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General treatment of off-specular resonant soft x-ray magnetic scattering using the distorted-wave
Born approximation: Numerical algorithm and experimental studies with hybrid chiral
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We present a numerical algorithm for the simulation of resonant x-ray magnetic scattering in reflection
geometry for an arbitrary three-dimensional magnetization distribution over a multilayer sample utilizing the
distorted-wave Born approximation. Our approach takes the medium boundary matrix approach for specular
reflection, and the Born approximation typically used for off-specular reflection, combines the two, and adds
the contribution from transmission through the sample before and after a reflection event. The algorithm is then
tested on experimental data from an Al2O3/Co/Pt multilayer sample with hybrid Néel/Bloch/Néel domain
walls at incidence angles at and near multilayer Bragg angles, and photon energies near the Co L3 absorption
edge, achieving high levels of agreement with experimental data. Incorporating the transmission components
into the algorithm was found to explain the dichroism observed in scattering from Bloch-type domain walls, and
uncovered the likely importance of diffuse scattering in transmission from the polycrystalline grain walls along
the optical path of the x rays in the sample—a theme which deserves further investigation.
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I. INTRODUCTION

A. General background

Over the past 20 years, the field of resonant elastic soft x-
ray scattering has widely expanded into a standard tool for the
nanometer-resolution characterization of magnetic domains in
thin-film samples [1–8]. However, an important gap in the
literature is the lack of a standard protocol for the modeling
of resonant scattering, which has limited the degree to which
quantitative conclusions may be extracted from experimental
data. In this article, we begin by reviewing the theory literature
on the topic, and then present our numerical implementation
of the framework of Zak et al. [9–12] applied to a film whose
magnetization varies not only in the out-of-plane direction but
also in the plane of the sample. Our implementation allows
the matrix formalism of Zak et al. [9–12] to be readily applied
in three dimensions over a multilayer sample with inhomo-
geneous magnetization by making use of the distorted-wave
Born approximation (DWBA) in reflection geometry. Here,
we calculate the reflection coefficients for each numerical
pixel in a “pancake stack” of imperfect reflecting surfaces
(corresponding to each interface in a multilayer sample) and
propagate the beam through the sample before and after each
reflection event in order to account for differences in the
absorption and phase shifts due to components of the mag-
netization parallel to the beam direction.

*samuel.flewett@pucv.cl

This research field can be said to have begun with the
seminal publication by Dürr et al. in 1999 [2], when the
characteristic asymmetric scattering pattern was first experi-
mentally demonstrated with soft x rays for a stripe domain
sample. This asymmetry when illuminated with circularly
polarized x rays is due to the interplay between the σ -π
and π -σ polarization shifting reflection from parts of the
sample magnetized parallel to the scattering plane, and the
π -π reflection from those parts magnetized perpendicular to
the scattering plane. These magnetization-dependent changes
in polarization on reflection are known as the magneto-optic
Kerr effect (MOKE). A further development of the work by
Dürr et al., especially in terms of modeling, may be found
in the work of Beutier et al. [3]. In their work, they also
started from micromagnetic simulations, which are typically
performed using software packages such as OOMMF [13]
or MUMAX [14]. They start from the atomic level, defining
the atomic scattering factors for the resonant soft x-ray in-
teraction of elemental species s as derived from quantum
mechanics [1]:

fs = (e · e′) f s
c + i(e × e′) · Ms f s

m1 + (Ms · e′)(Ms · e) f s
m2,

(1)

where e is the incoming electric field vector; e′ the rotated
outgoing electric field vector; Ms the sample magnetization
vector normalized to unity; and f s

c , f s
m1, and f s

m2 the charge,
circular dichroic, and linear dichroic resonant scattering fac-
tors, respectively. For the 3d transition metals which will be
dealt with in this paper, only the factors f s

c and f s
m1 have
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appreciable values. This is not universally the case, how-
ever, and the f s

m2 term needs to be taken into account for
example in the case of the multiferroics of Ref. [15]. From
these values of the atomic scattering factors, the authors of
Ref. [3] calculated the scattering factor of each micromagnetic
simulation cell by computing the sum of the atomic scattering
factors over each cell, assuming constant magnetization across
each cell. In turn, they summed each of these cell scattering
factors over the the entire magnetic stripe domain period. This
Born approximation (BA) formalism is similar to that used
in crystallography, and accurately predicts the asymmetric
diffraction which is a signature of stripe domain reflectometry
with resonantly tuned soft x rays. More recent work with soft
x rays using similar analysis procedures includes that of Fin
et al. [16], where linearly polarized light was used to study
buried domain wall structure in stripe domain samples, the
work of Chauleau et al. [4] using circularly polarized light
to study worm domain samples, and the study of the internal
domain wall structure of skyrmion hosting compounds by
Legrand et al. [17]. Zhang et al. [18] used resonant x-ray
magnetic scattering (RXMS) to probe the three-dimensional
(3D) structure of a skyrmion array, using atomic transition
probabilities to calculate the absorption length and thus the
relative weighting of the contributions from each layer within
the sample. By invoking an exponential attenuation, Zhang
et al. [18] and also Li et al. [19] are in effect employing the
idea of the DWBA, an idea that is key to this present work. The
chirality of a skyrmion array has also been characterized using
RXMS, using the orientation of the observed asymmetric pat-
tern as a probe of whether the domain walls are of Bloch, Néel,
or some intermediate state [20]. Resonant scattering was also
performed on a patterned NiFe (permalloy) sample by Diaz
et al. [21], again utilizing the sum of the scattering factors as
the tool for modeling the observed scattering behavior.

This paper deals with the forward problem of simulating
an x-ray scattering pattern given an arbitrary 3D magneti-
zation distribution in a multilayer sample and demonstrates
the validity of the formalism with experimental examples.
Compared with previously cited references where the BA is
used, an important advantage of our method is the ability to
include the effect of transmission on the resulting reflection
scattering pattern. This is especially important where scatter-
ing is performed along Bloch walls with an extended line of
interaction between the photons and the sample before and
after the reflection event. Differential transmission along the
Bloch walls will be shown here to result in a further dichroism
additional to the classic asymmetry, a feature which is being
exploited by Burgos-Parra et al. [22] to study the evolution of
both Bloch and Néel domain walls under external field.

The algorithm presented in this paper was developed and
improved through the task of analyzing experimental data.
Some of these results have already been published [23], and
others will be soon submitted for publication [22,24]. It is
also an extension of previous work in transmission geometry
[6,25]. The experimental material included was specifically
chosen to test certain hypotheses which arose from the anal-
ysis of the data undergoing peer review [22], namely, the
possibility of determining the depth of the Bloch part of
the domain wall. Determining this depth has already been
qualitatively explored by Zhang et al. [26] and is particularly

interesting because it is believed to be related to the value
of the Dzyaloshinskii-Moriya interaction (DMI) [17]. Tests
of our simulation code were also found to predict important
changes in the observed diffraction moving on and off the
multilayer Bragg peaks due to interference effects, the experi-
mental confirmations of which will also be presented here. As
far as we are aware, this effect has not yet been published, and
the magnitude of the effect could have important implications
for those wishing to obtain quantitative information about
the magnetic structures of their samples. We also begin to
examine the effect of roughness and polycrystalline structure
in both reflection and transmission, but due to the complexity
of this topic, a full treatment will need to be left for a later
paper. To fulfill the long-term aim of directly recovering the
3D magnetization distributions from a set of experimental
scattering data, it will be necessary to first resolve the theme
of roughness and diffuse scattering in transmission from
polycrystalline grain walls, and subsequently (or in parallel)
develop an iterative scheme for structure refinement.

B. Theoretical background

When working with soft x rays in multilayer samples, it
is convenient to consider the sample as a stack of (imperfect)
reflective surfaces, each with spatially varying reflection and
transmission coefficient tensors depending upon both the local
magnetism and electron density.

To find the refractive indices from the atomic scattering
factors, the optical theorem [27] can be used which relates the
atomic scattering factors to the total permittivity tensor ε as
follows:

ε = 1 + 4πre

k2

∑
s

ρsFs, (2)

where k is the wave number, re is the classical electron radius,
ρs is the number of atoms of species n per unit volume, and Fs

is the scattering tensor defined for each type of atom, and the
sum is over the elemental species present. Fs can be expressed
as [9–12,28]

Fs =
⎛
⎝ f s

c −i f s
m1Ms

z i f s
m1Ms

y
i f s

m1Ms
z f s

c −i f s
m1Ms

x
−i f s

m1Ms
y i f s

m1Ms
x f s

c

⎞
⎠, (3)

where Ms
i are the distinct components of the magnetization for

elemental species n. We may now combine Eqs. (2) and (3),
introducing the magneto-optical constant for the nth element
Qs defined as

Qs = −4πreρs

k2
f s
m1, (4)

and the permittivity for the nth element as

εs = 1 + 4πreρs

k2
f s
c . (5)

We therefore obtain the permittivity tensor for each
element as

εs = εs

⎛
⎝ 1 iQsMs

z −iQsMs
y

−iQsMs
z 1 iQsMs

x
iQsMs

y −iQsMs
x 1

⎞
⎠. (6)
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FIG. 1. y-z plane cross section of the scattering geometry of the scattering process. In the formalism of Zak et al. [9–12], all scattering
events occur on a line parallel to the z axis; however, in the formalism to be developed in our work, the position of the scattering events is set
such that all reflected rays exit the sample at the same point. The value of the sample magnetization M is allowed to freely vary throughout
the 3D sample, and the angle of incidence, θ , suffers slight changes according to changes in the refractive index within the sample via
Snell’s law.

The refractive index for a given element for circularly
polarized light can then be found from the value of Qs to first
order as [9–12]

n = n0(1 ± hgQs/2), (7)

where h is the helicity of the light and takes a value −1 or
1, n0 = √

εs is the nondichroic refractive index for element
n, and g is the cosine of the angle between the magnetization
vector M and the Poynting vector of the incident radiation.
This formalism to arrive at the magnetically dependent refrac-
tive indices is fully discussed in various references including
Refs. [29,30].

With expressions for the magnetically dependent refractive
indices, one is in a position to develop a formalism based
upon the use of generalized Fresnel formulas, as has been
done by various authors as listed in Refs. [9–12,30–34]. Be-
ing based upon the calculation of reflection and transmission
coefficients at the different interfaces in a thin-film sample
(for example a cobalt/palladium multilayer), this theoretical
formalism has been extensively utilized in studies of the spec-
ular reflection as a function of photon energy and angle of
incidence. For example, Tonnerre et al. [35,36] probed the
thickness-dependent magnetization profile of a perpendicular
exchanged system with nanometer precision in the z (out-
of-plane) direction by scanning the photon energy over the
absorption edges of the different elements, and also scanning
the incidence angle to probe the multilayer structure. Mertins
et al. [37] used the same matrix-based method for calculat-
ing Kerr rotation values of up to 24◦ on resonance in the
soft x-ray regime, and also corroborated their results with
experimental synchrotron data. The magnetic proximity effect
was investigated in Fe/Pt bilayers with hard x rays at the Pt
edge by Kuschel et al. [38,39], also making use of the energy
and angle-dependent spectral reflectivity differences, where
data analysis was performed by code developed by Macke
et al. [29,40]. This same formalism is further generalized for
a reflective slab by Zwiebler et al. [41] in order to probe the
depth-sensitive electronic profile to atomic resolution.

A formalism was developed by Valencia et al. to include
the interfacial roughness in the simulation [42], achieving an
important improvement in fitting the observed experimental
data. Elzo et al. [30] similarly included roughness effects in

the development of their simulation scheme, with the dif-
ference that their formalism was developed using a basis of
circular polarization and not linear polarization as was the
case for other authors and ourselves.

C. Outline of the medium boundary matrix formalism

In this section, we outline the formalism of Zak et al.; how-
ever, readers wishing for a more in-depth understanding of the
topic are referred to primary sources of Refs. [9–12,30,32–
34]. The general geometry of the scattering process is shown
in Fig. 1. At the interface, the tangential components of the
electric and magnetic fields Ex, Ey, Hx, and Hy are conserved,
and may be expressed together as a set in the matrix

L =

⎛
⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎠. (8)

At the same time, the components of the incoming and
outgoing waves may be expressed in terms of their circular
helicities or perpendicular (σ ) and parallel (π ) components
with respect to the scattering plane which in the geometry
chosen here is the y-z plane. Most authors have expressed
the medium boundary matrix on a basis of linear polarization
as we will here; however, Elzo et al. [30] used a circular
polarization basis. With linear polarization, the electric fields
of the incoming and outgoing (reflected) wave are expressed
via the Pin matrix as

Pin =

⎛
⎜⎜⎜⎝

Ei
σ

Ei
π

Er
σ

Er
π

⎞
⎟⎟⎟⎠. (9)

These two matrices are connected by the medium boundary
matrix A according to

L = APin. (10)

Using the notation of Qiu and Bader [34], where Qs =
[Qx

s , Qy
s , Qz

s] = QsM and n0 is the nondichroic refractive
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index, we have the medium boundary matrix defined as

Ai =

⎛
⎜⎜⎝

1 0 1 0
i
2

[− Qy
s tan θ (1 + cos2 θ ) + Qz

s sin2 θ
]

cos θ + iQx
s sin θ i

2

[
Qy

s tan θ (1 + cos2 θ ) + Qz
s sin2 θ

] − cos θ + iQx
s sin θ

in0
2

(
Qy

s sin θ + Qz
s cos θ

) −n0
in0
2

(
Qy

s sin θ − Qz
s cos θ

) −n0

n0 cos θ in0
2

(
Qy

s tan θ + Qz
s

) −n0 cos θ −in0
2

(
Qy

s tan θ − Qz
s

)

⎞
⎟⎟⎠.

(11)

With the medium boundary matrix, we are thus in the
position to express the radiation amplitudes on both sides of
a reflecting matrix as follows: We first apply Eq. (10) for the
interface between material 1 and material 2, which either can
be magnetic with values Qs �= 0, or can be nonmagnetic where
Qs = 0:

A1P1 = A2P2. (12)

From here, we may express P1 in terms of P2 as

P1 = A−1
1 A2P2 = MP2. (13)

The matrix M is a 4 × 4 matrix which may be expressed in
terms of four 2 × 2 matrices

M =
(

G H
I J

)
, (14)

where I is not to be confused with the identity matrix, and
from which the transmission and reflection coefficients can be
calculated according to

T = G−1 =
(

tσσ tσπ

tπσ tππ

)
, (15)

and

R = IG−1 =
(

rσσ rσπ

rπσ rππ

)
. (16)

With the reflection and transmission coefficients on hand
for a single interface, it is immediately apparent how one
may calculate the resonant scattering from a single ideal
interface between two materials, or between a vacuum and
the surface of a single-layer magnetic film. We compute the
spatial distribution of the magnetization vector M, over the
surface of the film, and then calculate the boundary matri-
ces for both materials at each simulation pixel. Diffraction
may then be calculated from the reflection coefficients given
the polarization of the incident light, and the spatial array
of reflection coefficients calculated at each point using the
above-described procedure (for example, from a perpendic-
ular anisotropy stripe domain sample with closure domains
where the diffraction will produce the typical asymmetric
first-order peaks, for example, in Ref. [2]). In cases where
the sample at hand is a smooth and optically thick single-
layer sample (not a multilayer), no more work is necessary
to simulate the scattering from the surface layer. Such was the
state of the algorithm used for the modeling of scattering in
the work of Pianciola et al. [23]. For multilayer samples, the
treatment is more complex and is presented in the subsequent
section.

D. Multilayer sample treatment

Due to the fact that the pair of medium boundary matrices
expresses the electromagnetic field on one side of an interface
in terms of the field on the other side of this interface, one may
extend the formalism to a multilayer system of N such layers
grown on a substrate by creating a stack of such interfaces,
and making use of the medium propagation matrix to move
from one interface to another [9–12,30,32–34]:

AiPi = A1D1A−1
1 A2D2A−1

2 · · · A−1
N AsPs. (17)

This expression makes use of the medium propagation
matrix to define the electromagnetic field at one interface
in terms of the field at a neighboring interface after having
propagated through any one of the layers of thickness d . The
medium propagation matrix is expressed here in terms of a
linear polarization basis using the notation of Qiu and Bader
[34]; however, in the work of Elzo et al. [30], a circular polar-
ization basis is used in which this matrix appears diagonal.
It is for this reason that the circular basis is used almost
exclusively when working in transmission geometry due to the
absence of crosstalk between polarization states. The medium
propagation matrix for the ith layer Di is defined as

Di =

⎛
⎜⎜⎝

U cos δi U sin δi 0 0
−U sin δi U cos δi 0 0

0 0 U −1 cos δr −U −1 sin δr

0 0 U −1 sin δr −U −1 cos δr

⎞
⎟⎟⎠,

(18)
where

U = exp(−ikd cos θ ), (19)

with θ representing the angle of incidence within each layer,
and

δi = kd

2

(
Qy

s tan θ + Qz
)
, δr = kd

2

(
Qy

s tan θ − Qz
s

)
. (20)

Studying the form of the medium propagation matrix in
conjunction with the scattering geometry, one notes that the
propagation distance within the material appears as d cos θ ,
which tends towards zero at grazing incidence. This is because
the formalism of Refs. [9–12,30,32–34] considers the reflec-
tion events occurring in a column parallel to the z direction,
and does not consider the absorption within the material prior
to and immediately following a reflection event—absorption
which occurs over a length of zi/ cos θ , where zi is the depth
of the ith layer. In the case of incoherent multiple scattering
from thick samples, a formalism was developed and experi-
mentally tested by Dorazio et al. [43,44], where the reflections
from each interface are summed after their amplitudes and
Faraday rotations are adjusted to account for the transmis-
sion within the sample before and after reflection. In the
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soft x-ray regime which is the main focus for this work, it
appears as if a similar approach was used by Li et al. [19]
for analyzing the depth-dependent domain wall profile in the
skyrmion hosting multilayer system [Ta|CoFeB|MgO]N . This
work, however, lacks a formal analysis section and mentions
only the exponential attenuation of the reflection from multi-
layers deeper within the sample. Their work does, however,
mention the increased penetration achieved from working at
an incidence angle further from grazing incidence, thus allow-
ing depth-dependent information to be extracted by varying
the incidence angle. Scanning the photon energy over the
absorption edge can also be used for a similar effect, as will be
demonstrated below in the experimental section. This simple
attenuation correction can be considered a manner of applying
the DWBA [45] to first order, and our approach will go one
step further by considering spatial variations in the sample
magnetization when calculating the attenuation and phase
shift of the x rays passing through the sample.

II. SIMULATIONS: PROCEDURE AND CONSIDERATIONS

A. The recipe to calculate the diffraction pattern in
reflection conditions

In this section, we present our numerical recipe for the
calculation of diffraction patterns in reflection geometry.

Step 1. Download the atomic scattering factor files for all
elements in your sample. These data may be found for all
elements at the Center for X-ray Optics (CXRO) website [46];
however, readers must be aware that this database does not
include the effects of resonance occurring when the x-ray
energy matches a core level absorption. Near such absorp-
tion edges, one must use one’s own or previously published
x-ray absorption data to complement the values downloaded
from the CXRO website. Simulations in this paper were per-
formed with atomic scattering factor values measured from
x-ray magnetic circular dichroism (XMCD) measurements on
cobalt films at the SEXTANTS beam line at SOLEIL. Readers
should beware of differing energy calibrations between differ-
ent facilities, and use the measured position of the absorption
edge and not a fixed energy as the reference point.

Step 2. From experimental x-ray absorption data, one can
directly deduce the imaginary parts of the refractive indices,
but to find the corresponding real parts, the Kramers-Kronig
relations must be used. Their application requires the splicing
of experimental XMCD data with the off-resonance refractive
index and/or atomic scattering factor data. We performed
this step assuming that, at the edge of the resonant region,
the refractive indices retrieved from the two sources must be
equal.

Step 3. To initialize the simulation procedure, one must
have on hand a model magnetization distribution. This should
be defined over the planes of each interface in the multilayer
sample due to the physical significance of each interface. It is
ideal in this step to use micromagnetic simulations in order to
provide a physical basis to the model chosen, with a method
for extrapolating a localized micromagnetic simulation over
the up to several hundred micrometer size of a typical x-ray
scattering experiment published previously in Refs. [6,25,47].
It is alternatively possible to define the magnetization distribu-

tion in geometric terms of average domain width, domain-wall
width, and domain-wall magnetization angle varying between
zero for Bloch and π/2 for Néel. In order to proceed, one
requires at this step a 3D vector field of the magnetization
vector M evaluated at each 3D pixel in the sample under
study, with the example used for simulating the subsequent
experimental work shown in Fig. 2.

Step 4. From the 3D magnetization vector field, applying
Eqs. (11)–(16) at each and every point on the x-y plane of each
interface, one obtains a stack of two-dimensional maps of the
reflection coefficients, as is illustrated for a surface layer with
Néel-type domain walls in Fig. 3. Users must be careful in this
case to recalculate using the appropriate angle of incidence,
θel , within each elemental layer (el) using Snell’s law for an
angle of incidence in free space, θi. To deal with the complex
refractive indices, a generalized form of Snell’s law was used
in this work, found in Eq. (15) of Ref. [48],

sin(θ ′
el )

=
√

2 sin θi√
n2 − k2 + sin2(θi ) +

√
(n2 − k2 − sin2 θi )2 + 4n2k2

,

(21)

where θi is the free-space angle of incidence, θ ′
el is the an-

gle within the layer of index of refraction n, and k is the
wavenumber.

An example of these reflection coefficients is shown in
Fig. 3 for the first layer where the domain-wall type is Néel,
but where a longitudinal component of the magnetization is
present at the points where the stripes bend.

Step 5. Prior to and after suffering a reflection event, the x
rays which reflect from buried interfaces undergo attenuation
and Faraday rotation due to transmission through a magne-
tized medium, with this transmission incorporated using the
following algebra.

First we extract the quadrants of the medium transmission
matrix D defined in Eq. (18) relating to the forward propaga-
tion of incident i and reflected r waves:

Di
el =

(
U cos δi U sin δi

−U sin δi U cos δi

)
, (22)

Dr
el =

(
U cos δr U sin δr

−U sin δr U cos δr

)
. (23)

We modify U , δi, and δr compared with their original def-
initions in Eqs. (18)–(20) in order to account for the true path
length through an imperfect layer of thickness d + δd (x, y, z),
where δd (x, y, z) is the thickness deviation from a perfectly
smooth layer:

U = exp

(−ik(d + δd (x, y, z))
cos θel

)
(24)

and

δi = k(d + δd (x, y, z))
2

(
Qy

s tan θel + Qz
s

)
, (25)

δr = k(d + δd (x, y, z))
2

(
Qy

s tan θel − Qz
s

)
. (26)

For computational simplicity, we assumed in calculations
that the magnetization along the optical paths of the incoming
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FIG. 2. Simulated distribution of the magnetization (a) on the top layer of the sample, (b) through the middle of the sample, and (c) on the
sample/substrate interface. Note the reversal of sign in Mx between the top and bottom layers of the sample, and the fact that My is dominant
in the middle of the sample. This demonstrates the hybrid nature of the domain-wall structure with Néel type (Mz, Mx, Mz) on the surfaces, and
Bloch type (Mz, My, Mz) in the middle.
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FIG. 3. Real parts of the reflection coefficients for the magnetic interface closest to the surface. The incidence angle was equivalent to the
nominal first multilayer Bragg angle for this thin film; 16.5◦ from grazing incidence.
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here is the sum of phase-matched reflection coefficients for each of the magnetic interfaces in the sample. The incidence angle was equivalent
to the first nominal Bragg angle for this thin film, 16.5◦ from grazing incidence.

and outgoing waves is identical, as is approximately the case
for the stripe domain samples studied here. The outgoing wave
reflected from the interface between layer N and layer N + 1
buried within the sample, where the incident wave is given by

Pin =
(

Ei
σ

Ei
π

)
, (27)

will therefore arrive at the surface after having been subject
to the following series of matrix operators for each layer in
the multilayer sample. For the nonmagnetic layers, due to the
fact that the D matrices are diagonal, the matrix multiplication
may be replaced with scalar multiplication:

Pout =
∏

Dr
1Dr

2 · · · Dr
nRDi

n · · · Di
2Di

1Pin. (28)

In order to accurately reproduce the multilayer interference
phenomena, it is necessary to calculate the phase of the inci-
dent radiation at the point of insertion relative to the phase
on exit from the multilayer by calculating the optical path
difference �R. For a multilayer sample of different refractive
indices in each layer, this may be performed in a recursive
manner for each successive layer of thickness del :

�Rn+1 = 2(del + δdr (x, y, z)) tan θel sin θi + �Rn. (29)

The phase shift on entry relative to the phase at exit may
then be calculated as

�φ = e
2π�R

λ . (30)

Readers are reminded that the phase shift of the beam as
it passes through the magnetized sample is also accounted for
by Eq. (28).

Step 6. After summing the phase-shifted and attenuated
wave fields from each interface within the sample at the level
of the surface, the resulting total wave field may be propa-
gated to the detector using standard free-space propagation.
The effective combined reflection coefficients representing the
phase-matched sum of all reflections are shown in Fig. 4, and
may be used to calculate the outgoing wave field given an
incoming wave field. One should be aware that the application
of a simple Fourier transform for the free-space propagation
gives an acceptable performance in situations where magnetic
domains are aligned parallel to the scattering plane; however,
it does not reproduce exactly the experimentally observed
diffraction from features perpendicular to the scattering plane.
This is due to Ewald sphere curvature, and causes the ef-
fective angle of incidence to depend upon the value of qy

in the resulting diffraction pattern. Variations of the effective
angle of incidence with qy increase as the angle of incidence
approaches grazing incidence.

For a 20-layer sample and a 1024 × 1024 array, the com-
putation time with MATLAB on a Hewlett Packard workstation
with 12 cores from the year 2014 was approximately 7 min.
In the case where it is sufficient to simulate with perfectly
aligned stripe domains of identical size, speed can be in-
creased by using a much smaller array size.

B. Introduction to the theme of roughness in simulations

The above-described algorithm when δd (x, y, z) = 0 deals
with the ideal situation where the sample can be described as
a regular stack of perfectly smooth atomic layers. In practice,
however, such stacks do not exist, and one must take into
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account the influence of roughness and irregular spacing of
the atomic layers. A dimpled surface in the x-y plane will
produce a diffuse scattering background or coherent speckle
depending upon the coherence of the incident radiation. This
diffuse scattering will appear underneath and possibly in-
terfere with any magnetic peaks detected in the scattering
pattern; especially at low spatial frequencies, it will also
weaken the interference effects between the different layers in
the sample. A full treatment of surface roughness can be found
in Refs. [30,42,49,50], where the treatment was statistically
based upon a Gaussian distribution of the spatial deviations
from a perfectly flat multilayer stack. In our work, because we
explicitly generate a multilayer stack with a given magnetic
domain pattern, this roughness is accounted for directly by
adjusting the z spacing between each layer on a pixel-by-pixel
basis according to a random roughness function δd (x, y, z) of
amplitude and planar spatial frequency distribution which best
reproduce the observed experimental background.

During the transmission through the sample before and
after a reflection event, it is also likely that there are further
losses not accounted for by the imaginary part of the refractive
index due to diffuse scattering from grain boundaries, strain,
and other crystal imperfections. Such diffuse scattering was
observed in previous work [6,25], and is of increasing im-
portance as the incidence angle approaches 90◦ (as measured
from the normal). The magnitude of this effect is expected
to depend on the photon energy, the angle of incidence, and
the specific sample fabrication characteristics; we are of the
opinion that a full investigation of this factor is warranted. We
note that the custom thus far of subtracting the experimental
diffuse background by cubic spline fitting or similar methods
also includes the implicit assumption that the diffuse back-
ground and magnetic scattering signal add incoherently. Such
an assumption, however, is not valid, as is demonstrated by
the fact that Fourier transform holography [51,52] of magnetic
samples in transmission geometry is an established field, and
depends upon the interference between the magnetic signal
and the nonmagnetic reference signal. The effects are, how-
ever, small in cases where the magnetic scattering signal is
much stronger than the diffuse background, and where the
spatial coherence length is much less than the spot size—
conditions which are met for most RXMS experiments.

C. Transmission geometry

In most experimental cases of interest where scattering is
to be used, reflection geometry is a more sensitive probe due
to the strong differential contrast between the different polar-
ization states. Transmission geometry scattering, which was
studied elsewhere in more detail [6,25], is, however, of interest
particularly where one is working with single-layer samples
where reflection would only occur from the top surface (and
in some cases from the substrate), or where an imaging-type
experiment is proposed such as that of Donnelly et al. [53]. In
transmission geometry it is necessary to rotate the sample in
order to extract 3D information about the sample, whereas in
the case of reflection geometry, one may tune the x-ray energy
on and off resonance to enable differing amounts of depth sen-
sitivity. For this configuration, the simulated sample should be
defined on a cubic matrix, which must then be interpolated

in a series of diagonal slices perpendicular to the vector of
propagation of the incident beam and subject to multiple slice
propagation [54]. Working in a circular polarization basis, the
refractive index is given by utilizing Eq. (7), allowing the
complex transmission function for the projection over a given
slice of thickness δx to be expressed as

T = exp

(−2π

λ
i(n0(1 ± hgQs/2) − 1)δx

)
. (31)

This process accurately reproduces the deviations from
simple projection approximation modeling observed in exper-
iments due to curvature of the Ewald sphere, and enhanced
absorption of diffracted x rays in the direction towards the
sample due to an increased optical path length within the
sample. Once clear of the sample, Fourier-transform-based
free-space propagation may be used to propagate to the de-
tector plane, with no caveats as in the case of reflection
geometry, due to the wave field being defined over a plane
parallel to the direction of beam propagation. It was our
original intention to use this multiple-slice propagation as the
approach for the reflection geometry work presented here,
adding reflection events at each interface as the beam passed
through the sample. This was, however, found to be both
numerically unstable due to observed “diffraction” from the
pixel matrix, and extremely slow due to the large number of
Fourier transforms which needed to be evaluated. As a result,
this multislice propagation approach was discarded for our
approach based on projection approximation transmission and
a single reflection event per reflected beam.

D. Treatment of x-ray coherence

Levels of spatial coherence of synchrotron sources have
been steadily increasing, with the newest diffraction-limited
sources expected to provide close to full coherence over the
size of the beam. In the case of full coherence, the task of
simulating the diffraction is straightforward: The Huygens-
Fresnel principle permits one to calculate diffraction via
free-space propagation of the outgoing wave field (in both
reflection and transmission geometry). In the case of partially
coherent illumination, the most straightforward manner in
which to simulate the resulting diffraction is via the coherent
mode expansion [55], which in the case of a disordered and
statistically stationary sample may be approximated by sum-
ming the results of a set of realizations of the code assuming
a coherent beam over the region of each simulation—each
simulation performed with a different real-space domain con-
figuration. This latter approach was used in an approximate
manner by Flewett et al. [25], simulating partial coherence by
summing a series of ten realizations of the simulation with
coherent radiation, but using a different matrix of random
numbers with which to simulate the magnetic domain pattern.
This same approach will be used here for the simulations
where a disordered magnetic domain pattern is used, and in
the case where roughness is present.

III. EXPERIMENTAL VALIDATION

The approach described in the previous section was de-
veloped to respond to need to analyze the x-ray reflective
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scattering data from a single layer by Pianciola et al. [23],
and more recently for a multilayer system incorporating the
DWBA [22,24]. The work of Burgos-Parra et al. [22] deals
with a stripe domain system with an external field applied
along the length of the stripes, and the work of Léveille et al.
[24] an antiferromagnetic worm domain system where the
magnetic signal is strongest at 1/2 and 3/2 of the multilayer
Bragg angle. In contrast with the above-cited examples where
the general aim of their work was to use RXMS to study
the magnetic properties of the sample, the experimental tests
presented here were designed with the explicit aim of probing
the robustness of our theoretical framework.

A. Experimental and simulation conditions

Our tests were performed using the same Ta1|Pt0.8

[Co0.8|(Al2O3)1| Pt1]20rep|Pt2 multilayer as in the work of
Burgos-Parra et al. (where the numbers in subscript are thick-
nesses in nanometers except for the 20, which is the number of
repetitions) [22]. The RXMS measurements were performed
at the RESOXS diffractometer [56] at the SEXTANTS beam
line [57] of the synchrotron SOLEIL in France. They were
conducted in reflection geometry with both circular polariza-
tions at energies between 775 and 781 eV, with the diffracted
x rays collected using a Peltier-cooled square CCD detector
covering 6.1◦ at the working distance of this study. For all
measurements the exit slits were set at 25 μm with a resolving
power around 5000, and total exposure times were 5 s at the
first Bragg angle, 15 s for the second Bragg angle, and 100 s
for the third Bragg angle. For seeding our simulation RXMS
code, micromagnetic simulations were performed using the
energy minimization procedure implemented in MUMAX3 to
generate a domain-wall profile [14]. The parameters used
were A = 9.5 pJ m−1 for the Heisenberg exchange, D = 1
mJ m−2 for the DMI constant, Ku = 1.43 MJ m−3 for the
uniaxial anisotropy along the z axis and Ms = 1.37 MA m−1

for the saturation magnetization of the cobalt layers. A cross
section of a single domain wall obtained with the simula-
tion is shown in Fig. 5(a), where the skew structure in the
out-of-plane direction typical of a nonzero DMI [17] can be
appreciated. In Fig. 5(b), we show the specular reflection at
778 eV as a function of incidence angle, from which we
determined the three Bragg angles at which subsequent mea-
surements were made. It should be noted that for experimental
measurements, the Bragg angles found via specular reflection
were used, whereas for simulations we used the Bragg angles
calculated from the nominal sample thickness. The small dif-
ference between the two (of 1◦ for the first Bragg angle) is due
to a slight calibration imperfection in the sputtering system. In
Figs. 5(c) and 5(d) we show values of δ and β, the deviations
from unity of the refractive index n as a function of incidence
energy according to n = 1 − δ − iβ. In Fig. 5(c) we show the
values of the nonmagnetic part caused by fluctuations in f s

c
and in Fig. 5(d) the values corresponding to the magnetic
part caused by fluctuations in f s

m1. In Fig. 5(e), we show
panels of the raw scattering pattern at 778 eV for each Bragg
angle (without correcting for the projection angle in the qy

direction). For subsequent analysis, the scattered intensity was
integrated over the qy direction, which was made possible due
to the fact that we are working with a stripe domain sample.

Had a worm domain or highly disordered stripe pattern been
used as in Ref. [24], such integration would result in a loss of
information.

Our first test was the examination of the variation of the
scattering pattern moving off the multilayer Bragg angle in
order to evaluate the importance of interference effects beyond
the well-known reduction of signal strength due to the loss of
constructive interference. This not only served the role of un-
covering new physics, but also for verifying the correctness of
step 5 of our algorithm—the part related to the phase matching
between the beams reflected from different layers. The second
test involved energy scans over a 6-eV range across the res-
onance at the first three multilayer Bragg angles to evaluate
the suitability of our algorithm for extracting depth-sensitive
information about the magnetization distribution, and to eval-
uate the influence of interface roughness and polycrystalline
structure on the experimental outcome.

B. Interference effects moving off the multilayer Bragg angle

It is known that working at the multilayer Bragg angle
is advisable in order to increase the signal-to-noise ratio;
however, when moving off the Bragg angle not only is the
diffracted intensity reduced, but major qualitative changes in
the scattering signal are observed. In the first test with results
in Fig. 6, we looked both at the first multilayer Bragg angle,
and 1◦ off the Bragg angle towards grazing incidence, both at
zero field, and with an external field of 1900 G in plane along
the �y direction applied.

In Fig. 6, in addition to the expected signal reduction ob-
served moving off the Bragg angle, there are three features
which readers should take note of:

(1) The degree of asymmetry present in the first-order
peaks both with and without external field defined as
(Il − Ir )/(Il + Ir ) increases by approximately 20 percentage
points as one moves off the Bragg angle.

(2) The dichroism observed in the second-order peaks
where field is applied is much stronger on the Bragg angle
compared with being off the Bragg angle.

(3) The experimental diffuse background in the case with
field applied is approximately double in one polarity com-
pared with the other. This dichroism has been observed in
specular reflection [35,36], and one may consider the back-
ground to be due to roughness and scattering in transmission
from the polycrystalline grain walls causing broadening of the
specular peak.

The theoretical results were simulated assuming a root-
mean-square (RMS) interfacial roughness of 0.7 Å with a
Lorentzian profile, and with the imaginary part of the refrac-
tive index β increased by �β = 0.001 to approximate losses
due to diffuse scattering in transmission. Each theoretical plot
was generated as the ensemble average of ten simulations
for different randomly generated magnetic domain patterns
similar to those shown in Fig. 2. Here in Fig. 6, the obser-
vations regarding the changes in the first- and second-order
peaks can be explained by interference between the different
waves emitted from each interface in the multilayer sample.
The increase in observed asymmetry of the first-order peak
arises from the change of sign in the asymmetry of the re-
flected waves from the Néel part of the domain wall close
to the substrate in the sample where the chirality is opposite
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FIG. 5. (a) Cross sections in the x-z plane through one ideal magnetic unit cell used for generating the simulations. Note the Bloch wall
being situated in the upper part of the film. (b) Specular reflection curves both on resonance (778 eV) and off resonance (750 eV). (c) δ and β

values for cobalt used in the simulations (measured at the SEXTANTS beam line of SOLEIL). (d) The magnetic deviations of the refractive
index as a function of energy where the Poynting vector is parallel to the magnetization vector. (e) Raw RXMS measurements for the first,
second, and third Bragg angles at the incidence angles determined by the specular reflection scan (15.5◦, 33◦, and 53.8◦).

compared to the Néel part of the domain wall close to the sur-
face [17,19]. Conceptually, for a given helicity and when the
sample is aligned at the Bragg angle, at the detector we have
constructive superposition between the positive asymmetry
(Il − Ir )/(Il + Ir ) contributions from the top layers of the sam-
ple, the zero asymmetry from the middle layers with a Bloch
domain wall, and negative asymmetry from the contributions
near to the substrate. The sum of these gives us the mea-
sured scattering patterns with moderate asymmetry as seen
in Figs. 6(a) and 6(b). When we move off the Bragg angle,
however, there is a phase shift between the contributions from
each layer, and when the contributions from the lower layers
of the sample with the opposite asymmetry to the top layers
are superimposed out of phase, the result is not a reduction
in the asymmetry but rather a reduction in the intensity and an
increase in the asymmetry. This is an important result not only

because it demonstrates the key role that multilayer interfer-
ence plays in the observed scattering patterns, but also because
it demonstrates the potential future utility of exploiting such
interference for a more precise characterization of the samples
in the z direction.

C. Born approximation versus distorted-wave Born
approximation: Explanation of dichroism observed with applied

longitudinal field in second-order scattering peaks

In the previous section, a notable dichroism was observed
in the second-order scattering peaks when observed at the
Bragg angle—a phenomenon which was extensively studied
by Burgos-Parra et al. in their work developed in parallel with
this paper [22]. In theoretical terms, this dichroism at second
(and fourth) order was not explained solely by the spatial
differences in the reflection coefficients across each plane in
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FIG. 6. Experimental scattering data (integrated over the qy direction) with and without an in-plane applied field on and off the multilayer
Bragg angle. The four lines on each graph represent left and right polarized light for both experiment (solid) and theory (dashed) lines. The
results (a) at zero field on the Bragg angle, (b) at a field of 0.19 T on the Bragg angle, (c) at zero field but 1◦ off the Bragg angle, and (d) at
0.19 T and 1◦ off the Bragg angle.

the multilayer, but rather only by including the differential ab-
sorption in transmission according to the incident polarization
and magnetization vector. In fact, it was the need to explain
this second-order dichroism in the work of Burgos-Parra et al.
[22] which brought about the addition of the DWBA to the
simulation recipe discussed here—an addition which approx-
imately doubled the computation time. This is demonstrated
in Fig. 7, where theoretical curves are shown for both the
BA case and the DWBA case. Only in the DWBA case was

it found possible to reproduce the dichroism observed ex-
perimentally between the two polarization states at second
order. The nature of the dichroism at second and fourth order
is distinct from that at first and third order: At odd orders,
we observe the characteristic left-right asymmetry which flips
with a change of polarization; however, at even orders we
observe left-right symmetric diffraction peaks whose inten-
sity depends upon the polarization. From a semantic point
of view, it is perhaps not appropriate to be talking about a
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FIG. 7. Simulated scattering scans with a 0.19-T external field applied along the magnetic stripe axis (a) using the BA accounting for the
reduced contribution from buried interfaces due to x-ray absorption, and (b) using the DWBA as presented in the text. The plots show the
simulated scattering summed over the qy direction, with the second-order peaks highlighted to show the difference between using the BA and
using the DWBA.

184401-11



SAMUEL FLEWETT et al. PHYSICAL REVIEW B 103, 184401 (2021)

pure reflection configuration in this case, but rather a situ-
ation where reflection and transmission are combined—the
strong second-order peaks observed due to the Bloch walls
being evidence of the transmission component at play. It will
be interesting in the near future to combine reflection with
transmission measurements in order to obtain a more precise
quantification of the size of the Bloch walls, and also obtain a
better quantification of the role of the polycrystalline nature
of the sample in the generation of the background signal.
The explanation of this dichroism in the second-order peaks,
and the finding that it arises due to differential transmission
along the Bloch walls and not merely due to differences in the
reflection coefficients, is one of the chief results of this work.

D. Studying depth penetration with energy scans at different
Bragg angles

This work, inspired by that of Refs. [19,26], looks to eval-
uate the extraction of information in the �z direction, hopefully
extending from the qualitative treatment of Refs. [19,26] to a
more quantitative treatment. A further inspiration was based
on the work of Legrand et al. [17], where the z position
of the Bloch wall was found to be directly related to the
value of the DMI. Should one be able to quantitatively deter-
mine the value of the Bloch wall, then it could be possible
to determine the DMI by means of resonant x-ray scatter-
ing, complementing the existing techniques, notable Brillouin
light scattering [58,59] or domain wall creep [60]. As will be
seen in the following results and accompanying discussions,
the full quantification of the real effective penetration depth
will be necessary before a quantitative measurement of the
DMI can be made.

For this part of the investigation, we measured the resonant
scattering data at the first three multilayer Bragg angles of
our hybrid Néel/Bloch/Néel domain-wall sample, with the
incidence angles determined by the specular reflection scan
shown in Fig. 5(b). The energy was scanned from 775 to
781 eV in 0.2-eV steps without the application of an external
field. The data were then integrated over qy, and the inte-
grated peak intensities were calculated after subtracting the
background using a cubic spline fit. These curves can be seen
in Fig. 8, along with the associated values of the asymmetry
ratios. (The jaggedness of the experimental asymmetry ratio
curve for the third Bragg angle is due to the poor signal-to-
background ratio). In Fig. 8, the asymmetry can be seen to
reduce as the energy moves off resonance due to increasing
penetration into the sample. For the second Bragg angle the
asymmetry is close to zero off resonance at 775 eV, and for the
third Bragg angle it changes from negative to positive as one
moves onto resonance, although the weak signal at the third
Bragg angle makes precise determination of the off-resonant
asymmetry ratio impossible. This variation of the asymmetry
as a function of energy or penetration depth can inform us
at which value of z the handedness of the Néel component
of the domain wall flips, thus allowing an estimation of the
DMI [17].

Successfully modeling the experimental curves observed in
this figure would confirm the proposed magnetic domain pro-
file shown in Fig. 5(a), and would therefore represent a major
advance in the field. The theoretical curves in Fig. 8 do not

consider interfacial roughness, and for computational speed
were performed using an ordered stripe pattern (instead of the
disordered pattern used in Figs. 6 and 7). The four theoretical
curves shown in Fig. 8 are for increasing levels of increase of
the imaginary part of the refractive index �β due to charge
scattering from the grains in the sample. We know from the
observation of diffuse charge scattering in transmission geom-
etry in previous work [6,25] that this value of �β is nonzero,
and electron microscopy work on a similar sample by McVitie
et al. [61] found an average grain size of 4 nm. Addition-
ally, during the transmission geometry beam time leading to
Ref. [6], a long-exposure normal incidence measurement was
made while searching for higher-order magnetic diffraction
peaks which revealed a charge scattering small-angle x-ray
scattering ring corresponding to an average grain size of 8 nm.
A precise measurement of losses due to diffuse scattering by
the polycrystalline grains by x-ray absorption measurements
in transmission geometry as a function of incidence angle and
energy remains, however, to be done. It should also be noted
at this point that any systematic bias in the real values of the
material densities (and therefore the refractive indices) due to
sample fabrication issues may also be included in this correc-
tion factor �β. The fact that the measured scattering signal
depends so strongly on the scattering loss is an indication that
this issue will need to be resolved before a detailed character-
ization of the internal magnetic structure can be achieved.

As can be seen, as the degree of transmission loss due to
diffuse scattering from the polycrystalline grains increases,
the peak of the intensity spectra moves from 777 eV to-
wards the experimental peak at 778 eV, but does not reach
this point. The peak of the resonance is at 778 eV, and for
a single layer this is where the reflection signal would be
expected to be strongest. However, as one moves off reso-
nance, the transmission increases which in the presence of
a perfect multilayer stack drastically increases the reflection
when measured on the Bragg angle. It could be that the
local periodicity of the multilayer stack is locally imperfect,
something which could be investigated in a future experiment
studying the speckle from a coherent illumination experiment
on a magnetically saturated sample. This could be both at high
levels of photon flux with a beam stop to study high-spatial-
frequency roughness, and at low flux without a beam stop
for the low-spatial-frequency roughness. We suspect that it
is this low-spatial-frequency background which is responsible
for the weaker-than-predicted Bragg interference.

For purposes of comparison, we evaluated the scattering
patterns for a perfectly smooth single magnetic interface, with
domain-wall periodicity and domain-wall width equal to those
on the surface layer of the sample under study. In this case,
however, we assumed that the domain-wall type was either of
pure Néel or pure Bloch type with these results displayed in
Fig. 9.

In Fig. 9, readers should note that the maximum scat-
tering intensity is found at 778 eV, and not at 777 eV as
was seen for the multilayer simulations, further evidence that
we are most likely overestimating the effects of construc-
tive interference on the Bragg angles in our simulations.
Also, we note for a pure Néel domain wall that we have
an asymmetry ratio greater than 0.6 for the first two Bragg
angles, whereas for a pure Bloch wall in the present scat-
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FIG. 8. Energy scans of the asymmetry ratio without roughness used in the simulations. Results for the first multilayer Bragg angle (16.8◦)
in the top row, the second multilayer Bragg angle (35◦) in the middle row, and in the bottom row the third Bragg peak at 58.8◦. Theoretical
curves are shown in solid lines for different values of the polycrystalline-structure-induced change in the imaginary part of the refractive index
�β, and the experimental data are shown in a dashed line. The intensities of the “weak” peaks refer to the less intense scattering peak at one
helicity, and the corresponding less intense peak from the opposite side as measured with the opposite helicity. The “strong” peak intensities
refer to the opposite more intense scattering peaks.

tering geometry the asymmetry ratio is identically zero due
to the absence of a transverse MOKE component. For this
reason, the asymmetry ratios for the pure Bloch case are
not shown in Fig. 9. An interesting corollary can be seen
when comparing the case of the pure Néel wall and the
measurement performed off the Bragg angle for the hybrid
sample shown in Fig. 6. In this case, the observed asymmetry
ratios are very similar, and it is imaginable that one could
mistake a hybrid domain-wall sample for a pure Néel sample
if only a single measurement were to be made on a subopti-
mally aligned sample. A simple energy scan or rocking curve
measurement would, however, clear any ambiguity in that
domain.

Comparing Figs. 8 and 9, we note in the case of Fig. 9
that the asymmetry in the case of the Néel walls displays
only a very weak dependence on the photon energy with
approximately a 0.1% variation across the energy range
shown—differences unlikely to be visible in an experiment.
The reason for this small energy dependence of the first-

order asymmetry ratio—a quantity largely determined by the
spatial interplay between the polar/longitudinal and trans-
verse MOKE signals—is due to the fact that the different
elements of the reflection coefficient matrix [Eq. (16)] have
a similar energy dependence. As such, there is only a small
variation of the first-order asymmetry with respect to the
incident energy. As one moves off resonance, the first-order
asymmetry tends towards a limit of type 0/0, becoming
ever more sensitive to uncertainties caused by imperfect sub-
traction of the charge background—the reason for the poor
quality of the experimental data for the third Bragg angle
observed in Fig. 8. For a multilayer sample with a z-dependent
magnetization profile as in Fig. 8, energy-dependent differ-
ences in the absorption length alter the effective magnetic
morphology being probed, causing the first-order asymmetry
ratio to vary notably with energy. Regarding the behavior
of the magnetic scattering intensities and the asymmetry
ratio of the specular peak as a function of energy (zero-
order asymmetry ratio), these quantities depend directly on
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FIG. 9. Energy scans of the asymmetry ratios and scattering intensities for a hypothetical perfectly smooth interface for ordered stripe
domain pattern with either pure Bloch or pure Néel domain walls. Each row represents the incidence angle equal to the first, second, or third
Bragg angle corresponding to the multilayer sample studied in this paper. The intensities of the “weak” peaks refer to the less intense scattering
peak at one helicity, and the corresponding less intense peak from the opposite side as measured with the opposite helicity. The “strong” peak
intensities refer to the opposite more intense scattering peaks. Asymmetry ratios for the pure Bloch domain walls are identically zero due to
the absence of a transverse MOKE component [2], and are therefore not shown.

f s
m1, and consequently tend towards zero as one moves off

resonance.
We also compare the energy scan simulation without inter-

facial roughness (but including an increment in the absorption
due to diffuse scattering from grain boundaries �β = 0.001)
to one with interfacial roughness of 1 Å in Fig. 10. In this case,
the simulated results shown are the mean of 100 different sim-
ulations with random roughness distributions; however, for
speed we used a perfect stripe pattern as in Fig. 8. In this case,
a Lorentzian roughness spectrum was used, which is relatively
close to the experimental data as seen in Fig. 6. It can be seen
here that the overall behavior of the (background subtracted)
peak intensities for the simulated rough sample is similar to
that of the ideal sample, except for an expected reduction in
the scattered intensity. We note that a small systematic bias to-
wards higher asymmetry ratios is observed for the case where
roughness is present; however, the effect is small, suggesting
that except in cases with very high background one is justified

in not considering interference between charge and magnetic
scattering when subtracting the background from experimen-
tal data. We note as well that the signal-to-background ratio
is best at the first Bragg angle and gets steadily worse as we
move to the second and third Bragg angles, as evidenced by
the greater amount of residual noise present even after sum-
ming the results from 100 different roughness distributions.
This observation of poorer signal to background is consistent
with experimental results as shown in Fig. 5(e) and the case of
the third Bragg angle in Fig. 8. Due to the need to sum a large
quantity of diffraction patterns to obtain adequate statistics in
order to generate this figure, we increased the pixel size to
8.75 nm (20 pixels per domain period), and calculated over
a 60 × 60 array. This therefore excludes the study of coarser
spatial frequencies in the roughness spectrum—a contribution
which could be key for understanding why our simulations
consistently overestimate the role of constructive Bragg inter-
ference at energies off resonance.
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FIG. 10. Energy scans of the asymmetry ratio with 1 ÅRMS roughness used in the simulations. Results for the first multilayer Bragg angle
in the top row, the second multilayer Bragg angle in the middle row, and in the bottom row the third Bragg peak. Each line represents a differing
level of interfacial roughness. The intensities of the “weak” peaks refer to the less intense scattering peak at one helicity, and the corresponding
less intense peak from the opposite side as measured with the opposite helicity. The “strong” peak intensities refer to the opposite more intense
scattering peaks.

IV. CONCLUSION

In the course of this work we have presented a general
numerical algorithm for simulating magnetic scattering from
an arbitrary 3D magnetized, multilayer sample, based upon
a generalization of the formalism of Zak et al. [9–12] in
the DWBA. The algorithm was developed as a tool for the
analysis of colleagues’ data with the aim of creating the most
general framework possible [22–24], with the further exper-
imental tests presented in this paper devised to evaluate the
algorithm’s robustness. In these experiments we succeeded in
achieving agreement between theory and experiment as the
angle of incidence moves on and off the Bragg angle, and we
also succeeded in explaining the dichroism observed in the
second-order magnetic scattering peaks due to transmission
through and parallel to the Bloch walls before and after the
reflection event. This explanation of the dichroism of the
second-order peaks is key to the work of Burgos-Parra et al.,
where the evolution of the 3D magnetization morphology is
studied as a function of applied field. Further work in the
area of interfacial roughness and scattering in transmission
from polycrystalline grain walls will, however, be necessary

to fully explain the behavior observed as the depth penetration
is varied, and will be necessary before a fully quantitative
determination of magnetic structures is possible.

The long-term aim of this investigation is to extract a plau-
sible range of magnetic structures given a set of experimental
data, most likely via an iterative algorithm. There is still
much work to arrive at this point, such as the optimization
of an experimental protocol for the choice of measurements
(energy and incidence angle), a revision of the role of mi-
cromagnetic simulations in the process, and the selection of
the optimal computational algorithm for implementing the
iterative process. The most significant advances presented in
this present work are in our opinion the generalization of the
Zak [9–12] formalism for nonspecular reflection, the addition
of the DWBA allowing the study of Bloch domain walls,
and the presentation of a step-by-step algorithm allowing for
the scattering to be calculated from an arbitrary distribution
of the magnetization. This work is not restricted to static
magnetic configurations, but can be applied to time-resolved
experiments, or under different temperature and external field
conditions. Further benefits will also come from the highly
coherent 100-nm spots available from new diffraction-limited
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storage rings, which will allow the practical extension of this
work to coherent scattering and speckle analysis.
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