COMMENSURATE SPIN
STRUCTURE IN THE PERIOD-4 PHASE

The period-4 state may be characterized by a commensu-
rate peak of Sss(q) at q = ±π/2. This means that the magnetic

period is four structural unit cells, containing axial spins.
On the other hand, as described in the main text, the apical-
spin subsystem can be effectively mapped onto the so-called
ferromagnetic-antiferromagnetic J̃1-J̃2 chain in the period-4
phase at Jb/|J1| � 0.6. In the main text, J̃1 and J̃2 are referred
to as JNN

s and JNNN
s , respectively. From the perturbative anal-

ysis [Eq. (16)], the range of frustration ratio is estimated to
be J̃2/|J̃1| = 0.75 − 2 for Jb/|J1| � 0.6. Although the prop-
agation number is known to be very close to q = ±π/2
in this J2/|J1| range, a true commensurate modulation with
q = ±π/2 is achieved only in the limit of J2/|J1| = ∞ [57].
If this is the case, the precise peak position of Sss(q) in
the period-4 phase could be slightly shifted from q = ±π/2.
To check this, we calculate the static spin structure factor
Sss(q) [Eq. (4)] with open chains. The use of open boundary
conditions enables us to tune the propagation number contin-
uously as a function of Jb/|J1| in the situation of ill-defined
momenta. In Fig. 13, the DMRG results of static structure
factor Sss(q) for the axial spins in the kagomelike chain at
Jb/|J1| = 0.8 are shown. Note that the parameter Jb/|J1| =
0.8 corresponds to J̃2/|J̃1| = 0.88 in the effective J̃1-J̃2 chain.
We can see that the peak position is obviously shifted from
q = π/2. Although we have not performed the finite-size
scaling analysis, the propagation number seems to converge to
qmax = 0.497π–0.498π in the thermodynamic limit L → ∞.
It is also convincing that this qmax value agrees very well
with propagation number q = 0.498π for J̃2/|J̃1| = 0.88 in
the J̃1-J̃2 chain [44].
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