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Loop parametric scattering of cavity polaritons
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Within the framework of the mean-field approximation, a coherently excited two-dimensional system of
weakly repulsive bosons is predicted to show a giant loop scattering when the rotational symmetry is reduced.
The considered process combines (i) the parametric decay of the driven condensate into different k states and
(ii) their massive backscattering owing to spontaneous synchronization of several four-wave mixing channels.
The hybridization of the direct and inverse scattering processes, which are different and thus do not balance
each other, makes the condensate oscillate under constant one-mode excitation. In particular, the amplitude
of a polariton condensate excited by a resonant electromagnetic wave in a uniform polygonal GaAs-based
microcavity is expected to oscillate in the subterahertz frequency domain.
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I. INTRODUCTION

Two-dimensional cavity polaritons are a result of exciton-
photon coupling in layered heterostructures [1–3]. Being
composite bosons, they exhibit two kinds of coherent states,
one of which is similar to Bose-Einstein condensates (BECs)
formed with decreasing temperature [4], whereas the other
appears when a resonant electromagnetic wave excites po-
laritons directly [5]. Both kinds of coherent states are
characterized by a mean-field amplitude ψ (r, t ) obeying a
generalized wave equation

ih̄
∂ψ

∂t
= [E (r,−ih̄∇ ) − iγ + V ψ∗ψ]ψ + f (r, t ) (1)

(spin degrees of freedom are disregarded). If the pumping
force f and decay rate γ are zero, Eq. (1) is reduced to the
Gross-Pitaevskii equation for equilibrium BECs. Similar to
atomic gases, cavity polaritons combine repulsive interaction
(V > 0) and positive mass in the vicinity of the ground-state
level Eg = E (k = 0) [2,3].

Under plane-wave pumping [e.g., f (r, t ) = f̄ ei(kpr−Ept/h̄)],
the condensate has the same wave vector and frequency as
the pump wave, provided that γ > 0 and Ep is not too far
from resonance. The forced oscillation of ψ results in deep
qualitative changes of the Bogolyubov excitation spectrum
Ẽ (k) compared with equilibrium systems [6,7]. In particular,
the excitations around kp = 0 are no longer sonic unless Ep

is equal to Eg + V |ψk = 0( f̄ )|2 for a given pump amplitude
f̄ [8]. Besides, as f̄ and |ψkp ( f̄ )| are increased, the sign of
Im Ẽ may reverse at some k = k′, which means the instability
of the condensate against two-particle scattering (kp, kp) →
(k′, 2kp − k′), often leading to a strong redistribution of po-
laritons in the k space. For instance, the breakup of the
condensate excited with a nonzero kp near the inflection point
of E (|k|) is known to result in macroscopic occupation of
two modes k ≈ 0 and k ≈ 2kp [9–11]. Such processes, which

attracted much interest in the early 2000s, were firstly under-
stood by analogy with optical parametric oscillators (OPOs)
[12,13], in which an external pump beam splits into a pair
of plane waves, conventionally referred to as “signal” and
“idler.” This analogy is not perfect because the polariton OPO
arises through fluctuations [14] and never comes to a state
with only three nonempty wave modes [15–17]. Nevertheless,
the condensate induced by coherent pumping usually remains
the most populated mode that governs all signals and idlers
excited owing to the parametric scattering [18–21].

Here, we report an unusual manifestation of the paramet-
ric scattering, which is expected to occur in wide (tens of
micrometers) and spatially uniform samples of a polygonal
shape. We show that a reduced rotational symmetry leads to
a sort of population inversion such that a number of scat-
tered modes get noticeably stronger than the pumped mode
(kp = 0, Ep > Eg). Consequently, new two-particle interac-
tion processes come into play which are different from the
direct breakup of a pumped condensate into signals and idlers;
furthermore, the pumped mode can itself act as a parametric
signal. By virtue of symmetry, several processes of such kind
synchronize, share the same target state k = 0, and thus yield
a massive backscattering of polaritons. It is important that the
direct and inverse scattering effects do not cancel each other
but constitute a unified loop interaction process. The common
signal of the backscattering arises near the ground-state en-
ergy level Eg rather than at the pump level Ep. As a result,
the pumped mode has two energy peaks, and its amplitude
|ψk = 0| oscillates at frequency ∼ (Ep − Eg)/h̄. At the same
time, several scattered modes with k �= 0 remain nearly steady
and very strong, being thus a dynamical reservoir that feeds
the new condensate.

In what follows, all these phenomena are considered in de-
tail. We begin in Sec. II with describing the feedback between
the externally pumped and scattered polariton modes which is
responsible for their abnormal population. The same feedback
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FIG. 1. (a) One-mode response of a driven condensate; the
dashed line indicates unstable solutions; D = Ep − Eg = 40γ

is the pump detuning from the resonance at kp = 0; f� =√
(γ /V )[(D − γ )2 + γ 2] [22]. (b) Dispersion law, position of the

pumped mode, and scheme of the parametric scattering. The scat-
tering wave number k� ≈ 0.9 μm−1.

mechanism was found earlier in isotropic systems, both infi-
nite [22,23] and strongly confined [24], where it had different
observable manifestations. In Sec. III we demonstrate the
onset of the macroscopic loop interaction in a square cavity.
Finally, in Sec. IV, we summarize the results and compare
them with some recent studies dealing with the dynamical
condensation [25] and self-pulsations in a polariton fluid un-
der coherent driving [26,27].

II. BLOWUP AND ABNORMAL POPULATION
OF SCATTERED MODES

Let us recall several basic facts about an interplay between
the parametric scattering and bistability in a homogeneous and
isotropic polariton system. It is known that the one-mode de-
pendence of |ψkp |2 on | f |2 has an “S”-shaped form [Fig. 1(a)]
as long as D ≡ Ep − E (kp) >

√
3γ [7,28–30]. When |ψkp |

is small, the repulsive interaction of polaritons (V > 0) in-
volves a blueshift of their resonance energy E (kp) + V |ψkp |2
towards the pump level Ep, resulting in a superlinear increase
in |ψkp | as a function of | f | throughout the lower branch of
solutions. On the upper branch, by contrast, the dependence
of |ψkp | on | f | is sublinear, because the effective resonance
energy has exceeded Ep and shifts still farther as | f | increases.
The segment with a negative slope consists of unstable solu-
tions.

Notice that a sizable portion of the lower branch can also
be unstable because of an intermode scattering [30] such as
shown in Fig. 1(b) for the case of kp = 0. The imaginary part
of the energy Ẽ (k) of elementary excitations changes its sign
for some k = k� at a certain threshold point | f | = f�, resulting
in a spontaneous growth of |ψk�

|. Specifically, this occurs
when blueshift V |ψkp |2 exceeds γ , whereas at the end of the
lower branch of one-mode solutions the blueshift would have
reached a much greater value of D/3 in the limit γ /D → 0.
Thus, in the case of small γ , one can estimate k� directly
from an unshifted dispersion law E (k) taking into account
energy and momentum conservation [Fig. 1(b)]. If kp = 0, all
k� lie on a ring-shaped intersection of the renormalized energy
surface Ẽ (k) and pump level E = Ep [22].

Since the scattering threshold f� is less than the bistability
turning point, the question arises of what exactly happens
to the system when the pump amplitude slightly exceeds
f�. Proceeding from certain analogies in laser physics, one
might expect a second-order phase transition with a con-
tinuous amplification of scattered modes upon increasing f ,
which is indeed quite a common behavior of dissipative sys-
tems in which maxk Im Ẽ (k) smoothly changes its sign in
a critical point [31]. However, the answer is different and
counterintuitive: The parametric breakup of the driven mode
is accompanied by a growth rather than decrease of its own
amplitude |ψkp | [22]. This is possible despite the |ψ |4 inter-
action being of the “conservative” kind, because the system
is open. As a result, the total |ψ | grows spontaneously even
at constant | f | until the blueshift cancels the pump detuning.
Such a process shows a hyperbolic time dependence with
a latency period that tends to infinity for | f | → f� + 0 but
otherwise ends up in a singularity point with a very sharp jump
of the field. Analogous scenarios are known as regimes with
blowup ([32]).

The scattering may lead to an unusual state in which
population of scattered modes Is = ∑

k �=kp
|ψk|2 overcomes

Ip = |ψkp |2. When D/γ � 10 and | f | is close to the threshold,
Is can be several times greater than Ip during a short period just
before the jump to the upper branch. In a uniform system, the
growth of Is results in the one-mode instability of the pumped
mode (so that its lower-energy state disappears [22]); thus the
value of Is/Ip cannot be abnormally high for a long time. In
the special case of kp = 0, the parametric scattering turns into
a purely transient process that mediates the jump to the upper
stability branch and, in particular, reduces the corresponding
threshold at the cost of a potentially lengthy latency period.

The key idea of this work is that an abnormally high pop-
ulation of scattered modes (i.e., a sort of population inversion
for the case of parametric scattering) can be stabilized owing
to a reduced symmetry. Let us consider a square quantum well
(mesa) with a side of L ≈ 40 μm and indefinitely high energy
barrier at the boundary. The main parameters are γ = 0.01
meV, D = 0.4 meV, and kp = 0; the exciton-photon detuning
at k = 0 is zero, and thus the polariton mass m is two times
larger than the photon mass mph = εE0/c2, where E0 = 1.5
eV and ε = 12.5 (as in typical GaAs-based microcavities). We
took into account the nonparabolicity of E (k), yet it does not
play a significant role at small D. The interaction constant V
only determines f� ∝ V −1/2 and can be chosen arbitrarily.

Figure 2(a) shows a steady-state dependence of an average
V |ψ |2 on | f |2. Compared with Fig. 1(a), it contains three
rather than two stability branches as well as several isolated
points representing transient solutions. As expected, (i) the
response is linear for | f | → 0, and (ii) the uppermost branch is
characterized by a fully canceled pump detuning (V |ψ |2/D �
1). This branch is reached at a relatively small pump power
| f |2 ≈ 0.5 f 2

� , which is not surprising since the presence of
sharp potential walls involves the Rayleigh scattering into
different k states with Ẽ (k) = Ep; as a result, the polariton
density 〈|ψ |2〉 is higher than in a flat cavity at the same
f unless the system has arrived at the upper branch where
all scattering channels are closed. It is remarkable, however,
that the response becomes nonlinear already at V 〈|ψ |2〉 �
10−2D, i.e., far below the threshold value of V 〈|ψ |2〉. This is
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FIG. 2. (a) Steady-state response to excitation in a square mi-
crocavity mesa. Parameters are indicated in the main text. Circles
represent independent solutions. Intensities |ψ (r, t )|2 are averaged
in space (over the mesa) and time (over 0.1 ns) after a 1-ns-long
period of increasing | f | from zero to a given amplitude and an
extra 2-ns-long period allotted for the establishment of a particular
solution at a fixed | f |. (b) and (c) Explicit spatial dependences for
two solutions.

explained by the fact that the field is strongly inhomogeneous
even inside the mesa and has several short-range areas with
comparatively high |ψ |2. As seen in Fig. 2(b), the maximum
V |ψ |2 equals 0.05D = 2γ , which is twice greater than the
threshold, whereas the average V |ψ |2 is still less than 0.008D.

In turn, the strong inhomogeneity is explained by a re-
duced rotational symmetry, owing to which the Rayleigh
scattering has certain preferred directions matching the sys-
tem geometry. If a square mesa is oriented along the x and y
axes, the preferred k states are (±kR, 0) and (0,±kR), where
kR ≈ √

2mD/h̄. Indeed, the reflection of each of these waves
from a potential wall yields a twin wave with the inverse k,
whereas all other waves would eventually scatter into many
modes and lose coherence. The filling of the geometrically
preferred states reveals itself in the formation of a semiperi-
odic standing-wave pattern whose sharpness appears to be
as high as in Fig. 2(b) even at | f | → 0. Since k� = kR for
kp = 0, the already dominant k states (filled via the Rayleigh
scattering) and the corresponding real-space lattice get ampli-
fied parametrically upon increasing | f |. Thus the onset of the
parametric scattering takes place in a number of small spots
rather than in the whole system at once.

The short-range parametric instability has been studied
earlier by focusing the pump into a 2-μm spot on the sample
[24]. In that case, one could no longer distinguish the pumped
and scattered k states and analyze their interaction in the
spirit of Ref. [22]. Nonetheless, the bistability effect as well
as thresholdlike parametric scattering were observed. It was
found that, in contrast to the case of one-mode excitation, the
onset of the instability does not end up with a jump to the

FIG. 3. Dynamics of the intensities of the pumped [(a) and (b)]
and scattered [(c) and (d)] modes. The pump power | f |2 is linearly
increased in 1 ns from 0 to ∼0.22 f 2

� . (b) and (d) represent an estab-
lished solution on a more detailed time scale.

upper branch in a finite range of pump powers. The blowup
remains unfinished, because the growth of |ψ | at the spot
center makes polaritons more intensively spread out of the
parametrically unstable area, which is equivalent to additional
energy losses. Such a system permanently remains in a state
with many-mode instability; as a result, it exhibits strong
quantum noise and spontaneous pattern formation [24].

The middle branch seen in Fig. 2(a) at 0.2 � | f |2/ f 2
� � 0.5

has a similar nature. The collective states with strong paramet-
ric instability are stabilized on the average owing to additional
losses. Considering the real space, one can say that polaritons
ballistically move from the higher-energy “growth” areas to
the “decay” areas. In the momentum space, the same process
is seen as the scattering into a continuum of highly dissipa-
tive modes. The dominant k states suppress the field at the
places of their negative interference, which makes the system
inhomogeneous and prevents its continuous transition to the
uppermost branch where the field is, by contrast, spatially
uniform [Fig. 2(c)].

In summary, the Rayleigh scattering plays the role of a
precursor to the parametric oscillation transition. As f is
increased, the system becomes parametrically unstable within
a number of spatially isolated areas where the field is the most
strong. The instability results in a discontinuous transition
accompanied by a sharp growth of the total intensity. How-
ever, the system remains strongly inhomogeneous and does
not reach the upper branch of solutions in a wide range of f .

III. MACROSCOPIC LOOP INTERACTION

Let us now turn to a detailed analysis of one character-
istic solution close to the beginning of the middle branch.
Figure 3 explicitly shows the intensities of the pumped (Ip)
and scattered (Is) modes depending on time for | f |2/ f 2

� ≈
0.22. Technically speaking, Ip is summed over kx,y = 0 ±
0.08 μm−1 in order to take account of mode broadening in
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FIG. 4. (a) Scheme of the loop parametric scattering. (b)–(d) The
spectra of the main k states at the stage of regular oscillations.

a confined system, and accordingly, Is is summed over the rest
of the k space.

The pump is turned on slowly (in 1 ns) to illustrate the
onset of the instability. Initially, we have Ip ∝ | f |2 and Is ∝ Ip

(the Rayleigh scattering is linear). The increase in | f | beyond
the parametric threshold leads to a significant increase in Is,
which is typical of the first stage of blowup when much energy
is transferred into the system of scattered modes whereas the
pumped mode is increased only slightly [22]. As we have
argued previously, this process does not involve the entire area
of the mesa, and so the accumulated Is is still insufficient for
triggering a global one-mode instability of k = 0. As a result,
by t ≈ 1.1 ns the system gets locked in a state with Is/Ip � 10.

Since the normal way out of the many-mode instability is
unfeasible, qualitatively new collective phenomena come into
being. In particular, the pumped mode exhibits self-pulsations
whose amplitude rapidly grows in the interval from t ≈ 1.3
ns to 1.7 ns, after which a fairly regular oscillation regime is
established in several hundreds of picoseconds. This effect is
naturally explained by the filling of a new coherent mode with
the same k = kp = 0 but different frequency. The oscillation
period T ≈ 12 ps approximately matches the inverse pump
detuning h/D ≈ 10 ps, which means that the new mode is
located slightly above the ground polariton state.

The emergence of a new coherent polariton state with
k = kp and E < Ep is a very uncommon phenomenon. Being
somewhat analogous to dynamical condensation [25], it is
hardly expected under coherent driving, because such states
cannot be excited via scattering from the pumped mode [33].
If kp = 0, the direct scattering leads only to the states with
Ẽ (k) = Ep, whereas all other two-particle processes are usu-
ally weak and do not reach the threshold of the parametric
amplification. However, the abnormal population of scattered
modes makes some of the indirect interaction channels partic-
ularly strong.

The diagram in Fig. 4(a) represents the interaction process
resulting in the filling of the k = 0 mode near E = Eg. Specif-
ically, each adjacent pair of the geometrically preferred states,
e.g., k1 = (±k�, 0) and k2 = (0,±k�), scatters into (0, 0) and
k1 + k2 = (±k�,±k�), which is consistent with energy con-
servation in the vicinity of the ground state where the polariton

FIG. 5. Typical real-space [(a) and (b)] and momentum-space
[(c) and (d)] field patterns at the stage of regular oscillations for two
time instants separated by 7 ps (approximately half of a period). The
full evolution can be seen in the Supplemental Material [34].

dispersion law is nearly parabolic. The overall scheme com-
prises a number of two-particle interactions; however, each of
the k� states acts as a source in two scattering processes at
once, whereas the k = 0 state occurs as the joint target of all
of them, which necessarily implies phase synchronization of
different interaction channels.

Figures 4(b)–4(d) show the spectra of the main k states
engaged in the loop scattering, which are obtained by the
Fourier transform of ψk(t ) over 2 ns at the stage of regular
oscillations. As expected, the k = 0 state [Fig. 4(b)] has two
peaks at E = Ep and E � Eg whose intensities are nearly the
same, in agreement with the fact that Ip(t ) drops down to zero
at the oscillation minima. The geometrically preferred modes
k = k� [Fig. 4(c)] have, by contrast, only one strong peak at
E = Ep and thus appear to be particularly steady. The “idlers”
with k = √

2k� [Fig. 4(d)] show the peak at E � 2Ep − Eg

whose total intensity (summed over four modes) nearly equals
the intensity of the driven mode at E = Ep. Notice that all
spectral lines are almost unbroadened, which is indicative of
their “parametric” nature and precise synchronization of the
respective k states. The spectra also contain sharp peaks near
(E − Eg)/D = 3, 4, etc. (not shown); however, these peaks
are located far from resonances and have thus comparatively
low amplitudes.

The explicit real- and momentum-space distributions of
|ψ |2 are shown in Fig. 5 for two time instants which are nearly
half a period apart; the corresponding continuous evolution is
displayed in a separate video file [34]. It is seen that all modes
in the k space except k = 0 remain nearly steady. Some of
them are populated significantly; thus each change in ψ0 has
to be accompanied by a redistribution of |ψ (r)| in the real
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space in view of interference. As seen from comparison of
Figs. 5(a) and 5(b), the growth of Ip = |ψ0|2 leads to a shift of
the spatial lattice by nearly half of a period in both directions
so that all maxima approximately turn into minima and vice
versa. Notice as well that the maximum of V |ψ (r, t )|2, which
is attained at the center of Fig. 5(b), is no greater than 0.6D
and, therefore, the upper-branch states are not yet feasible
even at a single point.

It is remarkable that rapid changes in Ip at the regular
stage hardly affect Is, which might seem untypical for a sys-
tem with strong parametric instability of the pumped mode.
The observed steadiness of Is results in a constant rate of
backscattering and, eventually, in a fully regular character
of spatiotemporal oscillations. In its turn, it stems from the
abnormal population: Since the pumped mode gives a com-
paratively small average contribution to the blueshift, Is varies
on the scale of the polariton lifetime τ = h̄/γ that largely
exceeds the oscillation period T � h/D as long as γ � D.
The increase in 〈Ip〉/〈Is〉 would lead to an increased oscil-
lation amplitude of Is and, thus, increased volatility of the
backscattering. As a result, the system experiences a transition
to dynamical chaos. For the series of solutions represented
in Fig. 2(a), this occurs in the last quarter of the middle
branch, where ratio 〈Ip〉/〈Is〉 becomes nearly two times greater
compared with the beginning of the same branch. Analysis of
chaotic solutions is beyond the scope of this paper; we only
notice that chaos makes the transition to the upper branch
partially accidental, so that the two branches overlap within
a finite range of pump powers around 0.5 f 2

� .
Turning back to self-pulsations, notice that the two main

energy peaks of the k = 0 mode (E = Ep and E ≈ Eg) have
equal intensities for most of the middle branch. Specifically,
this is true in the range of f 2 from 0.2 f 2

� (where that branch
begins) to 0.4 f 2

� (where the system experiences the first
period-doubling bifurcation on its way to chaos). The equality
of energy peaks and the corresponding full-scale oscillation of
Ip are indicative of a precise balance of the direct and inverse
scattering processes.

The length of the middle branch depends on the system
size. The necessary condition of the considered phenomena
is a strong inhomogeneity achieved already at | f | → 0 owing
to formation of standing waves. In other words, the geomet-
rically preferred k states must be significantly stronger than
all other modes with k �= 0. This condition is met when the
system size L is comparable to the distance traveled by the
k� polaritons on the scale of their lifetime. When that is the
case, all k states become highly dissipative through multiple
reflections from the potential walls, except for the “preferred”
states which run perpendicular to one of them and form
standing waves (generally speaking, this is true for all regular
polygons of a reasonably small order). Thus an increase in the
Q factor allows one to extend the range of the system sizes
suitable to achieve the abnormal population and macroscopic
loop scattering. The increase in Q also conforms to the other
assumption that γ � D. It is worth noting that a state in
which blueshift V |ψ |2 ∼ D exceeds γ by more than ten times,
with no side effects such as nonlinear losses, seems to be
specific for polaritonic systems with strong exciton-photon
coupling.

IV. DISCUSSION

To date, the parametric scattering of cavity polaritons is of-
ten thought to be just a macroscopic effect of the two-particle
interaction with well-defined “source” and “target” k states.
It was found, however, that for a greater D/γ the parametric
scattering is an essentially collective process that successively
involves many modes with different wave numbers |k| even
when the pump amplitude is arbitrarily close to the threshold
[22,23,33]. The most unstable many-mode states exhibit the
abnormal population of scattered modes. As a rule, they are
transient and only mediate the jump to the upper stability
branch (for kp = 0) or to a well-developed OPO regime with
strong signal and idler modes. The aim of this work was to
find a way to make the abnormal population persistent under
constant driving conditions in a spatially extended polariton
system. We have found it possible in the presence of a reduced
rotational symmetry. The asymmetric (e.g., polygonal) sys-
tems show the macroscopic loop interaction in which several
k states simultaneously act as the “sources” and “targets” of
the parametric scattering.

The considered phase transition is somewhat analogous
to the dynamical condensation [25]. Indeed, when the k �= 0
modes, which are neither pumped nor energetically favored,
acquire an abnormally high intensity, their multiple interac-
tions result in the appearance of a new coherent mode near
the ground-state level. The analogy with BECs or lasers is
imperfect, however, because the new condensate is populated
parametrically—in contrast to Ref. [25], where its formation
has statistical reasons. At the same time, we have found
the “condensation” to be accompanied by an induced syn-
chronization of several backscattering channels, which is a
relatively complex process that lies beyond the scope of plain
two-particle interactions. The greater the polygon order, the
greater the number of highly populated modes that become
synchronized. Calculations show that even a purely circular
shape of the microcavity does not prevent massive backscat-
tering, which in this case proceeds through the spontaneous
breakdown of the ring symmetry and results in chaotic dy-
namics. The statistical and, possibly, quantum aspects of the
synchronized loop scattering have yet to be studied.

The self-pulsation of a polariton fluid under coherent driv-
ing is also a remarkable process that is usually prevented by
the dissipative nature of polaritons combined with their inter-
action being of a purely repulsive kind (as opposed to lasers
[35,36] and systems with self-focusing [37]). Even when the
ground state is split into two spin or Josephson sublevels, both
components of the condensate have the same “forced” energy
Ep and thus do not oscillate at | f | → 0 as well as | f | → ∞.
However, the combination of the ground-state splitting and
nonlinearity does result in regular or chaotic oscillations in
certain particular cases [26,27,38,39]. When V is nonzero and
the spin splitting significantly exceeds γ , all one-mode states
are forbidden in a finite range of | f |, resulting in chaos, dipolar
networks, chimera states, and spontaneously formed vortices
even for a purely uniform polariton system pumped by a plane
wave [26,40,41]. These phenomena are underlain by a differ-
ent kind of loop scattering that takes place in the presence
of linear coupling of opposite spins [33,42]. By contrast, the
system considered in this paper is effectively scalar, implying
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that all polaritons have just the same spin, which corresponds
to the case of circularly polarized excitation [43–46]. In con-
trast to another recent study, in which the second mode comes
into play owing to size quantization in a micrometer-sized
micropillar [27], our system has a large spatial extent, and the
respective mode splitting is fairly negligible. Thus, the second
condensate appears at k = 0 purely dynamically. Last, we no-
tice that regular oscillations represent only the simplest kind
of evolution, whereas the increase in | f | or a more complex

shape of microcavity result in new collective phenomena that
call for investigation.
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