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Generalized decay law for particlelike and wavelike thermal phonons
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Our direct atomic simulations reveal that a thermally activated phonon mode involves a large population of
elastic wave packets. These excitations are characterized by a wide distribution of lifetimes and coherence times
expressing particlelike and wavelike natures. In agreement with direct simulations, our theoretical derivation
yields a generalized law for the decay of the phonon number taking into account coherent effects. Before the
conventional exponential decay due to phonon-phonon scattering, this law introduces a delay proportional to the
square of the coherence time. This additional regime leads to a moderate increase of the relaxation times and to
a different dependence of phonon relaxation to those. This work opens new horizons in the understanding of the
origin and the treatment of thermal phonons.
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I. INTRODUCTION

The legacy of transport physics establishes that thermal
phonons of a given mode can be understood as quasiparticles
having the same lifetime and coherence time. Their behaviors
are modeled by Boltzmann transport theory and the phonon-
gas model [1,2]. On the other hand, phonons are defined
in essence as vibrational waves. Experimental investigations
[3–7] demonstrated that the wave nature or the coherence of
thermal phonons significantly contributes to thermal transport.
For example, Maire et al. [5] could tune thermal conduction
by using this coherence in silicon phononic crystals.

Previous studies also demonstrated that the particlelike and
wavelike thermal phonons are coexisting at elevated tempera-
ture [4,4,8–10]. In epitaxial oxide superlattices, Ravichandran
et al. [4] experimentally observed this mechanism and the
predominant behavior depends on temperature and period.
However, state-of-the-art theories are failing in simultane-
ously capturing both wave and particle pictures [1,2,11].
Alternative methods still miss a direct representation of ther-
mal phonon excitations [12–15], which is the case when
determining phonon lifetimes from anharmonic lattice dy-
namics [16–18] and in experimental measurements [19,20].
Recently, several groups [21,22] proposed models to consider
the coherence between different thermal phonon modes, and
significant effects on thermal transport are observed in glasses
or complex crystals; however, the intrinsic coherence or wave-
like behavior of thermal phonons still could not be revealed.

In this paper, we track the real phonon dynamics and
extract temporal coherence times and lifetimes by using the
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wavelet transform of the atomic trajectories during an equi-
librium molecular dynamic (MD) simulation. We find that
a thermally activated single phonon mode involves a large
distribution of excitations with a broad range of coherence
times and lifetimes. A theory is proposed to establish the
relationship between coherence times and lifetimes, which
reveals the unexpected impact of long coherence times on
phonon relaxation and phonon decay. A generalized decay
law is proposed by simultaneously including particlelike and
wavelike behaviors of thermal phonons. These conclusions
provide insights into the reality of thermally activated phonon
modes and their intrinsic wavelike and coherence behaviors.

II. SIMULATION

A. Direct simulation of phonon dynamics

Fourier transform has been widely used in phonon-related
analysis, since it provides the natural function basis of
phonons in the form of monochromatic plane waves e−i(ωt−k·r)

[23,24], where the plane wave comprises temporal t and spa-
tial r dependences. Energy transport, however, is understood
as a spatially and temporally localized wave packet [25–28].
To describe this transport, Baker et al. [29] and Shiomi and
Maruyama [30] proposed wavelet transforms to investigate
the propagation of phonon energy, in which the functions of
the basis take the form of a Gaussian wave packet. Modifying
this wavelet transform approach and focusing on the tempo-
ral extension information, the expression of the normalized
phonon wavelet basis is written as

ψωks,t0,�ks (t ) = π−1/4�
−1/2
ks e[iωks (t−t0 )]e[−1/2(t−t0/�ks )2], (1)

where ωks is the angular frequency of mode ks, and �ks

defines the wave-packet duration. t corresponds to the time
variable, and t0 to the position of highest amplitude in the
wave packet, and also corresponds to the time evolution in
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FIG. 1. Evolution time and coherence time dependent phonon number. (a) Schematic figure of a suspended single-layer graphene. The
domain of the graphene system is set to Lx = Ly ≈ 100 nm. The convergence of the results with size was carefully checked. (b) Phonon
dispersion of single-layer graphene along �(0, 0, 0) → M(0.5, 0, 0). The circles specify the three analyzed modes: 0.05M ZA (ZA mode at
the k point of 0.05 × (0.5, 0, 0)), 0.3M TA, and 0.5M LA. (c) Evolution time (t0) and coherence time (τ c) dependent phonon number density
of the 0.05M ZA mode at room temperature. The right-hand side inset highlights the 17.5–20.0 ns interval of (c).

the wavelet space. Inside the wave packet, plane waves are in
phase; the �ks term in Eq. (1) is thus a measure of the tempo-
ral coherence of thermal phonons. Here, we define the wave
packet full width at half maximum (FWHM) as the coher-
ence time τ c

ks = 2
√

2ln2�ks. This basis leads to the following
wavelet transform:

�
(
ωks, t0, τ

c
ks

) =
∫

ψωks,t0,τ c
ks

(t )F (t )dt, (2)

where F (t ) denotes the time dependent dynamical quan-
tity, which is chosen as the phonon modal velocity,
1
a

∑
b,l [u̇bl (t ) · e∗

b (k, s) × exp(ik · R0l )], where u̇bl (t ) denotes
the velocity of the bth atom in the lth unit cell at time
t , a the number of cells, e∗(k, s) refers to the complex
conjugate of the eigenvector of mode ks, and R0l is the
equilibrium position of the lth unit cell. As a control cal-
culation, we validated the relevance of wavelet transform
to study phonon properties, i.e., eigenfrequency, temporal
coherence, and creation/annihilation of wave packets (see
Appendix A for details). We highlight that the wavelet trans-
form successfully provided the same results as those predicted
by commonly used spectral energy density (SED) analysis
[23,31]. The SED is in agreement with the single-mode re-
laxation time (SMRT) approximation. The wavelet transform
is a further expansion of SED (see Fig. 7 in Appendix A).

We use classical MD simulations to obtain the real
phonon dynamics in the graphene system shown in Fig. 1(a)
at elevated temperatures. Compared to other theories, i.e.,
Grüneisen parameter based Klemens model or anharmonic
lattice dynamics [32–34], phonon-phonon scattering is fully

excited in MD simulations. The C-C interaction is modeled
by the optimized Tersoff potential [35]. All MD simulations
are performed by implementing the graphics processing units
molecular dynamics (GPUMD) package [36] with a time
step of 0.35 fs. To extract reliable time dependent informa-
tion, five MD simulations with time duration of 25 ns were
carried out. From Eq. (2), the time dependent phonon num-
ber at a given coherence time, here called phonon number
density, N (ωks, t0, τ c

ks) can be calculated as N (ωks, t0, τ c
ks) =

1
2 m|�(ωks, t0, τ c

ks)|2/h̄ωks, where m refers to the mass of
the carbon atom. Wavelet transformation finally provides the
mode energy distribution in evolution time and in coherence
time. The time dependent phonon number reads N (ωks, t0) =∑

τ c
ks

N (ωks, t0, τ c
ks). This coherence time dependent phonon

number obtained from simulation corresponds to the phonon
number in Eq. (8) because only one term of the sum con-
tributes at a given time t0 due to the presence of a single wave
packet at this same time in the mode.

B. Coherence time distribution

Figure 1(c) reports the phonon number density
N (ωks, t0, τ c

ks) derived from Eqs. (1) and (2) for the 0.05M
ZA mode. Dark areas indicate the absence of phonon energy
and the brighter ones represent the apparition of phonon
wave packets. While common understanding stipulates a
unique coherence time per mode, we uncover a distribution
of coherence times instead. In addition, this distribution is
varying with time. The right-hand side inset of Fig. 1(c)
displays a 2.5 ns time interval of the phonon number density
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FIG. 2. Time-averaged phonon number density (TAPND) as a
function of coherence time. The density distribution is calculated
either with a Gaussian function basis (blue circles) or with a sinus
cardinal function basis (red squares), for the 0.05M ZA mode at room
temperature. The solid line is a trend based on Hardy’s theory [37].

history. It turns out that phonon coherence times of the
studied mode cover two orders of magnitude. Subpopulations
manifest very long coherence (τ c

ks > 300 ps), i.e., a wavelike
feature, whereas others with shorter coherence times (τ c

ks <

10 ps) can be assimilated to particlelike excitations.
The wave-packet distribution can be further investigated by

building the time-averaged phonon number density (TAPND)
versus coherence time D(ωks, τ

c
ks) = 1

Nt0

∑
t0

N (ωks,t0,τ c
ks )∑

τc
ks

N (ωks,t0,τ c
ks ) ,

reported in Fig. 2, where Nt0 denotes the number of terms
in the sum. Interestingly, wave packets follow a unimodal
distribution as a function of coherence time, indicating the
predominance and the limits in duration of a subpopulation
centered at τ c ∼ 40 ps. The TAPND was not observed be-
fore, only its average on τ c obtained by other methods [8].
Previously, the founding work of Hardy [37] mentioned that
the TAPND of a given mode k should be distributed along an
ad hoc Gaussian function, i.e., D(k, τ c

k ) = e−(1/4)|k−K|2υ2
g τ c

k
2
,

where K denotes the wave vector of a mode interfering with
mode k and υg corresponds to the group velocity of mode k.
Hardy’s prediction fairly agrees with our analysis in the long
wave-packet range as highlighted by Fig. 2. Disagreement
appears in the low coherence time region, presumably because
coherence time has to be larger than mode period, which is
not taken into account by Hardy’s proposition. While a full
confirmation for all modes is unreachable, a similar unimodal
distribution of the TAPND is also observed for other graphene
modes as well as in bulk silicon (see Appendix B for details).

C. Phonon decay

The autocorrelation of the fluctuations of the phonon
number density provides a basis for comparison with the
conventional description of the phonon mode decay. The au-
tocorrelation function C(t, τ c

ks) as outcome of our simulations
is calculated as

C(t, τ c
ks) =

〈
�N

(
t, τ c

ks

)
�N

(
0, τ c

ks

)〉
〈
�N

(
0, τ c

ks

)
�N

(
0, τ c

ks

)〉 , (3)

where �N (t0, τ c
ks) = N (t0, τ c

ks) − 〈N (t0, τ c
ks)〉t0

. For small co-
herence time wave packets, a rapid decay to zero is observed
in Fig. 3(a) and as coherence time increases, the correlation
time does also. In the established knowledge, phonon num-
ber decay should be described by an exponential function,
∼e−t/τ l

ks , where τ l
ks is the lifetime for mode ks, when the

SMRT approximation [18] applies. Unfolding this decay ver-
sus coherence times, the correlations C(t, τ c

ks) clearly deviate
from the exponential trend. This deviation also intensifies
with coherence time as illustrated by Fig. 3(b). Those results
evidence the failure of the SMRT approximation in capturing
wave-packet coherence. Note that the effect of this latter dif-
fers from the influence of collective mode coupling shown in
graphene [11,38] that also invalidates SMRT but preserves the
exponential relaxation [11].

III. THEORY

A. Coherence time dependent phonon number

Previously, Hardy [37] demonstrated that the harmonic
energy-flux operator S can be expressed as

S = 1

V

∑
ks

Nksh̄ωksυks. (4)

We will use the ks = λ notation in the following as the
mode wave vector and branch will have to be distinguished.
Note that Eq. (4) clearly highlights that the phonon energy, in
any form, is transported at the group velocity [27,28]. When
rewriting Eq. (4) in terms of the classical coordinates and
considering the fluctuation of the phonon energy, the time
dependent phonon number becomes (see Appendix C)

Nks(t ) = 1

h̄

∑
k′

pks(t )q∗
k′s(t ), (5)

where pks(t ) and qks(t ) denote the time dependent normal
mode momentum and displacement for mode ks. ∗ indicates
the conjugate form. Here, we ignored the terms s 
= s′ that
are rapidly oscillating and yield negligible time average. Be-
cause of phonon-phonon scattering, normal mode coordinate
decays with time, i.e., qks(t ) = qks(0)e−�kst−iωkst , where �ks

represents the mode linewidth, involved in the SMRT approx-
imation [16,28,39]. Consequently, the particlelike behavior
of phonons is firstly included in the derivation. Accordingly,
the time dependent momentum can be expressed as pks(t ) =
pks(0)e−�kst−iωkst . Note that for now, the initial time t = 0 is
arbitrarily taken as that of maximum amplitude. This assump-
tion will, however, become unnecessary when deriving the
autocorrelation functions. It turns out that the time evolution
of the phonon number is obtained as

Nks(t ) =
∑

k′
ξkk′se

−γkk′st−i�ωkk′st , (6)

where ξkk′s = pks(0)q∗
k′s(0)/h̄, γkk′s = �ks + �k′s, and

�ωkk′s = ωks − ωk′s. It should be noted that the summation
over k′, k 
= k′, can be understood as the interference of
plane waves defined by ks and k′s, which are forming wave
packets. As will be confirmed in later simulation results, we
shall assume that a single wave packet appears at a given time.
Considering that this wave packet is resulting from a specific
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FIG. 3. Fitting of the phonon number density decay. (a) Phonon number density correlation function C(t, τ c ) versus correlation time t for
several coherence times τ c. The inset shows the correlation function running over 4 ns. (b) Fitting of the MD correlation function (continuous
lines) with the conventional exponential decay theory (dash-dotted lines) and the theory of this work (dashed lines). The phonon decay is for
the 0.05M ZA mode at room temperature.

and restricted frequency interval [ωks − ks
2 , ωks + ks

2 ]
where density of states and linewidth are nearly constant, a
further step can be taken,

Nks(t ) ≈ ξ̄kse
−γ̄kst ḡ(ωks)

∫ +ks/2

−ks/2
e−i�ωkk′st d�ωkk′s, (7)

where ξ̄ks and γ̄ks correspond to the averaged properties over
the wave-packet frequency interval and ḡ(ωks) refers to the
density of states. We shall also highlight that Eq. (7) is intro-
ducing the key quantity of ks, which will be shown to be
proportional to the reverse of the coherence time. Due to the
previously mentioned assumption of “single wave packet at
a time,” we emphasize that a single value of ks can indeed
be involved at a given time t in the expression of the mode
phonon number. The integral of Eq. (7) can be seen as a
combination of plane waves [40] and its estimation yields (see
Appendix C)

Nks(t ) = 2ξ̄ksḡ(ωks)e−γ̄kst
sin πkst

t
. (8)

This derivation indicates that at time t a phonon wave
packet with properties γ̄ks and ks is contributing to the
phonon number Nks(t ). This phonon wave packet should take
the form of a sinus cardinal function, which is close to the
Gaussian function but with a longer tail (see Fig. 9 in Ap-
pendix C). Those two functions indeed have the same form
in the vicinity of the origin, and other arguments provided
by later simulations will also confirm the approximation of
a sinus cardinal by a Gaussian.

B. Generalized phonon decay law

To analytically predict the coherence correction in the
phonon decay, we then obtain the autocorrelation of this
coherence time dependent phonon number [41,42] (see Ap-
pendix D for complete derivation), which takes the final
following form:

C
(
t, τ c

ks

) = e−t/2τ l
ks e−4ln2[t2/τ c

ks
2], (9)

where the two decay terms of the right-hand side correspond
to the two distinct behaviors of thermal phonons, i.e., the parti-
clelike and the wavelike ones. The particlelike part remains an

exponentially decaying function, and the second one appears
as a quadratic Gaussian term.

The autocorrelation of Eq. (9) can be further factorized into

C
(
t, τ c

ks

) = e−4ln2[(t+τw )2/τ c
ks

2]eτw/4τ l
ks , (10)

where τw = τ c
ks

2/(τ l
ks16ln2) evaluates the effect of coherence

on phonon decay. This latter equation reveals the general
form of a Gaussian decay for the phonon number in which
the very short time regime t � τw yields strong correlation
C(t, τ c

ks) ≈ 1 as seen in Fig. 3(a) (line with τ c
ks = 1.239 ns,

t < 0.5 ns), and intermediate times t < τw lead back to the
usual phonon-phonon scattering decay C(t, τ c

ks) = e−t/2τ l
ks af-

ter Taylor expansion. The longer time interval t > τw brings a
Gaussian decay C(t, τ c

ks) = e−4ln2t2/τ c
ks

2
eτw/4τ l

ks . The first short
time regime is due to the buildup of the wave packet and is
delaying the relaxation compared to the conventional expo-
nential decay. From Eq. (9), we can simultaneously obtain
τ l

ks and τ c
ks for a given mode by fitting the autocorrelations

of Fig. 3. As shown in Fig. 3(b), the disagreement between
MD results and the exponential fitting is larger compared to
the one resulting from the predictions of Eq. (9).

IV. LIFETIME AND COHERENCE TIME

Figure 4 shows the fitted lifetimes and coherence times
according to Eq. (9). Obviously, for short wave packets, i.e.,
small coherence times, phonons exhibit prominent particle-
like behaviors but with long lifetimes. As coherence time
increases, the time spread of the phonon wave packets be-
comes longer, with pronounced wave behaviors as illustrated
in Fig. 4(b). The lifetime follows a nonmonotonic dependence
on coherence time depicted in Fig. 4(a) with a transition point
around the coherence time of 0.45 ns. Larger phonon wave
packets (τ c

ks > 0.45 ns) possess shorter lifetimes, while a
set of wave packets at ∼0.45 ns survive on longer periods.
Note that phonons are almost monotonically transiting from
the particlelike nature to the wavelike nature with increasing
coherence time as shown by the time ratio in Fig. 4(b). In
addition, this transition is also frequency dependent as low
frequency phonons in the 0.05M ZA mode display wavelike
behaviors at shorter coherence times.
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FIG. 4. Lifetime and coherence time in graphene. (a) Fitted life-
time and coherence time in graphene, and (b) ratio between lifetime
and coherence time for modes 0.05M ZA, 0.3M TA, and 0.5M LA at
room temperature. The green line indicates the lifetimes = coherence
times condition. Above the line, phonons show particlelike nature
properties with lifetimes > coherence times. In contrast, below the
line, phonons have wavelike nature properties with lifetimes < co-
herence times.

The influence of temperature on the wave packet coherence
time and lifetime was also studied in Fig. 5. As temperature
increases, phonon-phonon scattering intensifies and the parti-
cle nature of phonons, i.e., the contribution of short coherence
time wave packets, becomes more obvious. As reported in
Fig. 5(a), this trend is evidenced by a shift of the density peak
to lower coherence times and by the gradual suppression of
long wave packets. Moreover, the decrease of phonon life-
times with temperature can also be observed in the reduction
of the times’ ratio τ l/τ c with temperature.

V. CONCLUSION

The wavelet transform calculations and the proposed
phonon decay theory [Eq. (10)] prove that a single thermally
activated phonon mode includes excitations with a broad

range of lifetimes and coherence times. The commonly used
SMRT theory is based on a single phonon lifetime per mode
and the assumption of exponential decay to fit the phonon
number autocorrelation function. This paper proposes a step
forward, by unfolding the phonon number over the coherence
times and rewriting the autocorrelation function of this num-
ber as a combination of coherence time dependent correlation
functions.

Beyond the here investigated phonon propagation, the
wavelike behavior of phonons should also be critical in the
treatment of surface phonon scattering and propagation in
nanostructures, superlattices, and interfaces. Uncovering here
the unexpected content of thermal phonon excitations leads to
new perspectives in the understanding of thermal coherence
and the essence of a blackbody in nanostructures as well as in
bulk materials.
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APPENDIX A: VALIDATION OF WAVELET TRANSFORM

A benchmark is proposed to illustrate the reliability of the
wavelet transform approach in the study of phonon properties.
Firstly, artificial wave packets are generated with forms based
on Eq. (1) of the main text. As shown in Fig. 6(a), two
artificial wave packets are triggered at times 30 and 80 ps.
Other parameters are set as 1 THz eigenfrequency and 6 ps
FWHM. Usually, the spectral energy density method is used
to study phonon properties, especially phonon lifetime and

FIG. 5. Temperature effect on the phonon number density. (a) Time-averaged phonon number density (TAPND) D(ω, τc ) versus coherence
time τ c as a function of temperature for the 0.05M ZA mode. The arrows indicate the shift of the peak towards lower τ c values and a higher
density with increasing temperature. (b) Times’ ratio τ l/τ c versus coherence time τ c as a function of temperature for the 0.05M ZA mode.
The arrow indicates the shift of the ratio τ l/τ c towards lower densities with temperature.
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FIG. 6. Validation of the wavelet transform in the study of phonon properties. (a) Two artificial wave packets generated based on Eq. (1)
with frequency 1 THz and full width at half maximum (FWHM) 6 ps, triggered at times 30 and 80 ps. (b) Spectral energy density (SED) of the
artificial wave packets in (a). (c) Frequency versus evolution time obtained from wavelet transform. (d) Coherence time versus evolution time
obtained from wavelet transform. The inset of (d) is the time-averaged phonon number density (TAPND) versus coherence time. The color bar
indicates the normalized phonon number density.

eigenfrequency [23]. The calculated time in SED, which is
always expressed as the reverse of the SED FWHM, is also the
temporal spreading of the wave packet and thus the lifetime.
By using the SED method, we precisely retrieve the same set
of parameters as those of the artificial wave packets.

By varying frequency and performing the wavelet trans-
form in Eqs. (1) and (2), Fig. 6(c) reports the frequency
versus evolution time for the artificial wave packets. Obvi-
ously, we can accurately obtain the frequency, the creation,
and annihilation times of wave packets from the input infor-
mation. On the other hand, by varying the coherence time in
Eq. (1) and performing the wavelet transform, we can extract
the information of coherence time versus evolution time. As
shown in Fig. 6(c), the obtained mean coherence time agrees
well with the initial set of parameters. Moreover, the inset of
Fig. 6(d) shows the TAPND as a function of coherence time.
Firstly, the peak position at ∼6 ps agrees well with the set
of coherence time in the artificial wave packets. In addition,
the broadening of this peak of 3.9 ps is several orders of
magnitude smaller than the studied coherence time of phonon
wave packets in graphene, indicating a sufficient resolution
in coherence time of the wavelet transform. Therefore it can
be concluded that the wavelet transform can precisely ob-
tain the phonon properties, i.e., eigenfrequency, coherence
time, and also wave-packets creation and annihilation dy-
namics, which agrees well with the commonly used SED
method.

The SED analysis is based on the SMRT approxima-
tion theory, in which phonon decay follows an exponential
function, and also Lorentz function in the frequency space
[16,23]. The SED analysis is always performed by the Fourier
transform with plane-wave basis. Differently, in the wavelet
transform, a Gaussian term is further added to the plane-wave
basis to describe the coherence dimension [see Eq. (1)]. The
treatment can be considered as an expansion of the normal
SMRT approximation to the temporal coherence dimension.
After the expansion, the temporal information of phonon wave
packets can be obtained, including time dependent dynamics
and also the coherence distribution of wave packets as illus-
trated in Fig. 7.

APPENDIX B: OBSERVATIONS IN SILICON

Figure 8 shows that the 0.05M TA mode of bulk silicon dis-
plays a similar TAPND unimodal distribution as in graphene.

APPENDIX C: HEAT FLUX AND TIME DEPENDENT
PHONON NUMBER

In the following, we focus on the harmonic energy flux.
Thus, the simplified energy-flux operator for mode ks is de-
fined as in Ref. [37]:

S = − 1

2V

∑
kk′,ss′

(aks + a†
−ks) × (ak′s′ − a†

−k′s′ )h̄ωksυks, (C1)
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FIG. 7. (a) SED simulation of mode 0.05M ZA. The SED can be fitted by the Lorentz function (solid line), indicating the applying of
SMRT approximation. (b) Wavelet transform results for mode 0.05M ZA.

where aks and a†
ks respectively denote the phonon annihilation

and creation operators. V is the volume of the system, and ωks

and υks are the eigenfrequency and group velocity for mode
ks.

The terms in Eq. (C1) with s 
= s′ contain contributions
from modes with significantly different frequencies. Thus,

FIG. 8. Wavelet transform results in bulk silicon at room tem-
perature. (a) Evolution time (t0) and coherence time (τ c) dependent
phonon number density for the 0.05M TA mode of silicon at room
temperature. (b) Time-averaged phonon number density (TAPND)
as a function of coherence time for the 0.05M TA mode at room
temperature.

their interferences are rapidly oscillating and become negli-
gible after time averaging; accordingly these terms will be
neglected. For the terms s = s′ and k 
= k′, the frequencies
can be close and the resulting interferences can be kept in the
further steps. The corresponding classical version of Eq. (C1)
reads

S = 1

V

∑
kk′,s

pksq
∗
k′sωksυks, (C2)

where pks and qks are the modal momentum and velocity for
mode ks. They can be obtained as

P(xi ) = N−1/2
∑

ks

pksekse
ik·xi ,

Q(xi ) = N−1/2
∑

ks

q∗
ksekse

ik·xi . (C3)

Here, P(xi ) and Q(xi ) are respectively momentum and posi-
tion operators of the ith particle. eks is the eigenvector of mode
ks, and N is the total number of particles.

When introducing the time dependence into the energy
flux, this latter can be expressed as a function of the products
of the modal momentum [pks(t )] and displacement [qk′s(t )]
fluctuations,

S(t ) = 1

V

∑
kk′,s

pks(t )q∗
k′s(t )ωksυks. (C4)

Considering that the phonon population can be quantified
by Nks, the harmonic heat flux reduces to

S = 1

V

∑
ks

Nksh̄ωksυks. (C5)

The time dependent phonon number quantity Nks(t ) can be
obtained as

Nks(t ) = 1

h̄

∑
k′

pks(t )q∗
k′s(t ). (C6)

On this basis, we can study the fluctuations of the phonon
number Nks(t ) from the dynamics of atomic motions.
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Moreover, including phonon-phonon scattering in the de-
cay of normal mode coordinates yields [16]

qk′s(t ) = qk′s(0)e−�k′st−iωk′st , (C7)

where �k′s is the linewidth of the mode k′s corresponding
to phonon-phonon scattering. The term e−iωk′st indicates the
monochromaticity of the eigenmode, while the e−�k′st term
corresponds to the decay of the vibration amplitude. The con-
jugate expression is defined as q∗

k′s(t ) = q∗
k′s(0)e−�k′st+iωk′st .

This type of decay has been verified in inelastic neutron scat-
tering measurements.

Accordingly, we assume that the time dependent modal
momentum is

pks(t ) = pks(0)e−�kst−iωkst . (C8)

Consequently, the dynamic of the phonon number is ob-
tained as

Nks(t ) =
∑

k′
ξkk′se

−γkk′st−i�ωkk′st , (C9)

where the variables in the above equation are ξkk′s =
pks(0)q∗

k′s(0)/h̄, γkk′s = �ks + �k′s, and �ωkk′s = ωks − ωk′s.
It should also be noted that the summation over k′s can be

understood as the interference of k′s and ks plane waves. Dur-
ing the phonon dynamics, the interference between different
plane waves results in the generation of a phonon wave packet.
In addition, we can assume that the frequency ωk′s of the in-
terfering plane waves is in the range of [ωks − ks

2 , ωks + ks
2 ].

Moreover, to shift from a discrete summation to a continuous
one, we also introduce the density of states for mode ωk′s, i.e.,
g(ωk′s). Accordingly, Eq. (C9) can be rewritten in the integral
form as

Nks(t ) ≈
∫ ωks+(ks/2)

ωks−(ks/2)
ξkk′se

−γkk′st−i�ωkk′st g(ωk′s)dωk′s.

(C10)

On the other hand, because the interference occurs when
plane-wave frequencies are close to each other, ξkss′ , γkss′ , and
g(ωk′s) do not change significantly. We can make a further step
from Eq. (C10) as

Nks(t ) ≈ ξ̄kse
−γ̄kst ḡ(ωks)

∫ +ks/2

−ks/2
e−i�ωkk′st d�ωkk′s, (C11)

where ξ̄ks, γ̄ks, and ḡ(ωks) are respectively the averaged prop-
erties over one wave packet. The above integration yields a
sinus cardinal (Sinc) function

Nks(t ) = 2ξ̄kse
−γ̄kst ḡ(ωks)

sin πkst

t
, (C12)

where the variables ξ̄ks, γ̄ks, ḡ(ωks), and ks are the specific
properties of one type of wave packet. The term e−γ̄kst cor-
responds to the time decay of the phonon number, and the
term sin πkst

t indicates the shape of the phonon wave packet.
Compared to a Gaussian shape, the sinus cardinal function
has longer tails at the both ends, as shown in Fig. 9. Note
that the time reference t = 0 corresponds to the time of wave-
packet maximum amplitude. This reference will disappear
when deriving the autocorrelation of the phonon number. Nev-
ertheless, the two types of wave packets almost have the same

FIG. 9. The shape of the phonon wave packet. (a) The shape of
the phonon wave packet in the form of a Sinc function, e−iωt sin πt

πt ,
with ω = 10 THz and  = 1 THz. (b) The shape of the phonon wave
packet in the form of a Gaussian function, e−iωt e−A2t2

, with ω = 10
THz and  = 1 THz. The parameter A is set as 1.96 to make the Sinc
and Gaussian functions have equal FWHM.

main amplitude at the center. Most importantly, Eq. (C12) also
provides us with the information that at time t one wave packet
has emerged and is dynamically varying with the properties
ξ̄ks, γ̄ks, ḡ(ωks), and ks.

Because we consider the Gaussian basis in our wavelet
transform method and because the Gaussian form will also be
more tractable in the following, we would like to approximate
the sinus cardinal with a Gaussian one. The principle is to
fit both FWHM which define the temporal coherence. The
resulting approximation reads

Nks(t ) ≈ 4πksξ̄ksḡ(ωks)e−γ̄kst e−4ln22
kst

2
. (C13)

That is, at moment t , the phonon wave packet with fre-
quency ωks possesses inherent γ̄ks (approximately lifetime)
and ks (∼1/coherence time). Equation (C13) models the
apparition of a single wave packet. As illustrated in Fig. 1(c),
a single wave packet indeed appears at a given time. To gener-
alize Eq. (C13) to include the description of all wave packets,
the phonon number shall be rewritten as a sum over all wave
packets, each having their own peak at time t0. However, this
expression reduces back to Eq. (C13) at a given time.

APPENDIX D: ANALYTICAL MODEL FOR
PHONON DECAY

As was discussed in the main text, the phonon dynamics
can be investigated on the basis of the time autocorrelation
of the phonon number. Starting from Eq. (C13), the autocor-
relation function of the phonon wave packet defined by the
physical quantities (γ̄ks,ks) is

〈Nks(t )Nks(0)〉 = [4πksξ̄ksḡ(ωks)]2〈ρks(t )ρks(0)〉, (D1)

where ρks(t ) = e−γ̄kst−4ln22
kst

2
. After several derivation steps,

the normalized autocorrelation function can be obtained as

〈Nks(t )Nks(0)〉
〈Nks(0)Nks(0)〉 = 〈ρks(t )ρks(0)〉

〈ρks(0)ρks(0)〉
= e−(b/2)t2

(1 −
√

1 − e−B2 ), (D2)
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in which B =
√

b
2 (t + a

b ), a = γ̄ks, and b = 4ln22
ks. We use

the following series expansion to simplify the above equation:

1 −
√

1 − e−B2 ≈ 1

2
e−B2 − 1

8
e−2B2 + 1

16
e−3B2 − 5

128
e−4B2

.

(D3)
We now limit the expansion to the first order with 1 −√

1 − e−B2 ≈ 1
2 e−B2

by considering that B > 1 in which the
first-order expansion is accurate. Thus, the normalized auto-
correlation function is simplified as

〈Nks(t )Nks(0)〉
〈Nks(0)Nks(0)〉 ≈ e−(b/2)t2

e−B2 = e−γ̄kst e−4ln22
kst

2
. (D4)

Previously, it has been demonstrated that the linewidth γ̄ks

for mode ks is related to the lifetime τ l
ks as follows:

τ l
ks = 1

2γ̄ks
. (D5)

In this work, we define τ c
ks as the FWHM of the wave

packet. Therefore, by redefining the term e−4ln22
kst

2
, Eq. (D4)

can be rewritten as

〈Nks(t )Nks(0)〉
〈Nks(0)Nks(0)〉 = e−t/2τ l

ks e−4ln2(t2/τ c
ks

2 ). (D6)

In the above equation the exponential part, e−t/2τ l
ks , results

from phonon-phonon scattering. In contrast, the Gaussian
part, e−4ln2(t2/τ c

ks
2 ), corresponds to the effect of plane-wave

interferences and the formation of wave packets with a finite
duration. Considering the unfolding of the phonon number,
the autocorrelation function for mode ks along coherence time
τ c

ks, C(t, τ c
ks), can be inferred as

C
(
t, τ c

ks

) = e−t/2τ l
ks e−4ln2(t2/τ c

ks
2 ). (D7)
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