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Temperature-dependent renormalization of magnetic interactions by thermal, magnetic,
and lattice disorder from first principles
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We put forth an ab initio framework to calculate local moment magnetic interaction parameters, renormalized
to treat both the lattice and magnetic systems as a function of temperature T . For bcc Fe, magnetic and lattice
thermal disorders act in opposition, the former strengthening the Heisenberg-like interactions, while the latter
decreasing them. Below TC , J stays nearly independent of T , while around and above TC , it exhibits a sharp
decrease. This remarkable behavior reflects an intricate spin-lattice coupling and its evolution with T , in which
magnetic interactions and interatomic bonds are each renormalized by the other. This finding is consistent
with magnetization data and with the observed softening of magnon and phonon modes at high temperatures.
Magnetization as well as magnon and phonon mode softening are discussed.
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I. INTRODUCTION

The temperature dependence of magnetism has long been
a challenge for first-principles calculations. Of particular
importance are magnetic systems described by Heisenberg,
Kitaev, and Dyaloshinski-Moriya (DM) interactions. Many
theories approximate the magnetic interaction strengths us-
ing temperature-independent constants [1–8]. With increasing
temperature, quasiparticle excitations such as magnons and
phonons are renormalized by the growing thermal disorder in
magnetic and lattice subsystems and by the mutual coupling of
these subsystems. Yet, the impact of temperature on magnetic
interaction strengths has received little attention.

Perhaps the most studied case is that of iron [5–25]. Early
attempts in Fe focused on including the finite temperature
of the magnetic system, while neglecting that of the lattice
[6,12,20–25]. The lattice and magnetic degrees of freedom in
iron are intimately coupled [9,11,14], and recent calculations
[15] found thermal lattice disorder, i.e., the temperature-
dependent displacements of atoms about their equilibrium
positions, to have a significant impact on the magnetism at
the Curie temperature TC .

This raises many interesting questions. First, the calcula-
tions in Ref. [15] were performed at a single temperature, near
TC . Do the same conclusions about the importance of thermal
lattice disorder also hold for other temperatures? What is the
evolution of the magnetic interaction strength with temper-
ature? Prior calculations where lattice atoms were fixed to
their classical equilibrium positions [25] found an increase of
first-nearest-neighbor magnetic interaction strength with in-
creasing temperature; given the results of Ref. [15], might this
trend simply be an artifact of the use of an ideal (nonthermal)
lattice in the former work?
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Moreover, the calculations of Ref. [15] neglected the effect
of magnetic thermal disorder, i.e., the temperature-dependent
rotation of moments away from ferromagnetic alignment,
upon the lattice, even around TC = 1043 K. However, the
lattice dynamics in bcc Fe has been demonstrated [11,14] to
be sensitive to thermal magnetic disorder; at temperatures near
TC , vibrational properties differ significantly from those of a
ferromagnetic state. If the magnetic interaction is sensitive
to lattice thermal disorder, what then would be the effect of
including thermally relevant magnetic disorder as well? A
calculation of magnetic exchange as a function of temperature
including both realistic magnetic and lattice thermal disorder
is lacking. Additionally, given the sensitivity of both systems,
is there any evidence of higher-order spin-lattice coupling ef-
fects whereby thermal magnetic disorder may renormalize the
magnetic interaction via renormalizing the lattice dynamics?

Perhaps the most common tool for investigating magnetism
is a local-moment model H = − 1

2

∑
i, j,α,β Jα,β

i, j eα
i eβ

j , where eα
i

is the αth Cartesian component of a unit vector representing
the direction of the local magnetic moment at site i, and
Jα,β

i, j is a magnetic exchange parameter which represents the
strength of the magnetic interaction between the moments at
sites i and j, and α and β are Cartesian directions. In this
model, the lengths of the moments are fixed but their direc-
tions may vary. The general form of this model encompasses
Heisenberg, Kitaev, and DM interactions. The use of a Heisen-
berg form for iron has been justified in the disordered local
moments picture for itinerant electron systems [21,22]. A
standard first-principles analysis typically calculates Ji, j val-
ues via perturbations of an ideal T = 0 system but then uses
those same values at high temperatures (T ≈ TC) to calculate
magnetization curves and TC [5,6]. In this paper, we investi-
gate the effects of allowing Ji, j to vary with temperature T ,
in addition to volume V , in order to capture finite-temperature
effects. This nonperturbative approach obtains Ji, j (V, T ) mag-
netic interactions as well as interatomic interactions which are
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renormalized by coupled thermal effects in both systems. We
focus on the effect of thermal lattice disorder as well as direct
and indirect effects of thermal disorder in magnetic moment
orientations. By indirect effects, we mean the following: The
presence of magnetic thermal disorder affects the bonding be-
tween Fe atoms, which then affects the thermal displacements
of the Fe atoms, which, in turn, affect J values. We then refer
to the change in J caused by this renormalization of the lattice
thermal disorder as an indirect effect of the magnetic thermal
disorder.

II. TEMPERATURE RENORMALIZED HEISENBERG
INTERACTIONS

The temperature-dependent effective potential (TDEP)
framework [26–29] has been demonstrated to capture well
spin-lattice coupling effects on phonons at finite temperature
[14]. Here, we use the TDEP framework to extract effective
Heisenberg-like magnetic exchange parameters. To this end,
we adopt a Hamiltonian form of Eq. (1),

H = U0(V, T ) +
∑

i,α

(pα
i )2

2Mi

+ 1

2

∑

i, j,α,β

�
α,β
i, j (V, T )uα

i uβ
j − 1

2

∑

i, j,α,β

Jα,β
i, j (V, T )eα

i eβ
j ,

(1)

where uα
i is the αth Cartesian component of the displacement

from equilibrium of the atom at site i. �
α,β
i, j (V, T ) are effec-

tive interatomic force constants (IFCs) relating the motion of
an atom at site i to that of an atom at site j. Analogously
for the magnetic system, eα

i is a unit vector which repre-
sents the direction of the magnetic moment at site i in the
lattice. Jα,β

i, j (V, T ) is then an effective generalized magnetic
exchange tensor characterizing the magnetic interaction be-
tween the magnetic moments at site i and j. Imposing bcc
symmetry, the magnetic interaction tensor becomes diagonal
Jα,β

i, j (V, T ) = Ji, j (V, T )δα,β . Note that, in the TDEP scheme,
the IFCs and Heisenberg-like exchange parameters depend
explicitly on both V and T and are renormalized to include
higher-order effects including anharmonicity and spin-lattice
coupling.

Then �
α,β
i, j (V, T ) and Ji, j (V, T ) are calculated by sampling

the potential energy surface in thermally relevant spin-lattice
configurations in the canonical ensemble. We emphasize that,
at elevated temperatures, both the lattice and the magnetic
moments are in thermally relevant configurations which are
far from the static equilibrium ferromagnetic ideal lattice con-
figuration. This is to be contrasted with calculations which
only slightly perturb the ferromagnetic ideal lattice ground
state, or calculations which treat only one subsystem at finite
temperature, leaving the other system in the ideal, ordered
configuration [5,7].

Thermal sampling is achieved via a variation of the
stochastic sampling technique in Ref. [14]. A 54-atom
bcc Fe supercell is considered at each V -T . For a given
set of �

α,β
i, j (V, T ), phonon modes are extracted from the

Hamiltonian in Eq. (1) and then populated stochastically

according to quantum statistics [14]. This is repeated to pro-
duce 10–40 different thermal lattice configurations in which
every atom is displaced from its classical equilibrium position.
We note that this approach incorporates zero-point motion.
Then, for a given set of Ji, j (V, T ), Markov chain Monte Carlo
[30–32] simulations employing the Metropolis algorithm [33]
are performed for the magnetic portion of Eq. (1). In this
way, an ensemble of 100–400 thermal magnetic supercell
configurations are produced. A crucial point is that the same
finite temperature is used in thermal magnetic and lattice
supercell generation (TMagnetic = TLattice ≡ T ). Then, thermal
spin-lattice supercell configurations are produced by com-
bining each thermal lattice configuration with ten different
thermal magnetic configurations. For instance, a combination
of 40 lattice configurations and ten magnetic configurations
produces a total of 400 spin-lattice configurations, each with
a unique magnetic configuration but sharing the same lat-
tice configuration with nine other spin-lattice snapshots. This
strategy of combination allows solving for Ji, j (V, T ) as dis-
cussed below. The above is repeated for every V -T point
studied.

The energy and atomic forces are calculated for every
spin-lattice configuration from first principles within the
framework of density functional theory (DFT). Fully non-
collinear magnetic calculations are performed in VASP with
spin-orbit coupling and moments constrained to the directions
in the thermal spin-lattice configuration [34–38]. We used
the projector augmented-wave (PAW) method [39,40], and
the parametrization of the generalized gradient approximation
according to Perdew, Burke, and Ernzerhof [41] was taken to
treat the exchange correlation. A k mesh of 3 × 3 × 3 was
used with a plane-wave cutoff of 350 eV.

For each V -T , a set of energy differences is generated by
subtracting energies for each pair of spin-lattice configura-
tions that share the same lattice configuration. In this way,
the portion of the energy attributable explicitly to atomic
displacements is eliminated. We then solve for the set of
Ji, j (V, T ) which best reproduces this set of energy differences
according to Eq. (1). We then solve for the �

α,β
i, j (V, T ) that

best reproduce the set of all forces in all spin-lattice con-
figurations for this V -T [14]. This entire process is iterated
until self-consistency is achieved. As a test, the self-consistent
loops were started with two different seed values of Ji, j (V, T )
and �

α,β
i, j (V, T ) and the same final answer was obtained. In

this work, V (T ) is obtained by following a thermal expansion
curve constructed by combining the measured thermal ex-
pansion [42] with the T = 0 energy minimum obtained from
the DFT calculations as in Ref. [14]; details are given in the
Supplemental Material [43]. We found the effect of thermal
expansion to be negligible.

III. RESULTS

Figure 1 displays the first-nearest-neighbor magnetic inter-
action parameter J1(T ) for three cases. The red curve shows
the fully renormalized J1(T ), i.e., it has been fully iterated
to self-consistency and includes effects from both magnetic
and lattice thermal disorder as well as higher-order spin-lattice
coupling effects. For all points above T = 300 K, the second-
nearest-neighbor J2(T ) value was found to be negligible,
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FIG. 1. Magnetic exchange parameter J1 for Fe as a function of
temperature for various degrees of inclusion of lattice and magnetic
thermal disorder. Points are calculated values while lines are guides
to the eye. The solid red curve includes realistic, self-consistent cou-
pled thermal disorder in both the lattice and the magnetic systems.
The black dashed curve includes only magnetic thermal disorder
and no lattice thermal disorder. The purple dotted curve includes
lattice thermal disorder but no magnetic thermal disorder. Curves are
lightened between 1174 and 1743 K to signify that Fe is in a fcc
phase between 1185 and 1667 K [44].

consistent with the expectations of Ref. [25], so we consider
only J1(T ) here. Below about 900 K, the curve is flat, appar-
ently justifying the commonly used temperature-independent
model in that range. However, a central finding of this work is
that the near-constant J1 masks the fact that as T increases,
the increasing magnetic and lattice thermal disorders drive
J1 in opposite directions, as shown below. Furthermore, the
value of J1(T ) decreases dramatically near TC and continues to
weaken as T is increased into the high-temperature δ phase of
bcc Fe. Clearly the renormalization of J1 is not uniform across
all T , and so conclusions drawn near TC may not readily apply
for other T . We briefly examine some physical consequences
of this temperature dependence before seeking its cause. For
a given T , decreasing J1 will result in increased magnetic
disorder, as the ordering magnetic interactions between the
moments is reduced. Therefore, as T → TC from below, the
rapid weakening of J1(T ) causes magnetization M(T ) to fall
to zero more rapidly near TC than would be the case if J1

were fixed at its low-T value. In the adiabatic limit, magnon
dispersions may be connected quantitatively to the Heisen-
berg magnetic exchange parameters [6,45,46]. The validity
of these relations near TC is questionable, so we do not use
this formulation to calculate magnon dispersions. However,
it is reasonable to expect the magnon frequency scale to be
set by the magnetic exchange strength even at elevated tem-
peratures. Therefore, we may make a qualitative connection
to the temperature dependence of magnon dispersions: The
rapid drop in J1(T ) near TC implies that there should be a
rapid decrease in magnon frequencies near TC . This is in

FIG. 2. Normalized magnetization per atom curves,
M(T )/M(0), for Fe calculated via Monte Carlo simulations.
The red curve uses the full J1(T ) (red curve from Fig. 1). The black
curve uses the J1(T ) which completely excludes lattice thermal
disorder (black curve in Fig. 1). M(0) is the magnetization per
atom at T = 0 K. Curves are for 6750-atom simulations. Points are
calculated values, and lines are guides to the eye.

qualitative agreement with experiment [47] which observed
magnon frequencies to decrease more rapidly with increasing
T in the range 918–1036 K than from 295 to 918 K.

But why does simultaneously incorporating the thermal
disorder in lattice and magnetic systems give a nearly constant
J1 below TC? And what drives its rapid decrease around TC?
We now endeavor to understand this interesting behavior and
to isolate the effects of the lattice compared with those of the
magnetic system.

First, we calculate the effect of thermal disorder in the
magnetic system alone, while restricting the lattice atoms to
reside at their equilibrium sites. This case is given by the
black curve of Fig. 1, which indicates that increasing magnetic
disorder on its own actually increases J1, consistent with prior
findings [25]. If, as previously discussed, magnon frequencies
are assumed to follow J1(T ), then this case of J1(T ) renor-
malized only by magnetic thermal disorder is in qualitative
disagreement with the experimentally observed sudden soft-
ening of magnon dispersions near TC [47]. Consequences also
exist for the corresponding magnetization curves, shown in
Fig. 2. For a given T , thermal atomic motion decreases J1

(Fig. 1), which necessarily decreases magnetization (Fig. 2),
resulting in a TC closer to the measured value of 1043 K than
the case of including only magnetic thermal disorder.

At the opposite extreme, the purple curve in Fig. 1 includes
lattice thermal disorder but suppresses magnetic thermal
disorder. In the language introduced above, both direct and in-
direct effects of magnetic disorder are “turned off.” Technical
details of how this was achieved appear in the Supplemental
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Material [43]. At 1043 K, both the red and purple curves in
Fig. 1 lie significantly below the black curve, demonstrat-
ing that thermal lattice disorder strongly reduces the strength
of the magnetic exchange at this temperature, in qualita-
tive agreement with Ref. [15]. However, examining the full
temperature range, we see a remarkable behavior. The temper-
ature dependences of the black and purple curves are opposite,
indicating that thermal lattice disorder and thermal magnetic
disorder have competing effects on the magnetic exchange.
As might be expected, these curves approach one another
at low T , where thermal disorder in both systems lessens.
Surprisingly, inclusion of only lattice thermal disorder proves
to be a better approximation to the full calculation (comparing
purple to red); this will be discussed further below.

Figure 1 also reveals that thermal lattice and magnetic dis-
orders combine nonlinearly at elevated temperatures. For low
and intermediate temperatures, T = 300–900 K, the full cal-
culation (red) lies between the two extremes of only magnetic
thermal disorder (black) and only lattice thermal disorder
(purple). Thus, the near-constant J1 for the full calculation
below TC is actually a result of canceling effects from the
lattice and magnetic thermal disorder. Near and above TC ,
however, the full calculation lies below both these extremes,
indicating that magnetic and lattice thermal disorder combine
nonlinearly in this region. This suggests that the observed
softening of magnon frequencies at temperatures around TC

results from a nonlinear spin-lattice coupling. We turn our
attention now to uncovering the nature of this nonlinearity.

To this end, we “turn off” the direct effects of magnetic
thermal disorder but include indirect effects by restricting the
magnetic thermal disorder to only influence J1 through its
renormalizing the lattice disorder [43]. The direct effect of
magnetic disorder for T below 1043 K is to increase J1 (i.e.,
shift up from blue to red curve), consistent with the black
curve in Fig. 1. Therefore, one ingredient in the steep drop
of the red curve near 1043 K is the direct effect of magnetic
thermal disorder preventing a gradual drop below 1043 K.

For T at and above 1043 K, the behavior is quite different.
Here, there is no direct effect of thermal magnetic disorder on
J1(T ), as the blue curve lies exactly on the red curve. Thus,
the same values for J1(T = 1043 K) and J1(T = 1173 K) are
obtained even when the proper magnetic configurations are
swapped out for nearly ferromagnetic ones. This is a surpris-
ing result. What then directly drives the value of J1(T ) in
this region? If not the magnetic system, it must be the lattice.
However, this seems an unusual proposition: TC is a magnetic
property, so why should the lattice induce a dramatic change
near TC? Does this mean that magnetic thermal disorder has no
effect at and above T = 1043 K? We now turn to examining
the direct effects of the lattice.

Previous calculations [11,14] have found a strong soften-
ing of phonon frequencies for temperatures near and above
TC , consistent with measurement [43,44,48]. Such behavior
reflects a weakening of the interatomic bonds, driven by the
transition from ferromagnetic toward paramagnetic magnetic
moment orientations. This coupling between magnetic and
atomic systems is therefore a mechanism by which the soft-
ening lattice could indirectly induce a significant reduction
in J1(T ), and consequently magnon frequencies, near and
above TC .

FIG. 3. Magnetic exchange parameter J1 as a function of tem-
perature with direct effects of magnetic thermal disorder artificially
excluded (blue dotted) but indirect effects still present. Also the
complementary case of direct effects included but indirect effects
excluded (green dashed). The red curve is the full calculation (red
curve from Fig. 1).

To investigate this possibility, we turn off the indirect
effects of magnetic thermal disorder (green curve in Fig. 3).
This case contrasts with the purple curve of Fig. 1, which
omits both indirect and direct effects. Thus, the green curve
represents the case where thermal magnetic disorder may
affect J1(T ) directly but is prevented from renormalizing the
lattice thermal disorder. A comparison of the red and green
curves in Fig. 3, shows that any indirect effects of magnetic
thermal disorder on J1(T ) are negligible for temperatures
below 1043 K. However, indirect effects cause a significant
suppression of J1(T ) at and above 1043 K. We conclude that it
is precisely this effect that induces the dramatic drop in J1(T )
near TC . It is a nonlinear, higher-order effect of spin-lattice
coupling. All at once, the magnetic thermal disorder renor-
malizes the interatomic bonds thereby affecting the atomic
thermal motion, which in turn renormalizes the magnetic
interaction. Therefore, even though the magnetic thermal dis-
order does not directly affect J1(T ) at and above 1043 K, it still
affects it indirectly, with the lattice as an intermediary. The
connection between J1(T ) and magnon frequencies argued
above implies that this nonlinear spin-lattice coupling effect
drives a sudden softening of magnon modes with increasing
T near TC , in qualitative agreement with experiment. This is
a higher-order spin-lattice effect than is included in previous
theoretical treatments.

IV. SUMMARY AND CONCLUSIONS

In summary, we presented a computational scheme to
calculate local-moment magnetic interaction parameters and
interatomic force constants, including renormalization from
thermal spin-lattice effects and applied it to bcc Fe. The
temperature independence of magnetic interactions in iron is

184409-4



TEMPERATURE-DEPENDENT RENORMALIZATION OF … PHYSICAL REVIEW B 103, 184409 (2021)

revealed to arise from a competition between thermal disorder
in the lattice and magnetic systems, which drive the magnetic
interaction strength in opposite directions. Thus, inclusion of
thermal disorder in both systems is necessary even to capture
qualitative behavior. The sudden weakening of J1(T ) near TC

is consistent with the measured softening of magnon modes
in this region of temperatures. Here, we given a qualitative
explanation of this observed behavior as resulting from a
higher-order effect in which magnetic thermal disorder soft-
ens interatomic bonding which in turn weakens the magnetic
interaction strength. This finding highlights the power of our

theoretical framework, particularly the self-consistent coupled
renormalization of the spin-lattice system.
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