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Mobility edge and multifractality in a periodically driven Aubry-André model
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We study the localization-delocalization transition of Floquet eigenstates in a driven fermionic chain with
an incommensurate Aubry-André potential and a hopping amplitude which is varied periodically in time. Our
analysis shows the presence of a mobility edge separating single-particle delocalized states from localized and
multifractal states in the Floquet spectrum. Such a mobility edge does not have any counterpart in the static
Aubry-André model and exists for a range of drive frequencies near the critical frequency at which the transition
occurs. The presence of the mobility edge is shown to leave a distinct imprint on fermion transport in the driven
chain; it also influences the Shannon entropy and the survival probability of the fermions at long times. In
addition, we find the presence of CAT (linear superposition of localized single particle states) states in the
Floquet spectrum with weights centered around a few nearby sites of the chain. This is shown to be tied to the
flattening of Floquet bands over a range of quasienergies. We support our numerical studies with a semianalytic
expression for the Floquet Hamiltonian (HF ) computed within a Floquet perturbation theory. The eigenspectra of
the perturbative HF so obtained exhibit qualitatively identical properties to the exact eigenstates of HF obtained
numerically. Our results thus constitute an analytic expression of a HF whose spectrum supports multifractal and
cat states. We suggest experiments which can test our theory.
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I. INTRODUCTION

A localization phenomenon in a one-dimensional (1D)
fermion chain with quasiperiodic potentials has been studied
extensively in the past [1–17]. These studies have received a
new impetus in recent times due to experimental realization of
such potentials in ultracold atom chains [18–21]. In contrast
to the more conventional models with uncorrelated disorder
which exhibits such localization for any disorder strength in
1D [22,23], fermion chains with nonrandom but quasiperi-
odic potentials harbor a localization-delocalization transition
[1–13]. The simplest of such models termed as Aubry-André
(AA) model [1–4] has a Hamiltonian given by H = Hk + Hp

where

Hk = −J
2

∑
j

c†
j (c j+1 + c j−1),

Hp =
∑

j

V0 cos(2πη j + φ)c†
j c j . (1)

Here, j is the site index of the chain, c j denotes fermionic
annihilation operator at site j, J is the hopping ampli-
tude, η is an irrational number usually chosen to be the
golden ratio (

√
5 − 1)/2, V0 is the amplitude of the potential,

and φ is an arbitrary global phase. The AA Hamiltonian
can be shown to be self-dual and hosts a localization-
delocalization transition at V0c = 2J [1–4]. For V0 > (<)V0c,
all the single-particle states in the spectrum for the model
are localized (delocalized). Such transitions also occur in
models with a more general class of such quasiperiodic poten-
tials [termed as generalized Aubry-André (GAA) potentials].

These GAA Hamiltonians may have several forms; for exam-
ple, they may be given by Eq. (1) with a different form of
the quasiperiodic potential (cos(2πη j + φ) → cos(2πη j +
φ)/[1 − α cos(2πη j + φ)] ) [5–13] or with longer-range hop-
ping J → Ji j = J /|i − j|a, where a is an exponent [14].
One of the key aspects of these GAA Hamiltonians which is
absent in the AA model is the presence of a mobility edge in
the spectrum. Moreover, the latter class of GAA models also
host band of multifractal eigenstates in the delocalized phase.
These states, unlike their delocalized counterpart, are noner-
godic, thus, their presence changes the ergodicity properties
of these models [14].

The study of nonequilibrium dynamics of closed quantum
systems has gained tremendous impetus in the last decade
[24–28]. More recently, it was realized that periodically (or
quasiperiodically) driven systems host a wide range of in-
teresting phenomena that have no analog in their undriven
counterparts [29]. These include topological transitions in
driven systems [30–39], dynamical transitions [40–43], dy-
namical freezing [44–51], realization of time crystals [52–54],
and weak ergodicity breaking behavior [55,56]. Moreover
such driven systems are known to lead to novel steady states
which have no analog in nondriven systems [57–60]. For
periodically driven systems, most of these phenomena can
be understood by analyzing their Floquet Hamiltonian HF

which is related to the evolution operator via U (T, 0) =
exp[−iHF T/h̄] [61–64], where T = 2π/ωD is the drive pe-
riod, ωD is the drive frequency, and h̄ is the Planck’s constant.

In this work, we study the properties of the Floquet eigen-
states of a driven fermionic chain in the presence of an
AA potential. The Hamiltonian of the chain that we study
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is given by Eq. (1) with J → J (t ), where J (t ) is a pe-
riodic function of time characterized by a drive frequency
ωD. In our study, we choose two distinct protocols for J (t ).
The first is the square-pulse protocol where J (t ) = J0(−J0)
for t � (>)T/2 while the second is continuous protocol
for which J (t ) = J0 cos ωDt . For both these protocols, we
choose J0 � V0. In the regime of large drive frequency, HF =
Hp, so that all the Floquet states are localized. In contrast, for
quasistatic drive ωD � 0, all the states are expected to be delo-
calized since J0 � V0. This feature ensures the presence of a
localization-delocalization transition in the Floquet spectrum;
the aim of this work is to understand the nature of the Floquet
eigenstates near the transition. We carry out this analysis nu-
merically using exact diagonalization of the fermionic chain
followed by numerical computation of U (T, 0); this numerical
study is complemented by a semianalytic, albeit perturbative,
computation of HF using a Floquet perturbation theory (FPT)
[65,67].

The central results that we obtain from this analysis are as
follows. First, we find that for a range of drive frequencies
around the localization-delocalization transition (occurring at
a critical value of the drive frequency ωc), the Floquet spec-
trum of the driven AA model supports a mobility edge. This
mobility edge, which has no analog in the static AA model,
occurs for ωD � ωc and separates the delocalized states from
either localized or multifractal band of states. We chart out the
drive frequency range for which these multifractal states are
present for both the square-pulse and continuous drive pro-
tocols. Second, we unravel the presence of single-particle cat
states in the Floquet spectrum for ωD � ωc. These states occur
at two specific quasienergies in the Floquet spectrum and
have wave functions which are localized around two or three
next-nearest-neighbor sites in the chain. We tie the existence
of these cat states to the presence of near-flat band dispersion
in the Floquet spectrum at these quasienergies and provide
a semianalytic understanding for them. Third, we study the
transport in such driven chain by tracking the steady-state
value of the fermion density as a function of drive frequency
starting from a domain-wall initial state. This initial state
constitutes a many-body state where all sites to the left (right)
of the chain center are occupied (empty). The density of the
fermions in the steady state stays close to its initial profile in
the localized phase; in contrast it evolves to a uniform density
profile for the delocalized phase. In-between, near the transi-
tion where the mobility edge exists, it shows an intermediate
behavior which arises from the presence of both delocalized
and localized (or multifractal) states in the Floquet spectrum.
Analogous features are found in the Shannon entropy and the
return probability of a single-particle fermion wave function
(initially localized at the center of the chain) measured in
the steady state. Fourth, we construct a semianalytic, albeit
perturbative, expression of the Floquet Hamiltonian HF using
a FPT. We show that this semianalytic Hamiltonian qualita-
tively captures the physics of the driven system and use it to
explain the presence of the mobility edge and the multifractal
states in the Floquet spectrum. Finally, we discuss possible
experiments which can test our theory.

The plan of the rest of the paper is as follows. In Sec. II, we
provide a detailed numerical study of the driven chain charting
out the phase diagram, demonstrating the existence of the

mobility edge, and determining the location of the multifractal
and cat states. This is followed by Sec. III where we construct
a semianalytic Floquet Hamiltonian using FPT. Finally, we
summarize our main results and suggest experiments which
can test our theory in Sec. IV. Some details of the calculation
of HF and a discussion of the approach of the driven chain to
the steady state are presented in the Appendices.

II. NUMERICAL RESULTS

In this section, we present exact numerical results on the
driven fermion chain for both square-pulse (Sec. II A) and
sinusoidal drive protocol (Sec. II B). Henceforth, we set the
global phase φ = 0 in Eq. (1) without loss of generality.

A. Square-pulse protocol

For the square-pulse protocol, we vary the hopping ampli-
tude of the AA model [Eq. (1)] as

J (t ) = −J0, t � T/2

= J0, t > T/2. (2)

This protocol is chosen to ensure that at the high-frequency
limit where HF � ∫ T

0 H (t )dt/T = Hp, the Floquet Hamilto-
nian represents a localized phase. To numerically find out
the Floquet spectrum at arbitrary frequency, we first find
the eigenspectrum of H± = H[±J0] [Eq. (1)] using exact
diagonalization (ED). We denote these eigenvalues and eigen-
vectors as ε±

m and |ψ±
m 〉, respectively. Next, we note that for

the protocol given by Eq. (2), the evolution operator at t = T
can be written as

U (T, 0) = e−iH+T/(2h̄)e−iH−T/(2h̄) (3)

=
∑
p+,q−

ei(ε+
p −ε−

q )T/(2h̄)cp+q−|ψ+
p 〉〈ψ−

q |,

where the coefficients cp+q− = 〈ψ+
p |ψ−

q 〉 denote overlap be-
tween the two eigenbases. Next, we numerically diagonalize
U (T, 0) and obtain its eigenvalues λm and |ψm〉. The cor-
responding eigenspectrum of HF is then obtained using the
relation U (T, 0) = exp[−iHF T/h̄] which identifies the eigen-
vectors of U (T, 0) and HF and yields

U (T, 0) =
∑

m

λm|ψm〉〈ψm|, λm = e−iεF
m T/h̄ (4)

where εF
m are the quasienergies which satisfy HF |ψm〉 =

εF
m |ψm〉. In this section, we shall use the properties of these

Floquet eigenvalues and eigenvectors to study phase diagram
of the driven chain along with multifractality of Floquet eigen-
states and transport of fermions.

1. Phase diagram and cat states

Having obtained the eigenspectrum of HF , we first ana-
lyze the localization properties of normalized single-particle
eigenstates |ψm〉 as a function of the drive frequency. To this
end, we compute the inverse participation ratio (IPR) of these
states given by

Im =
L∑

j=1

|ψm( j)|4, ψm( j) = 〈 j|ψm〉, (5)
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FIG. 1. Plot of Im as a function of the normalized eigenfunction
index m/L and ωD/(πJ0) showing the localized and delocalized na-
ture of the Floquet eigenstates |ψm〉. Here, L = 2048, V0/J0 = 0.05,
scaled all energies (frequencies) in units of J0 and h̄ is taken to be 1
here and for the rest of this section.

where j denotes the coordinate of the lattice sites of the chain
of length L. The distinction between localized and delocalized
states using IPR derives from the fact that higher moments
of localized wave function summed over all spatial points
assume a larger value compared to their counterparts for delo-
calized states. The IPR Im ∼ L−1(0) in d = 1 for a delocalized
(localized) state and thus acts as a measure of localization of
a quantum state.

This analysis leads to the phase diagram shown in Fig. 1,
where we present Im as a function of the drive frequency ωD

for V0/J0 = 0.05. Here, we have sorted Im by the index m
so that Fig. 1 also reflects the position of the state |m〉 in
the specrtum of Floquet eigenstates. As expected, the Floquet
eigenstates stay localized at large drive frequency; in contrast,
they are delocalized at low drive frequencies. In-between,
around ωD/J0 � 0.3π , we find a localization-delocalization
transition. Near the transition, for drive frequencies 0.15π �
ωD/J0 � 0.3π , we find the existence of a mobility edge sep-
arating a delocalized band hosting states with Im � 1/L �
10−3 from those with finite Im > 0.1. The nature of the states
separated by this mobility edge will be analyzed in detail in
the next subsection.

In addition to the mobility edge near the transition, we also
find two narrow bands of states which retain a smaller value of
Im � 0.5 deep inside the localized phase. In what follows, we
analyze the character of these states. First, a plot of |ψm( j)|2 at
a fixed frequency ωD, shown in the top panels of Fig. 2, reveals
that these states have their weights spread between few lattice
sites even deep inside the localized phase. This behavior is to
be contrasted with that of a canonical localized state where
|ψm( j)|2 is finite only on a single site. This feature makes
them perfect examples of cat states whose wave functions are
localized over more than one site. These states can also be
distinguished from either localized or delocalized states via
Im. This can be clearly seen in the bottom left panel of Fig. 2
where one sees a clear dip in Im for these states. The reason
for the existence of such states can be understood from the
structure of the Floquet eigenenergies εF

m shown in the bottom
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FIG. 2. Top panels: Spatial distribution of the cat states at m/L =
0.24 (left panel) and m/L = 0.76 (right panel) and ωD/(πJ0) = 1.
Bottom left panel: Plot of Im as a function of m/L showing the dip
in Im for the cat states. Bottom right panel: Plot of εF

m as a function
of m/L at the same frequency showing flattening of Floquet bands
before the gap near m/L � 0.24, 0.76. All other parameters are as in
Fig. 1. See text for details.

right panel of Fig. 2 for ωD/J0 = π deep inside the localized
regime. The Floquet energy dispersion becomes flat near the
gaps in the spectrum; we have checked that this characteristic
persists for all ω � ωc for large enough L. We find that the
cat states reside in these flat-band regimes of the Floquet
spectrum.

The existence of such cat states and its relation to the flat
regions in the Floquet band can be understood, in the high-
frequency regime, as follows. We first note that in this regime,
from the first-order Magnus expansion HF � Hp; thus, HF

is almost diagonal in the position basis; each of its eigen-
states is localized on one of the sites and these eigenstates
can be approximately labeled by site indices of the chain.
The off-diagonal terms are generated at higher order in the
Magnus expansion and are therefore typically small in this
region. Usually if the quasienergies are well separated from
each other, these off-diagonal terms do not change the nature
of the Floquet spectrum. However, we note that this assump-
tion breaks down around m/L � 0.24, 0.76; the quasienergy
spacing between the states localized in this regime approaches
zero as can be seen from flattening of the Floquet band.
Consequently, the presence of off-diagonal term in HF arising
from HK , however small, becomes important and leads to
hybridization of the states localized on nearby sites. This leads
to a pair of cat states in the spectrum. We note that these states
persist only for frequencies where the Floquet spectrum has a
flat region; for ωD � ωc, this feature is absent and one does
not find the cat states in this regime.

2. Multifractal states

The multifractal nature of a quantum state can not be as-
certained from the IPR alone. To this end, we now present
computation of a generalized IPR defined as [69–74]

I (q)
m =

L∑
j=1

|ψm( j)|2q, (6)
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FIG. 3. Left panel: Plot of ImL as a function of m/L (sorted in
increasing order of Im) for ωD/(πJ0) = 0.245 for several L showing
collapse of the delocalized states below the mobility edge around the
middle of the spectrum. Right panel: Similar plot for ImL0.58 showing
collapse of the multifractal states above the mobility edge. All other
parameters are same as in Fig. 1.

where Im ≡ I (2)
m . It is well known that I (q)

m ∼ L−τq , where the
fractal dimension of the state is given by Dq = τq/(q − 1).
We note that for delocalized states Dq = 1 for all q, while
for localized states Dq = τq = 0. Multifractal states typi-
cally yield 0 < Dq < 1. We note that multifractal states have
been studied in different contexts in literature. These include
ground-state eigenfunctions of XYZ Heisenberg spin chains
in various limits [75], Anderson metal-insulator transitions
[74], spin quantum Hall transitions [76], and Bose-Hubbard
models [77,78].

From the phase diagram shown in Fig. 1, it can be seen that
the Floquet eigenstates are mostly perfectly localized for large
ωD � ωc; in contrast, they are delocalized for ωD � 0. Thus,
it is evident that the presence of multifractal states, if any,
would be near the transition where the mobility edge separates
delocalized states from a bunch of states for which 0 < τ2 <

1. With this expectation, we first plot Im for all Floquet eigen-
states near the transition corresponding to ωD/J0 = 0.245π

in Fig. 3 after sorting the eigenstates in terms of increas-
ing IPR. The plot clearly shows the presence of delocalized
states and multifractal states separated by a mobility edge. We
note that sorting these states in terms of IPR is essential for
bringing out this separation. The left panel shows a plot of
ImL for all states; we find that for the states with m/L < 0.6,
this quantity collapses for the different system sizes indicating
that Im ∼ L−1 and, hence, the delocalized nature of these
states. In contrast, the right panel of the Fig. 3 indicates that
Im for all states with m/L > 0.6 scale as L−0.58 indicating
τ2 = D2 = 0.58 and a multifractal nature. To confirm this,
we plot I (q)

m for these states for q = 3 and 4 as shown in top
panels of Fig. 4. The value of τq is extracted from a plot of
ln I (q)

m vs ln L for several L as shown in the bottom left panel
of Fig. 4, where m/L ≈ 3

4 after sorting in increasing order of
Im for each L. A plot of τq obtained using this procedure is
shown as a function q for representative drive frequencies in
the right bottom panel of Fig. 4. We find that τq ∼ Dq(q − 1)
for all plots; Dq ∼ 0(1) for localized (delocalized) states cor-
responding to ωD/J0 = 0.5(0.025)π while 0 < Dq < 1 for
multifractal states at ωD/J0 = 0.245π .

Numerically we find the presence of multifractal states for
a wide range of frequencies below ωc, until ωD/J0 = 0.15π .
This is shown in the left panel of Fig. 5 where we plot τq for
all states in the Hilbert space after sorting in increasing order
of Im as a function of ωD. This clearly shows the presence of
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FIG. 4. Top panels: Plot of I (3)
m (left panel) and I (4)

m (right panel)
as a function of m/L and ωD/(πJ0) indicating multifractal states
at intermediate frequency. Bottom left panel: Plot for ln Im vs ln L
used for extracting τ2 for several representative frequencies for the
state corresponding to m/L = 0.75. The behavior of perfectly delo-
calized [blue dots at ωD/(πJ0) = 0.025] and localized [green dots,
ωD/(πJ0) = 0.5] can be distinguished from that of a multifractal
states [red dots ωD/(πJ0) = 0.245]. Bottom right panel: Plot of τq

as a function of q for a delocalized [blue dots at ωD/(πJ0) = 0.025],
localized [green dots at ωD/(πJ0) = 0.5], and multifractal [red dots
at ωD/(πJ0) = 0.245] states. All other parameters are same as in
Fig. 1.

multifractal states with quasienergies higher than the mobil-
ity edge for 0.15π � ωD/J0 � 0.25π . Our analysis indicates
that the multifractal dimension Dq is a nonmonotonic function
of ωD. This is shown in the right panel of Fig. 5 for a randomly
chosen state corresponding to m/L = 0.75. The dip in the plot
around ωD/J0 = 0.2π corresponds to the narrow frequency
region where we find localized, rather than multifractal, states
above the mobility edge.

Another test of multifractality of a given set of eigen-
states is the distribution of the energy difference be-
tween the odd-even (so-e

m = εF
2m+1 − εF

2m) and the even-odd
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FIG. 5. Left: Plot of τ2 as a function of m/L (after sorting in
increasing order of Im) and ωD/(πJ0) showing the mobility edge sep-
arating delocalized and multifractal states for 0.15 � ωD/(πJ0) �
0.25. The system sizes used for extracting τ2 are L = 500, . . . , 6000
in steps of 500. Right: Plot of Dq as a function of ωD/(πJ0) for
m/L = 0.75. All other parameters are same as in Fig. 1. See text for
details.
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FIG. 6. Top panels: Plot of ln smin
m (red dots) and ln smax

m (blue
dots) as a function of m/L for ωD/(πJ0) = 0.025 (top left panel),
0.175 (top right panel), 0.2 (bottom left panel), and 0.5 (bottom
right panel). We have set L = 4181 since L needs to be a Fibonacci
number. All other parameters are same as in Fig. 1.

(se-o
m = εF

2m − εF
2m−1) energies [14]. For delocalized eigen-

states these two gaps are different due to almost doubly
degenerate spectrum leading to so-e

m � 0 while for the local-
ized eigenstates, this distinction is not present, hence this gap
vanishes. For multifractal eigenstates, the behavior follows
neither of the two patterns and both so-e

m and se-o
m show a scat-

tered behavior. Thus, one can distinguish between different set
of states by studying these energy gaps.

In our case, due to the drive, we study the difference of
quasienergies. Since our spectrum has a mobility edge, the
quasienergy spectrum is folded [79]. There is no general
way to unfold the spectrum in such a case; consequently,
the identification of odd and even energies cannot be done
uniquely at low and intermediate drive frequencies. However,
the distribution of quasienergy differences would still show
the same features as discussed in the last paragraph. Hence, to
highlight the expected behavior, we define two new quantities
smin

m = Min[so-e
m , se-o

m ] and smax
m = Max[so-e

m , se-o
m ], which would

allow us to separate the two gaps properly in the delocalized
region of the spectrum.

A plot of ln smin
m and ln smax

m is shown in Fig. 6 as a function
of m/L for several representative frequencies. For ωD/J0 =
0.025π , where all states are delocalized, the plot shows clear
separation of these two quantities for all m/L; we find, in
accordance to standard expectation, that smin

m � 0 for all m.
In contrast, for ωD/J0 = 0.5π , where all states are localized
we find regular distribution of both energy gaps as shown in
the bottom right panel of Fig. 6. The small difference between
smin

m and smax
m in this regime is a finite-size effect and reduces

with increasing L. In contrast, in the intermediate frequency
regime at ωD/J0 = 0.175π (top right panel of Fig. 6), we find
clear signature of a mobility edge separating delocalized and
multifractal states; the latter class of states can be recognized
by strong scattering in distribution of both ln smin

m and ln smax
m

[14]. The presence of a mobility edge separating the localized
and delocalized at ωD/J0 = 0.2π is shown in the bottom left
panel of Fig. 6. We find that the presence of localized states
above the mobility edge can be clearly distinguished from that

of multifractal states because here there is an overlap of ln smin
m

and ln smax
m unlike the scattered distribution found in the latter

states.
Before ending this subsection, we would like to point out

that our analysis shows that the driven AA model, at interme-
diate frequencies, shows mobility edge and multifractal states
even when the parent Hamiltonian [Eq. (1)] does not host
either of these features. This distinguishes this phenomenon
from earlier studies of driven GAA model where the drive, in
the high-frequency regime, creates a multifractal state by su-
perposing localized and delocalized states across the mobility
edge of the static GAA Hamiltonian [80]. For completeness,
we note here that Ref. [81] showed that periodic modulations
of the phase of the hopping amplitude (e.g., by applying a
time-dependent gauge field) in the AA model also exhibited
a mobility edge and multifractal states. However, in our case,
the time-dependent hopping amplitudes are real valued. The
mechanism leading to the multifractal states for the driven AA
model shall be discussed in Sec. III.

3. Transport, return probability, and entropy

In this section, we address the effect of the presence of
mobility edge on fermion transport, survival probability of the
fermion wave function in the steady state, and their Shannon
entropy.

For studying transport property of the fermions we start
from a domain-wall initial state [82–87] defined, in the
fermion-number basis, by

|ψinit〉 = |n1 = 1, . . . , nL/2 = 1, nL/2+1 = 0, . . . , nL = 0〉,
(7)

where we have taken L to be an even integer (chain with even
number of sites) and nj = 〈n̂ j〉 denotes fermion occupation
number on the jth site and n̂ j = c†

j c j is the fermion-number
operator on that site. The wave function after n drive cycles is
then given by

|ψ ′〉 = U (nT, 0)|ψinit〉 =
∑

m

cinit
m e−inεF

m T |ψm〉, (8)

where |ψm〉 denotes Floquet eigenstates with L/2 fermions
and cinit

m = 〈ψm|ψinit〉. Using this state, one may compute the
density profile of fermions in the steady state. In what follows,
we study the quantities

N0 j (T ) = 〈2(n̂ j − 1/2)〉,

Nav(T ) = 1

L

∑
j=1...L

[N0 j (T )]2, (9)

where the average is taken with respect to the steady state
reached under a Floquet drive starting from |ψinit〉. In terms of
the Floquet eigenfunctions |ψm〉 and the overlap coefficients
cinit

m [Eq. (8)], these can be expressed as

N0 j (T ) =
∑

m

∣∣cinit
m

∣∣2〈ψm|2(n̂ j − 1/2)|ψm〉. (10)

We note that for the initial state |〈ψinit|2̂(n̂ j − 1/2)|ψinit〉|2 =
1 for j � L/2 and |〈ψinit|2̂(n̂ j − 1/2)|ψinit〉|2 = −1 for j >

L/2 while for free fermions, the ground state with J0 � V0,
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FIG. 7. Top left panel: Plot of N0 as a function of j/L and
ωD/(πJ0) showing fermion density profile at all sites of the chain
in the steady state as a function of ωD/(πJ0). Top right panel: Plot
of Nav(T ) as a function of ωD/(πJ0) in the steady state showing
0 � Nav(T ) � 1 for 0.15 � ωD/(πJ0) � 0.25. Bottom panels: Plot
of N0 j as a function of j/L for ωD/(πJ0) = 0.2 (left) where the
mobility edge separates the delocalized and localized states and
ωD/(πJ0) = 0.175 (right) where it separates the delocalized and
multifractal states. All other parameters are same as in Fig. 1. See
text for details.

〈2(n̂ j − 1/2)〉 = 0. Thus, Nav(T ) provides a measure of the
degree of delocalization of the driven chain. A similar reason-
ing shows that N0 j → 0 for all sites in the delocalized regime
and N0 j = 1[−1] for j < [>]L/2 in the localized regime; in
contrast, in the presence of a mobility edge, N0 j takes values
between 0 and 1 at different sites.

A plot of N0 j as a function of site index j/L and drive
frequency ωD for the steady state is shown in the left panel
of Fig. 7. The density profile is seen to stay close to that of the
initial state confirming localization at high drive frequency. In
contrast, at low drive frequencies, it approaches zero as ex-
pected for the delocalized regime with J0 � V0. In-between,
N0 j indicates intermediate behavior showing signature of par-
tial transport such that 0 < |N0 j | < 1. The distribution of N0 j

is much more spread out in the case where the mobility edge
separates delocalized and multifractal (as opposed to local-
ized) states as can be clearly seen from the bottom panels
of Fig. 7. Thus, we find that fermion-number distribution in
the steady state may provide a signature of presence of the
multifractal state in the driven AA model. A plot of Nav(T )
as a function of ωD, shown in the top right panel of Fig. 7,
also confirms this behavior. We note that an increased value
of Nav(T ) (between 0 for perfectly delocalized states and 1
perfectly localized states) for 0.15π < ωD/J0 < 0.25π is a
signature of presence of both localized (or multifractal) and
delocalized states in the Floquet spectrum and hence pro-
vides an indication of the presence of mobility edge in the
spectrum. Moreover, the value of Nav(T ) seems to be larger
in a narrow frequency range around ωD/J0 = 0.2π where
the mobility edge separates delocalized and localized states.
Thus, our results show that the local fermion density in the
steady state starting from a domain-wall initial condition in
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FIG. 8. Plot of the mean Shannon entropy S/ ln L as a function
of ωD/(πJ0). All other parameters are same as in Fig. 1. See text for
details.

these chains may serve as a detector of mobility edge in the
Floquet spectrum.

Next, we compute the Shannon entropy of the driven chain.
This is defined in terms of the overlap coefficients obtained by
computing overlap of the single-particle Floquet eigenstates
|ψm〉 with the eigenstates of Hp = HF (T = 0) | j〉: ψm( j) =
〈 j|ψm〉. The Floquet eigenstates can be written as |ψm〉 =∑

j ψm( j)| j〉. The Shannon entropy of the mth Floquet eigen-
state is then given by [88–90]

Sm = −
∑

j

|ψm( j)|2 ln |ψm( j)|2, S = 1

L

∑
m

Sm, (11)

where S is the mean entropy. We note that for high frequency
when HF � Hp, ψm( j) � δm j leading to Sm � 0 for ωD/J0 �
1 by construction. Since eigenfunctions of Hp are localized,
this means that S → 0 for localized states. In contrast for
ωD/J0 � 1 when all Floquet eigenstates are delocalized,
ψm( j) � 1/

√
L for all m leading to maximum entropy of

S � ln L. A plot of S/ ln L as a function of the drive fre-
quency, shown in Fig. 8, indicates this change. We find that
the localization-delocalization transition is marked by a sharp
rise in S around ωD = ωc = 0.3πJ0. The appearance of the
mobility edge just below the transition leads to S/ ln L � 1;
this value would have been closer to unity if all the Floquet
eigenstates would be delocalized for ωD � ωc. We note that
S shows a narrow dip around ωD/J0 = 0.2π . This can be
understood to be due to the fact that around this frequency
the mobility edge separates localized, rather than multifractal,
states from the delocalized ones; the presence of these local-
ized states in the spectrum leads to a lower value of S.

Finally, we compute the survival probability which is de-
fined as the probability of finding a fermion, initially localized
at a given site, within a neighborhood of length R around that
site after n drive cycles. This is given by

Fn(R) =
j0+R/2∑

j= j0−R/2

|ψn( j)|2,

|ψn〉 = U (nT, 0)|ψinit〉, ψn( j) = 〈 j|ψn〉, (12)

where j denotes lattice sites, we shall consider the initial wave
function to be localized at the center of the chain ( j0 = L/2)
for the rest of this section. The limiting values of Fn(R) can
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FIG. 9. Left panel: Plot of the survival probability Fs(L/2) as a
function of ωD/(πJ0). Right panel: Plot of Fs(R) as a function of R
for several representative values of ωD/(πJ0). All other parameters
are same as in Fig. 1. See text for details.

be easily deduced. For example, if the wave function remains
localized, Fn(R) � 1 for all R and n; in contrast, if the drive
leads to delocalization, Fn(R) should linearly increase with R
for large n. In the presence of a mobility edge separating de-
localized and multifractal states, Fn(R) should again increase
with R, but with a sublinear growth for large n. Moreover, the
steady-state value of Fn(R) can be obtained in terms of Floquet
eigenfunctions as

Fs(R) =
j0+R/2∑

j= j0−R/2

∑
m

|ψm( j)|2 (13)

and is therefore controlled by the coefficients ψm( j).
A plot of Fs(R = L/2) as a function of the drive frequency

ωD is shown in the left panel of Fig. 9. We find that Fs(L/2)
shows a sharp dip at the localization-delocalization transition.
Below the transition, the decay of Fs(L/2) is gradual and
nonmonotonic; this seems to be a direct consequence of the
presence of the mobility edge. The right panel of Fig. 9 shows
the R dependence of Fs(R) for several representative drive
frequencies. We find that at high drive frequencies ωD/J0 =
0.5π , the system remains localized, leading to Fs � 1 for
almost all R; in contrast, it linearly decreases to zero as R
is decreased in the low-frequency limit ωD/J0 = 0.025π .
In-between, in the regime where the mobility edge separates
delocalized states from multifractal or localized states in the
Floquet eigenspectrum, we find sublinear decay of Fs(R) as
a function of R; this decay is faster if states with quasiener-
gies above the mobility edge are localized (ωD/J0 = 0.2π ).
Thus, Fs(R) distinguishes between mobility edge separating
delocalized states with multifractal or localized states.

Finally, we study the V0 dependence of our results. In par-
ticular, we concentrate on obtaining an estimate of the range
of V0/J0 over which the multifractal states exist. To this end,
we plot the mean Shannon entropy of the Floquet eigenstates
as a function of V0 and ωD. This plot, shown in the left panel
of Fig. 10, indicates that a mobility edge separating delocal-
ized and multifractal states (indicated by blue in the plot) is
present over a range of frequencies whose widths tend to be
maximal around V0 � J0. For V0 � J0, the Floquet states are
either all localized (red region) or display a mobility edge
separating delocalized and localized states (green regions).
For V0, ωD � J0, the Floquet states are all delocalized (violet
regions). The right panel shows a plot of S/ ln L as a function
of V0 for ωD/J0 = 0.22π . The plot shows indication of a
mobility edge separating delocalized and localized states for
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FIG. 10. Left panel: Distribution of S/ ln L as a function of the
Aubry-André strength V0/J0 and the drive frequency ωD/(πJ0). The
regions with all localized states are indicated by red, delocalized
states by violet. The blue regions denote a mixture of delocalized
and multifractal states and green mixture of delocalized and local-
ized states. Right panel: Plot of S/ ln L as a function of V0/J0 for
ωD/(πJ0) = 0.22. All other parameters are same as in Fig. 1.

0.8 � V0/J0 � 0.2; in contrast, the mobility edge separates
delocalized and multifractal states for V0/J0 � 0.2. Thus, our
results show that the multifractal states are indeed present in
the Floquet spectrum for a wide region in the (V0/J0, ωD/J0)
plane.

B. Sinusoidal protocol

In this section, we study the properties of the AA model
in the presence of a continuous drive. Such a drive is imple-
mented by choosing

J (t ) = J0 cos ωDt . (14)

A numerical study of the AA model in the presence of such
a continuous drive involves decomposition of the evolution
operator into N Trotter steps such that H (t ) does not change
significantly in the interval t j and t j + T/N for any time in-
stant t j . One can define the eigenvalues and eigenfunctions
of the instantaneous Hamiltonian Hj = H[t j + T/(2N )] as ε

j
n

and |ψ j
n 〉; these are obtained numerically by exact diagonal-

ization of Hj on a lattice of size L. One can then construct the
evolution operator as

U (T, 0) =
N∏

j=1

∑
n

e−iε j
n T/N

∣∣ψ j
n

〉〈
ψ j

n

∣∣. (15)

We note that this procedure requires numerical diagonaliza-
tion of N instantaneous Hamiltonians; this makes numerical
study of continuous protocols significantly more costly com-
pared to their discrete counterparts. Having constructed
U (T, 0), we diagonalize it numerically to obtain the eigenval-
ues and eigenfunctions of the Floquet Hamiltonian as outlined
in Sec. II A.

The results obtained from this procedure are shown in
Fig. 11. We find that all the properties of the driven systems,
such as the presence of a mobility edge in the Floquet spec-
trum, the presence of multifractal Floquet eigenstates, their
signature in transport, and the presence of the cat states remain
qualitatively similar; however, the position of the localization-
delocalization transition shows a significant change. From the
plot of Im as a function of ωD and m in the top left panel of
Fig. 11, we find that the transition shifts to ωD/J0 � 0.25π ;
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FIG. 11. Top left panel: Plot of Im as a function of m/L and
ωD/(πJ0). Top right panel: Plot of τ2 as a function of m/L and
ωD/(πJ0). Middle left panel: Plot of Dq as a function of ωD/(πJ0)
for m/L = 0.75. Middle right panel: A plot of S as a function
of ωD/(πJ0) showing the signature of localization-delocalization
transition at ωD/(πJ0) � 0.25. Bottom left panel: Plot of N0 j as a
function of j/L and ωD/(πJ0) showing fermion density profile at
all sites of the chain in the steady state as a function of ωD/(πJ0).
Bottom right panel: Plot of Nav as a function of ωD/(πJ0). The
system sizes used to calculate τ2 and Dq are L = 200–1600 in steps of
200. The other plots are presented at L = 1024. Here V0/J0 = 0.025,
all other parameters are same as in Fig. 1. See text for details.

the mobility edge exists over narrower regions (one near
0.16π � ωD/J0 � 0.18π and another near 0.2π � ωD/J0 �
0.25π ) as can be seen from the plot of τ2 as a function of m
and ωD in the top right panel. A plot of Dq shown in the middle
left panel confirms the presence of multifractal states in these
regions. In the middle right panel, we show the plot of the
mean Shannon entropy S as a function of ωD. We find that
S also bears the signature of the localization-delocalization
transition. The bottom panels show steady-state distribution
of particles in this system starting from the domain-wall state.
The bottom left panel shows the distribution of N0 j over lattice
sites [scaled by system size (L)] as a function of the drive
frequency. The plot demonstrates the nonmonotonic behavior
of N0 j as a function of ωD just below the transition. Finally,
the bottom right panel shows a plot of Nav as a function of
ωD in the steady state; we find that it displays signature of the
localization-delocalization transition around ωD/J0 = 0.25π

and also shows peaks at intermediate frequency where the
mobility edge appears in the spectrum. The heights of these
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FIG. 12. Left: Plot of S/ ln L as a function of V0/J0 and
ωD/(πJ0) for the sinusoidal protocol with L = 610. Right: Plot of
S/ ln L as a function of V0/J0 for a cut taken at ωD/(πJ0) = 0.22.
All other parameters are same as in Fig. 1.

peaks are less than unity; this is a consequence of the fact that
the entire spectrum is not localized at these frequencies.

Finally, we plot the mean Shannon entropy S/ ln L as a
function of V0 and ωD (see Fig. 12). We find that for the
sinusoidal protocol the presence of multifractal states occurs
in a reduced area of parameter space compared to that for
square pulse protocol studied earlier. Moreover, we get local-
ized states at a lower frequency as compared to square pulse
protocol for the same value of V0. From both the graphs we
observe that as we increase V0 the frequency at which all
states become localized decreases. This is expected since the
off-diagonal hopping terms become small compared to the
diagonal AA potential term leading to dynamical localization.

Our results therefore indicate that the localization-
delocalization transition in these systems along with the
presence of the cat and multifractal state exists for both dis-
crete and continuous protocols. However, the range of ωD for
which the multifractal states exist is significantly reduced in
the latter case.

III. FLOQUET PERTURBATION THEORY

In this section, we aim to obtain an analytic, albeit per-
turbative, understanding of several features of the driven AA
model found via exact numerics using FPT which is known
to provide accurate results in the large drive amplitude limit
[55,56,65–68]. The square-pulse protocol will be treated in
Sec. III A while the continuous drive protocol will be ad-
dressed in Sec. III B.

A. FPT for square-pulse protocol

In this section, we shall focus on the square-pulse protocol
given by Eq. (2) in the large drive amplitude limit J0 � V0. In
this limit, we consider the contribution from Hp to the evolu-
tion operator U (T, 0) as perturbation and develop a systematic
expansion for U following Refs. [55,56,65–68]. To this end,
we first note that the first term in such an expansion is given
by U0 which can be written as U0 = ∏

k U0k where

U0k (t, 0) = eitJ0 cos kc†
k ck , t � T/2

= ei(T −t )J0 cos kc†
k ck , T/2 � t � T . (16)

Here and in the rest of this section, we have set h̄ to unity.
This leads to U0(T, 0) = I (where I denotes the identity
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FIG. 13. Top left panel: Plot of Im as a function of m/L and
ωD/(πJ0). Top right panel: Plot of eigenstates εF

m obtained by di-
agonalizing HF1 as a function of m/L for ωD/(πJ0) = 1. Bottom
left panel: Plot of τ2 as a function of m/L and ωD/(πJ0). Bottom
right panel: Plot of Dq as a function of ωD/(πJ0) for m/L = 0.75.
All other parameters are same as in Figs. 1 and 5. See text for details.

matrix) and HF0 = 0. The vanishing HF0 can be seen to be the
consequence of the symmetric nature of the drive protocol.

The first-order perturbative correction of U0, within FPT, is
given by

U1 = −i
∫ T

0
dt U †

0 (t, 0)HpU0(t, 0). (17)

To evaluate this, we use the number basis in momentum space
|k〉 ≡ |nk〉 since U0 is diagonal in this basis. The matrix ele-
ment of U1 in this basis is then given by

〈k1|U1|k2〉 = 4V (k1 − k2)

J0 f (k1, k2)
sin[J0 f (k1, k2)T/4]

× eiTJ0 f (k1,k2 )/4,

V (k) = V0

∑
j

exp[ik j] cos(2πη j) = V (−k),

f (k1, k2) = cos k2 − cos k1 = − f (k2, k1), (18)

where we have set φ = 0 without loss of generality. This indi-
cates that the Floquet Hamiltonian to first order in perturbation
theory is given by [65,67]

HF1 = i
∑
k1,k2

4V (k1 − k2)

J0T f (k1, k2)
sin[J0 f (k1, k2)T/4]

×eiTJ0 f (k1,k2 )/4c†
k1

ck2 . (19)

A similar procedure for U2(T, 0) yields the relation
U2(T, 0) = U1(T, 0)2/2 and thus yields HF2 = 0. The details

of this calculation is similar to that carried out in Ref. [55,56]
and is not presented here. In what follows, we shall analyze
HF1 [Eq. (19)] with the aim of obtaining qualitative under-
standing of the presence of multifractal states in the Floquet
spectrum.

A straightforward numerical diagonalization of HF1 yields
the Floquet eigenstates and eigenvalues. To study the nature
of these Floquet eigenstates as a function of drive frequency,
we plot the IPR Im and τ2 corresponding to these states in
Fig. 13. The top left panel of this plot shows the plot of Im as
a function of m/L and ωD. Im obtained from the eigenstates of
HF1 retains all qualitative features of the Floquet eigenstates
obtained from exact numerics. In particular, the plot shows
a localization-delocalization transition around ωD/J0 � 0.3π

which is close to the exact value ωc/J0 = 0.3π . Moreover,
the spectrum indicates the presence of the cat states in the
spectrum; we have checked that the origin of these states
can be tracked back to the flat regions in the Floquet spec-
trum as can be seen from the top right panel of Fig. 13.
The bottom left panel shows a plot of τ2 as a function of
m/L and ωD. We find that just below the transition, we find
a wide range of frequency 0.15π � ωD/J0 � 0.3π where
we find states with 0 < τ2 < 1 signifying the possibility of
existence of multifractal states. However, we note the mobil-
ity edge is now restricted to a very narrow region 0.26π �
ωD/J0 � 0.3π ; for 0.15π � ωD/J0 � 0.25π we do not find
delocalized states in the spectrum, which is contrast with that
obtained in exact numerics. The presence of multifractal states
in the spectrum of HF1 is further confirmed by plotting Dq for
q = 2, 3, 4 as a function of ωD for m/L = 0.75 in the bottom
right panel of Fig. 13; the plot shows clear signature of mul-
tifractality for 0.15π � ωD/J0 � 0.3π . Our results indicate
that HF1 constitutes a semianalytic expression of a Floquet
Hamiltonian which supports multifractal states in its eigen-
spectrum. However, we note here that several quantitative
features of the perturbative spectrum, such as the behavior of
Dq as a function of q, the nature of variation of τq as a function
of q, and the range in drive frequency where the multifractal
states exist, differ with those obtained from exact numerics.
This can possibly be attributed to limiting the analysis to first
order in the Floquet perturbation theory.

To understand the origin of these multifractal states, we
obtain a real-space representation of HF1. A Fourier transform
of Eq. (19) yields

HF1 =
∑
j, j′

Hj j′c
†
j c j′ ,

Hj j′ =
∫ π

−π

dk1dk2

2π
ei(k1 j−k2 j′ ) 4iV (k1 − k2)

J0T f (k1, k2)

× sin[J0 f (k1, k2)T/4]eiTJ0 f (k1,k2 )/4. (20)

A straightforward calculation outlined in the Appendix leads
to an analytic expression for Hj j′ given by

Hj j′ = i

2
√

2

∞∑
w=| j− j′ |/2

(TJ0)2w

(2w + 1)

√
π

κ ′( j, j′, 2w)

[
1

22w−1

(
2w

w

)
V [( j + j′)/2]
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+ (−1)w

22w−1

w−1∑
z=0

(−1)z

(
2w

z

)
{V [(w − z) + ( j + j′)/2] + V [( j + j′)/2 − (w − z)]}

]
, j − j′ = 2n

= − 1

2
√

2

∞∑
w=(| j− j′ |−1)/2

(TJ0)2w+1

(2w + 2)

√
π

κ ′( j, j′, 2w + 1)

(−1)w

4w

w∑
z=0

(−1)w
(

2w + 1
z

)

×{V [( j + j′)/2 − (2w + 1 − 2z)/2] − V [( j + j′)/2 + (2w + 1 − 2z)/2]}, j − j′ = 2n + 1 (21)

where n is an integer, used the notation (
a
b

) = a!
b!(a−b)! and the function κ ′ is given by

κ ′(m, n, p) = 1, p = 0

= |m − n|
p/2∏

s=1,s �=|m−n|/2

[(m − n)2 − (2s)2], p = 2k

=
(p−1)/2∏

s=0,s �=(|m−n|−1)/2

[(m − n)2 − (2s + 1)2], p = 2k + 1 (22)

for integer k. From the expression of Hj j′ we clearly find that the Floquet Hamiltonian corresponds to a hopping Hamiltonian
whose range increases with decreasing drive frequency. At very high frequencies, only the j = j′ (onsite) term survives and
we get back the Magnus result. As the frequency is decreased, the amplitude of terms for which j �= j′ (hopping terms with
range | j − j′|) increases. Thus, at intermediate frequencies, this corresponds to a Hamiltonian with onsite quasiperiodic term
(corresponding to j = j′) and intermediate range hopping terms (for both odd and even | j − j′|) whose amplitude depends on
the drive frequency. It is well known that similar Hamiltonians, for specific range of hopping amplitudes, supports multifractal
states in their spectrum [14]. We point out that here the drive frequency may be used to engineer these amplitudes. Our result
thus constitutes an example of analytic form of a Floquet Hamiltonian which supports multifractal states.

B. FPT for continuous protocol

For the continuous protocol, we choose J (t ) = J0 cos(ωDt ) so that for J0 � V0, U0 is given by

U0(t, 0) = exp

[
− iJ

ωD
sin(ωDt )

∑
k

c†
kck

]
, (23)

where we have set h̄ = 1. This leads to U0(T, 0) = I and HF0 = 0. We note that the eigenbasis for U0 is still given by |k〉 ≡ |nk〉
The perturbative contribution to the first-order term in the Floquet Hamiltonian is then by Eq. (17) with U0(t, 0) given by

Eq. (23). A straightforward calculation shows that the matrix elements of U1,

〈k1|U1(T, 0)|k2〉 = −iTV (k1 − k2)J0(x12), (24)

where J0 denotes Bessel functions and x12 = J0 f (k1, k2)/ωD. Using this, we find that the first-order Floquet Hamiltonian is
given by

HF1 =
∑
k1,k2

V (k1 − k2)J0(x12)c†
k1

ck2 . (25)

We note that for ωD → ∞, J0 → 1 and HF1 → Hp which reproduces the Magnus results. The second-order terms can be
computed in an analogous fashion. The computation procedure is same as charted out in Ref. [67] and yields

H2F =
∑

k1,k2,k3,k4

∞∑
n=0

V (k1 − k2)V (k3 − k4)

(2n + 1)ωD
[J0(x12)J2n+1(x34) − J0(x34)J2n+1(x12)]c†

k1
ck2 c†

k3
ck4 . (26)

We note that H2F → 0 as ωD → ∞ which is consistent with
the Magnus expansion results which yield a vanishing second-
order contribution to HF .

Next, we obtain the Floquet eigenstates and corresponding
quasienergies via numerical diagonalization of HF = H1F +
H2F . The results are shown in Fig. 14. Again, qualitative
features like the presence of cat states, mobility edge, and
multifractal states are all captured by the perturbative HF

obtained from FPT. The FPT results also show a significant

reduction in the range of drive frequencies ωD that give rise to
multifractal states consistent with the exact numerics for the
sinusoidal protocol.

Finally, we obtain a representation of HF in real space
following an analysis which is identical to that carried
out in the previous section for the square-pulse protocol.
For this purpose, we consider HF1 and obtain its analytic
form in real space. The details of the calculation are charted
out in the Appendix. This yields H1F = ∑

j j′ Hj j′c
†
j c j′ where
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Hj j′ = 0 for | j − j′| = 2m + 1. For | j − j′| = 2m, it is given by

Hj j′ =
∞∑

p=( j− j′ )/2,

(−1)p2(2p)![J0T/(2π )]2p√π

p!2p−14
(p + 1)κ ( j, j′, p)

[(
p

p/2

)
V [( j + j′)/2]

+(−1)p/2
p/2−1∑
z=0

(−1)z

(
p
z

)
{V [(p/2 − z) + ( j + j′)/2] + V [( j + j′)/2 − (p/2 − z)]}

]
,

κ (m, n, p) = 1, for p = 0, κ (m, n, p) = (m − n)
p∏

s=1,s �=(m−n)/2

[(m − n)2 − (2s)2], otherwise. (27)

We note that similar to the square-pulse protocol, we get a
real-space Floquet Hamiltonian whose range increases with
decreasing frequency. The high-frequency limit leads to a
completely local Hamiltonian consistent with the Magnus
result. However, for the continuous drive protocol discussed
in this section, H1F only induces next-nearest-neighbor cou-
plings. The coupling between odd and higher neighboring
sites which differ by an odd number of lattice sites is induced
by H2F . We do not compute these terms here but merely
observe that their contribution would be smaller by at least a
factor of V0/ωD. The difference in coupling strength between
sites differing by odd and even number of lattice sites also
explains the reason for the structure of the cat states. We find
that they are distributed between a site and its next-nearest
neighbor (rather than the expected nearest one). This is clearly
a consequence of having larger Hj j′ between the next-nearest-
neighbor sites compared to the nearest ones.

IV. DISCUSSION

In this work, we have charted out the phase diagram of
the driven AA model using both square-pulse and sinusoidal
drive protocols. Our numerical studies, carried out using exact
diagonalization of the fermionic system, reveal the presence
of localization-delocalization transition in this system occur-
ring at a critical drive frequency ωc. Moreover, below ωc,
for a range of drive frequencies, we find the existence of
a mobility edge which separates delocalized Floquet eigen-
states with quasienergies below the edge from localized or
multifractal eigenstates above it. Our analysis shows the pres-
ence of multifractal states in the Floquet eigenspectrum over
a wide range of drive frequencies. We show that the presence

FIG. 14. Left panel: Plot of Im as a function of m/L and
ωD/(πJ0). Right panel: Plot of τ2 as a function of m/L and
ωD/(πJ0). All other parameters are same as in Figs. 1 and 5. See
text for details.

of the mobility edge leaves its imprint on the transport of the
system and on survival probability and Shannon entropy of
the driven fermions. Moreover, the fermion transport starting
from a domain-wall state where all the fermions are local-
ized to the left-half of the chain can discern the presence of
multifractal states in the Floquet eigenspectrum. We note that
the nondriven AA model does not support mobility edge or
multifractal states in its spectrum; thus, our results constitute
dynamical signatures which have no analog in the nondriven
model.

The numerical results that we find can be semianalytically
understood within FPT. Our results regarding this constitute
derivation of semianalytic, albeit perturbative, Floquet Hamil-
tonians for both square-pulse and sinusoidal drive protocols.
We show that these perturbative, semianalytic Hamiltonians
reproduce the localization-delocalization transition obtained
numerically; moreover, they support cat and multifractal
states in their eigenspectrum. The reason for the presence of
such states can be understood by obtaining real-space repre-
sentation of these Hamiltonians. In real space, these Floquet
Hamiltonians contain onsite quasiperiodic terms along with
hopping terms which connect between fermions at different
sites. We find that the range of this latter class of terms in-
creases with decreasing drive frequency. Consequently, these
Floquet Hamiltonians belong to a class of Hamiltonians
with Aubry-André interactions and quasi-long-range hopping
terms. It was shown in Ref. [14] that these Hamiltonians can
support multifractal states.

Our results indicate that the signature of the localization-
delocalization transition can be obtained by studying
fermionic transport. This allows us to suggest a realistic exper-
iment which can test our theory. We suggest realization of the
Aubry-André potential in an optical lattice as done recently
in Ref. [20]. The driving of the hopping term may be induced
by tuning the laser strength creating the optical lattice using
either of the periodic protocols discussed. In this context, we
mention that in current experiments, this is typically done by
modulating positions of reflecting mirrors so as to provide
a time-periodic phase shift between superposed laser beams
[91,92]. Such protocols generate continuous drives. In addi-
tion, one can start from a configuration where the fermions
in the lattice are confined to the left-half of the chain. Our
prediction is that there will be a critical drive frequency ωc

below which the system will eventually delocalize. This will
be reflected in a sharp drop in the value of N2

av as sketched in
Fig. 7. Moreover, for a range of frequencies below ωc, N2

av
will remain between its values for localized (N2

av = 1) and
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delocalized (N2
av = 0) states, signifying the presence of the

mobility edge. The detection of atom density on individual
sites and hence N2

av can be done using well-known quantum
gas microscopy techniques [93].

In conclusion, we have studied the driven Aubry-
André model and showed the presence of a drive-induced
localization-delocalization transition. Our results indicate the
presence of mobility edge and multifractal states in the Flo-
quet eigenstates; their existence can be seen from analytic,
perturbative form of HF which we derive using a Floquet
perturbation theory which represents a resummation of an
infinite class of terms in the Magnus expansion. We show that
the presence of this mobility edge is reflected in fermionic
transport and suggest experiments which can test our theory.
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APPENDIX A: REAL-SPACE REPRESENTATION OF HF

1. Square pulse

We start from Eq. (20) from the main text:

HF1 =
∑
j, j′

Hj j′c
†
j c j′ ,

Hj j′ =
∫ π

−π

dk1dk2

π
ei(k1 j−k2 j′ ) 4iV (k1 − k2)

J0T f (k1, k2)

× sin[J0 f (k1, k2)T/4]eiTJ0 f (k1,k2 )/4. (A1)

We shift to the center-of-momentum coordinates q = k1−k2
2

and r = k1+k2
2 where dq dr = 1

2 dk1dk2 and write

Hj j′ = 1

2π

∫ π

−π

∫ π

−π

dq dr ei[q( j+ j′ )+r( j− j′ )] 4iV (2q)

J0T g(q, r)

× sin[J0g(q, r)T/4]eiTJ0g(q,r)/4. (A2)

Now expanding the oscillatory part, we write

sin[J0g(q, r)T/4]eiTJ0g(q,r)/4 = T

4

∞∑
p=0

[iTJ0g(q, r)/2]p

(p + 1)!
.

(A3)

Hence, Eq. (A2) can be written as

Hj j′ = 1

2π

∞∑
p=0

(iTJ0/2)p

(p + 1)!

∫ π

−π

∫ π

−π

dq dr

×ei[q( j+ j′ )+r( j− j′ )]iV (2q)(2 sin q sin r)p. (A4)
The next task is to perform the integrals. Performing the
integral over r first, we get

Hj j′ = 1

2π

∞∑
p=0

(iTJ0/2)p

(p + 1)!

∫ π

−π

dq ei[q( j+ j′ )]

×iV (2q)(sin q)p 2p+1 p!(−i)p sin[( j − j′)π ]

κ ( j, j′, p)
,

(A5)

where

κ ( j, j′, p) = ( j − j′)
p/2∏
s=1

[( j − j′)2 − (2s)2], p = 2k

=
(p−1)/2∏

s=0

[( j − j′)2 − (2s + 1)2], p = 2k + 1

(A6)

for any integer k. It is to be noted that only when s = | j −
j′|/2 for p even and s = (| j − j′| − 1)/2 for p odd, the inte-
grals give a finite contribution. Hence, the summation over p
must start from p = | j − j′|. This gives

Hj j′ = i

2π

∞∑
p=| j− j′ |

(iTJ0/2)p

(p + 1)!

∫ π

−π

dq ei[q( j+ j′ )]

×V (2q)(sin q)p 2p+1 p!(−i)pπ

κ ′( j, j′, p)
, (A7)

where

κ ′( j, j′, p) = 1, p = 0 (A8)

= | j − j′|
p/2∏

s=1,s �=| j− j′ |/2

[( j − j′)2 − (2s)2], p = 2k

=
(p−1)/2∏

s=0,s �=(| j− j′ |−1)/2

[( j − j′)2 − (2s + 1)2], p = 2k + 1.

Next, we perform the integral over q using standard trigono-
metric identities. First, one should separate out the even and
odd parts of the integral, and note that when j − j′ is even, p
necessarily is always even as the rest of the terms integrate to 0
and similarly for j − j′ odd. Hence, for j − j′ even, assuming
p = 2w, we get

Hj j′= i

2π

∞∑
w=| j− j′ |/2

(TJ0)2w

(2w + 1)

π

κ ′( j, j′, 2w)

∫ π

−π

dq cos[q( j + j′)]V (2q)

[
1

22w

(
2w

w

)
+ (−1)w

22w−1

w−1∑
z=0

(−1)z

(
2w

z

)
cos[2(w − z)q]

]
.

(A9)
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For odd j − j′, we consider p = 2w + 1 and obtain

Hj j′ = − 1

2π

∞∑
w=(| j− j′|−1)/2

(TJ0)2w+1

(2w + 2)

π

κ ′( j, j′, 2w + 1)

∫ π

−π

dq sin[q( j + j′)]V (2q)

× (−1)w

4w

w∑
z=0

(−1)w
(

2w + 1
z

)
sin[(2w + 1 − 2z)q]. (A10)

Using the inverse Fourier transform 1√
2π

∫ π

−π
V (2q)ei2qxdq =

V (x) and integrating over q, we get Eq. (21) of the main text.

2. Sinusoidal pulse

For this drive protocol we start from

Hj j′ = 1

2π

∫ π

−π

∫ π

−π

dk1dk2ei[k1 j−k2 j′]V (k1 − k2)

×J0[J0 f (k1, k2)/ωD]. (A11)

As in the case of square protocol, we switch to relative and
center-of-mass momenta and obtain

Hj j′ = 1

4π

∫ π

−π

∫ π

−π

dq dr ei[q( j+ j′ )+r( j− j′ )]V (2q)

×J0[J0g(q, r)/ωD], (A12)

where g(q, r) = −2(sin q sin r). Next, we use the expansion
of J0(x),

J0(x) =
∞∑

p=0

(−1)p

p!
(p + 1)
(x/2)2p. (A13)

Substituting Eq. (A13) in (A12) we find

Hj j′ =
∞∑

p=0

1

4π

∫ π

−π

∫ π

−π

dq dr ei[q( j+ j′ )+r( j− j′ )]V (2q)

× (−1)p

p!
(p + 1)
(J0 sin q sin r/ωD)2p. (A14)

Integrating over r we get

Hmn = −
∞∑

p=0

1

4π

∫ π

−π

dq ei[q( j+ j′ )]V (2q)(J0 sin q/ωD)2p

× (−1)p2(2p)! sin[( j − j′)π ]

p!
(p + 1)κ ( j, j′, p)
, (A15)

where

κ ( j, j′, p) = | j − j′|
p∏

s=1

[( j − j′)2 − (2s)2].

Noting that the summation can only start from p = (m − n)/2
we write

Hj j′ = −
∞∑

p=| j− j′ |/2,| j− j′ |even

1

4π

∫ π

−π

dq ei[q( j+ j′ )]V (2q)

×[J0T sin q/(2π )]2p (−1)p2(2p)!π

p!
(p + 1)κ ′( j, j′, p)
,

(A16)

where

κ ′( j, j′, p) = 1, p = 0

= | j − j′|
p∏

s=1,s �=( j− j′ )/2

[( j − j′)2 − (2s)2]

otherwise (A17)

and we have replaced ωD by 2π/T . One can immediately
see if | j − j′| is odd, then no term contributes and Hj j′ = 0.
Then, one can integrate over q as well to get Eq. (27) of the
main text. The expressions of the second-order term in HF
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FIG. 15. Top left panel: Plot of N0 j as a function of j/L for
ωD/(πJ0) = 0.025 where the full spectrum is delocalized. Top right
panel: Plot of N0 j as a function of j/L for ωD/(πJ0) = 0.175 at
which there is a mobility edge between delocalized and multifrac-
tal states. Middle left panel: Plot of N0 j as a function of j/L for
ωD/(πJ0) = 0.20 at which there is a mobility edge between de-
localized and localized states. Middle right panel: Plot of N0 j as
a function of j/L for ωD/(πJ0) = 0.24 at which there is a mo-
bility edge between delocalized and multifractal states. This drive
frequency is near the critical frequency ωc. Bottom left panel: Plot of
N0 j as a function of j/L for ωD/(πJ0) = 0.5 where the full spectrum
is localized. Bottom right panel: Plot of the number of particles
present in the right half (beginning from domain-wall initial state)
as a function of number of drive cycles n0 for various representative
drive frequencies. All other parameters are same as in Fig. 1. See text
for details.
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FIG. 16. Left panel: Plot of half-chain von Neumann entangle-
ment entropy (SvN ) in the steady state starting from a domain-wall
initial state scaled by the system length L as a function of drive
frequency ωD/(πJ0) showing the signature of delocalized, localized,
and mixture of delocalized and multifractal and delocalized and
localized states. Right panel: Plot of half-chain entanglement as a
function of number of drive cycles n0 for various representative drive
frequencies showing how it reaches the steady-state value. All other
parameters are same as in Fig. 1.

are quite complicated and we have not analyzed their form in
position space. However, we note that these terms are of the
form ∼∑∞

n=0[J2n+1(x)J0(y) − J0(x)J2n+1(y)]/(2n + 1). Thus,
from the expansion of Jn(x), it can be seen that these terms
would actually give rise to odd powers of sin q. This means
that here the terms of Hj j′ where j − j′ odd will be nonzero.
The consequence of this is discussed in the main text.

APPENDIX B: APPROACH TO STEADY STATE

In this Appendix we discuss, in brief, the approach of our
model subjected to square-pulse drive, to the steady states
shown in the main text, starting from the domain-wall initial
state given by

|ψinit〉 = |n1 = 1, . . . , nL/2 = 1, nL/2+1 = 0, . . . , nL = 0〉.
To this effect we study the distribution of fermion-number
density N0 j = 〈ψ (n0T )|n̂ j − 1/2|ψ (n0T )〉, where ψ (n0T ) =
U (n0T, 0)|ψinit〉 and n̂ j = c†

j c j at different number of cycles
n0. Figure 15 shows the distributions studied for different
drive frequencies. For low drive frequencies [ωD/(πJ0) =
0.025] where the entire spectrum was shown to be delocal-
ized, it is seen that this quantity attains its steady-state value
for a smaller number of cycles compared to other cases. As
the drive frequency is increased and we reach the region
with mobility edge, transport becomes slower as can be seen

from the top right and middle left panels which show results
for ωD/(πJ0) = 0.175 and ωD/(πJ0) = 0.20, respectively.
However, it is seen that while 103 drive cycles is not enough to
reach close to the steady states, 104 cycles is enough even for
the drive frequency [ωD/(πJ0) = 0.20] which supports a mo-
bility edge between localized and delocalized states. However,
for a drive frequency higher than that which also supports
multifractal and delocalized states [ωD/(πJ0) = 0.24], n0 =
104 gives the impression the system is localized from the dis-
tribution. Only at extremely large number of cycles n0 = 105

does the system give the expected behavior of the steady state.
This is possibly due to the proximity of this drive frequency
to the critical frequency ωD/(πJ0) = 0.30. The bottom right
panel of Fig. 15 shows the evolution of Nh = ∑L

j=L/2+1 n̂ j

with time, i.e., the transport of particles from the left half
of the system to the right half. It also shows that only after
a sufficiently long timescale does Nh for ωD/(πJ0) = 0.24
overtake ωD/(πJ0) = 0.20 which is expected in the steady
state as the latter frequency supports delocalized and localized
eigenfunctions and, hence, particle transport should show a
suppression compared to the former drive frequency which
supports delocalized and multifractal eigenfunctions.

In Fig. 16 we study whether similar features show up in
the half-chain entanglement entropy of the system starting
from the domain-wall state. To calculate the stroboscopic time
evolution of von Neumann entropy, we first calculate the time
evolution of the two-point correlation function [〈c†

i c j〉(t )] in
the Heisenberg picture, and then use the technique outlined
in Ref. [94] to extract the von Neumann entropy between the
left half of the system (between sites 1 and L/2) and the right
half (L/2 + 1 and L). To calculate the steady-state entangle-
ment entropy, we utilize the steady-state correlators calculated
using the procedure outlined in the main text and then use
the method of Ref. [94]. The steady-state entanglement shows
the expected features of a dip when the system’s eigenstates
change from being fully delocalized to delocalized and mul-
tifractal and, then, to delocalized and localized as the drive
frequency is increased from ωD ≈ 0. Finally, the steady-state
entanglement becomes almost zero when the system becomes
fully localized beyond ωc. However, as with the number den-
sity in the right half of the system, the entanglement also
requires larger times to approach its steady-state value as we
tune the drive frequency to be closer to the critical frequency,
showing a behavior similar to the transport of particles to the
right half of the system.
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