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Spin-wave wells revisited: From wavelength conversion and Möbius modes to magnon valleytronics
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We have used micromagnetic simulations to model backward-volume dipole-exchange spin waves in graded
profiles of the bias magnetic field. We demonstrate spin-wave wavelength conversion upon the wave’s reflection
from turning points due to the two characteristic minima (“U points”) occurring in their dispersion at finite
(nonzero) wave vectors. As a result, backward-volume dipole-exchange spin waves confined in “spin-wave
wells” either form Möbius modes, making multiple real-space turns for each reciprocal-space round trip, or split
into pairs of degenerate modes in the valleys near the two U points. The latter modes may therefore be assigned a
pseudospin. We show that the pseudospin can be switched by scattering the spin wave from decreases of the bias
magnetic field, while it is immune to scattering from field increases. Pseudospin creation and read-out can be
accomplished using chiral spin-wave transducers, as described in Au et al. [Appl. Phys. Lett. 100, 182404 (2012)]
and Au et al. [Appl. Phys. Lett. 100, 172408 (2012)], respectively. Taken together, the possibility of pseudospin
creation, manipulation, and read-out suggests a path to development of a spin-wave version of valleytronics
(“magnon valleytronics”), in which the pseudospin (rather than amplitude or phase) of spin waves would be used
to encode data. Our results are not limited to graded bias magnetic field but can be generalized to other magnonic
media with spatially varying characteristics, produced using the toolbox of graded index magnonics.

DOI: 10.1103/PhysRevB.103.184403

I. INTRODUCTION AND BACKGROUND

The phenomena of wave propagation, scattering, and quan-
tization play the pivotal role in both classical [1] and quantum
[2] physics. In the one-dimensional (1D) case, the quanti-
zation is observed when a wave is confined between two
barriers, causing the wave to be backscattered. When the
barriers are smoothly graded rather than sharp (i.e., have
properties slowly rather than abruptly varying in space), the
wave does not “feel” the magnetic gradients until it reaches
the turning points, which causes its backscattering. Beyond
the turning points, the wave’s propagation is forbidden (for
the given frequency): The wave number turns imaginary, and
so, the wave decays exponentially in space. At the turning
point itself, the wave number is (usually) equal to zero, which
corresponds to the “� point” in the reciprocal space. Conse-
quently, the wave numbers of the incident and backscattered
waves have opposite signs. This typical scenario is realized,
e.g., for light, sound, and quantum-mechanical particles.

Very different behavior is expected for waves whose dis-
persion relation has frequency minima at finite (nonzero)
wave vectors. Such a dispersion relation is found, e.g., for
rotons in liquid helium [3–6], for electrons in graphene
near the Fermi level [7–10], and for dipole-exchange spin
waves—wavelike excitations of the magnetization in mag-
netically ordered materials [11–13]—in the backward-volume
dipole-exchange spin-wave (BVDESW) geometry [12,14].
The propagation, backscattering, and confinement of this lat-
ter type of spin wave is studied theoretically in this paper.

*V.V.Kruglyak@exeter.ac.uk

Their dispersion, plotted in Fig. 1, can have two “valleys”
around frequency minima at finite wave numbers (which
we call “U points”). Importantly, such spin waves can be
not only modeled numerically (as we do here) but also de-
tected and imaged experimentally [15,16]. This promises
a direct experimental verification of the effects predicted
in this paper—backscattering-induced wavelength conversion
and Möbius-like confinement—and gives credibility to the
proposed development of a spin-wave version of valleytronics
(“magnon valleytronics”).

As an illustration, let us consider a BVDESW wave packet
with central frequency f . The wave packet propagates in
nonuniform bias magnetic field H (x) that varies smoothly
with coordinate x. In the commonly used Wentzel-Kramers-
Brillouin (WKB) approximation [2], applied to spin waves,
e.g., in Refs. [17–26], it is assumed that the wave’s dispersion
relation, which may be written for BVDESWs as [14]

F (k, H )

= μ0γ

√(
H+ 2A

μ0M
k2

)[
H+ 2A

μ0M
k2+M

1−exp(−kd )

kd

]
,

(1)

may still be introduced and is satisfied for each value of x.
Then, the packet’s central wave number k(x) follows the field
variation adiabatically, while the value of f is conserved [27]:

f = F [k(x, f ), H (x)] = const. (2)

The discrete frequencies fn of modes confined in regions
of reduced magnetic field can be calculated using the Bohr-
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Sommerfeld quantization formula [2],∮
k(x, fn)dx = 2πn, (3)

where n = 1, 2, 3, · · · , and k(x, fn) is found from Eq. (2).
The integration is performed along the wave packet’s closed
trajectory, yielding the area enclosed by the trajectory in the
phase space. Usually, Eq. (3) is equivalent to∫ x1

x0

k(x)dx = πn, (4)

where x0 and x1 are the coordinates of the two turning points
between which the wave is confined. In Refs. [19,20,22–
24,26], Eq. (4) was also applied to the analysis of the quan-
tization of BVDESWs. The spin waves were confined in the
demagnetized regions (“spin-wave wells”) near the edges of
patterned magnetic elements (e.g., stripes) orthogonal to the
direction of the applied magnetic field. However, the use
of Eq. (4) instead of Eq. (3) could only be justified if the
wavelength of the spin waves was preserved upon backscat-
tering from the turning points, which was not verified in Refs.
[19,20–24,26] and is therefore done here.

The paper is organized as follows. Section II is devoted to
the methods used in our numerical micromagnetic simulations
and data analyses. In Sec. III, we describe our results, focusing
on the BVDESW confinement and wavelength conversion
in different field profiles, and on the concepts of BVDESW
pseudospin and magnon valleytronics. Section IV contains a
qualitative discussion of the implications of our findings for
the use of the Bohr-Sommerfeld quantization formulas for
BVDESWs. In Sec. V, we summarize the implications of our
findings to various other research directions in magnonics.

II. METHODS

We simulate the scattering and confinement of BVDESW
wave packets in 1D profiles of the bias magnetic field us-
ing the MUMAX3 software [28]. The magnonic medium has
permalloylike properties: the saturation magnetization of 800
kA/m, the exchange stiffness of 13 pJ/m, and zero magne-
tocrystalline anisotropy. To make the wave effects clearer,
we assume the Gilbert damping parameter to have a very
low value of 0.0001, inherent to high-quality ferrites rather
than permalloy. The samples have dimensions of l × 10 nm ×
80 nm (x × y × z), where l is typically in the range of sev-
eral tens of micrometers. One-dimensional periodic boundary
conditions are used in the y direction, to remove any in-plane
shape anisotropy. The simulation volume is discretized into
cuboidal cells each dimension of which is 5 nm or smaller.
The bias magnetic field is applied in the x direction, with the
equilibrium magnetization configuration established prior to
dynamical simulations.

All dynamic magnetic fields in our simulations here are
uniform in the y and z directions. To calculate the spin-wave
dispersion (Fig. 1), a uniform film in a uniform bias mag-
netic field is excited by a dynamic magnetic field the profile
of which is given by the sinc function both in time (cutoff
frequency 25 GHz) and along the x direction (cutoff wave
number π /20 rad/nm) [29]. To excite BVDESW wave packets,

FIG. 1. The lines show the dispersion relation of BVDESWs
plotted using Eq. (1) for the indicated values of the bias magnetic
field. The curve for 2 mT exemplifies the dispersion relation of
“conventional waves,” which has the frequency minimum at the
� point. The background shows the dispersion for the field of
140.5 mT obtained by Fourier-transforming results of the micromag-
netic simulations (brighter color corresponds to greater spin-wave
amplitude).

we use dynamic magnetic fields with running-wave profiles
[30,31]:

h = h0exp

[
− (x − x0)2

2σ 2
x

]
exp

[
− (t − t0)2

2σ 2
t

]

× cos(±k0x − 2π f t ). (5)

Here, h0 � 0.1 mT is the maximum transient field ampli-
tude, f is the central frequency of the wave packet, and k0 is
the corresponding wave number, obtained from the prelimi-
narily computed dispersion relation, such as the one shown in
Fig. 1. The wave packets are excited centered at position x0

at time t0 relative to the beginning of the simulation, to suit
the goal of each particular simulation. The size and duration
of the spatial and temporal envelopes of the field are defined
by parameters σx and σt , respectively. Their values are chosen
so as to excite a small band of frequencies and wave numbers
around the desired central values while also ensuring that the
packet fits and has room for movement within the well formed
by the field profile. The spin-wave well sizes of about 10–
20 μm considered here represent a compromise of this sort.
Very similar results are obtained for larger-scale field profiles.
However, it becomes impossible to form wave packets with
well-defined trajectories in wells with sizes of about 2 μm
or smaller, which will be addressed elsewhere. To obtain the
spin-wave dispersion relations and wave-packet trajectories,
we employ standard Fourier transform techniques, described,
e.g., in Refs. [29–31].
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FIG. 2. The wave-packet trajectories (top row) and correspond-
ing magnetic field profiles (bottom row) are shown in the real
(left column) and reciprocal (right column) space for the central
frequency of 8.4 GHz. The brighter color corresponds to greater
spin-wave amplitude. The dashed lines and points at their crossings
show the correspondence between features from the different panels.
See the Supplemental Material [33] for an animated version of this
figure.

III. RESULTS

A. Backward-volume dipole-exchange spin-wave
(BVDESW) dispersion

Figure 1 compares the BVDESW dispersion relation com-
puted from the results of our micromagnetic simulations with
the analytical curve plotted using Eq. (1), for a uniform bias
field of 0.1405 T. The numerical and analytical results agree
well at small wave numbers. The discrepancy developing for
shorter wavelengths may be attributed to the approximate
character of either Eq. (1) [14], or micromagnetic simulations
[29], or both. For 0.1405 T, the two characteristic frequency
minima (the U points) correspond to the wave numbers of ±
35 rad/μm and the frequency of 8.4 GHz. As the bias field is
reduced, the U points shift toward the � point and eventually
disappear.

B. Symmetric spin-wave well: Low-frequency confinement

The propagation and confinement of BVDESW wave
packets differs qualitatively depending on whether the wave
packet’s central frequency is below or above that of the fer-
romagnetic resonance (FMR) at the lowest value of the bias
magnetic field. Here, we consider the case of “low-frequency
confinement,” i.e., when the central frequency is below the
FMR value but is above the U-point frequency at the field
minimum. The top left panel in Fig. 2 shows the real-space
trajectory P0-P4 of the envelope of a Gaussian magnonic wave
packet (“wave-packet trajectory”) at the central frequency
of 8.4 GHz confined in a symmetric spin-wave well. This
well is created by the parabolic magnetic-field profile with
a minimum of 0.1 T, shown in the bottom left panel. The
corresponding reciprocal-space trajectory R0-R4 (top right)
reveals that the turning points in real (P1, P3) and recipro-
cal (R0, R2, R4) space do not coincide: The wave packet

continues moving forward in reciprocal (real) space when it
is turned back in real (reciprocal) space. This is due to the
difference between the group and phase velocities of spin
waves, apparent from Fig. 1. The character of the trajectories
can be explained in greater detail by considering the variation
of the packet’s central wave number with the field (bottom
right). The packet begins its journey from points P0 and R0
in the real and reciprocal space, respectively, at the bias field
of 0.1 T. At this field, the frequency of 8.4 GHz corresponds
to the wave numbers of ±61.5 rad/μm (shorter wavelength)
and ±4.5 rad/μm (longer wavelength). We launch the wave
packet with the central wave number of −4.5 rad/μm, where
the negative sign ensures that the group velocity is positive
[32], so the packet propagates from left to right.

The first real-space turning point (P1) corresponds to the
magnetic field of about 0.1405 T, at which the U point is
reached in the reciprocal space at −35 rad/μm (R1). Notably,
although the wave packet reverses its direction of travel in
the real space, it continues to propagate in the same direction
through the U point in the reciprocal space. Hence, when the
packet returns to the start of the journey in the real space at P2,
its central wave number is converted from the original value
of −4.5 rad/μm (R0) to a new value of −61.5 rad/μm (R2).
As the packet propagates further, gets backscattered from the
other real-space turning point at P3, and returns to the start
again at P4, its central wave number is converted back to the
original value of −4.5 rad/μm (R4). Importantly, the wave
number never switches its sign, so that the packet remains
in the same valley, near the same U point in the dispersion
relation. This is because the frequency of 8.4 GHz is below the
FMR and above the U-point frequencies at the field of 0.1 T
corresponding to the bottom of the spin-wave well. As a result,
confined modes belonging to the same valley have “traveling”
profiles, as discussed, e.g., in relation to dipole-exchange spin
waves in obliquely magnetized films [34,35].

C. Symmetric spin-wave well: High-frequency confinement
and Möbius modes

Figure 3 shows wave-packet trajectories for the case when
its central frequency of 10.5 GHz exceeds the FMR value at
the bottom of the well. Then, the wave packet is not restricted
to any valley. To ensure confinement within a real-space re-
gion similar to that in Fig. 2, the parabolic spin-wave well has
steeper walls. Also, for the sake of illustration, we launch a
wave packet of short, exchange dominated spin waves: i.e., a
wave packet with a wave number of 82 rad/μm (R0) is ex-
cited at point P0. The shape of the reciprocal-space trajectory
R0-R8 is qualitatively similar to that in Fig. 2. However, the
real-space trajectory P0–P8 changes drastically. Upon the first
backscattering from the “high-field” turning point at P1, the
wave packet propagates through the U point (R1); its wave-
length continues to increase as the magnetic field decreases;
and once the � point is reached (R2), the wave packet is
backscattered at P2 [36–41]. The latter “low-field” turning
point occurs even before the wave packet reaches the bottom
of the spin-wave well in the real space. In the reciprocal space,
unlike transitions through the U points at high-field values,
this transition through the � point leads to switching of the
valley pseudospin. When the central frequency exceeds the
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FIG. 3. The wave-packet trajectories (top row) and correspond-
ing magnetic field profiles (bottom row) are shown in the real
(left column) and reciprocal (right column) space for the central
frequency of 10.5 GHz. The brighter color corresponds to greater
spin-wave amplitude. The dashed lines and points at their crossings
show the correspondence between features from the different panels.
See the Supplemental Material [33] for an animated version of this
figure.

FMR value by a smaller amount, a fraction of the wave packet
tunnel through the bottom of the well [36–41] (not shown).
Upon another backscattering from the same high-field turning
point at P3, the wave packet propagates through the other U
point (R3), and its wavelength continues to decrease (rather

than to increase) as the magnetic field decreases. Therefore,
in contrast to its long-wavelength counterpart (P2, R2), the
short-wavelength packet propagates through the bottom of
the well without any scattering (P4). As the field begins to
increase, the wavelength also begins to increase (R4), and the
whole scenario repeats itself in the left half of the spin-wave
well (P4–P8, R4–R8). Overall, the wave packet changes its
direction of travel in the real space six times (P1, P2, P3, P5,
P6, and P7) during just a single round trip in the reciprocal
space. In Ref. [42], nonlinear spin waves needing to make two
real-space round trips to meet the initial phase condition were
tagged “Möbius solitons.” The behavior of linear confined
modes exemplified in Fig. 3 is more complex than that in
Ref. [42]. However, this behavior justifies such spin waves to
be called “Möbius modes.”

D. Möbius modes in an asymmetric spin-wave well

Figure 4 presents BVDESW wave-packet trajectories in the
real (P0–P9, top left) and reciprocal (R0–R9, top right) space
obtained from simulations with an antisymmetric, slopy mag-
netic field profile (bottom left). This profile is qualitatively
similar to the one from Refs. [19–24]: the wave packet is
confined by the field increase and the physical edge of the
magnetic sample on the right- and left-hand sides, respec-
tively. The region of nearly constant field around x = 0 is
introduced to simplify the excitation of regular Gaussian wave
packets. The wave packet has a central frequency of 8.3 GHz
and central wave number of −3 rad/μm at the bias field of
0.1 T (P0, R0). In the real space, the wave packet propagates

FIG. 4. The wave-packet trajectories (top row) and corresponding magnetic field profiles (bottom row) are shown in the real (left column)
and reciprocal (right column) space for the frequency of 8.3 GHz. The brighter color corresponds to greater spin-wave amplitude. The dashed
lines and points at their crossings show the correspondence between features from the different panels. See the Supplemental Material [33] for
an animated version of this figure.
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to the right, where it encounters the parabolic field increase
and is eventually backscattered (P1). In the reciprocal space,
the packet continues its journey in the same direction through
point R1 and then R2, so that it returns to its real-space start
position (P2) with a much-shortened wavelength. Then, it
bounces back from the physical edge of the sample (point
P3/P4), changing the sign but retaining the absolute value
of the central wave number, which corresponds to a jump
from R3 to R4 in the reciprocal space. This jump is followed
by a one-directional evolution of the wave number (R4–R9).
During this, the wave packet experiences two real-space re-
flections: from the high-field (P6) and low-field (P8) turning
points, corresponding to a U point (R6) and the � point (R8),
respectively. Overall, the wave packet changes its real-space
direction of travel four times (P1, P3/P4, P6, and P8) during a
single round trip in the reciprocal space.

E. Magnon valleytronics

The results shown in Fig. 2 suggest that BVDESWs with
frequencies below the FMR and above the U-point fre-
quencies could be used to develop a spin-wave version of
“valleytronics”—a paradigm exploiting the wave’s affiliation
with a particular valley as an additional degree of freedom,
i.e., as a “pseudospin” [7]. Inspecting Fig. 1, we see that the
different BVDESW pseudospins can be easily distinguished.
Indeed, at each frequency, copropagating modes (i.e., modes
with group velocities of equal sign) of opposite pseudospin
(i.e., from the different valleys) have different wavelengths,
while counterpropagating modes of the same wavelength have
opposite pseudospins. Also, the pseudospin can be associated
with the sign of the phase velocity (wave number), which
remains the same (irrespective of the group velocity) for each
valley mode. Finally, the traveling profiles inherent to the
confined modes with a particular pseudospin could be inter-
preted as spin current [34,35]. The wave number locked, chiral
resonant microwave to spin-wave transducers from Ref. [43]
and spin-wave valves (or phase shifters) from Ref. [44] could
be used to create and to read out, respectively, magnonic states
depending on their pseudospin [43–45].

To substantiate the claim of valleytronics, one must also
demonstrate how the pseudospin can be “switched.” Figure
5 shows results of simulations in which a BVDESW wave
packet is incident on a region of reduced bias magnetic
field. Panel (a) shows the field profile, while the trajecto-
ries from rows (b) and (c) correspond to wave packets of
opposite pseudospin. The long wavelength/negative phase ve-
locity wave packet [Fig. 5(b)] partly tunnels through and
partly is reflected from the field decrease, as reported earlier
[36–41]. The tunneled part of the wave packet retains its
pseudospin. In contrast, the packet’s reflected portion goes
through the � point and therefore switches its pseudospin. As
an aside, we note that the same pseudospin switching event
occurs also at points P2/R2 and P6/R6 in Fig. 3 and at point
P8/R8 in Fig. 4. The short wavelength/positive phase velocity
wave packet [Fig. 5(c)] passes through the field decrease
ballistically, experiencing negligible reflection, if any, and
retains its pseudospin. Similar simulations for scattering from
regions of increased bias magnetic field (not shown) have
revealed that the pseudospin is immune to both backscatter-

FIG. 5. The trajectories of a BVDESW wave packet passing
through the bias magnetic field in (a) are shown in the real (left
column) and reciprocal (right column) space for the frequency of 8.4
GHz. The brighter color corresponds to greater spin-wave amplitude.
The initial values of the central wave number are −6 rad/μm and
62 rad/μm in rows (b), (c), respectively. The arrows show corre-
spondence between the real-space and reciprocal-space wave-packet
envelopes. See the Supplemental Material [33] for an animated ver-
sion of this figure.

ing from and transmission/tunneling through regions of local
enhancement of the bias magnetic field.

Together, the possibility to create, to switch and to read
out the pseudospin constitutes the backbone of the concept of
magnon valleytronics. However, any more extensive investi-
gation and exploitation of the concept goes beyond the scope
of this paper.

IV. DISCUSSION

The wavelength conversion occurring as a result of
backscattering from magnetic-field increases mandates the
use of the full version of the Bohr-Sommerfeld formula,
Eq. (3), when employing the WKB approximation to de-
scribe confinement of BVDESWs. Hence, the analyses of
mode confinement in spin-wave wells from Refs. [19–26], in
which Eq. (4) was used, need to be revisited, even if qualita-
tively. To illustrate the arising peculiarities, Fig. 6 shows the
phase-space trajectories corresponding to the three cases of
spin-wave confinement presented in Figs. 2–4, which we dis-
cuss in the following. In this discussion, we deliberately avoid
using the just introduced notion of the BVDESW pseudospin:
it is too new and could therefore create more confusion rather
than clarify things. However, we note that the pseudospin is
switched every time a phase-space trajectory in Fig. 6 crosses
line k = 0.

We begin from a symmetric spin-wave well, which is
relevant, e.g., to the FMR force microscopy (FMRFM) mea-
surements reported by Chia et al. in Ref. [26]. At each
frequency fn constrained by the U point and FMR values
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FIG. 6. The wave-packet trajectories for the field profile from
Fig. 2 (curves 1 and 2) and its antisymmetric counterpart (curve
3) are shown in the phase space for the frequencies of 8.4 GHz
(curves 1a, 1b, and 3) and 10.5 GHz (curve 2). The packets move
counterclockwise starting from the points indicated by circles. The
green dashed arrow shows the reciprocal-space jump of the packet
due to its reflection from the edge at −10.24 μm. The shaded areas
show the difference between the accumulated phase calculated using
Eqs. (3) and (4).

(at the field corresponding to the bottom of the well) and
satisfying Eq. (3), there are two degenerate normal modes:
one in each dispersion valley. The modes have oval-shaped
phase-space trajectories, labeled “1a” and “1b” in Fig. 6.
Each trajectory contains two reflections from field increases
in the real space. In the reciprocal space, the reflections cor-
respond to the same U point albeit approached from opposite
sides. Hence, the wavelength is converted twice and reaches
the same value after one round trip in the well. Then, the
quantization condition given by Eq. (3) corresponds to the
constructive interference of the mode with itself, which occurs
if the phase accumulated after the round trip is equal to 2πn.
As the frequency reaches the FMR value from below, the two
ovals touch at the � point; at frequencies above the FMR
value, only one mode, with an hourglasslike trajectory, labeled
“2” in Fig. 6, remains. The trajectories at any frequency have a
symmetry axis at x = 0. At frequencies above the FMR value,
line k = 0 is also a symmetry axis.

The integration in the full Bohr-Sommerfeld formula
[Eq. (3)] yields the accumulated phase as the area enclosed
by a phase-space trajectory (Fig. 6). At the same time, the
shortcut given by Eq. (4), a variant of which was used by
Chia et al. [26], would additionally include the shaded areas.
Hence, the use of Eq. (4) leads to an overestimation of the
accumulated phase and therefore to an underestimation of
the mode frequencies. This is likely to be one of the factors
contributing to the failure of the WKB approximation to ex-
plain the FMRFM results in Ref. [26], with the confinement in
the orthogonal in-plane direction and the intermodal coupling
being others [26,46].

For the antisymmetric well [19–24], the phase-space tra-
jectory, labeled “3” in Fig. 6, has the only symmetry axis at
k = 0. During the first real-space round trip across the well,
the wave is reflected once from the high-field turning point,
which corresponds to the negative U point in the recipro-
cal space, and once from the sample edge, which induces a
reciprocal-space jump from −k to +k. Therefore, the wave-
length conversion occurs only once as a result of this round

trip. Hence, the two copropagating waves at x = 0 have dif-
ferent wavelengths and cannot amplify or cancel each other,
regardless of their relative phase. The interference is reenabled
after the second real-space round trip, which adds another
wavelength converting reflection from the high-field turning
point (now corresponding to the other, positive U point) and
a wavelength preserving reflection from the field decrease
(corresponding to the � point in the reciprocal space). As
for the symmetric well, the accumulated phase yielded by the
full Bohr-Sommerfeld formula [Eq. (3)] is equal to the area
enclosed by the trajectory but is overestimated by Eq. (4),
used in Refs. [19–24], by the amount equal to the shaded
area. This could explain the need for additional phase jumps
introduced but not explained in Ref. [23]. It is also clear
that non-WKB-based analytical models put forward, e.g., in
Refs. [24,46–49] to describe spin-wave confinement need to
be revised to account for the behavior revealed here.

The Möbius-like and valley-confined wave-packet trajec-
tories shown in Fig. 6 cannot be resolved explicitly for
spin-wave wells with sizes below that of the BVDESW wave
packet, although they should continue to have effect on the
mode quantization and spatial character. We speculate that
one piece of evidence for formation of Möbius and valley-
confined modes could be found in the character of their
amplitude and phase profiles, respectively. Indeed, the am-
plitude profile of a standard standing mode contains nodes
between antinodes, with nodes separating regions with phase
differing by π . The traveling profiles inherent to valley-
confined modes should lead to a continuous rather than abrupt
variation of phase. The very different wavelengths inherent to
Möbius modes during different passages of the same regions
should lead to a nonmonotonic amplitude variation (without
nodes) within regions of the same or slowly varying phase.
However, these effects may be obscured by the Schlömann
emission [17] of spin waves from magnonic index nonunifor-
mities [50] and from sample boundaries [51]. Hence, we leave
the more detailed analysis of submicrometer spin-wave wells
to future studies.

V. CONCLUSIONS AND OUTLOOK

We conclude by outlining other research directions that
are likely to be affected by our main findings (the BVDESW
wavelength conversion and Möbius mode formation) and by
giving some further remarks on our observations.

(i) Our considerations should apply to other magnonic
systems, e.g., van der Waals heterostructures discussed in the
context of magnon valleytronics [52–54]; vice versa, some
of the effects from Refs. [52–54] could be transferred to
BVDESWs.

(ii) The spin-wave wavelength conversion (albeit probably
not the Möbius mode formation) should occur in magnonic
systems featuring a single valley at a finite wave number,
with the shift induced, e.g., by the Dzyaloshinskii-Moriya
interaction (DMI) interaction [55] or electric field [56].

(iii) The magnonic valley modes with different pseu-
dospins form two different Bose-Einstein condensates [57],
which can be spatially separated by a transient graded mag-
netic field [58]. Our results suggest that a local transient field
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decrease could induce mixing of the condensates of opposite
pseudospin.

(iv) The wave amplitude increase (seen as brightening of
the real-space trajectories in Figs. 2–4) near the high-field
turning points is due to the wave shoaling effect (i.e., energy
concentration due to reduction of the group velocity), as dis-
cussed earlier for other types of spin waves [59,60].

(v) The real-space relative shift between the trajectories
of the incident and tunneled wave packets is a manifestation
of the Hartman effect [61], demonstrated here for dipole-
exchange spin waves. Its discussion for purely exchange spin
waves can be found in Ref. [62].

(vi) A promising avenue for further research lies in
combining spatial magnetic gradients, e.g., such as those con-
sidered here, with magnetic transients of the kinds considered
in Refs. [63–66].

(vii) Our simulations are performed for graded 1D pro-
files of the bias magnetic field. However, Maxwell equations
impose certain limitations on the feasibility of the profile’s
exact implementation [67]. Moreover, the assumed field vari-

ation of 0.1 T over 10 μm length scales is also quantitatively
challenging to implement, although the strong demagnetizing
fields in patterned magnetic structures [19,20] and the stray
field from the magnetic tip in FMRFM [26] suggest realistic
ways forward. Yet, as with spin-wave Bloch oscillations [67],
the effects described here are not restricted to graded magnetic
fields [68] but could be generalized to other magnonic media
with spatially varying characteristics, produced using the tool-
box of graded index magnonics [69,70]. For instance, we note
the two recent papers, which appeared while our paper was
in review, studying spin-wave nonreciprocity in media with
graded exchange [71] and magnetization [72].
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