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Wen-Lei Zhao ,1,* Yue Hu,2 Zhi Li,2,† and Qian Wang3,‡

1School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
2Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision

Measurement, Frontier Research Institute for Physics and SPTE, South China Normal University, Guangzhou 510006, China
3Department of Physics, Zhejiang Normal University, Jinhua 321004, China

(Received 9 December 2020; revised 30 April 2021; accepted 6 May 2021; published 26 May 2021)

Out-of-time-ordered correlators (OTOCs) are an effective tool in characterizing black hole chaos, many-body
thermalization, and quantum dynamics instability. Previous research findings have shown that the OTOCs’
exponential growth (EG) marks the limit for quantum systems. However, we report in this paper a periodically-
modulated nonlinear Schrödinger system, in which we interestingly find a way of OTOCs’ growth: super-EG.
We show that the quantum OTOCs, which stems from the quantum chaotic dynamics, will increase in a
super-exponential way. We also find that in the classical limit, the hyper-chaos revealed by a linearly-increasing
Lyapunov exponent actually triggers the super-EG of classical OTOCs. The results in this paper break the
restraints of EG as the limit for quantum systems, which give us insight into the nature of quantum chaos in
various fields of physics from black hole to many-body system.
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I. INTRODUCTION

Akin to quantum butterfly effects, quantum scrambling
is the process of encoded information spreading from local
degrees of freedom to multiple degrees of freedom, hence
comes its unattainability by measuring the local operators
[1,2]. However, through the time evolution of out-of-time-
ordered correlators (OTOCs) [3–7], this elusive process can be
well quantified, which explains the enthusiastic and extensive
study of OTOCs in many frontiers of physics such as quantum
holography, quantum chaos, and black hole physics. Recent
research has proved that OTOCs act as an effective indicator
of quantum phase transition [8–11], many-body localization
[12–14], and quantum entanglement [15]. Besides, experi-
mental progress has made it possible to observe the OTOCs
in atomic-optics setups [12,13] and nuclear spins [16]. Up to
now, a wide range of OTOCs with logarithmic, power-law, or
exponential growth (EG) has been found in various systems
including many-body systems and quantum chaotic systems.

As proposed in landmark studies of quantum chaos, the
OTOCs can be used to describe the exponential instability in
quantum dynamics [17–23]. As for systems with the well-
defined classical limit, the EG will occur within Ehrenfest
time with a rate determined by the classical Lyapuonv expo-
nent [18,19,21,24]. Interestingly, the mathematically verified
correlation between OTOCs and Loschmidt echo provides
theoretical basis for the irreversibility of scrambling dynamics
[25]. Note that the boundary set by chaos dynamics for expo-
nential scrambling of OTOCs, which means that an exponent
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actually marks the greatest rate of increase for OTOCs in a
quantum system, is obtained by the conjecture of thermal-
ization in quantum systems with a large number of degrees
of freedom [26,27]. At present, massive research efforts have
been focused on how many-body chaos affects the dynamics
of OTOCs. For instance, a recent study has shown that the
OTOCs’ EG is equal to the classical Lyapunov exponent in the
presence of interatomic interaction [28]. However, we noticed
that the growth rate of OTOCs in previous systems fails to
break the exponential limit. Therefore, is it safe to say that
the EG actually tops all OTOCs’ rates of growth in quantum
systems?

II. MODEL AND RESULTS

We consider a Schrödinger system with the temporally
modulated nonlinear interaction; the corresponding Hamilto-
nian reads [29,30]

H = p2

2
+ g|ψ (θ, t )|2

∑
j

δ(t − j), (1)

where the angular momentum operator p = −ih̄eff∂/∂θ with
h̄eff being the effective Planck constant, θ is angle co-
ordinate, and g denotes the nonlinear interaction strength.
All variables are properly scaled and thus in dimension-
less units. An arbitrary quantum state is expanded in
terms of the complete basis of angular momentum opera-
tor (p|ϕn〉 = nh̄eff |ϕn〉), i.e., |ψ〉 = ∑

n ψn|ϕn〉, hence, it is
periodical in θ , i.e., ψ (θ ) = ψ (θ + 2π ). The one-period evo-
lution operator from time t to t + 1 is given by U (t, t +
1) = exp (−ip2/2h̄eff ) exp [−ig|ψ (θ, t )|2/h̄eff ]. The quantum
OTOCs are defined as the average of the squared commutator,
i.e., C(t ) = −〈[Â(t ), B̂(0)]2〉, where Â(t ) = eiHt A(0)e−iHt is
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FIG. 1. (on log-linear scale) Quantum OTOC C(t ) versus time
with h̄eff = 0.6 for g = 1.3 (squares), 1.5 (circles), 2.0 (triangles),
and 3.0 (diamonds). Red solid lines indicate our theoretical predic-
tion in Eq. (3). The width of Gaussian wave packet is σ = 1.0.

the time-dependent operator in the Heisenberg picture, with
〈·〉 being the average of the initial state. In the many-body
systems, the average of C(t ) comes from thermal states. For
the quantum mapping systems, however, there is no definition
of thermal states, as the temperature tends to be infinitely large
after long time evolution [31]. Indeed, our previous investi-
gations have proved that the system in Eq. (1) exhibits the
unbounded heating, which is quantified by the exponentially-
fast growth of mean energy 〈p2〉 [29,30].

Here, we consider the case of a pure state, i.e., a Gaus-
sian wave packet ψ (θ, 0) = (σ/π )1/4 exp(−σθ2/2). As in
Ref. [21], Â = B̂ = p, namely

C(t ) = −〈
[p(t ), p(0)]2

〉
. (2)

Our main result is the analytical prediction of the super-EG
growth of the quantum OTOCs

C(t ) ∝ exp
[
αγt + β ln

( g

π h̄eff

)2
t + ηγt2

]
, (3)

where

γ = ln

[
1 +

(
gN0

π h̄eff

)2]
, (4)

α, β, and η are prefactors, and N0 is the normalization con-
stant of the initial state (usually N0 = 1). Numerical results of
OTOCs are in good agreement with the analytical expression
(see Fig. 1). It is worth noting that EG is usually believed to
be the boundary of the growth of OTOCs in chaotic systems
[27], therefore, our finding of the super-EG growth sheds light
on the field of quantum information [32,33]. We have also
investigated, both numerically and analytically, the OTOCs
defined as C(t ) = −〈[θ (t ), p]2〉. Interestingly, we found the
scaling

C(t ) = μ(t )N exp(νγ t ), (5)

where μ is the time-dependent coefficient, N is number of
basis, namely the dimension of the system, ν is a constant,

and the growth rate reads

γ = ln

{
1 +

[
gÑ (t )

π h̄eff

]2
}

(6)

with Ñ (t ) = 〈ψ (t )|θ2|ψ (t )〉 [34]. It is obvious that the C(t )
approaches infinite with the increase of the dimension of the
system N , which demonstrates that there is no bound on the
OTOCs in our system.

The bound of the exponential growth of OTOCs applies to
many-body systems with finite temperature where the thermal
states are well defined. For such systems, the two-point corre-
lator in OTOCs saturates rapidly. The exponential growth of
OTOCs mainly results from the four-point correlator [27]. It
has proved that the periodically-driven systems are equivalent
to the systems with infinite temperature [31], for which the
thermal states cannot be well defined without an effective
Hamiltonian. These essential differences lead to the inconsis-
tency between the super-EG of OTOCs in our system and the
bound of chaos in Ref. [27]. Remarkably, for periodically-
driven systems, the two-point correlator contributes mainly
to the OTOCs, and the four-point correlator saturates rapidly
[21,35]. In the following, we will show that the two-point cor-
relator part exhibits the super-exponential growth with time.
Here, the super-EG of OTOCs is rooted in the exponentially-
fast diffusion of mean energy. It is clear evidence that the
OTOCs’ dynamics is closely related to quantum thermaliza-
tion, which is highlighted in such interdisciplinary topics as
quantum information scrambling and quantum chaos. On the
other hand, as a variant of kicked rotor model, our system is
an ideal platform for investigating the wave-packet dynamics,
such as quantum walk [36] and topologically-protected trans-
port [37] in momentum-space lattice. Therefore, our finding
opens a prospective in the field of the OTOCs’ dynamics in
momentum-space lattice.

We proceed to evaluate the growth of OTOCs in
the semiclassical limit. While approaching the semiclas-
sical limit, the quantum commutator reduces to Pois-
son bracket [p(t ), p(0)] = h̄eff{p(t ), p(0)} = h̄eff∂ p(t )/∂x(0).
Then, a natural definition of the classical OTOCs are

Ccl (t ) =
〈(

∂ p(t )

∂x(0)

)2〉
, (7)

where 〈·〉 denotes the average of the ensemble of classical tra-
jectories [21]. In numerical calculations, the classical OTOCs
are approximated as Ccl (t ) ≈ 〈(δp(t )/δx(0))2〉, where δp and
δx denote the difference of the two nearest neighboring trajec-
tories [21].

We have proved that the system in Eq. (1) is mathemati-
cally equivalent to a generalized kicked rotor (GKR) model
[29,30,34], whose Hamiltonian takes the form

H = p2

2
+

+∞∑
n=1

Kn(t ) cos(nθ )
∑

j

(t − j). (8)

The kicking strength dependent on the Fourier components of
the quantum state reads

Kn(t ) = g

π

+∞∑
m=−∞

ψ∗
m(t )ψm+n(t ). (9)
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FIG. 2. Time dependence of the classical OTOC Ccl (t ) (a) (on
log-linear scale) and the maximal Lyapunov exponent (b) with g =
1.3 (squares), 1.5 (circles), 2.0 (triangles), and 3.0 (diamonds). Red
lines in (a) and (b) indicate our theoretical predictions in Eqs. (11)
and (18), respectively. Other parameters are the same as in Fig. 1.

The classical mapping equation of this GKR model can be
formulated as

p(t + 1) − p(t ) =
+∞∑
n=1

nKn(t ) sin [nθ (t )]

θ (t + 1) − θ (t ) = p(t + 1), (10)

where p(t ) and θ (t ) indicate the classical momentum and
angle variables after the t th kick.

Based on the classical mapping equations, we numerically
investigate the classical OTOCs for different interaction g. In
numerical simulations, we set the initial values of p and θ as
random variables with the probability distribution given by
Gaussian function in phase space. The difference of initial tra-
jectories is δθ (0) = 10−5. Interestingly, the classical OTOCs
increase in the super-EG way, i.e.,

Ccl (t ) ∝ exp
(
γ t2

)
, (11)

which is in good agreement with our theoretical
prediction [see Fig. 2(a)]. In addition, we numer-
ically investigate the maximal Lyapunov exponent
λ = limt→∞ limδθ→0〈log[δp(t )/δθ (0)]〉/t . Remarkably,
the maximal Lyapunov exponent λ linearly increases with
time λ(t ) ∝ γ t [see Fig. 2(b)], which is consistent with the
theoretical prediction in Eq. (18). This clearly demonstrates
the existence of the hyper-chaotic dynamics [38]. Different
from previous research, in which the classical OTOCs depend
on the λ in an exponential way of Ccl (t ) ∝ eλt [18,19,21,24],
here we get the super-EG with the form Ccl (t ) ∝ eγ t2

.
Compared with traditional quantum systems [39,40], richer
physics will be exhibited in the periodically-modulated
nonlinear Schrödinger system from the perspective of either
quantum dynamics or semiclassical dynamics.

III. THEORETICAL ANALYSIS

It is straightforward to decompose the OTOCs in Eq. (2) as

C(t ) = C1(t ) + C2(t ) − 2Re[C3(t )], (12)

where we define the terms in the right of the above equation
as

C1(t ) = 〈
ψ (0)

∣∣U †(t )pU (t )p2U †(t )pÛ (t )
∣∣ψ (0)

〉
,

C2(t ) = 〈
ψ (0)

∣∣pU †(t )pU (t )U †(t )pU (t )p
∣∣ψ (0)

〉
,

C3(t ) = 〈
ψ (0)

∣∣U †(t )pU (t )pU †(t )pÛ (t )p
∣∣ψ (0)

〉
. (13)

Our numerical investigation shows that the contribution of
the first term C1(t ) is larger than the other two about several
orders of magnitude, which means C(t ) ≈ C1(t ) [35]. The
two-point correlation function quantifies the quantum irre-
versibility measured by the expectation value of p2 under the
perturbation of p at the time t . Hereinafter, we will show how
the exponentially-fast diffusion of mean energy (〈p2〉 ∝ eγ t )
induces the super-EG of C1(t ).

The definition of C1(t ) in Eq. (13) means that there are
four steps in the calculation of this part. The first step is
the forward time evolution of an initial state from t0(= 0)
to t+ = t0 + t , which yields the quantum state |ψ (t+)〉 =
U (t )|ψ (0)〉. In the second step, the operator p is exerted on the
state |ψ (t+)〉, i.e., |ψ̃ (t+)〉 ≡ p|ψ (t+)〉 = pU (t )|ψ (0)〉. The
norm of this state has the expression Nt+ = 〈ψ̃ (t+)|ψ̃ (t+)〉 =
〈ψ (0)|U †(t )p2U (t )|ψ (0)〉, which is just the mean energy at
the time t+. Our previous investigation has shown that the
mean energy exponentially increases [29,30], i.e.,

Nt+ ∝ N0 exp(γ t ) = exp(γ t ), (14)

where we adopted the condition N0 = 〈ψ (0)|ψ (0)〉 = 1. The
third step is the time reversal from t+ to t0 (t steps), which re-
sults in a state |ψR(t0)〉 ≡ U †(t )|ψ̃ (t+)〉 = U †(t ) p̂Û (t )|ψ (0)〉.
Finally, in the fourth step, one can obtain the expec-
tation value of p2 with the state |ψR(t0)〉, i.e., C1(t ) ≈
〈ψR(t0)|p2|ψR(t0)〉 = 〈ψ̃ (t+)|U (t )p2U †(t )|ψ̃ (t+)〉.

Note that the process of time reversal (the third step) can
be viewed as a process starting from an initial state |ψ̃ (t+)〉
normalized to Nt+ and then evolving into a quantum state
|ψR(t0)〉 in a time interval t . The two-point correlator C1(t )
is just the “mean energy” of the state |ψR(t0)〉, which follows
the exponentially-fast way

C1(t ) ∝ Nt+ exp(γt+t ) ∝ exp(γ t + γt+t ) (15)

with the rate γt+ = ln [1 + (gNt+/π h̄eff )2] [29,30]. Taking
Eq. (14) into account, the γt+ has the expression

γt+ ∝ ln
[
1 +

( g

π h̄eff

)2
e2γ t

]

∝ ln
( g

π h̄eff

)2
+ γ t, (16)

where we use the condition e2γ t 
 1. As a consequence, the
OTOCs take the form

C(t ) ≈ C1(t ) ∝ exp
[
αγ t + β ln

( g

π h̄eff

)2
t + ηγ t2

]
, (17)

where the prefactors α, β, and η cannot be exactly obtained,
since in the process of derivation we have used approxima-
tions in Eqs. (14), (15), and (16). According to the above
analysis, the super-EG of OTOCs is mainly caused by the
positive feedback mechanism of the temporally-modulated in-
teraction, which is the key point in this paper. The exponential
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increase of the kicking strength, which is absent in the tradi-
tional kicked rotor model, is responsible for the appearance of
super-EG in the classical limits of the system.

Next, we analyze the time evolution of the classical
OTOCs. For the kicked rotor model, the maximum Lyapunov
depends on the kicking strength by way of λ ∝ ln(K ) [21,41].
In the GKR model, the definition of one of the components
of the kicking strength Kn in Eq. (9) indicates that the Kn

is the quantum correlation in momentum space. A signif-
icant feature of this system is the exponential localization
of quantum states, i.e., |ψ (p)|2 ∼ exp(−|p|/ξ ) with ξ being
the localization length. Through simple calculation, one can
obtain that the quantum correlation also has the exponential
decay, i.e., Kn ∝ exp(−|p|/ξ ) [29,30]. Then, a rough estima-
tion of the kicking strength in the GKR model [see Eq. (10)] is
K (t ) = ∑

n nKn(t ) ∝ ∑
n ne−|n|h̄eff /ξ ∝ ξ . Previously, we have

predicted the exponentially-fast increase of the localization
length ξ ∝ eγ t by means of the hybrid quantum-classical the-
ory [29,30]. As a consequence, the kick strength exponentially
grows with time, i.e., K ∝ eγ t . Accordingly, the Lyapunov
exponent linearly increases with time

λ ∝ ln(K ) ∝ γ t . (18)

For a strong chaotic case, the classical OTOCs exponentially
increase with the growth rate proportional to Lyapunov ex-
ponent [18,19,21,24], i.e., Ccl (t ) ∝ eλt . Taking Eq. (18) into
account, one can get Ccl (t ) ∝ exp(γ t2), which is confirmed
by our numerical results (see Fig. 2).

IV. SUMMARY

We have proved the existence of OTOCs’ super-EG. The
results not only give evidence to verify the association be-
tween quantum hyper-chaos and quantum heating but also
confirm the super-exponential sensitivity of quantum dynam-
ics to initial conditions. Since the conventional theory has it
that an EG boundary is imposed on the chaotic dynamics, our
finding, by breaking traditional restraints, bears great signif-
icance in the research of energy heating and quantum chaos
[12]. More importantly, the super-EG is the fastest growth
rate of OTOCs today, for which the underlying mechanism is
the positive feedback of the periodic modulated interaction.
Our finding helps review the issue of the chaotic systems’
boundary.

Experimentally, due to the generality of the nonlinear
Schrödinger system, our findings will serve as a univer-
sal theory in broad fields including the cold atomic gases
[42], nonlinear optics [43–45], and complex Ginzburg-Landau
equation in condensed-matter physics [46]. More remarkably,
the interaction in the above-mentioned systems features high
controllability [43–50], which will facilitate the experimental
realization and observation of the predictions.
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APPENDIX A: DETAILS ABOUT THE MATHEMATICAL
EQUIVALENCE BETWEEN THE NONLINEAR

SCHRÖDINGER SYSTEM AND THE GKR MODEL

The periodically modulated nonlinear Schrödinger system
reads

H = p2

2
+ g|ψ (θ, t )|2

∑
j

δ(t − j). (A1)

For a symmetric initial state [ψ (θ, 0) = ψ (−θ, 0)], since the
kicking evolution operator UK = exp [−ig|ψ (θ, t )|2/h̄eff ] is
wave-function dependent, the quantum state will preserve
the symmetry in the duration of evolution, i.e., ψ (θ, t ) =
ψ (−θ, t ). The wave function can be expanded as ψ (θ, t ) =∑+∞

n=−∞ ψn(t )einθ /
√

2π , therefore one can obtain

|ψ (θ, t )|2 = 2
+∞∑

n=−∞
Yn(t )einθ

= 2Y0 + 4
+∞∑
n=1

Yn(t ) cos(nθ ), (A2)

where

Yn(t ) = 1

4π

+∞∑
m=−∞

ψ∗
m(t )ψm+n(t ). (A3)

The expression Eq. (A3) describes the correlation of the
quantum state in the momentum space. Besides, one can get
Yn(t ) = Y−n(t ) [29,30]. By plugging Eq. (A2) into Eq. (A1),
we have

H = p2

2
+

+∞∑
n=1

Kn(t ) cos(nθ )
∑

j

(t − j), (A4)

where the kicking strength Kn(t ) = 4gYn(t ). Since the term
with Y0 = 1/4π only contributes a global phase in the evo-
lution, which has no physical effects, we can drop it safely.

We numerically investigate the phase space of classical
trajectories. Our results show that, for a specific value of g, the
classical phase space exhibits regular diffusion of trajectories
for short time evolution [e.g., t = 3 in Fig. 3(a)], the coex-
istence of both the regular diffusion and the chaotic diffusion
for intermediate time interval [e.g., t = 5 in Fig. 3(b)], and the
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FIG. 4. (on log-linear scale) Time dependence of the C(t )
(squares) and h̄2

effCcl (t ) (circles) with h̄eff = 0.001 and g = 0.01.
Solid lines (in red) indicate our theoretical predictions. The width
of Gaussian wave packet is σ = 10.

full chaotic diffusion after long enough time evolution [e.g.,
t = 15 in Fig. 3(c)]. This clearly demonstrates the regular-
to-chaotic transition of the classical dynamics, which stems
from the time-dependent increase of the GKR model’s kick
strength. The regular behavior leads to the early-time devia-
tion of the Lyapunov exponent from the theoretical prediction
in Eq. (18) of the main text, whose validity is guaranteed
under the strong chaotic condition [see Fig. 1(a) in main text].

APPENDIX B: QUANTUM AND CLASSICAL OTOCS FOR
SHORT TIME EVOLUTION

For systems described by Schrödinger equation, the quan-
tum OTOCs are consistent with its classical counterpart, i.e.,
C(t ) = h̄2

effCcl (t ) in the semiclassical limit (h̄eff  1) [21,28].
The comparison between C(t ) and h̄2

effCcl (t ) for our sys-
tem is shown in Fig. 4. One can see that, during a short
time interval, the quantum OTOC is larger than its classi-
cal counterpart, which is in sharp contrast to that of the
Schrödinger system [29,30]. Unfortunately, since the wave
packets spread in the super-exponential way, the long-time
evolution faces the severer computation limit on system size.
Our theoretical prediction of quantum OTOCs, i.e., C(t ) ∝
exp [αγt + β ln ( g

π h̄eff
)2t + ηγt2] [see Eq. (3) in the main text],

yields C(t ) ∝ exp (ηγt2) after long time evolution, which
is consistent with the time dependence of classical OTOCs
Ccl (t ) ∝ exp (γ t2) [see Eq. (9) in the main text] regardless of
the factor η.

APPENDIX C: DETAILS ABOUT THE QUANTUM
EVOLUTION

Since the exact form of the temporal modulation function is
the periodical-delta kicks, to get the Floquet operator, one can
use the standard method of the time integral. The evolution
of a quantum state from t = n to t = n + 1 can be separated
into two steps: (i) the free evolution from t = n+ to t =
(n + 1)−, where the superscripts ‘+’ (‘−’) indicate the time

FIG. 5. Time dependence of the C1 (a), C2 (b), and Re[C3]
(c) with h̄eff = 0.6 for g = 1.3 (squares), 1.5 (circles), 2.0 (triangles),
and 3.0 (diamonds). Red solid lines indicate our theoretical predic-
tion in Eq. (3). The width of Gaussian wave packet is σ = 1.0.

immediately after (before) the nth kick, i.e., |ψ[(n + 1)−]〉 =
Uf |ψ (n+)〉 and (ii) the kick evolution during the infinitely
small time interval from t = (n + 1)− to t = (n + 1)+, i.e.,
|ψ[(n + 1)+]〉 = UK |ψ[(n + 1)−]〉. The integral for the free
evolution yields the Floquet operator Uf = exp (−ip2/2h̄eff ).
For the integral of delta kick, it is straightforward to get
the Floquet operator UK = exp {−ig|ψ[θ, (n + 1)−]|2/h̄eff}.
Then, one can get the one-period evolution operator

U = Uf UK = exp

(−ip2

2h̄eff

)
exp

[−ig|ψ (θ, t )|2
h̄eff

]
. (C1)

Our main result is the analytical prediction of the super-EG
growth of the quantum OTOCs

C(t ) ∝ exp
[
αγt + β ln

( g

π h̄eff

)2
t + ηγt2

]
, (C2)

where

γ = ln

[
1 +

(
gN0

π h̄eff

)2]
, (C3)

α, β, and η are prefactors, and N0 is the normalization
constant of the initial state (usually N0 = 1). We cannot an-
alytically get the values of α, β, η and the proportionality
constant. To fit the numerical results in Fig. 5(a), we select a
set of (α, β, η) and a set of proportionality constants, with the
aim of making the curve of the analytical formula in Eq. (C2)
and the numerical results a good match. The same method is
taken for the red curves in Fig. 2 in the main text. Therefore,
the values of α, β, η and the proportionality constant are
dependent on the value of g.

APPENDIX D: SCALING OF THE OTOCS
C(t ) = −〈[θ(t ), p]2〉

In this section, we show the scaling of the OTOCs C(t ) =
−〈[θ (t ), p]2〉 with the dimension of the system. Theoretically,
the law of time-dependent takes the form

C(t ) = μ(t )N exp(νγ t ), (D1)

where μ is a time-dependent coefficient, N is number of basis,
ν is a constant, and the growth rate γ has the expression

γ = ln

{
1 +

[
gÑ (t )

π h̄eff

]2
}

(D2)

with Ñ (t ) = 〈ψ (t )|θ2|ψ (t )〉. Equation (D1) means that, at a
specific time t , the C(t ) scales linearly with the dimension of
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FIG. 6. (a) Dependence of C(t ) (a), C2(t ) (b), and Re[C3(t )]
(b) on N with t = 7 for g = 0.4 (squares), 0.5 (circles), and 0.6 (trian-
gles). In (a): red lines denote our theoretical prediction in Eq. (D1). In
(b): solid (empty) symbols denote C2(t ) (Re[C3(t )]). The parameter
is h̄eff = 0.6. The width of Gaussian wave packet is σ = 10.

the system, hence it approaches to infinity with the increase of
N . The divergence of C(t ) demonstrates that there is indeed no
bound on the growth of OTOCs in our system. To verify our
theoretical prediction, we numerically investigate the C(t ) for
different g and N . In numerical simulations, the initial state
is a Gaussian wave packet ψ (θ, 0) = (σ/π )1/4 exp(−σθ2/2).
Figure 6(a) shows that, at a specific time t , the C(t ) linearly
increase with N , which is in good agreement with our theoret-
ical prediction in Eq. (D1).

We proceed to show the details in the numerical cal-
culation of the OTOCs with the general definition C(t ) =
−〈[A(t ), B]2〉. In our present work, we have considered two
cases with (A = p, B = p) and (A = θ, B = p). Numerical
procedures of calculating these two different OTOCs are the
same. As shown in the main text, the OTOCs can be decom-
posed as

C(t ) = C1(t ) + C2(t ) − 2Re[C3(t )], (D3)

where we define the terms in the right of the above equation
as

C1(t ) = 〈
ψR(0)

∣∣B2
∣∣ψR(0)

〉
, (D4)

C2(t ) = 〈ϕR(0)|ϕR(0)〉, (D5)

C3(t ) = 〈ψR(0)|B|ϕR(0)〉, (D6)

with |ψR(0)〉 = U †(t )AÛ (t )|ψ (0)〉 and |ϕR(0)〉 =
U †(t )AU (t )B|ψ (0)〉. There are five steps to calculate both
C1(t ) and C2(t ) at a specific time t = t∗:

(i) select an initial state |ψ (0)〉,
(ii) forward evolution 0 → t∗ yields |ψ (t∗)〉 =

U (t∗, 0)|ψ (0)〉,
(iii) at the time t∗, exert the operator A on the state |ψ (t∗)〉

and get a new state |ψ̃ (t∗)〉 = A|ψ (t∗)〉,
(iv) backward evolution t∗ → 0 yields |ψR(0)〉 =

U †(t∗, 0)|ψ̃ (t∗)〉,
(v) calculate the expectation value C1(t∗) =

〈ψR(0)|B2|ψR(0)〉.
To get C2(t∗), at step (i), one should exert the operator B

on the state |ψ (0)〉, i.e., |ϕ(0)〉 = B|ψ (0)〉. Steps (ii)–(iv) are
similar to that of calculating C1(t∗). At step (v), one can obtain

FIG. 7. (a) Time dependence of 〈p2〉 with t = 7 and g = 0.6 for
N = 215 (squares) and 218 (circles). Red solid lines are the theoret-
ical prediction in Eq. (D7). Green dashed line is the auxiliary line.
(b) The 〈 p̃2(t = 7)〉 versus N with g = 0.4 (squares), 0.5 (circles),
and 0.6 (triangles). Red solid lines are the theoretical prediction in
Eq. (D10). (c) Momentum distribution at the time t = 7. Squares
(in black) and circles (in blue) indicate the state |ψ〉 and |ψ̃〉 =
θ |ψ〉, respectively. Red and green lines denote the power-law decay
|ψ̃ (p)|2 ∝ |p|−2 and exponential decay |ψ (p)|2 ∝ exp(−|p|/ξ ) with
ξ ≈ 2.0. (d) Momentum distribution for the state |ψ̃〉 with N = 215

(circles) and 218 (squares). We only plot the |ψ̃ (p)|2 of positive p,
since it is an even function. Red solid line indicates the power-law
decay |ψ̃ (p)|2 ∝ |p|−2. Other parameters are the same as in Fig. 6.

the term C2(t∗) [see Eq. (D5)] by calculating the inner product
of the state |ϕR(0)〉.

At the end of the time reversal, one can use the two state
|ψR(0)〉 and |ϕR(0)〉 to get the third term of the OTOCs,
i.e., C3(t∗) = 〈ψR(0)|B|ϕR(0)〉 [see Eq. (D6)]. The schematic
diagram for the evolution progress of the quantum state to
calculate the C1(t∗) with (A = θ, B = p) is shown in Table I.

Numerically, we find that both C2(t ) and Re[C3(t )] are
negligibly small compared with C(t ) (see Fig. 6), which
demonstrates that C(t ) ≈ C1(t ). Then, we proceed to theo-
retically evaluate the time evolution of C1(t ). Equation (D4)
demonstrates that the C1(t ) is just the expectation value of
the square of momentum for the state at the end of time
reversal, i.e., C1(t ) = 〈ψR(0)|p2|ψR(0)〉. We numerically in-
vestigate the evolution of the mean square of momentum for
a specific time interval t = t∗. From Fig. 7(a), one can see
that the values of 〈p2〉 remain almost the same during the
forward evolution, i.e., t � t∗. Moreover, the time evolution of
the mean energy is independent on the number of basis, which
demonstrates the convergence of numerical results. After the
action of the θ operator, i.e., |ψ̃ (t∗)〉 = θ |ψ (t∗)〉, however, the
value of 〈p2〉 has a clear jump, namely 〈p̃2(t∗)〉 
 〈p2(t∗)〉.
Interestingly, during the time reversal t > t∗, the mean energy
exponentially increases and has shown clear distinction for
different N [see Fig. 7(a)]. Our theoretical prediction of the
exponential increase of mean energy is

〈p2(t ′)〉 = 〈p̃2〉 exp(νγ t ′), (D7)
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TABLE I. Schematic diagram of time evolution to calculate the term C1(t∗) = 〈ψR(0)|p2|ψR(0)〉.

Forward: t∗ steps θ action Backward: t∗ steps
|ψ (0)〉 → |ψ (1)〉 → · · · |ψ (t∗)〉 |ψ̃ (t∗)〉 = θ |ψ (t∗)〉 |ψ̃ (t∗)〉 · · · → |ψR(1)〉 → |ψR(0)〉

E (t ) = 〈ψ (t )|p2|ψ (t )〉 E (0) → E (1) → · · · E (t∗) Ẽ (t∗) = 〈ψ̃ (t∗)|p2|ψ̃ (t∗)〉 Ẽ (t∗) · · · → ER(1) → ER(0)
N (t ) = 〈ψ (t )|ψ (t )〉 N (0) = N (1) = · · · N (t∗) = 1 Ñ (t∗) = 〈ψ (t∗)|θ2|ψ (t∗)〉 Ñ (t∗) · · · = NR(1) = NR(0)

where 〈p̃2〉 is the mean energy at the time t = t∗, ν is a con-
stant, and the expression of the growth rate is in Eq. (D2). The
detailed derivations of Eq. (D7) are provided in the following.
Before that, we will first show the details for the derivation of
C(t )’s scaling in Eq. (D1).

Note that the time reversal starts from the time t = t∗ [see
Table I for calculating C1(t∗)], therefore t ′ = 0 means the time
t = t∗. Since the time reversal lasts t∗ steps (see Table I),
the maximum value of t ′ equals to t∗. Accordingly, the mean
energy at the end of time reversal is

〈p2(t = 0)〉R = 〈p̃2(t∗)〉 exp(νγ t∗), (D8)

which is just the C1(t ) at the time t = t∗ [see Eq. (D4)]. Then,
we get the time dependence of the OTOCs,

C(t ) ≈ 〈p̃2(t )〉 exp(νγ t ). (D9)

The scaling of C(t ) with N results from the dependence of the
mean energy 〈p̃2〉 on N . Interestingly, we find that, at a specific
time, e.g., t = t∗, the 〈p̃2〉 increases with N by the way of

〈p̃2(t∗)〉 = μ(t∗)N, (D10)

where μ is a coefficient [see Fig. 7(b) for t∗ = 7]. To reveal
the mechanism of such linear scaling, we numerically inves-
tigate the distribution of wave packet at the time t = t∗ in the
momentum space. Our results show that, after the action of θ

operator on a quantum state, i.e., |ψ̃〉 = θ |ψ〉, the momentum
distribution exhibits the power-law decay [see Figs. 7(c) and
7(d)]

|ψ̃ (p)|2 ∝ |p|−2, (D11)

for which the mean energy is 〈p̃2〉 = ∫ pN

0 p2|ψ̃ (p)|−2d p ∝
pN . Then, a rigorous expression of the mean energy is 〈p̃2〉 =
μN since pN = Nh̄eff , which is confirmed by our numerical
results in Fig. 7(b).

The following can explain why the power-law decayed
wave function appears. In the momentum space, the quantum

state |ψ̃〉 is expressed as

〈n|ψ̃〉 =
∑

m

〈n|θ |m〉〈m|ψ〉, (D12)

where the matrix element of 〈n|θ |m〉 takes the form

〈n|θ |m〉 =
{
π for m = n,

1
i(m−n) for m �= n.

(D13)

The power-law decay of 〈n|θ |m〉 is a kind of long-range
interaction, which effectively leads to the transition among
momentum sites. Even if the quantum state |ψ〉 is ex-
ponentially localized in the momentum space |ψ (p)|2 ∝
exp(−|p|/ξ ) [see Fig. 7(c)], the action of θ operator can
induce the power-law decay of |ψ̃ (p)|2.

We further show the details for the derivation of the expo-
nential growth of the mean energy in Eq. (D7) during the time
reversal. Our previous works have it that, for strong enough
nonlinear interaction, the mean energy of our system obeys
the iterative equation

〈p2(t ′ + 1)〉 ≈ 〈p2(t ′)〉[1 + g2(t ′)
]
, (D14)

where g(t ′) = g|ψ (t ′)|2. Note that, during the time rever-
sal, the norm of the quantum state is a constant, i.e.,
〈ψR(t ′)|ψR(t ′)〉 = 〈ψ̃ (t∗)|ψ̃ (t∗)〉 = Ñ (t∗). Thus, a rough esti-
mation of the nonlinear interaction strength is g(t ′) � gÑ (t∗)
with Ñ (t∗) = 〈ψ (t∗)|θ2|ψ (t∗)〉 [see Table I for Ñ (t∗)]. From
Eq. (D14), it is straightforward to get the law of the time
dependence of the mean energy

〈p2(t ′)〉 = 〈p2(t ′ = 0)〉 exp(νγ t ′) = 〈p̃2〉 exp(νγ t ′) (D15)

with

γ = ln

{
1 +

[
gÑ (t∗)

π h̄eff

]2
}

, (D16)

which is confirmed by our numerical results in Fig. 7(a).
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