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Classical model for sub-Planckian thermal diffusivity in complex crystals
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Measurements of thermal diffusivity in several insulators have been shown to reach a Planckian bound on
thermal transport that can be thought of as the limit of validity of semiclassical phonon scattering. Beyond
this regime, the heat transport must be understood in terms of incoherent motion of the atoms under strongly
anharmonic interactions. In this work, we propose a model for heat transport in a strongly anharmonic system
where the thermal diffusivity can be lower than the Planckian thermal diffusivity bound. Similar to the materials
that exhibit thermal diffusivity close to this bound, our scenario involves complex unit cells with incoherent intra-
cell dynamics. We derive a general formalism to compute thermal conductivity in such cases with anharmonic
intra-cell dynamics coupled to nearly harmonic inter-cell coupling. Through direct numerical simulation of the
nonlinear unit-cell motion, we explicitly show that our model allows sub-Planckian thermal diffusivity. We find
that the propagator of the acoustic phonons becomes incoherent throughout most of the Brillouin zone in this
limit. We expect these features to apply to more realistic models of complex insulators showing sub-Planckian
thermal diffusivity, suggesting a multispecies generalization of the thermal diffusivity bound that is similar to
the viscosity bound in fluids.
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I. INTRODUCTION

Despite the diversity of strongly interacting quantum mate-
rials, the low-energy response of such systems is mostly found
to be described by weakly interacting excitations. Paradig-
matic examples of these are the quasiparticles in Fermi liquid
theory or Goldstone bosons such as phonons or magnons [1].
Notable exceptions to this, in the form of so-called incoherent
metals [2,3], have been proposed in the form of non-Fermi liq-
uids [4–7] and Bose metals [8], though definitive experimental
evidence for such phases is lacking. Signatures of incoherent
metals were discovered experimentally in high-Tc supercon-
ductors [9–13], where linear-T resistance appears and persists
beyond the Mott-Ioffe-Regel limit [14] where the mean free
path becomes smaller than the Fermi wavelength. Surpris-
ingly, the linear-T resistance is also observed at apparently
low temperatures [2]. Such a scaling is in direct contradiction
to the T 2 behavior expected from the low-temperature limit
of Boltzmann scattering transport of Fermi-liquid quasipar-
ticles [15] from electron-electron interaction. On the other
hand, if the electrons are assumed to scatter from other
low-energy excitations with a scattering rate τ−1

s , then the
conductivity of a material in the semiclassical approximation
is expected to follow the Drude formula σ ∝ ω2

pτs [3,16],
where ωp is the plasma frequency. The existence of well-
defined quasiparticles, which are the crucial ingredients for
Boltzmann theory, are expected to be meaningful when their
lifetime-induced energy broadening h̄τ−1 is smaller than the
energy of the quasiparticles. Since the typical energy of
quasiparticles is of order kBT , this leads to the suggestion
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of a minimal conductivity σ > ω2
pτP, where τP = kBT/h̄ is

the Planck scattering time [3]. Interestingly, a significant
number of systems presents conductivity near the minimal
limit [2,17–19]. The description of transport in such systems
requires a fully quantum mechanical treatment, which has
inspired significant theoretical effort [20–24].

These ideas have been extended [21] beyond the semiclas-
sical regime to relate more general transport coefficients such
as momentum, charge, and heat diffusion to viscosity bounds
that had been proposed based on holographic methods [25].
A similar instance of universal diffusion bound described by
fundamental physical constants is also discovered in liquid
systems [26–28]. In fact, the heat or thermal diffusion coef-
ficient in incoherent metals, where quasiparticles are absent,
was studied extensively [29–34] and was shown to be related
to the scrambling time [35], which is be bounded by λ−1

L �
2πkBT/h̄ whose form is close to the Planckian time τP. A
complication of measuring thermal diffusion, as was done in
cuprate superconductors in the bad metal regime [36,37], is
that it contains contributions from both phonons and elec-
trons. The thermal diffusivity contributions from electrons and
phonons in materials approaching the Planckian bound are
expected to be described by the form

DP = v2
s τP, (1)

where vs is the sound velocity or the Fermi velocity depend-
ing on the relevant carrier [37]. Accordingly, we restrict our
discussion to crystalline systems with a well-defined sound
velocity in this work. Correlating the thermal diffusion and
charge diffusion measurements leads to the conclusion that
the electron and phonon behave like a soup where both con-
tribute to the thermal transport in an incoherent way [37].
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A simpler testing ground for these ideas is provided by the
thermal diffusion in insulators where the thermal diffusion is
contributed exclusively by phonons. In this case it has been
proposed [38,39] that Eq. (1) provides a lower bound for
thermal diffusivity for temperatures at or above the order of
Debye temperature TD. Interestingly, this bound appears to be
reached for insulators with complex unit cell [38,39]. Such
slow thermal diffusivity has been attributed to be a signature
of quantum chaos [40].

Recently, Mousatov et al. [41] have pointed out that the
diffusivity bound [Eq. (1)] can be understood to be a con-
sequence of the fact that the sound velocity vs is bounded
by the melting velocity vM . This suggests that the thermal
diffusivity in complex oxides where vs approaches vM could
approach the bound in Eq. (1). It is also possible that this
thermal diffusivity bound motivated by the connection [21] to
the viscosity bound is modified for complex insulators. This
is because the viscosity bound has been shown to be lowered
in multicomponent fluids [25].

In this paper, we study the thermal diffusion in a model
of a strongly anharmonic crystal and show that in certain
parameter regimes the thermal diffusivity can drop below the
Planckian bound given in Eq. (1). To simplify the problem,
we will assume that the temperature T of the system is high
enough that the dynamics of the atoms in the crystal can
be approximated as classical. However, Planck’s constant h̄
enters through the requirement that all phonon frequencies
must be below kBT/h̄. The model we consider has a unit
cell with a large number of atoms with very anharmonic in-
teractions that lead to incoherent intra-cell atomic dynamics.
We will show that these modes contribute negligibly to heat
transport while contributing to heat capacity in a way similar
to Einstein phonons [42]. This reduces the thermal diffusivity
of the system. In Sec. II, we will first discuss the complex
phonon system in the context of Boltzmann transport theory
and show that thermal diffusivity must obey the Planckian
bound [Eq. (1)] as long as all phonons are well defined in
the system. In Sec. III, we derive an expression for thermal
diffusivity of lattice systems with strongly anharmonic intra-
cell dynamics connected by weakly anharmonic springs. In
Secs. IV and V, we construct and simulate an example of the
model discussed in Sec. III and demonstrate the breaking of
the Planckian thermal diffusivity.

II. THERMAL DIFFUSION IN THE BOLTZMANN REGIME

The thermal transport of a complex phonon system in the
classical regime is qualitatively captured by the Boltzmann
transport theory in many cases. Under the relaxation time
approximation, the thermal conductivity κ , as derived by
Peierls [43], takes a form similar to that from kinetic theory,

κ = 1

d

∑
�q,λ

C(�q, λ)v2(�q, λ)τ (�q, λ), (2)

where d is the dimension and �q and λ are the wave vector
and mode index, respectively. C is the specific heat per unit
volume, v is the mode velocity, and τ is the relaxation time.
In the classical regime, all normal modes satisfy equiparti-
tion principle. That is, T > h̄ωmax, where ωmax represents the

FIG. 1. (a) Schematics of our cubic lattice. The orange lines
represent nonlinear springs. Each unit cell is composed of free balls
(green circles) of mass m moving within a finite mass M spherical
shell of radius R, as illustrated in (b).

highest phonon frequency in the system, and C(�q, α) can be
approximated by kB/V . In this case, the thermal diffusivity
Dth ≡ κ/

∑
�q,λ C(�q, λ) is given by

Dth = 1

Nd

∑
�q,λ

v2(�q, λ)τ (�q, λ), (3)

where N represents the number of modes.
The central assumption behind the Boltzmann formalism

requires the phonons to be well defined. Therefore, the scatter-
ing rate τ−1 should not exceed the frequency spacing between
different modes. Assuming equal level spacing, this further
imposes a lower bound on τ (�q, λ),

τ (�q, λ) >
N

ωmax(�q)
> NτP, (4)

where the second inequality comes from the classical re-
quirement with ωmax(�q) being the highest optical phonon
frequency with momentum �q. That is, the distribution is classi-
cal equipartition rather than Bose-Einstein distribution; τP ≡
h̄/kBT is the Planckian time. Plugging in Eq. (4) to Eq. (2)
and taking the fastest phonon velocity to be the longitudinal
sound velocity vs, we can deduce a lower bound for thermal
diffusivity within the Boltzmann regime,

Dth >
1

d
v2

s τP ∼ DP. (5)

Therefore, the energy diffusion obtained from Boltzmann
transport of phonon will be bounded by the Planckian diffu-
sivity [21,36,39].

III. THERMAL TRANSPORT WITH INCOHERENT
INTRA-CELL DYNAMICS

To go beyond the Boltzmann regime, we consider a lattice
model with highly nonlinear intra-cell dynamics as illustrated
in Fig. 1(a). The unit cells are coupled to each other through
weakly anharmonic springs acting on an external degrees of
freedom �r = (rx, ry, rz ) to form a 3d lattice. Such a model can
be considered as a more tractable version of atomic motion
in insulators with complex unit cell where thermal diffusivity
close to the Planckian limit has been reported [40], which will
be elaborated in Sec. VI.

184305-2



CLASSICAL MODEL FOR SUB-PLANCKIAN THERMAL … PHYSICAL REVIEW B 103, 184305 (2021)

The spring force on the ith unit cell [circles in Fig. 1(a)] is
written as

�F (i) =
∑

α∈{x,y,z}
�f (i, α) − �f (i − α, α), (6)

where �f (i, α) represents the force from the spring to the α

direction of site i

�f (i, α) = −k(�ri − �ri+α ) + A
∑

u∈{x,y,z}
(ru,i − ru,i+α )2û, (7)

with spring constant k and weak cubic anharmonicity A. Next,
at finite temperature T , we assume the intra-cell dynamics to
be described by the response function χ . That is,

�ri(t ) =
∫

dt ′χ (t − t ′) �fi(t
′), (8)

where �fi represents a force acting on �ri and χ (t ) = 0 for
all t < 0. Note that since the center of mass motion of the
unit cell is decoupled from any intra-cell motion, the acoustic
phonons at long wavelength will not be damped efficiently
by the intra-cell dynamics. This is the reason for having to
introduce A in Eq. (7), which in turn leads to damping of
the acoustic modes. In principle, Eqs. (6)–(8) constitute the
equations of motion for the unit cells and one can determine
the trajectories �ri(t ) by solving them self-consistently.

As mentioned in Sec. II, the Boltzmann formalism does not
apply in regimes with ill-defined phonons such as the case of
strongly anharmonic intra-cell interactions. In this case, one
can instead use the Green-Kubo formula [44] given by

κ = 1

kBT 2

∫ ∞

0
dτ

∑
n

〈qi,α (t )qi+n,α (t + τ )〉, (9)

where qi,α represents the heat flux in the α direction at site i
which can be written as the rate of energy transfer across the
spring connecting sites i and i + α,

qi,α = − �f (i, α) · (�̇ri + �̇ri+α )

2
. (10)

A crucial assumption for the consistency of Eq. (10) is that
the average power absorbed by the spring,

q̃i,α = − �f (i, α) · (�̇ri − �̇ri+α ), (11)

vanishes. This is clearly satisfied by the conservative force in
Eq. (7).

Ultimately, the combination of Eqs. (6)–(8) is a complex
nonlinear system of equations that requires numerical molec-
ular dynamics to solve [45,46]. However, in the limit of weak
anharmonicity, the anharmonic part of the force on a spring,
i.e., �f A(i, α) = A

∑
u (ru,i − ru,i+α )2û can be approximated as

being random and uncorrelated �f A(i, α) ≈ �η(i, α). The mean
value of �η(i, α, t ) contributes to thermal expansion [47] and
can be set to zero by shifting the lattice constants. The vari-
ance of �η will be determined self-consistently by solving the
combination of Eqs. (6)–(8) at finite T (see Appendix B). A
random stochastic driving force in a spring would violate the
vanishing of the average power q̃ absorbed by the spring. This
is remedied by adding a damping term with a coefficient λ

determined by the fluctuation-dissipation theorem as

〈ηu(i, α, t )ηv ( j, β, t ′)〉 = 2λkBT δu,vδi, jδα,βδ(t − t ′), (12)

where u, v ∈ {x, y, z} represents the different components of
the �η. The anharmonic part of the force approximated as the
combination of random and damping terms is written as:

�f A(i, α) ≈ −λ(�̇ri − �̇ri+α ) + �η(i, α, t ). (13)

The above equation, together with Eqs. (7) and (8), are now
linear so that the correlation functions of the position are
Gaussian. The distribution is then completely determined by
the two-point correlation function 〈ru,i(0)rv, j (t )〉, which can
be found by solving Eqs. (6)–(8), (12), and (13) in a self-
consistent way.

Within the Gaussian approximation for the position
distributions, the higher-order correlation functions
in Eq. (9) can be expanded, using Wick’s theorem,
into products of two-point correlation functions, or
particularly, position-position power spectrum, Sxx(�q, ω) ≡∑

j

∫
dτe−i(�q·�ri j−ωτ )〈rx,i(t )rx, j (t + τ )〉 (see Appendix A

for details). According to the fluctuation-dissipation
theorem [48], Sxx(�q, ω) is related to the imaginary part
of the response function by

Sxx(�q, ω) = 2kBT

ω
Im [D(�q, ω)], (14)

where D(�q, ω) is the response function in the frequency-
momentum space defined by

�r(�q, ω) = D(�q, ω) �F (�q, ω). (15)

As shown in Appendix B, the response function D can be
approximated by that of a damped phonon system, which is
written as:

D(�q, ω) = 1

χ−1(ω) + 4(k − iωλ)
∑

u∈{x,y,z} sin2 qu/2
. (16)

The damping coefficient λ, which scales linearly in T (as
derived in the Appendix), is related to the anharmonic force
through the fluctuation-dissipation theorem [48].

IV. SHELL-BALL MODEL FOR UNIT CELL

The response function χ in Eq. (8) is determined by the
structure of the complex unit cell in Fig. 1. In this section, we
consider a specific model for the complex unit cell consisting
of N identical balls with mass m contained in a spherical shell
of radius R with mass M as illustrated in Fig. 1. Within each
shell, the balls act as point masses that do not interact with
each other and move freely until colliding to the shell, which
we assumed to be elastic.

The shell-ball unit cell is studied by direct simulation.
N point masses with a total kinetic energy of 3NkBT/2 are
placed randomly inside a spherical shell of radius R. The shell
velocity is inferred by �vcom = 0. Next, we allow the balls to
collide with the shell following energy and momentum con-
servation between the two. After each collision, the updated
shell velocity as well as the time of collision are recorded.
These data can then be used to calculate the velocity proba-
bility distribution and velocity autocorrelation function. The
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(a) (b)

FIG. 2. (a) The velocity autocorrelation function for N = 40
from simulation with 5 × 106 collisions (red open circles). The blue
dashed line is the inverse Fourier transform of the fit in the momen-
tum space, as shown in (b). (b) Velocity-velocity power spectrum
(red open circles) and rational fit to the data (blue dashed lines).

total number of collisions is up to 5×106 to reach statistical
equilibrium after a warm-up of 105 collisions.

In this work, we will choose units so that kBT = 1 and
m = 1. The radius R is chosen to be 10 which is much larger
than the thermal de Broglie wavelength λth = √

2π/mkBT
and the shell mass M is chosen to be M = m = 1. Figure 2
is the simulation result for N = 40 balls. The red open circles
in Fig. 2(a) show the average over the velocity autocorrela-
tion functions of the shell along x, y, and z relative to the
center of mass. By taking the Fourier transform, we obtain
the velocity-velocity power spectrum as shown in Fig. 2(b).
As expected, there is only one broad peak which locates at
around the collision frequency of a single ball with the shell.
This suggests that the intra-cell motion is mostly incoherent.
To get a functional form for the power spectrum, we perform
a rational-function fit on the data in Fig. 2(b). The resulting
fit and its inverse Fourier transform are plotted as blue dashed
lines in Figs. 2(b) and 2(a), respectively.

As shown in Appendix C, the velocity distribution of the
shell is Gaussian. Therefore, we expect the response of the
shell coordinate �r to external forces to be linear, consis-
tent with Eq. (8). Using fluctuation-dissipation theorem on
S0

xx(ω) = S0
vv (ω)/ω2 and the Kramer-Kronig relation, we can

obtain the imaginary and real parts of the response function
χr (ω) of the relative coordinate �rshell − �rcom,

Im [χr (ω)] = ω

2kBT
S0

xx(ω)

Re [χr (ω)] = 1

π

∫ ∞

−∞
dω′ ω

′Im[χr (ω)]

ω′2 − ω2
. (17)

Taking the center of mass motion into account, the response
function of the shell coordinate to external force is given by

χ (ω) = − 1

(N + 1)ω2
+ N

N + 1
χr (ω). (18)

The real and imaginary parts for χ with N = 40 balls are
shown in Fig. 3 where the divergence at ω → 0 comes from
the contribution of the center of mass motion.

FIG. 3. Real and imaginary parts of the response function χ (ω)
of the shell coordinate to an external force for N = 40 balls.

V. THERMAL DIFFUSIVITY OF THE
SHELL-BALL MODEL

A. Acoustic phonons in the shell-ball model

In the limit of the highly overdamped complex shell-ball
model discussed in Sec. IV, the heat transport turns out to be
dominated by acoustic phonons. From the Boltzmann trans-
port equation, Eq. (2), the transport properties of the acoustic
phonons are determined by their dispersion ω(�q) and damping
rate τ−1(�q). In the limit of weak damping, the acoustic mode
is described by a phonon dispersion relation

ω(�q) =
√

4k
∑

u sin2 qu/2

N + 1
, (19)

with a broadening or inverse lifetime

τ−1(�q) = 2λ
∑

u sin2 qu/2

N + 1
. (20)

Note that the damping is quadratic in the long-wavelength
limit, which is consistent with the Akhiezer’s damping [49].
However, microscopically, we considered the acoustic phonon
to be underdamped, or ωτ > 1. This contrasts the regime for
Akhiezer’s mechanism (ωτ � 1), which is needed for the
viewpoint of static lattice distortion at the time scale of relax-
ation. The choice of k and λ is restricted by the assumptions
of our framework. That is, the acoustic phonon cannot be
overdamped by λ, or τ−1(�q) < ω(�q), and the acoustic phonon
frequency cannot exceed kBT = 1. By substituting Eqs. (19)
and (20) to the constraints above, we get the following condi-
tions for the spring constant k and damping constant λ:

6λ

N + 1
<

√
12k

N + 1
< 1, (21)

where the extreme case of �q = (π, π, π ) is taken.
For our numerical computation, we choose a set of pa-

rameters consistent with the constraint, i.e., k = 2 and λ = 2
for N = 40 balls used in the calculation of chi in Fig. 3. In
Fig. 4(a), we plot the imaginary part of the phonon Green’s
function D(�q, ω) along �q ‖ (1, 1, 1) in frequency-momentum
space. As can be observed in bright color, the phonon Green’s
function exhibits a single coherent mode, while all the other
degrees of freedom are incoherent. A vertical cut along q =
0.8, as indicated by the red dashed line, is shown in Fig. 4(b).
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FIG. 4. (a) Logarithm of the imaginary part (color) of the phonon
Green’s function in the frequency-momentum space for �q ‖ (1, 1, 1),
where a coherent mode is visible. (b) The vertical cut of (a) along
q = 0.8. (c), (d) Blue solid lines: Real and imaginary part of the
poles ωs(q, q, q) along q ‖ (1, 1, 1) that corresponds to the peaks
in (a). Orange dashed lines: The corresponding analytic form from
Eqs. (19) and (20).

Besides the coherent Lorentzian peak, we can observe a broad
background contributed by the incoherent modes around fre-
quencies close to the peak in Fig. 2(b). Next, the real and
imaginary part of the corresponding poles, denoted by ωs,
is shown in Figs. 4(c) and 4(d). First, we confirm that the
frequency and lifetime is in the desired regime by satisfying
|Im [ωs]| < Re [ωs] < 1. Next, they fit to the analytic form in
Eqs. (19) and (20) (orange dashed line) at long wavelength,
where the motion is mostly in phase. This further confirms
that this mode possesses the properties of the sound mode.
In fact, the coherence of sound mode at long wavelength is
expected due to the translational symmetry in our system.

B. Sub-Planckian thermal diffusivity

We are now ready to compute the thermal diffusivity of the
shell-ball model. By plugging in the position-position power
spectrum Sxx(�q, ω) = (2kBT/ω)Im [D(�q, ω)] into Eqs. (9)
and (10), we can obtain the thermal conductivity κ . Next,
according to equipartition principle, the specific heat per
unit cell is 3NkB/2. This gives the thermal diffusivity of
our system Dth = 2κ/3NkB. On the other hand, since a co-
herent sound mode exists, the Planckian thermal diffusivity
DP ≡ v2

s τP is well defined,

DP = k

N + 1
. (22)

For the parameter set considered here (N = 40, k = λ = 2),
the resulting Dth ≈ 8.13 × 10−3, which is below the Planck-
ian bound DP ≈ 4.88 × 10−2. As a result, we have demon-
strated a system with sub-Planckian thermal diffusion.

The mechanism for breaking the Planckian bound here
is quite simple. Thermal diffusivity is defined as Dth =
κ/cv . For an N-degree-of-freedom unit cell, the specific heat
per unit volume scales with N . However, since the phonon
Green’s function shows only one coherent peak [see Fig. 4(b)]
corresponding to the acoustic mode, the optical phonons are
incoherent. This is a direct consequence of the highly nonlin-
ear intra-cell dynamics. Due to the small relaxation time, these
optical modes do not contribute significantly to the thermal
conductivity and we expect the majority of the heat current
to be carried by acoustic phonons. In this case, the thermal
conductivity κ is only related to N implicitly through the
sound velocity κ ∼ vs(N )2. As a result, the scaling of thermal
diffusivity with N is roughly Dth ∼ vs(N )2/N . Therefore, we
expect such scenario could attain Dth/DP that scales with in-
verse the number of balls and sub-Planckian thermal diffusion
will appear in the large-N regime.

VI. DISCUSSION AND CONCLUSIONS

The shell-ball model discussed here may be instructive for
understanding the experimental results on Planckian thermal
diffusion in materials with complex unit cells with a large
number of atoms. In Ref. [40], it has been pointed out that
the insulators, which present thermal diffusivity close to DP,
such as the perovskites, usually exhibit complex unit cells.
On the other hand, the insulators with simple unit cell usu-
ally have much larger value for Dth/DP. This observation
is consistent with our model, where the heat diffusivity is
suppressed by the large cv from the large degrees of freedom
N within each unit cell, while the heat conductivity κ does
not scale linearly with N . Our model, unlike most holographic
models, presents a low-energy spectrum described by the
coherent acoustic phonons. At low temperature, the thermal
energy is carried by these excitations, leading to efficient
heat diffusivity well above the Planckian bound. However,
as we show, higher temperatures spread out the energy to
higher frequency incoherent modes that are not efficiently
transmitted, which results in suppressed heat diffusion be-
low the Planckian bound. At intermediate temperature where
some of the optical phonons are not thermally activated, we
expect quantum behaviors to appear. A similar mechanism
has been suggested in Ref. [40] to account for the appearance
of h̄ in the thermal diffusivity above Debye temperature. In
addition, the intra-cell dynamics in our model is chaotic by
nature due to strong nonlinearity. This can also be connected
to the proposal raised in Ref. [40] that the optical phonons
in the Planckian materials likely exhibit chaotic dynamics.
Finally, the scenario presented above suggests a smaller bound
for thermal diffusivity that is roughly DP/N . This behavior
is consistent with the suppression of the viscosity bound in
multicomponent fluids [25]. Given the degrees of freedom in
the unit cell of the Planckian materials, this is only within one
order of magnitude to the measured Dth. Therefore, we expect
our discussion in Sec. II to be a useful aspect to explain the
Planckian diffusion in experiments.

Recently, Ref. [41] has suggested a diffusion bound based
on the melting temperature. Specifically, the melting temper-
ature TM would give rise to a velocity upper bound vM which
then forces a lower bound to the phonon lifetime by using
l/vM , where l is the phonon mean free path. If we introduce a
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melting temperature TM to our shell-ball lattice, a bound on the
characteristic frequency ω0 = √

k/N + 1 < TM will appear so
that the energy scale from quantum fluctuation on the springs
does not cause the lattice to melt. The appearance of this
bound can affect the Planckian diffusion bound [Eq. (1)] in
two possible ways. First, there will be a bound on the sound
velocity which is given by aω0. However, considering the ratio
Dth/DP, since the sound velocity affects both Dth and DP in
the same way, it does not influence the breaking of Planckian
diffusivity. Second, the bound on ω0 will also set an upper
bound for the phonon frequency ω(�q). To stay in the regime
where the acoustic phonons are well defined, the momentum-
dependent relaxation time τ (�q) will be bounded from below.
Nevertheless, since the melting temperature should be a prop-
erty of the inter-cell bond, such bound on lifetime should not
depend on the internal property of the unit cell. As a result,
the thermal diffusivity should still scale as 1/N as the number
of intra-cell degrees of freedom increases.

The mechanism for sub-Planckian heat diffusivity here
constitutes of large number of uncorrelated phonons that con-
tributes to entropy but not heat transport. It is interesting to
note that these ingredients can also show up in amorphous
solids or glasses. Nevertheless, the disorder in these systems
does not guarantee fast thermalization. Specifically, one can
imagine the appearance of many harmonic modes in a disorder
system that does not relax energy. In contrast, due to the strong
nonlinearity of our system, the energy in a phonon excitation
would relax rapidly to equilibrium. In the regime above the
Ioffe-Regel limit, we believe the breaking of Planckian bound
to be also possible in amorphous solids or glasses following
the mechanism presented in our system. In fact, the possi-
bility of reaching the Planckian bound has been discussed in
Ref. [39]. However, thermal conductivity simulations of such
systems require sophisticated method [50]. The model we
present here utilizes the time scale separation between inter-
cell and intra-cell motion, enabling the perturbative approach.
Therefore, it can be simulated in a straightforward way.

Even though the mechanism for sub-Planckian heat diffu-
sivity here is rather simple in the sense that it arises from an
extra contribution to heat capacity from optical phonons, this
mechanism involves transport of heat without the presence of
well-defined waves. The anharmonic nature of interactions of
the balls in the shell can be viewed as a strongly interacting
(although classical) phonon system which is very inefficient
in carrying the stored entropy. Understanding the temperature
dependence of our results would require us to go to lower
temperatures where some of the higher frequency dynamics
would “freeze” out as the Bose-Einstein distribution replaces
the equipartition theorem. However, this regime is beyond
the validity of our formalism and provides an opportunity for
studying quantum chaotic dynamics. In this case, it becomes
a difficult quantum many-body problem where the present
approach is invalid.
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APPENDIX A: THERMAL CONDUCTIVITY IN TERMS
OF TWO-POINT CORRELATION FUNCTIONS

The Green-Kubo formula for thermal conductivity κ is
written as

κ = 1

kBT 2

∫ ∞

0
dτ

∑
n

〈qi,α (t )qi+n,α (t + τ )〉, (A1)

where qi,α is the heat flux in the α direction at site i

qi,α = − �f (i, α) · (�̇ri + �̇ri+α )

2
. (A2)

As mentioned in the main text, for the spring force �f (i, α), we
use the linearized form,

�f (i, α) = −k(�ri − �ri+α ) − λ(�̇ri − �̇ri+α ) + �η(i, α). (A3)

Due to the isotropy, we can simply pick α = x without loss
of generality. Furthermore, the contributions to κ in Eq. (A1)
from motion in the x, y, z directions are the equal. This enables
us to rewrite κ as

κ = 3

kBT 2

∫ ∞

0
dτ

∑
n

〈
qx

i,x (t )qx
i+n,x (t + τ )

〉
, (A4)

where

qx
i,x = [−k(rx,i − rx,i+x ) − λ(vx,i − vx,i+x ) + ηx(i, x)]

× (vx,i + vx,i+x ), (A5)

with v = ṙ. As discussed in Appendix B, our system shown
linear behavior. By Wick’t theorem, we can simplify quartic
terms in the average to products of two-point correlation func-
tions. Using time-reversal symmetry, the nonvanishing terms
are〈
qx

i,x (t )qx
i+n,x (t + τ )

〉
= k2{[2Cxx(n, τ ) − Cxx(n − x, τ ) − Cxx(n + x, τ )]

× [2Cvv (n, τ ) + Cvv (n − x, τ ) + Cvv (n + x, τ )]

+ [Cxv (n − x, τ ) − Cxv (n + x, τ )]

× [Cvx(n − x, τ ) − Cvx(n + x, τ )]}
+ λ2{[2Cvv (n, τ ) − Cvv (n − x, τ ) − Cvv (n + x, τ )]

× [2Cvv (n, τ ) + Cvv (n − x, τ ) + Cvv (n + x, τ )]

+ [Cvv (n − x, τ ) − Cvv (n + x, τ )]

× [Cvv (n − x, τ ) − Cvv (n + x, τ )]}
+ 2λkBT δn,0δ(τ )[2Cvv (0, 0) + Cvv (−x, 0) + Cvv (x, 0)],

(A6)

where CAB(n, τ ) ≡ 〈Ai(t )Bi+n(t + τ )〉 and the last term cor-
responds to the contribution from η. Substituting Eq. (A6)
into Eq. (A4) and performing a Fourier transform, the thermal
conductivity can be represented as

κ = 12

kBT 2

∫
�q,ω

ω2(k2 + ω2λ2) sin2 qx[Sxx(�q, ω)]2

+6λ

T

∫
�q,ω

ω2(1 + cos2 qx )Sxx(�q, ω), (A7)
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where
∫

�q,ω
≡ ∫ d3q

(2π )3
dω
2π

and the relations Svv = ω2Sxx, Sxv =
iωSxx, and Svx = −iωSxx are applied.

APPENDIX B: EFFECTIVE DAMPING FROM CUBIC
ANHARMONICITY

To work in the regime where the internal force described by
χ is linear, we consider the spring force from thermal fluctu-
ation to be weaker than the force φ from intra-cell dynamics,
that is, k · kBT < 〈φ2〉. In the harmonic limit (A → 0), the
response function in momentum space defined by is given by

D0(�q, ω) = 1

χ−1(ω) + k(�q)
, (B1)

where χ (ω) is the Fourier transform of χ (t ), k(�q) =
4k

∑
u∈{x,y,z} sin2 qu/2 is the spring force in momentum space.

Since the center of mass coordinate of each unit cell is free
from the intra-cell force, there will be well-defined acoustic
phonon peaks in D0 at long wavelength.

From a perturbative picture, the appearance of anharmonic-
ity gives rise to broadening in these coherent peaks through
an effective damping force, −λ

∑
α∈{x,y,z}(2�̇ri − �̇ri+α − �̇ri−α )

on �ri. At finite temperature, the anharmonic force can be
thought of as a driving force on the harmonic oscillator. At
a time scale larger than the correlation time of the anharmonic
force �f A(i, α), one can approximate the anharmonic force by
a stochastic random force �η(t ) with correlation function given
by

〈ηu(t )ηv (t ′)〉 = gδu,vδ(t − t ′), (B2)

where g is the fluctuation strength that is given by the correla-
tion function of �f A(i, α),

g =
∫ ∞

−∞
dτ

〈
f A
u (i, α, t + τ ) f A

u (i, α, t )
〉
0 − 〈

f A
u (i, α, t )

〉2
0,

(B3)

where 〈·〉0 denotes expectation values taken in the harmonic
limit. Due to the isotropy, u can be taken as either the x, y,
or z component of the nonlinear force in Eq. (7). By apply-
ing Wick’s theorem, g can be written in terms of the power
spectrum in the following integral form.

g = 32A2
∫

dω

2π
I (ω)I (−ω),

I (ω) =
∫

d3q

(2π )3

( ∑
u∈{x,y,z}

sin2 qu

2

)
S0,xx(�q, ω). (B4)

The effective damping λ is then given by the
following form according to fluctuation-dissipation

FIG. 5. Velocity probability distribution of the shell coordinate
in different directions for N = 40 obtained from simulation with
5 × 106 collisions. The distribution functions match with each other
and exhibit Gaussian shapes.

theorem [48]:

λ = g

2kBT
. (B5)

Note that since g is quartic in displacements [Eq. (B3)], ac-
cording to the Wick’s theorem and the equipartition principle,
we expect g to scale as T 2. Together with Eq. (B5), the scaling
of damping is λ ∼ T . In the linear response regime, includ-
ing the effect of λ into the D0(�q, ω) gives the full response
function,

D(�q, ω) = 1

D−1
0 (�q, ω) − 4iωλ

∑
u sin2 qu/2

= 1

χ−1(ω) + 4(k − iωλ)
∑

u sin2 qu/2
, (B6)

where u sums over x, y, z.

APPENDIX C: VELOCITY DISTRIBUTION
OF THE SHELL-BALL UNIT CELL

During our simulation, the shell motions between colli-
sions are free. Therefore, within the time interval ti+1 − ti
between the ith and (i + 1)th collisions, the shell velocity �vi =
(vx,i, vy,i, vz,i ) is a constant. In this case, it is straightforward
to define the velocity distribution as

Pα (v) =
∑

i

ti+1 − ti
T

δ(vα,i − v) (C1)

where α ∈ {x, y, z} labels the components of the velocity and
T = t f − t0 is the total time. To get a smooth probability
distribution, we broaden the δ functions by Lorentzians with
width � = 0.5. The result for N = 40, number of collisions =
5 × 106 is shown in Fig. 5. As can be seen, the velocity
distributions in the x, y and z directions match with each
other, indicating that our simulation has reached statistical
equilibrium. More importantly, the Gaussian nature of Pα (v)
validates the application of linear response theorem on the
shell coordinate �ri in the main text.
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