
PHYSICAL REVIEW B 103, 184308 (2021)

Boundary time crystals in collective d-level systems
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Boundary time crystals (BTC’s) are nonequilibrium phases of matter occurring in quantum systems in contact
to an environment, for which a macroscopic fraction of the many-body system breaks time translation symmetry.
We study BTC’s in collective d-level systems, focusing on the cases with d = 2, 3, and 4. We find that BTC’s
appear in different forms for the different cases. We first consider the model with collective d = 2-level systems
[Phys. Rev. Lett. 121, 035301 (2018)], whose dynamics is described by a Gorini-Kossakowski-Sudarshan-
Lindblad master equation, and perform a throughout analysis of its phase diagram and Jacobian stability for
different interacting terms in the coherent Hamiltonian. In particular, using perturbation theory for general
(non-Hermitian) matrices, we obtain analytically how a specific Z2 symmetry-breaking Hamiltonian term
destroys the BTC phase in the model. Based on these results we define a d = 4 model composed of a pair
of collective two-level systems interacting with each other. We show that this model support richer dynamical
phases, ranging from limit cycles, period-doubling bifurcations, and a route to chaotic dynamics. The BTC phase
is more robust in this case, not annihilated by the former symmetry-breaking Hamiltonian terms. The model with
collective d = 3-level systems is defined similarly, as competing pairs of levels, but sharing a common collective
level. The dynamics can deviate significantly from the previous cases, supporting phases with the coexistence of
multiple limit cycles, closed orbits and a full degeneracy of zero Lyapunov exponents.
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I. INTRODUCTION

The classification of different phases of matter according to
their spontaneous symmetry breaking (SSB) is a cornerstone
of physics and one of Landau’s legacy [1,2]. It is based on the
idea that the system, in the thermodynamic limit, can break
some of its symmetries due to thermal or quantum fluctuations
giving rise to different phases of matter, as, e.g., crystals in
case a spatial translational symmetry is broken, superfluids
for gauge symmetries, ferromagnets in the case of a rotational
spin invariance, among many other different phases. Recently
the existence of a different case of SSB phase (which has in-
triguingly not been considered until recent years) breaking the
time translational symmetry has been under large discussion.
These phases first addressed by Wilczek in 2012 [3] (and later
termed as time crystals) generated an intense debate [4–9] and
were soon ruled out in thermal equilibrium system by a no-go
theorem [10] (for short-range interacting system) indicating
in this way that the proper ground for its existence are in out-
of-equilibrium conditions. In fact, theoretical studies along
this direction have been successful in predicting the existence
of time crystals in disparate different systems, ranging from
closed to open systems breaking a continuous or discrete time
translational symmetry [11–35].

In particular, discrete time crystal were observed experi-
mentally in 2017 in an interacting spin chain of trapped atomic
ions [36] and on dipolar spin impurities in diamond [37], soon
after their theoretical preditions. Later on other systems were
also experimentally observed supporting such peculiar phases
of matter [38–41]. See Refs.[42,43] for interesting reviews on
the topics.

A particularly interesting form of time crystal phases can
occur in quantum systems in contact to an environment. In
this case the system, also termed as boundary system [11],
can break the time translation symmetry while the environ-
ment remaining time-translationally invariant. The symmetry
breaking appears only at the (macroscopic) boundary sys-
tem, thus forming a so-called boundary-time crystal (BTC)
(similar to surface critical phenomena). In such phases the
system shows, only in the thermodynamic limit, a persistent
dynamics of a macroscopic observable breaking the time
translation symmetry, see Figs. 1(d) and 1(e) for illustrative
cases.

A specific case of a BTC was shown in Ref. [11] in a
model usually used to discuss cooperative emission of ra-
diation [44–47]. The model consists of N driven two-level
spins collectively coupled to a boson mode field. The dy-
namics of the collective spins (boundary system) under a
Markovian approximation is described by a time-independent
GKS-Lindblad master equation with competing coherent
Hamiltonian driving and a collective decay of spins [48,49].
For sufficiently high coherent driving strength, the magneti-
zation shows an oscillatory dynamics with lifetime diverging
with the number of spins in the system, i.e., while for finite
system sizes the collective spin magnetization in the long time
limit tends to an equilibrium constant value, in the thermody-
namic limit (and only in that limit) the magnetization shows
persistent and indefinitely in time oscilations. The model thus
breaks a continuous time translational symmetry. Moreover,
the dynamics of the collective observables in the BTC phase
was shown to possess intriguing properties, with a constrained
dynamics appearing in the form of closed period orbits with
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FIG. 1. We consider collective d-level systems described by a GKS-Lindblad master equation - Eq. (1), whose dynamics is driven by
coherent Hamiltonian terms (ω) and collective dissipation (κ). Specifically we study the cases of (a) a collective two-level system [Eqs. (2)
and (3)], (b) a pair of interacting collective two-level systems [Eqs. (4)and (5)], and (c) a collective three-level system [Eqs. (6) and (7)]. In
(d) and (e), we show two illustrative cases of BTC’s dynamics in the three-level collective system, featuring periodic orbits (d) or limit cycles
(e). While for finite system sizes the collective occupation of level n3(t ) has a finite decay rate (exponential decay rate for the amplitute of the
oscillations) and tends to equilibrate to a constant value in the long time limit, in the thermodynamic limit the decay rate vanishes (thus the
lifetime of oscillations diverge) and the system shows persistent dynamics. In (f), we show the finite-size scaling of the decay rates, featuring
an 1/N scaling in both cases, thus vanishing in the thermodynamic limit and only in that limit. We used system parameters δ = 0.5 in (d),
δ = 0.75 in (e) and in both cases ω/κ = 2, α = 1.

reversibility symmetry and peculiar quasiconserved quanti-
ties.

An interesting open issue remains in this way a more
comprehensive understanding of such peculiar dynamics for
the collective two-level BTC, with respect to the role of its
underlying dynamical symmetries, its stability due to different
perturbations and the generality of temporal dynamics in such
collective models. We address these issues in this work, in
particular we show that in such collective two-level systems
BTC’s always appear as constrained periodic closed orbits
for general interactions in the system. Moreover, we show
analytically how the Z2 symmetry in the coherent Hamilto-
nian term of the Lindbladian dynamics is crucial in order
to stabilize the closed period orbits. We further extend our
studies to more general collective models, those composed of
collective d-level systems, focusing in the cases with d = 3
and 4. Each of the considered models have their own mer-
its, as we discuss in more detail below. While the collective
three-level system has an specific nontrivial collective algebra
which cannot be reduced to those of usual collective angu-
lar momentum, the model with collective four-level systems
describes the effects of interactions between BTC’s, subject
also very recently investigated experimentally [50]. We show
that on these more general models, BTC’s do exist and appear
with different properties than the simpler collective two-level
case. In particular, in these cases BTC’s can feature not only
constrained closed periodic orbits, but also richer dynamics
with limit cycles, period doublings and a route to chaos. The
study of these different forms of BTC’s in quantum systems,
with its different facets and peculiar properties could help us
to improve our understanding for such nonequilibrium phases

of matter, sheading some light on their basic mechanisms (and
limitations) and the dependence of their collective algebras
and underlying symmetries [29]. We hopefully expect the re-
sults of this work be useful on future developments in the field,
unraveling new interesting connections to apparently different
concepts [27,51], the nature of elementary excitations [52]
in time-crystal phases, or opening paths towards novel ap-
plications of TC’s in different fields, as recently proposed
for the simulation of quantum complex networks [51] or in
protocols for non-Abelian braidings of Majorana edge modes
in quantum computation [53].

In this work, we thus consider different models supporting
BTC’s in collective d-level systems. We first discuss in detail
the collective two-level system and further use it as a basis
for the definition of the cases, featuring even richer dynamical
phases. We discuss the steady state properties of the collec-
tive two-level system with a combination of analytical and
numerical methods, characterizing their stability from a Jaco-
bian perspective. This allows us to make a correspondence of
BTC’s to the existence of centers (also called neutrally stable
fixed points) in the model. From this perspective we trace the
phase diagram of the model considering different interacting
terms in the Hamiltonian. We also highlight the role of the
certain symmetries in the model.

In a second part of the manuscript, we use these results as
a basis for the definition of an extended model composed of
a pair of collective interacting two-level systems, Fig. 1(b).
We show that this model supports richer dynamical phases.
In particular, we show that for certain interactions breaking
the coherent Hamiltonian symmetry (as well as apparently
any quasiconserved quantity) the model shows limit cycles
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regimes, thus supporting a more robust BTC phase. Further
varying the interaction the system tends to a chaotic dynamics
from subsequent period-doubling bifurcations. We also ana-
lyze the period-doubling bifurcation ratio of the model and its
Lyapunov spectrum.

In a third part of the manuscript, we consider a model with
microscopic constituents composed of three-level subsystems
[Fig. 1(c)] rather than the two level or pairs of them. The
model deviates significantly from the simpler two-level case.
The collective operators now belongs to an SU(3) algebra,
which cannot be reduced to SU(2) or products of it, which
has basic implications to the global and dynamical symmetries
of the system. We study in particular a Lindbladian with the
competition of pairs of two levels, similar to the previous
case, however considering now the case in which they share
a common level. The phase diagram of the model shows
static steady states characterized by a “dark level,” limit-cycle
dynamics and a peculiar dynamical phase at a critical line
supporting the coexistence of multiple limit cycles and closed
orbits.

This manuscript is organized as follows. In Sec. II, we
define the three different models studied in this work. We
start our analysis with the simplest system, i.e., with d = 2.
In Sec. III, we derive its dynamical equations of motion
from a semiclassical approach and discuss its symmetries
and quasiconserved quantities. We also obtain analytically the
different steady states of the model and analyze in Sec. IV
their linear stability from the Jacobian matrix. In Sec. V, based
on our previous results, we study the effects of a specific
symmetry-breaking Hamiltonian perturbation in the model
and the stability of the BTC’s. In Sec. VI, we start the study of
the pair of collective systems, i.e., d = 4. We first obtain the
dynamical equations of motion and discuss their symmetries.
In Sec. VII, we explore the effects of interactions between
the pair of collective systems, showing the appearance of
limit-cycle regimes, period-doubling bifurcations and a route
to chaos. In Sec. IX, we move our analysis to the model with
d = 3. We first introduce the basics of SU(3) algebra and Gell-
Mann basis, derive the semiclassical dynamical equations and
discuss its symmetries. In Sec. IX, we analyze the phase
diagram of model. We present our conclusions in Sec. X.

II. THE MODELS

In this section, we define the models studied in the
manuscript and its general properties. Inspired on the simplest
two-level model, we consider extended systems composed of
d-level subsystems collectively coupled to a common Marko-
vian environment, leading to a time-independent Lindbladian
master equation evolution [54]:

d

dt
ρ̂ = L̂[ρ̂] = i[ρ̂, Ĥ ] +

∑
i

(
L̂iρ̂L̂†

i + 1

2
{L̂†

i L̂i, ρ̂}
)

, (1)

with L̂ the Lindbladian superoperator, Ĥ the coherent driving
Hamiltonian of the system and L̂i the Lindblad jump opera-
tors, describing the coupling of the system to the environment.
We are mainly focused in the analysis of different forms
BTC’s appearing on collective systems within a theoretical
bias, in order to unveil the generality of temporal dynamics in

such Lindbladian systems, the dependence on their collective
algebra and underlying symmetries. Therefore we do not per-
form a through discussion of experimental implementation of
the Lindbladian models. We remark, however, that it is always
possible to find a Hamiltonian whose dynamics is described
by the given GKS-Lindblad equation [55–60]. Moreover, pos-
sible prospects for an implementation could be envisioned
with state-of-art quantum simulation platforms, as trapped
ions [36], artificial qubits in superconducting circuits [61],
Rydberg atoms [62], and color defects in diamond [63] where
all-to-all interactions have been recently implemented.

A. Collective d = 2-level systems

We start considering the simpler case with d = 2. In this
case, the coherent Hamiltonian and Lindblad jump operators
are defined as

Ĥ = ω0Ŝx + ωx

S
(Ŝx )2 + ωz

S
(Ŝz )2, (2)

L̂ =
√

κ

S
Ŝ−, (3)

where S = N/2 is the total spin of the system, Ŝα = ∑
j σ̂

α
j /2

with α = x, y, z are collective spin operators, Ŝ± = Ŝx ± iSy

and σ̂ α
j are the Pauli spin operators for the jth subsystem.

The collective operators inherit the SU(2) algebra of their
components, satisfying in this way the commutation relations
[Ŝα, Ŝβ ] = iεαβγ Ŝγ . Due to the collective nature of the in-
teractions, the model conserves the total spin S2 = (Ŝx )2 +
(Ŝy)2 + (Ŝz )2.

The model on its simplest form, with ωx = ωz = 0, is
commonly used to describe cooperative emission in cavi-
ties [44–47,64] and was recently shown to support a time
crystal phase with the spontaneously breaking of time-
translational symmetry [11]. While in the strong dissipative
case κ/ω0 > 1, the spins in the steady state tend to align down
in the z direction, in the weak dissipative case κ/ω0 < 1 the
dynamics is characterized by persistent temporal oscillations
of macroscopic observables.

B. Collective d = 4-level systems

In this case, we consider a model describing a pair of
collective two-level (spin 1/2) systems. Specifically, we de-
fine the coherent Hamiltonian and Lindblad jump operators as
follows:

Ĥ = ωxx

S
Ŝx

1Ŝx
2 + ωzz

S
Ŝz

1Ŝz
2 +

2∑
p=1

ωx,pŜx
p + ωz,pŜz

p, (4)

L̂1 =
√

κ1

S
Ŝ−,1, L̂2 =

√
κ2

S
Ŝ−,2, (5)

where S = N/2 is the total spin of each collective system,
Ŝα

p = ∑
j σ̂

α
j,p/2 with p = 1, 2, α = x, y, z are the collective

spin operators for the pth collective 1/2-spin system. The
operators σ̂ α

j,p are the usual Pauli spin operators for the jth
spin in the pth collective system, and the excitation and de-
cay operators are defined analogously Ŝ±,p = Ŝx

p ± iSy
p. The

collective operators inherit the SU(2) algebra for fixed p,
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while commuting otherwise: [Ŝα
p , Ŝβ

p′ ] = iδp,p′εαβγ Ŝγ
p . Due to

the collective nature of the model, it conserves the total spin
for each collective spin system S2

p = (Ŝx
p)2 + (Ŝy

p)2 + (Ŝz
p)2 for

p = 1, 2.
In the case of ωxx = ωzz = 0 there is no coupling between

the two collective systems and the physics reduces to the
simpler d = 2 case. On the other hand, if the coupling be-
tween the collective systems in nonzero, as, e.g., ωxx �= 0, one
may expect the strengthen of the persistent oscillations in the
time crystal phase, since such couplings can induce local spin
excitations on each collective system thus enhancing the effect
of coherent collective drivings Ŝx

1,2. We will discuss in more
detail, in the next sections, the effects of the different terms in
the model leading to a richer phase diagram.

C. Collective d = 3-level systems

In this case, the model describe cooperative evolution of a
collection of three-level subsystems (d = 3). We study how a
pair of collective two-level subsystems compete, or hybridize,
when they share a common energy level. Specifically, we
study the competition of two dissipative channels with the
Lindbladian given as follows:

L̂ = (1 − δ)L̂12 + δL̂23, (6)

where 0 � δ � 1 and each L̂mn acts only in the pair of levels m
and n, see Fig. 1. The Lindbladians L̂mn are defined similarly
to the d = 2 case, with coherent Hamiltonian (Ĥ (mn)) and
Lindblad jump operator (L̂(mn)) given by

Ĥ (mn) = ωmnŜx
mn, L̂mn =

√
κmn

S
Ŝ−,mn, (7)

where S = N/2 and Ŝα
mn = ∑N

j=1 σ̂ α
j,mn/2 with α = x, y, z and

m, n = 1, 2, 3 label the pairs of (m, n) levels. The operators
σ̂ α

j,mn are the usual Pauli spin operators for the jth subsystem
in the pair of (m, n) levels. The collective excitation and decay
operators are defined analogously, Ŝ±,mn = Ŝx

mn ± iSy
mn.

Similar to the previous d = 4 case, the model here con-
siders the competition of a pair of collective two-level
subsystems. A major contrast comes however from the fact
that, due to the shared collective level in the d = 3 case, the
collective operators form an SU(3) algebra, which cannot be
reduced to an SU(2) as in the d = 2 case, neither to a pair
SU(2) ⊗ SU(2) as in the d = 4 case. The dynamics are thus
expected to be different from the previous cases, e.g one can
already notice that the total spin for each pair of two levels is
not conserved anymore. The conserved quantities in this case
are rather different, given by the two independent Casimir
operators of the algebra, a quadratic and cubic operator, re-
spectively. While the quadratic can be seen as a vector norm in
the space of group operators, the cubic operator is rather non
intuitive. We discuss in more detail these operators in Sec. IX.

III. d = 2: DYNAMICAL EQUATIONS OF MOTION,
SYMMETRIES AND STEADY STATES

We study in this section the dynamical equations of mo-
tions for the collective two-level system, their symmetries and
(quasi)conserved quantities, as well as obtain the steady states
of the model for varying couplings in the Lindbladian.

A. Dynamical equations of motion

Although our collective system with a finite number of
subsystems N do not have persistent temporal dynamics, in
the thermodynamic limit N → ∞ (and only in that limit) such
symmetry can be broken, thus arising as a many-body phase.
In particular, in this limit, the dynamics of macroscopic ob-
servables composed by a normalized sum of local operators,
the ones we will be interested in our current analysis, can be
represented in the form of a simpler set of nonlinear dynam-
ical equations. This emergent dynamics for the macroscopic
observables are obtained through a semiclassical approach,
which are exact in the thermodynamic limit for initial states
satyisfying clustering conditions [65] (as, e.g., simple sep-
arable pure states). In order to derive it we first write the
dynamics of a general operator Ô within the Heisenberg pic-
ture,

d〈Ô〉
dt

= i〈[Ĥ, Ô]〉 +
∑

i

〈[L̂†
i , Ô]L̂i + L̂†

i [Ô, L̂i]〉. (8)

Considering the collective two-level operators Ŝα and using
their SU(2) commutation relations we find the corresponding
dynamical equations,

d

dt
〈Ŝx〉 = −ωz

S
(〈ŜzŜy〉 + 〈ŜyŜz〉)

+ κ

2S
(〈ŜzŜx〉 + 〈ŜxŜz〉 + 〈Ŝx〉),

d

dt
〈Ŝy〉 = −ω0〈Ŝz〉 + ωz − ωx

S
〈ŜxŜz + ŜzŜx〉

+ κ

2S
(〈ŜzŜy〉 + 〈ŜyŜz〉 − 〈Ŝy〉),

d

dt
〈Ŝz〉 = ω0〈Ŝy〉 + ωx

S
(〈ŜyŜx〉 + 〈SxŜy〉)

− κ

S
(〈(̂Sy)2〉 + 〈(Ŝx )2〉 + 〈Ŝz〉). (9)

We define the macroscopic operators as m̂α = Ŝα/N . These
operators commute in the thermodynamic limit [m̂α, m̂β ] =
iεαβγ m̂γ /N motivating us to perform a second order cumulant
approach (semiclassical approach) for their expectation values
〈m̂αm̂β〉 ∼= 〈m̂α〉〈m̂β〉. In this way in the thermodynamic limit,
the dynamical equations of motion are closed and given by the
following set of nonlinear differential equations:

d

dt
mx = mz(−2ωzm

y + κmx ),

d

dt
my = mz(2(ωz − ωx )mx − ω0 + κmy),

d

dt
mz = ω0my − κ ((mx )2 + (my)2) + 2ωxmxmy, (10)

where we use mα ≡ 〈m̂α〉 to simplify our notation.

B. Symmetries and (quasi)conserved quantities

We first see that these dynamical equations conserves the
total spin of the system N = (mx )2 + (my)2 + (mz )2—as ex-
pected since it should accurately describe the Lindbladian
dynamics which has explicitly such a symmetry. Moreover,
the dynamical equations also have a quasiconserved quantity
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for ωz > ωx given by

R = (−iκ + 2ωz ) log

(
imx + my − ω0

(κ − 2iωz )

)

− (−iκ − 2ωz ) log

(
−imx + my − ω0

(κ + 2iωz )

)
.

(11)

Due to the logarithmic function this quantity is defined up to
integer multiples of 2κπ , and that is the reason we prefer to
define it as a quasiconserved quantity.

It is worth noticing that the dynamical equations have a
reversibility symmetry, given by the following transformation:

t → −t, mx → mx, my → my, mz → −mz. (12)

Furthermore we see a specific structure for the mx and my

dynamical equations, where the term mz can be factored out
leading to specific conditions for a steady state.

C. Steady states

In order to obtain the steady states of the system, we must
solve the fixed points of the dynamical equations dmα/dt = 0
for α = x∗, y∗, z∗, where we denote (x∗, y∗, z∗) the solutions
for simplicity of notation. The steady states are given by those
physical fixed points, i.e., those satisfying the norm condition
of fixed total spin N . Noticing the specific structure for the
dynamical equations of motion, with the mz term factoring
out, we can consider two different cases for the fixed points:
(i) ferromagnetic mz �= 0 and (ii) paramagnetic mz = 0 fixed
points, as shown below.

(i) Ferromagnetic fixed points,

x∗ = 2ωzω0

4ωz(ωz − ωx ) + κ2
, y∗ = κω0

4ωz(ωz − ωx ) + κ2
,

z∗ = ±
√

1 − ω2
0

4ω2
z + κ2

(4ωz(ωz − ωx ) + κ2)2 , (13)

which correspond to none or a single pair ferromagnetic
steady states, depending on the system couplings.

(ii) Paramagnetic fixed points, given by the algebraic con-
dition,

y∗ = κ

ω0 + 2ωxx∗ , (14)

In this case the steady states come in pairs, as in the previous
case, however we can have 0,1 or 2 pairs depending on the
system parameters (see Appendix A for a detailed discussion).

IV. STABILITY PHASE DIAGRAM

In this section, we obtain the phase diagram of the model
for different interacting terms in the Hamiltonian, from a
stability analysis of its steady states. A simple approach is
based on the linearization of dynamical equations of motion
around the fixed point, which is effectively described by the
Jacobian matrix. Specifically, given the set of dynamical equa-
tions of motion dmα/dt = fα (mx, my, mz ) with α = x, y, z
and fα a nonlinear function on the variables, the Jacobian

is defined by the matrix (Ĵ )αβ = ∂ fα/∂β. The spectrum of
the Jacobian contains information on the stability of the fixed
points.

In case the eigenvalue of the Jacobian matrix have negative
(positive) real part, the fixed point is an attractor (repeller)
and robust to nonlinear terms. In case where the eigenval-
ues have also an imaginary term the dynamics have spirals
towards (away) to the fixed point. Fixed points with nonnull
eigenvalue real part are usually called as hyperbolic fixed
points.

Another important case is when the eigenvalue of the
Jacobian matrix is purely imaginary, leading to persistent
periodic closed orbits around the fixed points, according to
the linear approximation. In this case, the fixed point is de-
noted as a center. This type of dynamics with closed periodic
orbits [exemplified in Fig. 1(d)] are exactly the one found
in Ref. [11] and we argument in this work that due to the
very contrained dynamics (as discussed in Sec. III) of these
collective two-level models, this is in fact the only form of
persistent dynamics (thus a BTC phase) for general interac-
tions in this model. We thus associate the existence of centers
in the dynamical equations to the presence of BTC’s in this
model. We corroborate our claim studying analytically and
numerically the Jacobian spectrum and system phase-space
portraits for different interaction terms in the Lindbladian, as
we discuss below.

We start our analysis computing the Jacobian matrix for the
fixed points of the model, obtaining that

J11 = J22 = κz∗, J12 = −2ωzz
∗, J13 = −2ωzy

∗ + κx∗,

J21 = 2(ωz − ωx )z∗, J23 = 2(ωz − ωx )x∗ − ω0 + κy∗,

J31 = −2κx∗ + 2ωxy∗, J32 = −2κy∗ + 2ωxx∗ + ω0,

J33 = 0. (15)

The determinant of this matrix is null both for the fer-
romagnetic and paramagnetic fixed points of the model.
This results implies that the Jacobian matrix has always at
least one completely null eigenvalue, as usual in dynami-
cal systems with conservation laws [66]. Moreover, we also
obtain explictly the other (two) eigenvalues of the Jaco-
bian (see Appendix B), showing that while the eigenvalues
for the ferromagnetic steady states have always a nonnull
real part, in the paramagnetic steady states they are purely
real, or imaginary. It shows that ferromagnetic phases are
not prone to stabilize any persistent dynamics in this spe-
cific model, being characterized only by attractors/repulsors
whose dynamics in the long time limit tends to equilibrate
to a constant. On the other hand, only paramagnetic phases
opens the possibility for such phases, as centers, but this may
not be necessarily the case, since depending on system cou-
plings their stability can change from a center to hyperbolic
point.

We show in Fig. 2 the different phases of the model ac-
cording to its steady state stability, for varying interactions
ωz and ωx in the system Hamiltonian and considering both
strong (κ/ω > 1) and weak (κ/ω < 1) dissipative cases. We
describe the phases by the 3-vector (npc, nph, nfh ), where
npc denotes the number of paramagnetic steady states of
type centers, thus associated to BTC periodic orbits, nph the
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FIG. 2. Phase diagram from Jacobian analysis: we show the dif-
ferent phases of the model from the perspective of their steady states
stability, for varying Hamiltonian couplings ωz and ωz. We show
in (a) our results for a system in the weak dissipative case, with
fixed κ = 0.5, ω0 = 1, and in (b) for the strong dissipative case,
with fixed κ = 1, ω0 = 0.5. We describe the phases by the 3-vector
(npc, nph, nfh ), see main text. The red lines highlight when a pair of
ferromagnetic steady states are created or annihilated, nfh → nfh ± 1
and simultaneously the stability of paramagnetic steady states are
changed, (npc, nph ) → (npc ± 1, nph ∓ 1). The vertical black lines
correspond to the creation or annihilation of a pair of paramagnetic
steady states: (npc, nph ) → (npc ± 1, nph ± 1).

number hyperbolic paramagnetic steady states and nfh the
number of pairs of hyperbolic ferromagnetic steady states.
We see that the coherent interactions along the x direction
(ωx) tend to stabilize different center fixed points and conse-
quently BTC’s periodic orbits. On the other hand, interactions
along the z direction tend to generate pairs of ferromagnetic
steady states or destroy the stability of BTC’s paramagnetic
steady states, turning their stability from centers to hyperbolic
fixed points. Interestingly, sufficiently high interactions ωx

can even lead to regions with the presence of fours cen-
ters in the model. In Fig. 3, we show the phase portraits
(Q, P) defined by mz = Q, mx =

√
1 − Q2 cos(2P) and my =√

1 − Q2 sin(2P) for a few points of the phase diagram, in or-
der to make clearer our association of centers to BTC’s in the
model.

V. SYMMETRY-BREAKING PERTURBATION

In this section, we study the effects of a specific per-
turbation in the system breaking the coherent Hamiltonian
Z2 symmetry. Motivated by the results of Sec. IV showing
that BTC’s can only occur for paramagnetic steady states,
we consider as perturbation a field along the z direction. In
this way the model Hamiltonian is given by Ĥδz = Ĥ + δzŜz

and the corresponding semiclassical dynamical equations are
obtained: (

d

dt
mx

)
δ

=
(

d

dt
mx

)
δ=0

− δmy, (16)

(
d

dt
my

)
δ

=
(

d

dt
my

)
δ=0

+ δmx, (17)

(
d

dt
mz

)
δ

=
(

d

dt
mz

)
δ=0

, (18)

where (dmα/dt )δ=0 denotes the unperturbed semiclassical
equations [Eq. (11)]. The Jacobian of the system can be writ-
ten as

Ĵδ = Ĵ + δV̂ , (19)

where Ĵ is the unperturbed Jacobian and

V̂ =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ (20)

is the perturbation matrix. We can study the effects of such
perturbation in the spectral properties of the Jacobian using
perturbation theory for general matrices [67] (notice here
that the Jacobian matrix is not an Hermitian matrix). The
idea follows similarly to the simpler Hermitian case (see
Appendix C). In particular, the first order corrections to the
eigenvalues (λ(1)

i ) are defined as

λ
(1)
i = Tr

(
w(0)†

i V̂ u(0)
i

)
(21)

with u(0)
i and w(0)

i the left and right eigenvectors of the un-
perturbed Jacobian, respectively. We compute explictly these
corrections for the paramagnetic steady states of our model
[Eq. (A1)] and obtain

λ
(1)
1 = −2(κx∗ − ωxy∗)(−κy∗ + ω0 + 2x∗(ωx − ωz )) + (κx∗ − 2ωzy∗)(−2κy∗ + ω0 + 2ωxx∗)

2(κx − ωxy∗)(κx∗ − ωzy∗)
,

λ
(1)
2 = 2(κx∗ − ωxy∗)(−κy∗ + ω0 + 2x∗(ωx − ωz )) + (κx∗ − 2ωzy∗)(−2κy∗ + ω0 + 2ωxx∗)

2κ2x2∗ + 2κ2y2∗ − κω0y∗ − 8κωxx∗y∗ + ω2
0 + 4ω0ωxx∗ − 2ω0ωzx∗ + 4ω2

x − 4ωxωzx2∗ + 4ωxωzy2∗
,

λ
(1)
3 = 2(κx∗ − ωxy∗)(−κy∗ + ω0 + 2x∗(ωx − ωz )) + (κx∗ − 2ωzy∗)(−2κy∗ + ω0 + 2ωxx∗)

2κ2x2∗ + 2κ2y2∗ − κω0y∗ − 8κωxx∗y∗ + ω2
0 + 4ω0ωxx∗ − 2ω0ωzx∗ + 4ω2

x − 4ωxωzx2∗ + 4ωxωzy2∗
. (22)
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FIG. 3. Phase space portraits (Q, P) for the collective two-level system with κ = 0.5, ω0 = 1 and different Hamiltonian couplings ωx and
ωz. We show in (a) and (b) the results for a fixed ωx = 0 with (a) ωz = 0 and (b) ωz = 2. In (c)–(f), we show the phase portraits for the phase
diagram line with fixed ωx = 2, where (c) ωz = −1, (d) 1, (e) 2, and (f) 3. The red squares represent paramagnetic centers, the yellow stars are
paramagnetic hyperbolic steady states and the green asterisks are pairs of ferromagnetic hyperbolic steady states.

Since x∗, y∗ ∈ � the first order corrections are purely real
terms, implying that the steady state centers become hyper-
bolic steady states. In this way, the closed orbits character-
istics of BTC’s are destroyed and we have instead spirals
towards or away from the fixed points of the model, with
characteristic times captured by the real eigenvalues λ

(1)
i . The

Z2 Hamiltonian symmetry of the model is thus crucial for
the stabilization of BTC’s. These results follow in accordance
with closely related p, q interacting model recently studied in
Refs. [28,29], shown also to support BTC only in the absence
of a Z2 Hamiltonian symmetry-breaking perturbation.

VI. d = 4: DYNAMICAL EQUATIONS OF MOTION AND
SYMMETRIES

We move our studies now to the case of a pair of collec-
tive two-level (1/2-spin) systems. As in the previous case,
the dynamical equations of motion can be obtained from a
semiclassical approach. Defining the operators m̂α

p = Ŝα
p/N

and closing the expectations values in the second cumulant
〈m̂α

pm̂β
p〉 ∼= 〈m̂α

p〉〈m̂β
p〉, we obtain the semiclassical dynamical

equations of motion:

d

dt
mx

1 = −ωzzm
y
1mz

2 − ωz,1my
1 + κ1mx

1mz
1,

d

dt
my

1 = ωz,1mx
1 − ωx,1mz

1 − ωxxmz
1mx

2 + ωzzm
x
1mz

2 + κ1my
1mz

1,

d

dt
mz

1 = ωx,1my
1 + ωxxmy

1mx
2 − κ1

((
mx

1

)2 + (
my

1

)2)
,

d

dt
mx

2 = −ωzzm
z
1my

2 − ωz,2my
2 + κ2mx

2mz
2,

d

dt
my

2 = ωz,2mx
2 − ωx,2mz

2 − ωxxmx
1mz

2 + ωzzm
z
1mx

2 + κ2my
2mz

2,

d

dt
mz

2 = ωx,2my
2 + ωxxmx

1my
2 − κ2

((
mx

2

)2 + (
my

2

)2)
. (23)

A. Symmetries and conserved quantities

The dynamical equations conserve the total spin for each
collective 1/2-spin system Np = (mx )2

p + (my)2
p + (mz )2

p for
p = 1, 2. We also notice that both couplings ωxx, ωzz do not
break the reversibility symmetry of the equations. In partic-
ular, in the case where ωz,1(2) = ωzz = 0 the equations still
have the factorization structure for the mz terms in the mx

and my dynamical equations. In this case one can proceed the
analysis similarly to Ref. [11] and show that the system do
have (quasi) conserved dynamical quantities. In case ωz,1(2) or
ωzz �= 0, however, the coupling destroys this simpler factoriza-
tion structure making inconclusive the existence of conserved
quantities (one breaks also the Z2 Hamiltonian symmetry).
One could consider, however, the simpler case with only
ωz,1(2) = 0 and equal local couplings for both collective spins
(ωx,1 = ωx,2, κ1 = κ2) and study the specific case where the
collective spins are initially the same in the evolution. In
this case, they shall also remain the same throughout all the
dynamics, m̂α

1 (t ) = m̂α
2 (t ) ∀t , and we recover the factorization

structure in the dynamical equations, thus the existence of
(quasi) conserved quantities.

VII. ROUTE TO CHAOS

In the general case of nonzero couplings in the model the
absence of (quasi) conserved quantities—beyond the norm N
of the collective spins—and no Z2 Hamiltonian symmetry
turns the analysis of the steady states and dynamics of the sys-
tem more intricate. On the other hand, it allows the possibility
of more complex dynamics with richer dynamical phases. A
particularly interesting case occurs when,

(i) wx,p/κp > 1, (ii) wz,p/κp � 1,

(iii) ωxx/κp � 1, (iv) ωzz/κp �= 0, (24)

for p = 1, 2. Conditions (i) and (ii) cannot alone support
BTC’s, as shown in the previous sections, rather they are
characterized by hyperbolic steady states with z∗ �= 0. Condi-
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FIG. 4. We show the dynamics of the spin magnetization along the z axis for system parameters of Eq. (25) and different couplings ωzz

with m(0) = (0, 1, 0, 0, 0, 1). The system supports different dynamical phases as one varies the coupling strength. We show in the (upper left)
a steady state with fixed magnetization for ωzz = 0, (upper right) a BTC with limit cycles for ωzz = 0.35, (bottom left) a chaotic dynamics for
ωzz = 0.58, and (bottom right) limit cycles with period doubling oscillations for ωzz = 1.

tion (iv) can correlate these steady states with (iii) inducing
coupled spin excitations on the system. The system in this
case has no (quasi) conserved quantities, and the appearance
of BTC’s shall be due to the collective dynamics of both spin
systems (hybridization). Specifically, we study the case with
system parameters given by

(i) wx,p = 2, p = 1, 2,

(ii) wz,1 = 0.1, wz,2 = 0.02, (iii) wxx = 3, (25)

with κ1 = κ2 = 1 and for varying coupling ωzz. We show in
Fig. 4 the dynamics for the magnetization along the z axis for
different cases of the coupling ωzz. We see that the system
can support different phases ranging from (i) a ferromag-
netic phase with nonzero magnetization for its steady states,
〈m̂z

p(t → ∞)〉 �= 0, (ii) BTC’s characterized by limit-cycle
oscillations, where after an initial transient time the magneti-
zation oscillates in a given orbit indefinitely in time; moreover,
further increasing the coupling the limit cycles oscillations are
followed by period doubling bifurcations till (iii) reaching a
chaotic dynamics. Interestingly, we also see (iv) three-cycle
periodic windows intercalated by the stable period doubling
bifurcations and the chaotic regime.

A global picture of the dynamical phases in the model
are shown in the orbit diagram of Fig. 5. The orbit diagram
corresponds to the local minimums in the time evolution of
the magnetization along the z-axis, obtained after an initial
transient time. The transient time is related to the relaxation of
the initial collective spin state towards the limit-cycle orbits,
static steady states or chaotic regime. In our numerical simu-
lations for the orbit diagram we used a fixed initial state for
the dynamics, with my

1(0) = mz
2(0) = 1 and zero otherwise.

We observed however that the orbit diagram is qualitatively
similar considering a few different initial conditions [68].

We can accurately determine in the orbit diagram the first
period doubling bifurcations as we increase the coupling ωzz.
We obtain a bifurcation ratio b3 ≈ 4.2, where

bn = ω(n−1)
zz − ω(n−2)

zz

ω
(n)
zz − ω

(n−1)
zz

, (26)

with ω(n)
zz the coupling corresponding to the nth period dou-

bling bifurcation in the orbit diagram. Interesting to compare
with Feigenbaum constant for the seminal logistic map, in
which one has bn→∞ ≈ 4.67. In our model we obtained
a slightly different value, which could indicate a different
universality class for the period doubling cascades towards
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FIG. 5. (Top) Orbit diagram for system parameters of Eq. (25)
and varying ωzz. We show in the bottom panel a zoom for the region
around ωzz ≈ 0.37. The orbit diagram is obtained from the local
minimums in the time evolution of the system magnetization along
the z axis. We see a multitude of dynamical phases. For ωzz � 0.1,
the system supports a ferromagnetic phase with nonzero steady state
magnetization. As one increases 0.1 � ωzz � 0.4, the system shows
limit cycles and a period doubling cascade towards a chaotic dynam-
ics. For ωzz ∼ 0.53, we see the appearance of a three-cycle periodic
window. For larger ωzz � 1, the system stabilizes in a trivial (time
independent) steady state with negligible magnetization.

chaoticity. We remark, however, that we were able to obtain
only the first bifurcation ratio b3 (not precisely n → ∞) so
an irrefutable conclusion on the universality class cannot be
drawn at this moment. It remains as a very interesting per-
spective for a future work.

We also study the Lyapunov exponents in the limit-cycle
and chaotic regimes [66,69–71]. We obtain the full Lyapunov
spectrum of the dynamics, describing the mean growth of
an n-dimensional volume (n = 6 in our case) in the tan-
gent space. We use Benettin’s approach in our analysis,
i.e., employing recursively the Gram-Schmidt orthonormal-
ization procedure during the stretching and folding of the
n-dimensional volume. In our numerical simulations we set
the same initial state as in the orbit diagram, and perform
an initial transient evolution up to t = 500. After this initial
evolution, the collective spin is close to their corresponding
dynamical phases, and we employ Bennetin’s algorithm to ob-
tain the Lyapunov spectrum. We show our results in Fig. 6. We

FIG. 6. We show the Lyapunov spectrum �
lyap
j obtained from

Benettin’s approach. We see the convergence of the �
lyap
j exponents

towards its assymptotic value (t → ∞). We also see the convergence
of the assymptotic exponents as we decrease the time steps. In par-
ticular we obtain that the largest Lyapunov exponent for ωzz = 0.35
approaches zero in the long time limit as a power law with time,
while for ωzz = 0.45 it approaches approximately 0.15. We used a
time step dt = 10−3 in our numerical simulations.

see that while for ωzz = 0.35, the spectrum is all nonpositive,
in the chaotic region with ωzz = 0.45, the largest Lyapunov
exponent is positive, corroborating our orbit diagram expec-
tations of a limit-cycle and chaotic regimes, respectively. We
further notice that the sum of the Lyapunov spectrum is nega-
tive in both cases, typical of dissipative dynamical equations.

VIII. d = 3: DYNAMICAL EQUATIONS OF MOTION AND
SYMMETRIES

In this section, we analyze the model with collective d = 3-
level system. In this case, it is convenient to work within the
Gell-Man basis for the three-level subsystems,

ĝ1
j =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, ĝ2

j =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

ĝ3
j =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, ĝ4

j =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

ĝ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, ĝ6

j =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

ĝ7
j =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, ĝ8

j = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ (27)

corresponding to an Hermitian basis for the jth subsystem.
The collective operators Ĝk = 1

2

∑N
j=1 ĝk

j inherit directly the
algebra of their microscopic constituents, i.e., the SU(3) alge-
bra of the Gell-Man basis, given by [Ĝa, Ĝb] = i

∑8
c=1 fabcĜc,

with a, b = 1, . . . , 8 and fabc the structure constant totally
antisymmetric under the exchange of any pair of indices (see
Appendix (D)). Any collective operator can be decomposed
in this basis. Specifically, the coherent Hamiltonian terms of
the model are decomposed as Ŝx

12 = Ĝ1, Ŝx
23 = Ĝ6, while the

decay operators are given by Ŝ±,12 = Ĝ1 ± iĜ2 and Ŝ±,23 =
Ĝ6 ± iĜ7.
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We can also define number operators for the three collective energy levels, corresponding to their collective occupation, as
follows:

N̂1 = N

3
I + Ĝ3 + 1√

3
Ĝ8, N̂2 = N

3
I − Ĝ3 + 1√

3
Ĝ8, N̂3 = N

3
I − 2√

3
Ĝ8, (28)

where I is the identity operator.
Dynamical equations of motion. Following the same approach as in the previous sections, we define the operators m̂k =

Ĝk/(N/2) and close the expectations values in the second cumulant 〈m̂km̂�〉 ∼= 〈m̂k〉〈m̂�〉. We obtain the following semiclassical
dynamical equations of motion in the thermodynamic limit (N → ∞):

dm1

dt
= k12(1 − δ)m1m3 + 1

2
δ(ω23m5 − k23(m4m6 + m5m7)), (29)

dm2

dt
= (1 − δ)(−ω12m3 + k12m2m3) + 1

2
δ(−ω23m4 + k23(m4m7 − m5m6)), (30)

dm3

dt
= (1 − δ)(ω12m2 − k12((m1)2 + (m2)2)) + 1

2
δ(−ω23m7 + k23((m6)2 + (m7)2)), (31)

dm4

dt
= −1

2
(1 − δ)(ω12m7 + k12(m1m6 − m2m7)) + 1

2
δ(ω23m2 + k23(m1m6 − m2m7)), (32)

dm5

dt
= 1

2
(1 − δ)(ω12m6 − k12(m1m7 + m2m6)) + 1

2
δ(−ω23m1 + k23(m1m7 + m2m6)), (33)

dm6

dt
= 1

2
(1 − δ)(−ω12m5 + k12(m1m4 + m2m5)) + 1

2
δk23(

√
3m6m8 − m3m6), (34)

dm7

dt
= 1

2
(1 − δ)(ω12m4 + k12(m1m5 − m2m4)) + 1

2
δ(ω23(m3 −

√
3m8) + k23(

√
3m7m8 − m3m7)), (35)

dm8

dt
=

√
3

2
δ(ω23m7 − k23((m6)2 + (m7)2)). (36)

Symmetries and conserved quantities. Since all collective
operators can be decomposed in the SU(3) basis, the model
have conserved quantities given by the Casimir elements of
the algebra (the element which commutes with all operators
of the group). The two independent Casimir elements in the
SU(3) algebra correspond to a quadratic (Ĉ2) and a cubic
operator (Ĉ3), defined as

Ĉ2 =
8∑

j=1

(m̂ j )2, (37)

Ĉ3 =
∑
a,b,c

dabcm̂am̂bm̂c, (38)

respectively, where dabc is symmetric under the interchange
of any pair of indices (see Appendix D). We see that C2

can be seen as a conservation of the norm in the basis of
collective operators. This is similar to the d = 2-dimensional
case where the norm is associated to the total spin of the sys-
tem, represented as the surface of a three-dimensional sphere.
In this case, however, the basis has a higher dimensionality,
and the norm is related to the surface of a eight-dimensional
hypersphere. The interpretation of this surface with the total
spin of the system is not direct anymore. This is also the
case of the second Casimir element, C3. It is cubic operator
in the operator basis, further constraining the dynamics on
the surface of the eight-dimensional hypersphere. An exact
interpretation of such constraint is, however, also not clear on
physical grounds.

Moreover, even though each pair of energy levels in the
subsystems are coupled similar to the d = 2-dimensional
case, the symmetries and conserved quantities present there
are no longer present in this case, namely, reversibility
[Eq. (12)], quasiconserved quantities R [Eq. (11)], and total
spin N .

IX. d = 3: PHASE DIAGRAM

We study in this section the phase diagram for the d = 3
model. We focus in the case of the Lindbladian with couplings

ω12 = αω23 ≡ ω, κ12 = ακ23 ≡ κ, (39)

with α ∈ �. We set α = 1 in all of our analysis for simplicity,
since different values corresponds simply to a renormalization
of the Lindbladian and consequently its δ parameter. Specif-
ically, for a different α’ coupling, we see that Lα,δ = cLα′,δ′

where c = δ
δ′ and δ′ = δα′/(α(1 − δ) + δα′), thus both Lind-

bladians share the same steady states and dynamical attractors.
The phase diagram is shown in Fig. 7, characterized by

different static as well as time crystal phases. In all of our
analysis, we perform the dynamics starting from a few dif-
ferent initial state conditions and study its evolution towards
their corresponding dynamical or static attractors. Precisely,
we consider initial states with the collective system occupying
the same level, i.e., with occupation number 〈ni(t = 0)〉 = 1
for i = 1, 2 or 3, or initial states close to the steady state
solutions of the model. We see no dependence of the attractors
of the model on these considered initial conditions, except
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FIG. 7. Phase diagram for the collective three-level system—Eqs. (6) and (7) with couplings of Eq. (39). We show three different phases
supported by the model, phases I, II, and III, with insets as illustrative of their dynamics [blue, red, and yellow lines represent the dynamics of
collective occupations n1(t ), n2(t ) and n3(t ), respectively]. The initial state for the dynamics is given by the collective occupation of a single
level n3(t = 0) = 1. While phases I and II show static steady states with different characteristics, phase III features BTC’s with limit-cycle
dynamics. We highlight in red the critical line at δ = 1/2, supporting multiple time crystal dynamical attractors, as discuss in the main text.

for the critical and extremal lines at δ = 1/2 and δ = 0 or
1, respectively, as we will discuss in more detail. We remark
however that since we deal with an eight-dimensional space,
we do not preclude the existence of different attractors in
the model. A throughout analysis of the full set of steady
states and their dependence on the initial conditions remains
as an interesting perspective. We discuss in detail the different
phases of model below.

(1) Extremal lines: for couplings δ = 0 or 1, one recovers
the SU(2) model of Sec. III for the pair of energy levels
(1,2) or (2,3), respectively. In this case only a pair of levels
has nontrivial dynamics, supporting a ferromagnetic or BTC
phase, depending on the strength ω/κ .

(2) Phase I: for couplings 0 < δ < 1/2, the Lindbaldian
acts stronger on levels (1,2). The presence of the competing
Lindbladian L2,3, even if small, tends to destroy the SU(2)
organization on these levels. We obtain the following steady
state attractor for the model:

m3 =
√

3C2

2

δ2

2δ2 − 2δ + 1

m4 = −2
(1 − δ)

δ
m3

m8 = 1√
3

(
1 − 2

(1 − δ)2

δ2

)
m3

mi = 0, i = 1, 2, 5, 6, 7, (40)

where C2 = 4/3 is the conserved quantity (quadratic Casimir
element). We show in Fig. 8 the occupation numbers on such a
phase. The energy level 2 tends to be suppressed in the dynam-
ics and becomes a “dark mode” in the steady state. Not only its
number occupation is null, as well as there are no coherence
between it and other energy levels (mi = 0, i = 1, 2, 6, 7).
The steady states do not depend on the ratio ω/κ and the phase
transition at δ = 1/2 occurs when occupation numbers n1 and
n3 equilibrate.

The conditions of Eq. (40) is actually valid as a steady state
∀δ, i.e., it is a solution of the dynamical equations. However,
depending on δ it does not characterizes the dynamics of the
system, since it becomes an unstable fixed point. In order to
highlight it we show in Fig. 9 (upper panels), the Jacobian
spectrum for such steady states. While it is an attractor for
δ < 1/2, it becomes a repulsor for δ > 1/2 (or an unstable
steady state). At the transition point δ = 1/2 the full spectrum
has only imaginary terms.

(3) Phase II: for couplings 1/2 < δ < 1 and ω/κ < 2/3,
we obtain the following steady state attractor:

m2 = ω/κ, m3 = (−1 + 3
√

1 − 2(ω/κ )2)/4,

m4 = −
√

C2 − 2(ω/κ )2 − 4
3 (m3)2, m7 = m2,

m8 = −m3/
√

3, mi = 0, i = 1, 5, 6. (41)

We show in Fig. 8 the occupation numbers along this phase.
The steady states do not depend on the coupling δ and the
occupation numbers for energy levels 1 and 3 are now equal,
with a nonzero occupation for energy level 2.

Similar to phase I, the conditions of Eq. (41) is valid
as a steady state for a larger range in the phase diagram,

FIG. 8. We show the occupation numbers for the three col-
lective energy levels of the system: (left) steady states of phase
I—Eq. (40)—for 0 < δ < 1/2, ∀ω/κ; (right) steady states of phase
II—Eq. (41)—for 1/2 < δ < 1 and ω/κ < 2/3.
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FIG. 9. Jacobian spectrum for the steady state of phases I and II
along the line with ω/κ = 1/2 for varying δ. In the upper panels we
show the real and imaginary terms of the Jacobian eigenvalues for
the steady states of phase I - Eq.(40) In the bottom panel we show
the spectrum for phase II - Eq.(41). Except for δ = 1/2, in both cases
the spectrum has a four-fold degeneracy of eigenvalues with zero real
part.

specifically, it is a solution of the dynamical equations ∀δ

with ω/κ < 2/3, though not always stable. In Fig. 9 (bottom
panels), we show the Jacobian spectrum for such steady states.
We see that it corresponds to a repulsor (unstable steady state)

for δ < 1/2, while becoming an attractor for δ > 1/2. At
the transition point δ = 1/2, the full spectrum also has only
imaginary terms.

(4) Phase III: for couplings 1/2 < δ < 1 and ω/κ � 2/3,

we observe a boundary time crystal with the appearance
of limit cycles in the dynamics. We show in Fig. 7 (inset)
the dynamics of occupation numbers for an illustrative case.
We remark that for different initial states, we observed the
same dynamical limit-cycle attractor. Interesting to notice that
the time crystal occurs not only in the weak dissipative regime
(ω/κ > 1), as in the SU(2) case, but also in a region of the
strong dissipative regime (2/3 � ω/κ < 1), indicating greater
robustness of the phase.

(5) Critical line: for coupling δ = 1/2 and ∀ω/κ, we ob-
serve a very peculiar behavior. As discussed, the steady states
of Eq. (40) are solutions of the dynamical equations also for
δ = 1/2. In this case, however, its Jacobian spectrum has only
imaginary terms, corresponding to center steady states. It in-
dicates that for a given initial state close to these steady states,
the dynamics should correspond to closed orbits, typical of
the BTC’s found in the collective d = 2 system. We find that
this is indeed the case. We show in Fig. 10 (upper left panel)
the dynamics for two initial states close to the steady states of
Eq. (40) for δ = 1/2. Both show closed, but different, orbits.

Considering the case of an initial condition far from these
steady states, thus out of a Jacobian linear stability approach,
we see now the existence of limit cycles. We show in Fig. 10

FIG. 10. (Left) We show the dynamics of the occuppation number for different initial conditions, with system parameters δ = 1/2 and
ω/κ = 0.2: (upper left) for initial states with n3(0) = 1 (continuous curves) and n2(0) = 1 (dotted curves); (bottom left) for initial states given
by Eq. (40) with δ = 0.45 (continuous curves) and δ = 0.49 (dotted curves). (Right) Lyapunov spectrum obtained from Benettin’s approach
for the same system parameters: (upper right) using initial state n3(0) = 1; (bottom right) for initial state given by Eq.(40) with δ = 0.45. We
show in the inset the largest Lyapunov exponent decaying for long times, in a log-log scale. In both cases, we used a time step dt = 10−3 for
our numerical simulation.
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(bottom left panel) the dynamics for initial states with ni(0) =
1, for i = 3 or 2, both featuring the same limit-cycle dy-
namics. We also observed that other different initial states
may lead to even further different limit cycles. We remark
that for larger coherent coupling ω/κ � 1/2 the limit cycles
are not so apparent anymore, mostly resembling as closed
period orbits—there is no clear transient time in the dynamics
towards the dynamical attractor. In this case, it is not conclu-
sive the existence of limit cycles, however it is still clear the
presence of multiple time crystal dynamical attractors.

We study also the Lyapunov spectrum for this critical line,
see Fig. 10 (right panels). We obtain that the full Lyapunov
spectrum for all these different initial conditions is zero, cor-
roborating the expectation of multiple BTC’s.

X. CONCLUSION

In this work, we studied boundary time crystals in col-
lective d = 2, 3, and 4 level systems. We obtained that
the BTC phase can appear in different forms for these dif-
ferent cases, highlighting a richer phenomenology for such
dynamical phases. We first considered the model with d = 2
presented in Ref. [11] and extended the analysis of its phase
diagram, obtaining the full set of steady states combining
analytical and algebraically (quasianalytically) approaches,
and further studying its Jacobian stability. The existence of
BTC in the model is seen to be directly related to the presence
of center fixed points. Moreover, we obtained analytically the
effects of a specific Z2 symmetry-breaking Hamiltonian term
to the dynamics, showing that BTC’s are destroyed by such a
perturbation in the model.

The analysis of the collective d = 4-level system, com-
posed of a pair of collective interacting two-level systems,
showed even more fruitful. The model supports more ro-
bust forms of BTC’s, from limit cycles to period doubling
bifurcations leading to chaos. The BTC is robust to Z2

symmetry-breaking Hamiltonian term in this case. We ob-
tained the orbit diagram of the model from its collective
magnetization and extracted its bifurcation ratio bn for a fi-
nite n. The bifurcation ratio for finite n was found different
from the Feigenbaum constant of the seminal logistic map. A
careful analysis for the ratio in the limit n → ∞ remains as
an interesting perspective for a future work.

In the collective d = 3-level system we observed that de-
pending on the competition between the two Lindbaldians L12

and L23 the model supports static steady states characterized
by a “dark level,” limit-cycle dynamics or a peculiar dynami-
cal phase at the critical line δ = 1/2 where the strength of both
channels are equal. At this critical line, the systems shows
multiple limit-cycle attractors, depending on the initial con-
dition, as well as different closed period orbits. The Jacobian
spectrum has no real terms (only nontrivial imaginary part) in
this phase, as well as its Lyapunov exponents are all zero.

This work opens different interesting perspectives, show-
ing how collective models with high d-level systems can
support different forms of BTC’s with richer properties. It
would be interesting, e.g., to explore larger d’s and its im-
plications to these phases, possible applications as well as a
throughout analysis on the role of the global and dynamical
symmetries for such models.
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APPENDIX A: PARAMAGNETIC STEADY STATES (d = 2)

The paramagnetic fixed points of the two-level collective
model in Eqs. (2) and (3) are given by the algebraic condition,

y∗ = κ

ω0 + 2ωxx∗ , (A1)

and we recall that this fixed point solutions are physical steady
state only if this geometrical place intersects the fixed norm
circle (mx )2 + (my)2 = N , thus satisfying the conservation of
the total spin. In this case, the steady states come in pairs,
as in the previous case, however we can have 0, 1, or 2
pairs depending on the system parameters κ, ω0 and ωx, see
Fig. 11 for illustrative cases. We also show in Fig. 12 the
steady states magnetization for varying Hamiltonian parame-
ters. Since mz = 0, we use the azimutal angle in the x-y plane,
φ = arctan(y∗/x∗), in order to completely describe the steady
state. The steady state magnetization is independent of the ωz

field [Eq. (A1)]. We see that varying the ωx field, both starting
from a trivial (κ/ω0 > 1) or time-crystal phase (κ/ω0 < 1),
induces the appearance of new pairs of steady states on the
x-y plane.

APPENDIX B: STABILITY ANALYSIS (d = 2)

A linear stability analysis of the fixed points of the model
can be performed from an spectral analysis of the Jacobian

FIG. 11. Steady states of the model with mz = 0: The colored
curves are the algebraic condition of Eq.(A1) while the black circle
the normalization condition (mx )2 + (my )2 + (mz )2 = 1. The phys-
ical steady states correspond to the intersection of the two curves.
We show different cases of system parameters, highlighting the cases
without such steady states, a pair and two pairs.
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(a)

(b)

FIG. 12. Azimuthal angle for the steady states with mz = 0
(Eq.(A1)), for varying ωx field and system parameters (a) κ =
0.5, ω0 = 1, and (b) κ = 1, ω0 = 0.5. The steady states are indepen-
dent of the ωz field.

matrix. The approach is a follows. We recall that the dy-
namical equations of motion of the system can be written
as dmα/dt = fα (mx, my, mz ), with α = x, y, z and fα a non-
linear function on the variables. We can define the displaced
variables uα = mα − α∗ around the fixed points and perform
a series expansion. We obtain that,(

dux

dt
,

duy

dt
,

duz

dt

)T

= Ĵ (ux, uy, uz )T + O((uα )2, uαuβ ),

(B1)
where vT denotes the transposed of the line vector v, Ĵ is
a 3 × 3 matrix (denoted as Jacobian matrix) with elements
(Ĵ )αβ = ∂ fα/∂β and the correction terms O((uα )2, uαuβ ) are
quadratic on the displaced variables and can be neglected
within a linear approximation. The effective dynamical equa-
tions of motion around the fixed point are in this way linear
differential equations which can be solved by the eigenspec-
trum of the Jacobian matrix. The spectral properties of the
Jacobian thus provide all information of dynamics around the
fixed points, at first order level. Let us analyze in detail the
Jacobian eigenvalues for the two different cases of fixed points
in the model.

(1) Ferromagnetic fixed points, z∗ �= 0: for the pair of fixed
points z∗

± of Eq. (13), we compute the eigenvalues using
sympy package from python. We obtain that their eigenvalues
are given by

λ[z∗±] =
{

0, z∗
± ± 2

√
ωzA

κ2 − 4ωxωz + 4ω2
z

}
, (B2)

where

A = (
κ4ωx + κ2ω2

0ωz + 16κ2ωxω
2
z + 4ω2

0ω
3
z + 16ω3

xω
2
z

+ 48ωxω
4
z

) − (
κ4ωz + κ2ω2

0ωx + 8κ2ω3
z + 8κ2ω2

xωz

+ 4ω2
0ωxω

2
z + 48ω2

xω
3
z + 16ω5

z

)
. (B3)

Apart from the trivial null eigenvalue, we see that the non-
trivial eigenvalue has always a real part. As a consequence
the possible steady states of the model with z∗ �= 0 are always
hyperbolic fixed points.

(2) Paramagnetic fixed points, z∗ = 0: for the case with
z∗ = 0, the Jacobian matrix is simplified and one can obtain
analytically their eigenvalues, which have the form

λ = {0,±
√

B}, (B4)

where

B = (3κω0y∗ + 8κωxx∗y∗ + 2ω0ωzx
∗ + 4ωxωz(x∗)2)

− (
ω2

0 + 2κ2N + 4ω0ωxx∗ + 4ω2
x (x∗)2 + 4ωxωz(y∗)2

)
.

(B5)

In this case, we see that the eigenvalues (apart from the trivial
one) are purely real or imaginary, thus corresponding either to
hyperbolic fixed points or centers.

APPENDIX C: NON-HERMITIAN PERTURBATION
THEORY

The Jacobian of the system in Sec. V is written as

Ĵδ = Ĵ + δV̂ , (C1)

where Ĵ is the unperturbed Jacobian and

V̂ =
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠, (C2)

is the perturbation matrix. We study the effects of such per-
turbation in the spectral properties of the Jacobian using
perturbation theory for general matrices [67], as follows. Any
matrix has generalized right (ui) and left ( wi) eigenvectors
defined as

Ĵ ui = λiui, Ĵ† wi = λ∗
i wi, (C3)

where left and right eigenvectors obey the ortogonality prop-
erty Tr(u†

i w j ) ∝ δi j , and λi are the generalized eigenvectors.
We assume that the eigenvalues are nondegenerated, and thus
we are dealing with nondegenerate perturbation theory. Ex-
panding the eigenvalues and eigenvectors in terms of the
perturbative term δ, we can write then as

λi =
∞∑
j=0

δ jλ
( j)
i , ui =

∞∑
j=0

δ j u( j)
i , wi =

∞∑
j=0

δ j w( j)
i , (C4)

where the index j denotes the correction order in perturbation
theory, i.e., j = 0 corresponds to the eigenvalues and eigen-
vectors of the unperturbed Jacobian J . Combining Eqs. (C1)
and (C4) into Eq. (C3), one can find the recursive expressions
for general jth order corrections. In particular, the corrections
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TABLE I. Nonzero structure constants fabc of SU(3).

abc fabc abc fabc

123 1 345 1
2

147 1
2 367 − 1

2

156 − 1
2 458 1

2

√
3

246 1
2 678 1

2

√
3

257 1
2

to the eigenvalues of the Jacobian are given by

λ
( j)
i = Tr

(
w(0)†

i V̂ u( j−1)
i

) −
j−1∑
k=1

λ
(k)
i Tr

(
w(0)

i u( j−k)
i

)
. (C5)

Focusing on the first order terms ( j = 1), we thus find the
equations for the perturbative eigenvalue corrections

λ
(1)
i = Tr

(
w(0)†

i V̂ u(0)
i

)
. (C6)

TABLE II. Nonzero structure constants dabc of SU(3).

abc dabc abc dabc

118 1√
3

355 1
2

146 1
2 366 − 1

2

157 1
2 377 − 1

2

228 1√
3

448 − 1
2
√

3

247 − 1
2 558 − 1

2
√

3

256 1
2 668 − 1

2
√

3

338 1√
3

778 − 1
2
√

3

344 1
2 888 − 1√

3

APPENDIX D: SU(3) STRUCTURE CONSTANTS

The explicit form of the nonzero SU(3) structure constants
fabc and dabc are listed in Tables I and II.
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