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Beyond the Fröhlich Hamiltonian: Path-integral treatment of large polarons in anharmonic solids
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The properties of an electron in a typical solid are modified by the interaction with the crystal ions, leading to
the formation of a quasiparticle: the polaron. Such polarons are often described using the Fröhlich Hamiltonian,
which assumes the underlying lattice phonons to be harmonic. However, this approximation is invalid in
several interesting materials, including the recently discovered high-pressure hydrides which superconduct at
temperatures above 200 K. In this paper, we show that Fröhlich theory can be extended to eliminate this problem.
We derive four additional terms in the Fröhlich Hamiltonian to account for anharmonicity up to third order.
We calculate the energy and effective mass of the new polaron, using both perturbation theory and Feynman’s
path-integral formalism. It is shown that the anharmonic terms lead to significant additional trapping of the
electron. The derived Hamiltonian is well suited for analytical calculations, due to its simplicity and since the
number of model parameters is low. Since it is a direct extension of the Fröhlich Hamiltonian, it can readily be
used to investigate the effect of anharmonicity on other polaron properties, such as the optical conductivity and
the formation of bipolarons.
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I. INTRODUCTION

The polaron concept was introduced by Landau [1] and
Pekar [2] to explain the dynamics of an electron interacting
with a crystal lattice. Classically, the electron-phonon interac-
tion can be explained by the electron displacing the ions out
of their equilibrium positions, creating a polarization field that
interacts with the electron. The entire system can be described
as a quasiparticle: the polaron [1]. It is one of the simplest
models describing an impurity interacting with a boson bath,
and thus finds applications in many other fields of physics.
Specific examples include spin polarons [3], magnetic po-
larons [4], exciton polarons [5], and the Bose [6–8] and Fermi
[9] polaron in ultracold gases.

Usually, the harmonic approximation is made when
discussing polarons. One can assume that the lattice poten-
tial around an ion’s equilibrium position is approximately
quadratic, so the restoring forces are linear. This results in
a bath of phonons that do not directly interact with each
other. This approximation is justified in most materials as the
phonon amplitude is usually small. If the electron wave func-
tion extends over many unit cells, the lattice can be viewed
as a continuous field, and the polaron is called “large.” The
Hamiltonian for large polarons in the harmonic approximation
is known as the Fröhlich Hamiltonian; it is one of the simplest
nontrivial Hamiltonians of quantum field theory. Treating the
electron in first quantization and the phonons in second quan-
tization, it reads [10]

Ĥ = Ĥe + Ĥph + Ĥe−ph

= p̂2
el

2m
+
∑

k

h̄ωk

(
b̂†

k b̂k + 1

2

)

+
∑

k

(Vkb̂†
ke−ik·r̂el + V ∗

k b̂keik·r̂el ). (1)

Here, ωk is the phonon dispersion and Vk is the electron-
phonon interaction strength: Both are functions of the phonon
momentum k. The specific form of these functions depends on
the system at hand and can significantly alter the underlying
physics of the problem [11,12]. The operators b̂†

k and b̂k create
and annihilate a phonon with wave number k, respectively. A
defining characteristic of the Fröhlich Hamiltonian is that Ĥph

is quadratic and Ĥe−ph is linear in the phonon operators.
In reality, the lattice potential is not harmonic, which

must be considered when looking at high-pressure hydrides
[13–15]. In the classical picture, since the mass of hydrogen
ions is small, the phonon amplitude will be too large for the
harmonic approximation to apply. Interest in high-pressure
hydrides has been strongly renewed since the discovery of
high-temperature superconductivity in sulfur hydride [16]
(Tc = 203 K), lanthanum hydride [17] (Tc = 260 K), and
carbonaceous sulfur hydride [18] (Tc = 288 K) when these
materials are put under megabar pressures. Similarly, pure
hydrogen has been theoretically predicted to metallize and
superconduct at room temperature under the high pressure
[19–21]. Superconductivity in these materials appears to
be conventional and thus phonon mediated [16]. However,
the harmonic approximation is not applicable [13–15], so
additional “anharmonic” terms must be considered in the
electron-phonon Hamiltonian (1).

Most of the research on anharmonic polarons focuses on
“small” polarons [22–24], where the electron is localized
around a single lattice atom. The most recent, and to our
knowledge only, investigation of the anharmonic terms for
large polarons is due to Kussow [25]. In [25], the dominant
anharmonic term for the Fröhlich Hamiltonian (1) is de-
rived, and the polaron energy is calculated using perturbation
theory in the weak coupling regime. However, the Hamilto-
nian is only useful for qualitative calculations due to several
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assumptions and errors in its derivation. In this paper, we redo
the derivation presented in [25], fixing these errors and includ-
ing the three-phonon terms. Additionally, we will calculate the
polaron energy using Feynman’s path-integral method [26],
allowing us to look at the intermediate coupling and strong
coupling regimes as well. The presented Hamiltonian can be
used to calculate polaron properties in high-pressure hydrides
[16–18], but also in anharmonic semiconductors such as boron
nitride [27] and aluminium nitride [28,29].

The structure of this paper is as follows. We derive addi-
tional anharmonic terms in the Fröhlich Hamiltonian (1) in
Sec. II. In Secs. III and IV, the ground-state energy and effec-
tive mass of a single large anharmonic polaron are calculated,
using perturbation theory in Sec. III and Feynman’s path-
integral method [26] in Sec. IV. We summarize our findings
in Sec. V.

II. THE ANHARMONIC POLARON HAMILTONIAN

A. Derivation

Here, we rederive the Hamiltonian based on the derivations
of Fröhlich [10] and Kussow [25]. We assume the same model
system used in both of these derivations: an ionic, polarizable
lattice with two ions in the primitive unit cell. The masses of
the two ions are denoted with m1 and m2. One or more elec-
trons with band mass m and charge −e are placed in this lattice
at positions rel,i. We assume that electron-phonon coupling is
dominated by the longitudinal optical (LO) phonons, so all
other phonon contributions are neglected. The displacements
of the ions from their equilibrium positions are denoted by r1

and r2, where the position of each ion is measured relative to
its respective equilibrium position. The kinetic energy per unit
volume due to these displacements is given by

Ek = 1

V0

(
1

2
m1ṙ2

1 + 1

2
m2ṙ2

2

)
, (2)

where V0 is the volume of the unit cell. We now switch to
center-of-mass coordinates. The movement of the center of
mass leads to acoustic phonons and can therefore be neglected
[25]. The kinetic energy density can then be written in terms
of only the relative displacement w,

Ek = 1

2
ẇ2, (3)

w :=
√

1

V0

m1m2

m1 + m2
(r2 − r1). (4)

Since we consider large polarons, the lattice can be ap-
proximated by a polarizable continuum. Mathematically, this
means we can treat w = w(r) as a position-dependent vector
field.

Aside from the kinetic energy, the lattice also has an inter-
action energy U per unit volume. This internal energy contains
the interaction energy of the ions, but also a contribution due
to the electric displacement field D, which is solely due to the
electrons. The internal energy is a function of w and D [30],
and satisfies

dU = −ẅ · dw + E · dD. (5)

Here, ẅ is proportional to the force on the atoms and E is the
electric field. Both D = D(r, t ) and E = E(r, t ) are position
and time dependent, just like the relative displacement w(r, t );
however, from now on, we will drop this explicit dependence
and simply write D, E, and w.

Since w = D = 0 corresponds to the equilibrium position
of the lattice, the function Ũ can be expanded in powers of
w and D. The first nontrivial order is an expansion up to
second order, which is the harmonic expansion that will yield
the Fröhlich Hamiltonian (1). In this paper, we consider the
internal energy up to third order. It can be written as

U (w, D) ≈ 1
2γ

(0)
i j wiw j + γ

(1)
i j wiD j + 1

2γ
(2)

i j DiDj

+ 1
6 A(0)

i jl wiw jwl + 1
2 A(1)

i jl wiw jDl + 1
2 A(2)

i jl wiD jDl

+ 1
6 A(3)

i jl DiDjDl , (6)

where the indices i, j, l can take the values in {x, y, z}. We
use the Einstein summation convention of implied summation
over repeated indices throughout the remainder of this article.
Contrary to Kussow [25], we expand the internal energy as a
function of D instead of E. The two methods are equivalent
since the expansion coefficients are related to each other. The
final term is proportional to D3 and is responsible for the
nonlinear optical response of the material. It can be neglected
in most materials, but it will be carried here for completeness.

In this expression, second-order tensors γ
(n)

i j and third-

order tensors A(n)
i jk appear. These tensors can be interpreted as

material parameters: in fact, in Sec. II C, we will show that
γ

(0)
i j , γ

(1)
i j , and γ

(2)
i j can be written in terms of measurable

quantities for a cubic crystal. In general, these parameters can
be calculated using ab initio methods by calculating the mixed
partial derivatives of the internal energy with respect to w and
D. The tensors γ

(0)
i j , γ

(2)
i j , A(0)

i jk , and A(3)
i jk are totally symmetric,

and the tensors A(1)
i jk and A(2)

i jk are symmetric in one pair of their
indices:

A(1)
i jk = A(1)

jik, (7)

A(2)
i jk = A(2)

ik j . (8)

In the most general case, the tensor γ
(1)

i j has no symmetry.
We now introduce N free electrons in the system. We

assume a parabolic energy dispersion with band mass m. Their
kinetic energy takes the standard form,

Eel =
N∑

i=1

p2
el,i

2m
. (9)

We note that this form is only valid for cubic crystals, but
the band mass m can readily be replaced with an effective
inverse mass tensor to account for anisotropy. Integrating the
energy densities (3) and (6) over the crystal volume V and
adding the electron kinetic energy (9), we obtain the classical
Hamiltonian of the system,

H =
N∑

i=1

p2
el,i

2m
+
∫

V

1

2
ẇ · ẇd3r +

∫
V

U (w, D)d3r. (10)

All that remains is to find expressions for the phonon field w
and the electric displacement field D.
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The longitudinal component of the electric displacement
field is only due to the electrons. Its transverse component
is zero [10], since E and the polarization field P are both
longitudinal: This follows from the quasistatic third Maxwell
equation and the fact that we consider longitudinal phonons,
respectively. Therefore, the electric displacement field has an
analytical expression [10],

D(r) =
N∑

i=1

e

4π
∇
(

1

|r − rel,i|
)

. (11)

For future calculations, it will be useful to write the displace-
ment field in Fourier space as follows:

D(r) = − ie

V

∑
k �=0

nk

|k|ρke−ik·r, (12)

where

ρk =
N∑

i=1

eik·rel,i (13)

is the density operator of the electrons, and we also introduced
the symbol nk = k

|k| for the unit vector in the direction of k.
We will write their components as

nk
i = ki

|k| . (14)

These unit vectors will feature often in our calculations and
results.

Up to a proportionality constant, the field w can be inter-
preted as a phonon coordinate. Its conjugate momentum is
simply ∂H

∂ẇ = ẇ. We can quantize w and ẇ using the ladder op-
erators b̂k and b̂†

k , if we can identify the phonon frequencies.
Rather than derive an equation for the polarization density P
as is done in [10,25], we do this by looking at the Hamiltonian
(10) in the case of no electrons: D = 0. Furthermore, we only
look at the harmonic approximation, so we only use the first
line of Eq. (6). The Hamiltonian density then takes the form
of a harmonic oscillator,

H = 1
2 ẇ · ẇ + 1

2 w · γ0 · w, (15)

where the bold γ0 indicates the matrix with components γ
(0)

i j .
Since the matrix γ0 is symmetric, it can be diagonalized. Its
eigenvectors are the eigendirections of the phonons, and its
eigenvalues ω2

i are the squares of the phonon frequencies.
Therefore, if we write γ0 = �2, the matrix � can be used
instead of the phonon frequency in the definition of the ladder
operators.

To find an expression for w and ẇ in terms of the ladder
operators, we introduce an auxiliary field B(r) and its Fourier
transform b̂k after Fröhlich [10],

B(r) = 1

i

√
1

2h̄
�

1
2 [w(r) + i�−1ẇ(r)], (16)

B(r) = 1√
V

∑
k �=0

nkb̂keik·r. (17)

The equations for B(r) and B∗(r) can be inverted to obtain the
following explicit expressions for w and ẇ:

w(r) = −i

√
h̄

2V
�− 1

2

∑
k �=0

nk(b̂†
k + b̂−k )e−ik·r, (18)

ẇ(r) =
√

h̄

2V
�

1
2

∑
k �=0

nk(b̂†
k − b̂−k )e−ik·r. (19)

These expressions will be used to eliminate w in the Hamil-
tonian (10). Classically, b̂k and b̂†

k are the Fourier transforms
of the unknown auxiliary fields B(r) and B∗(r). In order to
quantize the phonon field, we have to impose the canonical
commutation relations,

[w j (r), ẇk (r′)] = ih̄δ jkδ(r − r′). (20)

It can be shown [10] that these canonical commutation re-
lations hold if b̂k and b̂†

k satisfy the bosonic commutation

relations. Therefore, we can interpret b̂†
k and b̂k as the creation

and annihilation operator of the phonon field, respectively. To
complete the quantization, we have to turn rel,i and pel,i into
operators, which obey the usual commutation relations. We
now combine Eq. (6) for the interaction energy density, (10)
for the classical Hamiltonian, (12) for the electric displace-
ment field, and (18) and (19) for w and ẇ in order to find the
quantum mechanical Hamiltonian. The volume integrals are
all of the form ∫

V
eiK·rd3r = V δK,0. (21)

Then, a straightforward calculation gives the following
Hamiltonian:

Ĥ =
N∑

i=1

p̂2
el,i

2m
+
∑

k

h̄ωk

(
b̂†

k b̂k + 1

2

)

+ 1

2

∑
k �=0

V (C)
k ρ̂kρ̂−k +

∑
k �=0

V (F )
k (b̂†

k + b̂−k )ρ̂−k

+
∑

k �=q �=0

V (0)
k,q (b̂†

−k + b̂k )(b̂†
k−q + b̂−k+q )(b̂†

q + b̂−q )

+
∑

k �=q �=0

V (1)
k,q (b̂†

−k + b̂k )(b̂†
q + b̂−q )ρ̂k−q

+
∑

k �=q �=0

V (2)
k,q (b̂†

k−q + b̂−k+q )ρ̂−kρ̂q

+
∑

k �=q �=0

V (3)
k,q ρ̂−kρ̂k−qρ̂q, (22)

where the sums exclude the cases where k = 0, q = 0, and
k = q; this can also be taken into account by requiring that
V (F )

0 = 0, V (n)
k,k = 0, and so on. The phonon frequency ωk is

given by

ωk = nk · � · nk. (23)
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Furthermore, we define � := �− 1
2 = γ

− 1
4

0 and the following
interaction strengths, which have the dimensions of energy
and are analytical functions of k and q:

V (C)
k = e2

V

nk · γ2 · nk

|k|2 , (24)

V (F )
k =

√
h̄e2

2V

nk · (� · γ1) · nk

|k| , (25)

V (0)
k,q = −i

6
√

V

(
h̄

2

) 3
2 [

�ia� jb�lcA(0)
abc

]
nk

i nk−q
j nq

l , (26)

V (1)
k,q = −ieh̄

4V

[
�ia� jbA(1)

abl

]nk
i nq

j n
k−q
l

|k − q| , (27)

V (2)
k,q = −ie2

2V
3
2

√
h̄

2

[
�iaA(2)

a jl

]nk−q
i nk

j n
q
l

|k||q| , (28)

V (3)
k,q = −ie3

6V 2
A(3)

i jl

nk
i nk−q

j nq
l

|k||k − q||q| . (29)

The Hamiltonian given by (22) is a general Hamiltonian for
N large polarons interacting with a boson bath, including
interaction terms up to third order. The first line is the Fröhlich
Hamiltonian (1), extended to include multiple electrons. We
note that the kinetic energy of the electrons can be replaced
by a more general energy band, for example one with an
anisotropic band mass. The other lines are the third-order
anharmonic correction terms to the Hamiltonian. All of the
terms can be visualized using Feynman diagrams, which is
done in Fig. 1.

For coupling to a single LO phonon mode in a crystal
with arbitrary symmetry, the interaction strengths appearing
in this Hamiltonian are given by Eqs. (24)–(29). In order,
these correspond to the Coulomb interaction (24), the Fröh-
lich interaction (25), and the anharmonic processes involving
anywhere from 0 to 3 electrons and phonons (26)–(29). As
expected, the Coulomb interaction strength goes as 1

|k|2 and

the Fröhlich interaction goes as 1
|k| ; however, the proportion-

ality constant can have an angular dependence if the crystal is
not cubic. The functions V (n)

k,q are more complicated, but still

analytical. Expression (27) for the interaction strength V (1)
k,q

does not agree with the result found by Kussow [25]: We will
discuss this difference in Sec. V.

The anharmonic interaction strengths V (n)
k,q are all purely

imaginary. This can be understood by requiring that the
Hamiltonian (22) be Hermitian, which leads to the conditions

V (F )∗
k = V (F )

−k , (30)

V (n)∗
k,q = V (n)

−k,−q. (31)

Since the third-order terms are antisymmetric in k and q, the
imaginary unit is required for a Hermitian Hamiltonian.

The energy density was expanded up to third order, which
means the Hamiltonian (22) is, in principle, unstable if the
phonon displacements become too large. As long as the
phonons are approximately harmonic and the third-order
terms can be seen as correction terms, we do not expect this
situation to occur. Regardless, a stable Hamiltonian can be

FIG. 1. A representation of the different interaction terms (22)
using Feynman diagrams. Solid lines represent electrons and dashed
lines represent phonons. In these diagrams, any phonon line may
have its arrow and momentum reversed to create a new diagram: e.g.,
for the Fröhlich interaction, the electron can also absorb a phonon
with momentum −k. For a single polaron, only the first three inter-
actions must be considered. The three-electron interaction is linked
to the nonlinear optical response and can therefore be neglected in
most materials.

obtained by expanding the interaction energy density (6) up to
fourth or even higher order. Expressions (10), (12), and (18)
can then be used to obtain a Hamiltonian up to arbitrary order.

B. Symmetry constraints

Equation (6) was proposed for an arbitrary crystal.
However, the symmetry of the crystal enforces additional con-
straints onto the tensors γ

(n)
i j and A(n)

i jl in this expression. Here,
we aim to find the simplest possible form of these tensors for
a crystal with cubic symmetry.

Consider a unit cell, centered at r, with a relative displace-
ment w and electric displacement field D. In the continuum
limit, w and D can be considered constant over the entire unit
cell. If a crystal symmetry transformation R is applied to both
w and D, the resulting unit cell is the same as if we had simply
applied R to the entire system. Therefore, it must hold that

U (R · w, R · D) = U (w, D), (32)

for all crystal symmetries R. Note that only the rotational part
of R is relevant: Translations can be neglected since w and D
vary little over the size of one unit cell. Therefore, R can be
represented by a 3 × 3 matrix, and only the point group G of
the crystal must be considered.

Combining Eqs. (6) and (32), the following constraints on
the tensors γ

(n)
i j and A(n)

i jl are obtained:

∀R ∈ G : γ
(n)

i j = RiaR jbγ
(n)

ab , (33)

A(n)
i jk = RiaR jbRkcA(n)

abc. (34)
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In other words, the tensors must be invariant under all lattice
symmetry transformations. It can be immediately verified that
if γ

(n)
i j or A(n)

i jl is invariant under two different lattice transfor-
mations R1 and R2, it is also invariant under R1 · R2.

We apply these equations to two important cases: the case
where the crystal has inversion symmetry and the case of
cubic point groups. The inversion operator can be repre-
sented with the matrix Ri j = −δi j . Therefore, if the crystal
has inversion symmetry, Eq. (34) immediately gives A(n)

i jk = 0.
In this case, all of the third-order anharmonic terms in the
Hamiltonian (22) are identically zero, and the Hamiltonian
reduces to the Fröhlich Hamiltonian. The scope of this article
is therefore limited to crystals without inversion symmetry; to
investigate anharmonicity in symmetric crystals, the internal
energy density (6) must be expanded to fourth order.

To investigate the case of cubic symmetry, we start with
the smallest cubic point group: the symmetry group of a
tetrahedron (denoted in Hermann-Mauguin notation as 23). It
is generated by two elements:

R1 =
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, R2 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠. (35)

Since the entire group can be generated by products of these
elements, it suffices to find tensors γ

(n)
i j and A(n)

i jl that are
invariant under these two elements. For a second-order tensor
γi j , only the unit tensor is invariant under both R1 and R2,

γ
(n)

i j = γnδi j, (36)

and so we obtain the familiar result for cubic crystals. For a
third-order tensor, the calculation can be simplified by noting
that all our third-order tensors must be fully symmetric, since
this is implied by invariance under R2 and either one of the
conditions (7) or (8). Again, only one tensor satisfies all of
the implied constraints, and that is the absolute value of the
Levi-Civita tensor (denoted throughout this article with E),

A(n)
i jl = AnEi jl , (37)

Ei jl =
{

1 if i �= j �= l,
0 otherwise. (38)

This tensor is different from the one used in [25]: We post-
pone the comparison with [25] until Sec. V. The other four
cubic symmetry groups (m3̄, 432, 4̄3m, and m3̄m) can all be
obtained from the group 23 by adding one or more generators.
Therefore, for all cubic crystals, the tensors γ

(n)
i j and A(n)

i jl are
of the form (36) and (37). All of these tensors can be described
with a single scalar parameter, which is of great practical
importance. This scalar parameter can be identically equal
to zero if the symmetry is too high: If the crystal symmetry
group is m3̄, 432, or m3̄m, it holds that An = 0. Therefore,
for the remainder of this article, we will limit ourselves to
crystals whose point group is either 23 or 4̄3m, in addition
to the assumptions made during the derivation in Sec. II A.
The zinc-blende structure is an important example of a crystal
structure that satisfies all of these assumptions.

C. Link to measurable material parameters

In a cubic crystal, the parameters γ0, γ1, and γ2 can be
expressed in terms of three familiar material properties: the
longitudinal optical phonon frequency ω0, the relative dielec-
tric constant ε, and the square of the refractive index ε∞.
To find this correspondence, we start from the total energy
density up to second order, assuming Eq. (33) for a cubic
crystal,

H = 1
2 ẇ · ẇ + 1

2γ0w · w + γ1w · D + 1
2γ2D · D. (39)

If no electrons are present, D = 0 and we immediately obtain

γ0 = ω2
0, (40)

as before. To find γ1 and γ2, we derive the dielectric function
for this system. The electric field can be derived from Eq. (5),
as well as an equation of motion for w,

E = ∂H

∂D
= γ1w + γ2D, (41)

ẅ = −∂H

∂w
= −ω2

0w − γ1D. (42)

We are now interested in the temporal Fourier transforms
D̃(ω) and Ẽ(ω). In Fourier space, the equations of motion
become

Ẽ(ω) = γ1w̃(ω) + γ2D̃(ω), (43)

−ω2w̃(ω) = −ω2
0w̃(ω) − γ1D̃(ω). (44)

Here, w̃(ω) can be eliminated from this equation, yielding a
linear relation between D and E. The proportionality constant
is the dielectric function, which can be written as

ε(ω) = 1

ε0γ2

⎛
⎝ ω2 − ω2

0

ω2 − ω2
0 + γ 2

1
γ2

⎞
⎠, (45)

where ε0 is the vacuum permittivity. This dielectric function
is of the polariton type, where ω0 indeed plays the role of the
longitudinal optical phonon frequency. From the limits ε =
ε(0) and ε∞ = ε(+∞), we obtain

γ1 = ω0

√
1

ε0

(
1

ε∞
− 1

ε

)
, (46)

γ2 = 1

ε0ε∞
. (47)

Equations (40), (46), and (47) allow us to eliminate the pa-
rameters γ0, γ1, and γ2 for cubic crystals, in favor of the
experimentally available parameters ω0, ε, and ε∞.

This procedure also allows us to write the phonon fre-
quency (23) and interaction strengths (24)–(29) in a simpler
form, where the strength of each interaction is characterized
by a single scalar parameter. For example, the Fröhlich inter-
action strength can be written as

V (F )
k = h̄ω0

√
4πα

V

(
h̄

2mω0

)1/4 1

|k| , (48)
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where the dimensionless Fröhlich coupling constant α is de-
fined as

α := 1

2h̄ω0

e2

4πε0

√
2mω0

h̄

(
1

ε∞
− 1

ε

)
. (49)

Both of these correspond to the well-known formulas for a
single Fröhlich polaron [10]. Analogously, four new dimen-
sionless anharmonic coupling constants can be defined. If we
assume the third-order tensors are of the form (37), define the
dimensionless parameters T0, T1, T2, and T3 as follows:

Tn = (2ω0
√

ε0)n

h̄ω0

(
1

ε∞
− 1

ε

)− n
2
(

h̄m

2ω0

) 3
4

An, (50)

and introduce the typical polaron length scale,

ap :=
√

h̄

2mω0
, (51)

then the phonon frequency and interaction strengths for a
cubic crystal can be written in a convenient analytic form,

ωk = ω0, (52)

V (C)
k = e2

V ε0ε∞

1

|k|2 , (53)

V (F )
k = h̄ω0

√
4παap

V

1

|k| , (54)

V (0)
k,q = −i

h̄ω0

6

a
3
2
p√
V

T0 Ei jl n
k
i nk−q

j nq
l , (55)

V (1)
k,q = −i

h̄ω0

2

√
4παa2

p

V
T1 Ei jl

nk
i nk−q

j nq
l

|k − q| , (56)

V (2)
k,q = −i

h̄ω0

2

4παa
5
2
p

V
3
2

T2 Ei jl

nk
i nk−q

j nq
l

|k||q| , (57)

V (3)
k,q = −i

h̄ω0

6

(4πα)
3
2 a3

p

V 2
T3 Ei jl

nk
i nk−q

j nq
l

|k||k − q||q| . (58)

All of these interaction strengths consist of a prefactor that
fixes the units, a dimensionless scalar representing the rel-
ative strength of the interaction, and an analytic function of
k and/or q. Unlike the coupling constant α, the anharmonic
constants T0, T1, T2, and T3 cannot be readily written in terms
of measurable quantities; however, they can still be obtained
from first-principles calculations.

It must be noted that unlike the Coulomb and Fröhlich in-
teractions, the anharmonic interaction strengths are no longer
spherically symmetric. Indeed, they have an angular depen-
dence through the components of the unit vectors nk

i , nk−q
j ,

and nq
l . Despite this, the dependence on k and q is analytic,

making these interaction strengths well suited for further the-
oretical investigations.

For the remainder of this article, we will consider a single
polaron. In this case, the density operator becomes

ρ̂k = eik·r̂el . (59)

The diagrams on the bottom row of Fig. 1 all require more
than one electron since the electron cannot interact with its
own field. Therefore, the three terms in the Hamiltonian cor-
responding to these diagrams drop out, and we obtain the
following simplified Hamiltonian for a single polaron:

Ĥ := Ĥfree + ĤF + Ĥ0 + Ĥ1, (60)

Ĥfree := p̂2
el

2m
+
∑

k

h̄ωk

(
b̂†

k b̂k + 1

2

)
, (61)

ĤF :=
∑
k �=0

V (F )
k (b̂†

k + b̂−k )ρ̂−k, (62)

Ĥ0 :=
∑

k �=q �=0

V (0)
k,q (b̂†

−k + b̂k )(b̂†
k−q + b̂−k+q )(b̂†

q + b̂−q ),

(63)

Ĥ1 :=
∑

k �=q �=0

V (1)
k,q (b̂†

−k + b̂k )(b̂†
q + b̂−q )ρ̂k−q. (64)

This Hamiltonian, along with the interaction strengths (54)–
(56), are the central result of this article. It is the lowest-order
generalization to the Fröhlich Hamiltonian (1), making all
assumptions of its derivation except for the harmonic ap-
proximation. Omitting this approximation gives, to lowest
order, two additional interaction terms. The first term (63)
is a three-phonon interaction term due to the anharmonicity
of the phonons. The second term (64) is an “extended” inter-
action term, similar to the Fröhlich interaction but involving
two phonons. Since the anharmonicity of the phonons can
be included in the phonon frequency through first-principles
calculations [13–15], the extended interaction term is the more
interesting of the two.

III. PERTURBATION THEORY

In this section, we calculate the polaron energy using
perturbation theory, up to first order in α and up to second
order in T0 and T1. The Hamiltonian (62)–(64) can be written
as a sum of four contributions (61)–(64). The first contribu-
tion has known eigenstates and energy eigenvalues, while the

(a)

(c) (d)

(b)

FIG. 2. Diagrammatic representation of the contributions to the
polaron self-energy, at zero temperature, and to first order in α and
second order in T0 and T1. (a) The sunset diagram gives the energy
of the Fröhlich polaron. Diagrams (b)–(d) contain two anharmonic
interactions. Diagram (c) appears with an extra factor 2 since the
order of the interactions can be switched.
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other three terms are interaction terms and can be considered
“small.”

The self-energy contributions are shown in Fig. 2. Full
lines represent the electron Green’s function G0, and dashed
lines correspond to the phonon Green’s function D0. Two

new vertex factors are introduced: 3
√

2V (0)
k,q for the three-

phonon vertex, and
√

2V (1)
k,q for the vertex representing the

absorption/emission of two phonons. We obtain, for the self-
energies of the different diagrams,

�a(k, ω) = i

h̄2

∫ +∞

−∞

dν

2π

∑
q

∣∣V (F )
q

∣∣2G0(k − q, ω − ν)D0(ν), (65)

�b(k, ω) = 2i2

h̄2

∫ +∞

−∞

dνdν ′

(2π )2

∑
q,q′

∣∣V (1)
q′−q,q′

∣∣2G0(k − q, ω − ν)D0(ν − ν ′)D0(ν ′), (66)

�c(k, ω) = 12i2

h̄3

∫ +∞

−∞

dνdν ′

(2π )2

∑
q,q′

V (F )
q V (0)

q,q′V
(1)∗

q′−q,q′G0(k − q, ω − ν)D0(ν)D0(ν − ν ′)D0(ν ′), (67)

�d (k, ω) = 18i2

h̄4

∫ +∞

−∞

dνdν ′

(2π )2

∑
q,q′

∣∣V (F )
q

∣∣2∣∣V (0)
q,q′

∣∣2G0(k − q, ω − ν)D0(ν)2D0(ν − ν ′)D0(ν ′). (68)

Adding all the contributions together and using the explicit forms of the interaction strengths (54)–(56), this self-energy can be
written rather compactly as follows:

�(k, ω) = i

h̄2

∫ +∞

−∞

dν

2π

∑
q

∣∣V (F )
q

∣∣2G0(k− q, ω− ν)

⎧⎨
⎩D0(ν)+ 1

2

∑
q′

∣∣∣∣∣
6V (0)

q,q′

h̄ω0

∣∣∣∣∣
2[T1

T0
− ω0D0(ν)

]2

i
∫ +∞

−∞

dν ′

2π
D0(ν− ν ′)D0(ν ′)

⎫⎬
⎭.

(69)

In the Appendix, we prove that

∑
q′

∣∣∣∣∣
6V (0)

q,q′

h̄ω0

∣∣∣∣∣
2

= 4T 2
0

15Ṽ0
, (70)

where the dimensionless volume of the unit cell is defined by

Ṽ0 = V0

a3
p

. (71)

The remaining integrals are straightforward and are overall very similar to the self-energy integral for the Fröhlich problem.
Introducing the dimensionless variables k̃ = apk and ω̃ = ω/ω0, the final result for the self-energy becomes

�(k̃, ω̃)

ω0
= −α

[
1 + 16T0

45Ṽ0

(
T1 + T0

6

)]1

k̃
arctan

(
k̃√

1 − ω̃ − iδ

)
(72)

−α
2

15Ṽ0

(
T1 − 2T0

3

)2 1

k̃
arctan

(
k̃√

2 − ω̃ − iδ

)
(73)

−α
4T 2

0

45Ṽ0

1

k̃2 + 1 − ω̃

1√
1 − ω̃ − iδ

+ O(α2). (74)

Up to first order in α, the self-energy correction to the dispersion, E = h̄2k2

2m + �(k, h̄k2

2m ), leads to

E (k̃)

h̄ω0
≈ k̃2 − α

[
1 + 16T0

45Ṽ0

(
T1 + T0

6

)]arcsin(k̃)

k̃
+ 2α

15Ṽ0

(
T1 − 2T0

3

)2 arcsin
(

k̃√
2

)
k̃

+ 4αT 2
0

45Ṽ0

1√
1 − k̃2

. (75)

This energy dispersion can be expanded up to second order in k̃ to obtain the ground-state energy and effective mass of the
polaron,

E0

h̄ω0
= −α −

√
2

15

α

Ṽ0

[
T 2

1 + 4(2
√

2 − 1)

3
T0T1 + 2(5

√
2 + 2)

9
T 2

0

]
+ O(α2), (76)

meff

m
= 1 + α

6
+ 1

90
√

2

α

Ṽ0

[
T 2

1 + 4(4
√

2 − 1)

3
T0T1 + 4(11

√
2 + 1)

9
T 2

0

]
+ O(α2). (77)
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(a) (b)

FIG. 3. (a) Ground-state energy and (b) effective mass of the polaron obtained through lowest-order perturbation theory, as a function of
the anharmonic parameters T0 and T1. A typical value of Ṽ0 = 0.1 was used: This corresponds to the dimensionless volume of the zinc-blende
unit cell [31–33].

The first terms in these expressions are the well-known results
for the ground-state energy and effective mass of the Fröhlich
polaron. The remaining terms are the corrections due to the
anharmonic terms (63) and (64). The correction terms are
proportional to α and combinations of squares of the anhar-
monic parameters T0 and T1, in accordance with the results
of [25]. We find a prefactor Ṽ0

−1
from the renormalization of

the integral (70), in contrast to the prefactor Ṽ
− 2

3
0 found by

Kussow [25]. This is because in [25] a different form for V (1)
k,q

is used, as will be discussed in Sec. V.
Figure 3 shows the ground-state energy and effective

mass of the polaron in the small coupling limit α � 1. It
is clear that the three-phonon interaction V (0)

k,q and the two-

phonon emission/absorption amplitude V (1)
k,q can both lower

the ground-state energy and increase the effective mass quite
significantly, even for relatively small values of T0 and T1.

IV. PATH-INTEGRAL TREATMENT

The results from the previous section are useful in the case
of weak coupling (α � 1). However, plenty of polar solids
have stronger electron-phonon coupling. For this case, the
ground-state energy of the polaron can be calculated using
any of several variational methods, including the Lee-Low-
Pines method [34], the Landau-Pekar method [2,35], and the
Feynman path-integral method [26]. The Lee-Low-Pines and
the Landau-Pekar methods both propose coherent phonon
states as their variational ground state, which is inadequate
for the description of the extended Hamiltonian (62)–(64).
Therefore, we will calculate the ground-state energy using the
path-integral method, which treats the phonons exactly and
is known to give good results for the harmonic problem at
all coupling strengths [36,37]. Since only path integrals that
are quadratic in the phonon coordinates can be calculated
exactly, we must limit ourselves to the case where T0 = 0 and
neglect the three-phonon terms; however, these can be treated
separately and included in a renormalized phonon frequency
[13–15].

A. Path integral over the phonons

The path-integral method has recently been applied to the
Bose polaron in ultracold gases [8] where an interaction term

similar to (64) is present; this derivation follows the same
general idea. This part of the derivation is valid for general
functions ωk, V (F )

k , and V (1)
k,q . In the path-integral formalism,

the partition sum Z at finite inverse temperature β can be
written as a quantum statistical path integral over the electron
and phonon coordinates,

Z =
∫

Dr(τ )
∫

Dqk(τ )

× exp

{
−1

h̄

∫ h̄β

0
L[qk(τ ), q̇k(τ ), r(τ ), ṙ(τ )]dτ

}
,

(78)

where the imaginary-time Lagrangian L can be found by writ-
ing Eqs. (18) and (19) in terms of phonon coordinates qk and
q̇k instead of creation and annihilation operators, calculating
the energy density again, and making the substitution t →
−iτ . Introducing an arbitrary phonon mass mph and assuming
V (0)

k,q ≈ 0, the Lagrangian is given by

L[qk(τ ), q̇k(τ ), r(τ ), ṙ(τ )]

= m

2
ṙ2 +

∑
k

mph

2

(
q̇∗

kq̇k + ω2
kq∗

kqk
)

+ Re

[∑
k

√
2mphωk

h̄
V (F )

k ρkqk

]

+ Re

[∑
k,k′

2mph
√

ωkωk′

h̄
V (1)

k,k′ρk−k′qkq∗
k′

]
. (79)

This Lagrangian is quadratic in the phonon coordinates qk(τ ),
so its path integral can be evaluated exactly [8]. This is most
easily done by expanding the phonon and electron coordinates
in a Fourier-Matsubara series,

qk(τ ) =
∑

n

ck,neiωnτ , (80)

ρk(τ ) =
∑

n

fk,neiωnτ , (81)

where the bosonic Matsubara frequencies are given by ωn =
2πn
h̄β

. Then, the coefficients ck,n can be integrated over the
complex plane to perform the path integral. If we consider
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the pair {k, n} to be a single index, this integral will be
a multivariate Gaussian integral, which has a well-known

expression. A straightforward calculation yields that if we
define the “matrix” A and the “vector” B as

Ak,n,k′,n′ = mph

2
(ω2

n + ω2
k )δk,k′δn,n′ + 2mph

√
ωkωk′

h̄
V (1)

k,k′ fk−k′,n−n′ , (82)

Bk,n =
√

2mphωk

h̄
V (F )

k fk,n, (83)

then the path integral over the phonons can be written as follows:∫
Dqk(τ ) exp

{
−1

h̄

∫ h̄β

0
L[qk(τ ), q̇k(τ ), r(τ ), ṙ(τ )]dτ

}
(84)

∼
∫
C

exp

[
−β Re

( ∑
k,k′,n,n′

ck,nAk,n,k′,n′c∗
k′,n′ +

∑
k,n

Bk,nck,n

)]
dck,n (85)

∼ 1√
det(A)

exp

(
mphβ

2h̄2

∑
k,n,k′,n′

√
ωkωk′V (F )∗

k f ∗
k,nA−1

k,n,k′,n′ fk′,n′V (F )
k′

)
. (86)

The determinant in this expression can be rewritten in an exponential form, using det(A) = eTr[ln(A)]. To continue, the inverse and
logarithm of the matrix A must be calculated, which cannot be done in closed form. However, since A is the sum of a diagonal
matrix and an additional small term, we can use the series definitions for the inverse and the logarithm to continue. The prefactor
can be obtained by comparing to the known case [38] where ρk = V (1)

k,k′ = 0. Additionally, expressions (80) and (81) can be used
to convert our expressions back to imaginary time. All of these calculations are fairly straightforward and the final result can be
written in terms of an effective action functional for only the electron,

Z =
(∏

k

1

2 sinh( h̄βωk
2 )

)∫
Dr(τ ) exp

{
−1

h̄
Seff[r(τ )]

}
, (87)

Seff[r(τ )] =
∫ h̄β

0

1

2
mṙ2dτ − h̄

+∞∑
n=0

(−1)nOn[r(τ )] − h̄
+∞∑
n=1

(−1)n

n
Õn[r(τ )]. (88)

Similar to [8], the effective action is written is a series form, and the terms On and Õn represent scattering processes. On and Õn

are both dimensionless functionals of r(τ ) of the nth order in V (1)
k,q , and are given explicitly by the following expressions:

On[r(τ )] := 1

8

(
2

h̄

)n+2 ∑
k1,...,kn+1

∫ h̄β

0
dτ1 · · ·

∫ h̄β

0
dτn+2V

(F )∗
k1

V (1)
k1,k2

· · ·V (1)
kn,kn+1

V (F )
kn+1

× ρ∗
k1

(τ1)ρk1−k2 (τ2) · · · ρkn−kn+1 (τn+1)ρkn+1 (τn+2)Gk1 (τ1 − τ2) · · · Gkn+1 (τn+1 − τn+2), (89)

Õn[r(τ )] := 1

2

(
2

h̄

)n ∑
k1,...,kn

∫ h̄β

0
dτ1 · · ·

∫ h̄β

0
dτnV

(1)
k1,k2

V (1)
k2,k3

· · ·V (1)
kn,k1

× ρk1−k2 (τ1)ρk2−k3 (τ2) · · · ρkn−k1 (τn)Gk1 (τn − τ1)Gk2 (τ1 − τ2) · · · Gkn (τn−1 − τn), (90)

where we define the dimensionless phonon Green’s function as

Gk(τ ) := 2ωk

h̄β

∑
n

eiωnτ

ω2
n + ω2

k

= cosh
[
ωk
( h̄β

2 − |τ |)]
sinh

( h̄βωk
2

) (−h̄β < τ < h̄β ). (91)

Some remarks must be made about the expressions (87) and (88) for the partition sum and the effective action. First, the prefactor
in (87) is simply the partition sum of the free phonon field, which will contribute h̄ωk

2 to the ground-state energy for each phonon
mode. This divergent ground-state energy does not contain the coordinate r(τ ) and can therefore be dropped. A similar statement
can be made about Õ1[r(τ )]. In [8], this term is dubbed the “vacuum polarization term” and is denoted by Õ0 instead of Õ1.
From (90), one can see that it also does not depend on the electron coordinate,

Õ1[r(τ )] = β
∑

k

V (1)
k,k coth

(
h̄βωk

2

)
. (92)

In our case, we have V (1)
k,k = 0, so the term is zero anyway: This means that in expression (88), we can let the second sum start at

n = 2.
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B. Variational principle for the free energy

So far, no approximations have been made other than
V (0)

k,q = 0: The phonons have been treated exactly and the
problem is reduced to the single path integral (87) over the
electron coordinate. This path integral is too complicated to
calculate analytically, even in the harmonic problem. How-
ever, the Jensen-Feynman variational inequality [26,38] can
be used to estimate the free energy F of the problem. Given
any model system with action S0[r(τ )], it holds that F is
bounded by

F � F0 + 1

h̄β
〈S − S0〉, (93)

where F0 is the free energy of the model system, and the
sharp brackets denote an expectation value with respect to
this model system. It is common [8,26,39,40] to use a model
system where the electron is coupled to a fictitious “phonon”
mass M by a spring with spring constant MW 2: The mass M
and the frequency W are variational parameters. This model

system is quadratic in r(τ ), so it is possible to calculate the
required expectation values. The action of this model system
can be written in terms of only the electron coordinate by
tracing out the fictitious phonon coordinate Q(τ ), yielding

S0 =
∫ h̄β

0

m

2
ṙ(τ )2dτ + mW (�2 − W 2)

8

×
∫ h̄β

0

∫ h̄β

0

cosh
[
W
( h̄β

2 − |τ − τ ′|)]
sinh

(W h̄β

2

)
× |r(τ ) − r(τ ′)|2dτdτ ′, (94)

where � := W
√

1 + M
m replaces M as the variational param-

eter.
All the expectation values relevant to this article can be

calculated from the memory function [8,39,40], which is
given by

〈ρ∗
k (τ )ρk(τ ′)〉 := exp

[
− h̄

2m
k2D(τ − τ ′)

]
, (95)

where the function D(τ ) is defined as

D(τ ) := W 2

�2

(
|τ | − |τ |2

h̄β

)
+ 1

�

(
1 − W 2

�2

)
cosh

(
�

h̄β

2

)− cosh
[
�
( h̄β

2 − |τ |)]
sinh

(
�

h̄β

2

) . (96)

From this expectation value, the free energy F0 and the expectation value 〈S0〉 can be evaluated exactly. These quantities only
depend on the model system and not on the effective action (88), and have been calculated before [8,39–41]. Using these in the
Jensen-Feynman inequality (93), the variational upper bound for the polaron free energy can be written as

F � 3

β
ln

(
W

�

sinh
( h̄β�

2

)
sinh

( h̄βW
2

)
)

− 3

4
h̄�

(
1 − W 2

�2

)[
coth

(
h̄β�

2

)
− 2

h̄β�

]
− 1

β

+∞∑
n=0

(−1)n〈On〉 − 1

β

+∞∑
n=2

(−1)n

n
〈Õn〉. (97)

Finally, taking the zero-temperature limit (β → +∞), the following variational principle for the ground-state energy of the
polaron is obtained:

E (0)

h̄ω0
� 3

4ω0

(� − W )2

�
− lim

β→+∞
1

h̄ω0β

+∞∑
n=0

(−1)n〈On〉 − lim
β→+∞

1

h̄ω0β

+∞∑
n=2

(−1)n

n
〈Õn〉. (98)

The problem is reduced to calculating the expectation values
〈On〉 and 〈Õn〉 with respect to the model action using Eq. (95).
These expectation values will be functions of the variational
parameters W and �. Once these expectation values are cal-
culated, (98) can be minimized with respect to W and � to
obtain an estimate of the polaron ground-state energy.

C. Calculation of the expectation values

The calculation of the general expectation values 〈On〉 and
〈Õn〉 is a hard problem for the interaction strengths given by
(54) and (56), mostly due to the high-dimensional integrals
that appear. In [8], a random phase approximation is made
that allows analytical resummation of expression (98) if the
interaction strength factorizes as V (1)

k,q ∼ V (F )
k V (F )

q . Since this
is not the case for (56), we will instead consider the case where
T1 is small and calculate only the contributions to the ground-
state energy up to the order of T 2

1 .
First, we note that for the interaction strengths given

by (54)–(56), the odd order expectation values 〈O2n+1〉 and

〈Õ2n+1〉 are zero due to antisymmetry. This means only 〈O0〉,
〈O2〉, and 〈Õ2〉 have to be calculated. 〈O0〉 is the contribution
from the Fröhlich action and can be calculated straightfor-
wardly using (95). Similarly, 〈Õ2〉 can be calculated using (95)
and the result from the Appendix. The results are

〈O0〉 = h̄ω0β
α√
π

∫ h̄β

2

0

G(τ )√
D(τ )
ω0

dτ, (99)

〈Õ2〉 = h̄ω0β
4

15
√

π

αT 2
1

Ṽ0

∫ h̄β

2

0

G(τ )2√
D(τ )
ω0

dτ. (100)

As before, the volume of the unit cell, Ṽ0, appears to renor-
malize the divergent integral (70), so 〈Õ2〉 will be large in the
continuum limit. 〈O2〉 is also of the order of T 2

1 and is quite
difficult to compute, but does not contain this factor Ṽ0 and can
therefore be neglected. With these expectation values, Eq. (98)
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(a) (b)

(c)

FIG. 4. (a) Ground-state energy, (b) radius, and (c) effective mass of the polaron from Feynman’s variational method with T0 = 0 and
Ṽ0 = 0.1. Dashed lines represent the perturbation theory result (76) and (77). Note that the effective mass is plotted on a logarithmic scale.
(a) and (c) also show the result obtained by the diagrammatic Monte Carlo method [37] for the harmonic problem (T1 = 0). This shows the
remarkable accuracy of the Feynman variational method for the ground-state energy at all coupling strengths, but also reveals the inaccuracy
of the effective mass in the intermediate coupling regime.

for the variational upper bound becomes

E0

h̄ω0
� 3

4

(v− w)2

v

− α√
π

∫ +∞

0

e−σ+ 2
15

T 2
1

Ṽ0
e−2σ√

w2

v2 σ + (
1 − w2

v2

)
1−e−vσ

v

dσ, (101)

where w := W
ω0

and v := �
ω0

are the new dimensionless vari-
ational parameters. The result immediately reduces to the
Feynman ground-state energy [26] if T1 = 0. It must be noted
that the variational inequality may no longer hold since several
terms which may be positive were neglected in (98).

The ground-state energy is obtained by numerically mini-
mizing Eq. (101): The result is shown in Fig. 4(a). In the weak
coupling limit α � 1, the ground-state energy is minimized
by v = w [26]: Then (101) reduces to the perturbation theory
result (76) with T0 = 0, as can be seen in Fig. 4(a). Similar to
the perturbation theory result, the ground-state energy is sig-
nificantly lowered by the anharmonic interaction. This effect
is even more dramatic in the strong coupling regime α � 1.

Once the variational parameters v and w are chosen in such
a way that they minimize the ground-state energy, they may be
used to calculated a range of other properties of the polaron.
One of these is the polaron radius, which may be defined in
several different ways. Here, we define it using the average
displacement of the relative coordinate in the model system

[39,40,42],

r0 =
√

〈|r(τ )− Q(τ )|2〉 =
√

h̄

2mω0

3v

v2− w2
coth

(
h̄βω0

2
v

)
.

(102)

Another is the effective mass, which can be estimated
by replacing the memory function (95) by the follow-
ing expression, where u represents the velocity of the
electron [8,26,39,40]:

〈ρ∗
k (τ )ρk(τ ′)〉 := exp

[
− h̄

2m
k2D(τ − τ ′) + ik · u (τ − τ ′)

]
.

(103)

The calculations have to be redone with this form of the
memory function, up to the order of u2. Eventually, the
ground-state energy will gain an extra term of the form
1
2 meffu2, where the prefactor can be interpreted as the effective
mass of the polaron. The resulting expression is

meff

m
= 1 + α

3
√

π

∫ +∞

0

σ 2
(
e−σ + 2

15
T 2

1

Ṽ0
e−2σ

)
[

w2

v2 σ + (
1 − w2

v2

)
1−e−vσ

v

] 3
2

dσ.

(104)

The polaron radius and the effective mass are shown in
Figs. 4(b) and 4(c). Just like the ground-state energy, the
effective mass is significantly increased by T1 in the strong
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coupling regime. As is known from Fröhlich polaron the-
ory, the effective mass increases strongly in the intermediate
coupling regime. When the anharmonic introduction is in-
troduced, this strong increase in the effective mass shifts to
slightly lower values of α.

The introduction of the anharmonic electron-phonon cou-
pling decreases the polaron radius, as can be intuitively
expected. The polaron radius diverges in the weak cou-
pling limit since the polaron becomes free, and is therefore
completely delocalized. This is different from some other
definitions of the polaron radius, where it is interpreted as
the spatial extent of the induced charge density [34,43] and
therefore remains constant as α → 0.

V. DISCUSSION AND CONCLUSIONS

The main result of this paper is the Hamiltonian (60)–(64)
for a single polaron in a cubic crystal with third-order anhar-
monicity. The derivation is presented in such a way that it
can be straightforwardly generalized to the case of multiple
polarons, general crystal symmetries, and higher-order anhar-
monic terms. If cubic symmetry is assumed, the harmonic
interaction strengths and the phonon frequency are isotropic
and reduce to the Fröhlich form, as expected [10]. However,
it is not enough to make the anharmonic interaction strengths
(55)–(58) isotropic, and tensor notation or index notation is
still required despite the cubic symmetry.

Hamiltonians of the form (60)–(64), including the anhar-
monic interactions, can be found in other areas of physics.
A notable example is the Bose polaron Hamiltonian, describ-
ing impurities in ultracold Bose gases under the Bogoliubov
approximation [7,8]. The Hamiltonians only differ in their
different expressions of the interaction strengths V (F )

k , V (0)
k,q ,

and V (1)
k,q .

To obtain the Hamiltonian (60)–(64), we have made several
drastic assumptions: the material must belong to either of the
point groups 23 or 4̄3m, and the primitive unit cell must con-
tain only two atoms. Regardless, III-V semiconductors such
as BN, BP, AlN, and AlP all exist in the zinc-blende structure
and therefore satisfy all of the above assumptions. In addi-
tion, these semiconductors display significant anharmonicity
[27–29] since their ions are relatively light. In any of these
materials, anharmonic polarons corresponding to the Hamilto-
nian (60)–(64) may be experimentally observed, for example
by measuring the midinfrared optical conductivity. The Fröh-
lich electron-phonon coupling (62) gives rise to an absorption
peak around ω ≈ ω0 [44–46]. Since the anharmonic electron-
phonon coupling (64) involves the simultaneous creation of
two phonons [see Fig. 2(b)], it will give rise to a sec-
ondary peak around ω ≈ 2ω0. This secondary peak serves
as a fingerprint for anharmonicity of the form given by (63)
and (64).

The Hamiltonian (60)–(64) for a single polaron contains
two unknown dimensionless material parameters T0 and T1,
which characterize the relative strength of the two anharmonic
interactions. Although T0 can, in theory, be linked to the
Grüneisen constant γLO of the longitudinal optical phonons,
we found no way to directly link T0 and T1 to experimentally
available material parameters. Therefore, even an order of

magnitude estimate of T0 and T1, and any quantitative com-
parison to experiments, is difficult. In addition to this, all
treatments of anharmonic polarons besides that of Kussow
[25] have focused on small polarons [22–24], so any compar-
ison with these results would have to be qualitative anyway.

We based our work on Kussow [25], who also derives a
Hamiltonian of the form (64). Our expression for the inter-
action strength (56) does not match the expression in [25],
for two reasons. First, [25] uses the following form for the
tensor A(1)

i jk :

A(1)
i jl = A1δi jl , where δi jl =

{
1 if i = j = l
0 otherwise, (105)

instead of the correct form (37). Additionally, the final integral
in their derivation (Eq. (40) in [25]) is incorrectly calculated
using Green’s theorem. Despite this, the Hamiltonian in [25]
is still of the correct order of magnitude, so their results
should still be qualitatively correct. Indeed, in [25] it is also
concluded that the ground-state energy is lowered and the
effective mass is increased by the anharmonic interaction, and
that the transition to a small polaron occurs at lower values of
α if the anharmonic interaction is present. These qualitative
results are also seen for the small polaron if an asymmet-
ric on-site potential is used [22]. Interestingly, the effects of
anharmonicity seem to be reversed if a quartic potential is
used [23] instead of a cubic potential. It could be interesting
to see if similar results are found if the internal energy (6)
is expanded up to fourth order and a crystal with inversion
symmetry is considered.

The derived Hamiltonian (22) is well suited for the cal-
culation of further anharmonic large polaron properties since
the interaction strengths are analytical and depend on only
one dimensionless parameter each. In addition, it is a di-
rect generalization of the Fröhlich Hamiltonian, meaning
most theoretical techniques for solving the Fröhlich Hamil-
tonian can be used for this Hamiltonian as well (except,
perhaps, the Lee-Low-Pines and Landau-Pekar methods, as
discussed in Sec. IV). For example, the electron mobility/AC
conductivity/optical response can be calculated semianalyti-
cally using several different methods [45,47,48]. The optical
response is of great significance for high-pressure hydride
and metallic hydrogen experiments [16,17,20,21,49] and can
even be used to determine the superconducting transition [50].
Using this Hamiltonian, it is also possible to investigate bipo-
laron formation [51], which has been proposed as a possible
pairing mechanism for superconductivity. While bipolarons
can only occur at α > 6.8 in the harmonic approximation [51],
the increased electron-phonon interaction energy suggests a
wider stability regime in the anharmonic case. Further calcu-
lations may indicate whether bipolarons can occur for values
of α, T0, and T1 corresponding to a realistic material.
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APPENDIX: INTEGRAL OVER THE ANHARMONIC
INTERACTION STRENGTH

During the calculation of the polaron energy using both
perturbation theory and the path-integral formalism, we
encountered the following sum:

I =
∑

k

∣∣∣∣∣
6V (0)

q,k

h̄ω0

∣∣∣∣∣
2

. (A1)

Unlike the other integrals in this article, the calculation of the
above integral is not quite straightforward and deserves some
further explanation.

The sum can be transformed into an integral using
∑

k →
V

(2π )3

∫
d3k. Then, we can plug in expression (55) for V (0)

q,k to
obtain

I = T 2
0 a3

p

(2π )3

∫ (
Ei jl n

k
i nk−q

j nq
l

)2
d3k, (A2)

where the indices i, j, l are summed over the values {x, y, z}.
First, we note that the integration domain is very large and the
vector q is finite. This allows us to replace nk−q

j by nk
j ,

I = T 2
0 a3

p

(2π )3

∫ (
Ei jl n

k
i nk

j n
q
l

)2
d3k. (A3)

Formally, this can be justified by substituting k → aK for
some large value a: This substitution makes q negligibly small
compared to aK, but otherwise leaves the integral invariant
since naK

i = nK
i . More intuitively, the following argument can

be used: Since the integrand remains finite as |k| → +∞, the
integral will be dominated by the domain in which |k| � |q|,
and in this domain the vector k − q and the vector k approxi-
mately have the same direction.

The volume element d3k can now be written in spherical
coordinates, and the radial and angular integrals can be split:

I = T 2
0 a3

p

(2π )3
Ei jlEabcnq

l nq
c

∫
nk

i nk
j n

k
a nk

bd3k (A4)

= T 2
0 a3

p

(2π )3
Ei jlEabcnq

l nq
c

(∫
k2dk

)

×
[∫ π

0

∫ 2π

0
nin jnanb sin(θ )dθdϕ

]
, (A5)

where n = n(θ, ϕ) is a unit vector in the direction defined by
the angles θ and ϕ. Its components are given by

nx(θ, ϕ) := sin(θ ) cos(ϕ), (A6)

ny(θ, ϕ) := sin(θ ) sin(ϕ), (A7)

nz(θ, ϕ) := cos(θ ). (A8)

The angular integral is a special case of the following integral
identity [52]:∫ π

0

∫ 2π

0
ni1 ni2 . . . ni� sin(θ )dθdϕ

=
{

4π
�+1δ(i1i2δi3i4 . . . δi�−1i� ) (� even)
0 (� odd).

(A9)

Then expression (A5) becomes

I = T 2
0 a3

p

5(2π )3
δ(i jδab)Ei jlEabcnq

l nq
c

(
4π

∫
k2dk

)
. (A10)

The contractions over the indices i, j, a, and b can now be
performed, using the fact that δ(i jδab)Ei jlEabc = 4

3δlc. Then the
integral becomes

I = 4T 2
0 a3

p

15(2π )3
nq · nq

∫
k2dk, (A11)

I = 4T 2
0

15
× a3

p

(2π )3

[
4π

∫
k2dk

]
. (A12)

If we assume k ∈ [0,+∞], the radial integral obviously di-
verges. However, physically, we only expect wave vectors in
the first Brillouin zone to be relevant. Since we work in the
continuum limit, the first Brillouin zone will be large, but not
infinite, and we can use the volume of the first Brillouin zone
as a Debye cutoff for the radial integral over k. The quantity
between square brackets should equal the volume of the first
Brillouin zone, which is equal to (2π )3

V0
, where V0 is the volume

of the unit cell. Therefore, we finally find

I =
∑

k

∣∣∣∣∣
6V (0)

q,k

h̄ω0

∣∣∣∣∣
2

= 4T 2
0

15Ṽ0
, (A13)

where we defined Ṽ0 := V0/a3
p as in Eq. (71). This is the result

we presented in the main text.
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