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Thermophysical properties of liquid molybdenum in the near-critical region using
quantum molecular dynamics
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We present a comprehensive first-principles study of the thermophysical properties of liquid molybdenum in
the near-critical region. The ab initio estimate of the molybdenum critical-point parameters is also provided.
The robustness of our calculations is confirmed by the excellent agreement with available experiments on shock
compression and the successive isentropic expansion of porous samples of molybdenum and several isobaric
expansion experiments. We also analyze important thermodynamic properties such as the isochoric and isobaric
heat capacity, the Grüneisen parameter, and the speed of sound of liquid molybdenum along the critical isobar
up to the critical point.
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I. INTRODUCTION

Knowledge of the physical chemistry of liquid metals is
required for a clear understanding of any liquid-metal process-
ing operation [1]. In addition to the traditional interest in the
high-temperature equations of state (EOSs) of liquid metals in
the fields of metallurgy, astrophysics, planetary physics, con-
trolled thermonuclear fusion research, and engineering, there
are promising new applications emerging related to alternative
power engineering, impulse technologies, and the develop-
ment of new materials, and these new applications require
a better understanding of the thermophysical properties of
liquid metals in the high-temperature domain [2]. Examples
of such new technologies may include the use of hot liquid
metal as an efficient heat transfer fluid in concentrated solar
power systems [3–5], or nanoparticle production by ultrashort
laser ablation of metals in a liquid environment [6–12].

It is not surprising, therefore, that a considerable amount
of effort has been concentrated on the experimental and
theoretical investigation of expanded liquid metals [13–19].
However, despite their scientific and industrial importance,
the properties of metals in a liquid state, with few exceptions,
are still not as widely known as those of crystalline metals
[20]. It is very challenging to obtain accurate and reliable
experimental data on the thermophysical properties of most
metallic liquids since some of them are too chemically re-
active, too refractory, or too scarce [21]. The critical point
at low enough temperature and pressure can be studied with
conventional static techniques for only a few metals (Hg,
Cs, Rb, K, and Na), and even for these, the accuracy of the
measured properties is severely limited by the highly reactive
nature of metals at high temperatures and by the intractable
problems with the control and measurement of temperature
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in any high-temperature–high-pressure experiment. The latter
becomes particularly important in studies close to the critical
point where the analysis of experimental data can easily be
hampered by the presence of spurious effects due to tempera-
ture gradients [22].

Molybdenum is a refractory metal with a normal density of
10.22 g/cm3 that plays an important role in metallurgy being
employed to harden alloys used by aerospace and nuclear
industries. It is also used as a pressure standard for ultrahigh-
pressure static experiments [23–25]. The main difficulty for
the experimental investigation of molybdenum in a liquid state
is of course its high melting temperature (2896 K [26]).

Conventional steady-state or quasi-steady-state experimen-
tal techniques are generally limited to below 2500 K. Progress
in containerless methods of measurements, notably levitation
techniques including acoustic, electromagnetic, aerodynamic,
and electrostatic techniques, allowed us to broaden the ca-
pability of quasistatic methods of measurements to about
3000 K [27,28]. However, the difficulty of handling levitat-
ing liquid samples, arising oscillations, and high-temperature
luminescence may result in substantial uncertainties in density
measurements [29,30].

Dynamic methods of resistive pulse self-heating associated
with 104–1010 K/s heating rates enable us to study both solid
and liquid states of metals and alloys up to 104 K, i.e., they al-
low us to reach the critical point domain. Thus, measurements
using this technique are the main source of the thermophysical
properties of refractory metals, and molybdenum in particular,
in a liquid state. However, the experimental data may be dif-
ficult to interpret because of the complexity of the underlying
physical phenomena [31–36]. This leads to strong contradic-
tions in the measurement results. For example, the density of
molten molybdenum varies from 9.35 to 9.0 g/cm3 in dy-
namic experiments. The slope of the thermal expansion curve
is also inconsistent [from −0.44 to −0.75 g/(cm3 K)] [37].
It is not surprising, therefore, that there exists an enormous
range of estimates of the critical point—more than twofold
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on temperature (from 8 to 19.7 kK), threefold on density, and
several dozen kilobars on pressure.

Another type of dynamic experiment that allows us to
investigate the near-critical region is isentropic expansion of
shock-compressed substances. The entry of isentropes into the
two-phase liquid-vapor domain is accompanied by vaporiza-
tion, resulting in a change in the slope of the experimental
pressure dependences on the unloading wave velocity [37].
This fact is sometimes used to estimate the boundary of the
two-phase liquid-vapor domain and the critical parameters
[38,39]. The drawback of this method is that typical shock-
wave measurements allow us to determine only pressure,
internal energy, and density. Only a few temperature mea-
surements in shocked metals are available [40], as well as
analogous measurements in release isentropic waves [38].

Thus, the lack of reliable experimental data is the main
problem for constructing a reliable semiempirical multiphase
EOS of molybdenum in the lower-density and moderate-
pressure domain [37]. On the other hand, a theoretical
description of molybdenum in a condensed state is very chal-
lenging as well. Like many transition metals, it has a complex
electronic structure that leads to a variety of unusual physical
effects, such as a positive sign of the Seebeck and Hall coef-
ficient near the ambient conditions, anomalous self-diffusion
behavior near the melting point [41], dynamical stabilization
of the crystal structure at high temperature by anharmonic
effects [42], etc. Moreover, the nature of interatomic interac-
tion in molybdenum must change due to the variation in the
electron density when going from a liquid to a gaseous state
[43]. All of these facts make it virtually impossible to create
an adequate analytic model of the thermophysical properties
of hot expanded molybdenum without taking into account the
influence of electronic structure [44].

Density functional theory (DFT) has now become the pre-
ferred method for electronic structure theory for complex
chemical systems, especially for metals [45]. First-principles
molecular dynamics, also referred to as quantum molecular
dynamics (QMD) or ab initio molecular dynamics, is widely
used nowadays for calculation of the thermophysical prop-
erties of condensed matter, both in crystal and unordered
states. QMD does not rely upon any empirical data except
for fundamental physical constants, so it can be considered
as a reference method for analyzing available experimental
data and obtaining new data for areas in the phase diagram
for which experimental data are unavailable. QMD has al-
ready been successfully implemented for the description of
thermodynamical and transport properties of hot expanded
aluminum [46], boron [47], nickel [48], calculation of the
phase diagram of tantalum [49], and estimation of the critical
point of tungsten [50]. An extensive ab initio study on the
thermoelectric transport properties of solid and liquid molyb-
denum was recently presented by French and Mattsson [51].

In this work, we present a comprehensive first-principles
study of the thermophysical properties of liquid molybdenum
in the near-critical region. Available experimental data on the
isentropic expansion of porous samples are also analyzed and
discussed. The critical point of molybdenum is estimated from
QMD data. Some important thermodynamic characteristics
in the liquid phase, such as the isochoric and isobaric heat

capacity, the Grüneisen parameter, and the speed of sound,
are also provided.

II. CALCULATION PARAMETERS

All QMD calculations were carried out within the density
functional theory (DFT) using a plane-wave basis set, as im-
plemented in the Vienna Ab Initio Simulation Package (VASP)
[52–55]. The electron wave functions were expanded by plane
waves with an energy cutoff of 400 eV.

The Perdew-Burke-Ernzerhof (PBE) form of the general-
ized gradient approximation (GGA) was chosen to describe
exchange-correlation (XC) effects [56,57]. The electron-ion
interaction was treated using the projector augmented wave
(PAW) method [58,59] with six valence electrons. The thermal
electronic excitations were taken into account by using Fermi-
Dirac smearing. A sufficient number of bands was taken so
that the occupation of the highest band was less the 10−5,
thus up to 1700 orbitals were involved in the near-critical
region calculations. The Baldereschi mean-value [60] k-point
{1/4, 1/4, 1/4} was used for the representation of the Bril-
louin zone. All QMD simulations were done in a canonical
(NV T ) ensemble using the Nosé-Hoover [61] thermostat. The
time step was 2 fs. Each thermodynamic state was typically
simulated within no less than 3000 steps. Convergence of
the thermodynamic quantities for liquid molybdenum on the
number of atoms in the simulation cell was accurately checked
in our previous work [62]. We used 128 atoms in all our
simulations, except for densities 1.5 and 1.25 g/cm3, where
we dropped the number of atoms to 54 but we refined the Bril-
louin zone sampling by using a 2 × 2 × 2 Monkhorst-Pack
k-point mesh.

III. METHODS

A. Interpretation of shock-wave data

For the interpretation of shock-wave experimental data, we
use equilibrium methods that were detailed and successfully
implemented in our previous works [63,64]. The Rankine-
Hugoniot equation is used for the reconstruction of solid and
porous Hugoniots. The Rankine-Hugoniot relation connects
thermodynamic quantities after and before the shock front (the
initial state parameters are denoted by a subscript 0):

H (P, ρ, E ) = E − E0 + 1

2

(
1

ρ
− m

ρ0

)
(P + P0) = 0, (1)

where E is the specific internal energy, P is the pressure, and
ρ is the density. The parameter m = ρ0/ρ00 is the porosity of
a sample that connects the initial density of a porous sample
ρ00 and the reference density of solid molybdenum at the
ambient conditions ρ0. According to the model [65], a heated
solid sample is compressed by a shock wave after the instant
collapse of the pores at the initial value of pressure.

In shock-compression experiments, two kinematic param-
eters are determined: the shock-wave velocity in the sample
(Us) and the mass velocity (up) behind the shock front. To
obtain thermodynamic parameters from Us and up, the laws of
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mass and momentum conservation are used:

P − P0 = ρ0

m
Usup, (2)

ρ = ρ0Us

m(Us − up)
. (3)

The Hugoniots thus calculated determine the parameters at
the initial points of experimental isentropic expansion curves.
To restore an entire release isentrope, several approaches with
different computational costs are valid [64,66]. In this paper,
we use two of them: the method of reshock Hugoniots [64]
and Zel’dovich’s approach [65]. The latter method is the most
useful if many isentropes need to be calculated. To implement
the Zel’dovich’s approach, the dependence of specific internal
energy E on pressure and density is required. Then the follow-
ing ordinary differential equation for the temperature can be
solved with the initial condition TH (VH ) taken at a Hugoniot
curve [67]:

dT

dV

∣∣∣∣
S

= −T

(
∂P

∂E

)
V

. (4)

The derivative (∂E/∂P)V = (∂E/∂T )V /(∂P/∂T )V is recon-
structed globally based on multiple QMD simulations. The
grid of isotherms and isochores is calculated in some region,
and then the functions E (V, T ) and P(V, T ) are interpolated
by a bicubic spline. One can use an integration scheme of
any order with any step on V for the solution of Eq. (4).
The accuracy of the solution can be easily improved by the
refinement of the grid of isotherms and isochores. Earlier we
applied this approach to reconstruct the release isentropes of
tungsten [50], deuterium [68], and aluminum [63].

For comparison with experimental data on isentropic ex-
pansion, we use the relation between up and pressure P in the
form of the Riemann integral [65]:

up = uH +
∫ P

PH

dP

ρ

√(
∂ρ

∂P

)
S

, (5)

where the particle velocity and pressure at the initial state on
a Hugoniot curve are denoted as uH and PH , respectively.

B. Critical point estimate

The liquid-gas critical point parameters are estimated by
the method of successive approach to the critical isotherm; see
Fig. 1(a). We calculate a series of supercritical isotherms with
gradually decreasing temperatures. Since the critical point is
a stationary inflection point on the critical isotherm, we can
analyze the density dependence of the derivative (∂P/∂ρ)T

on each isotherm and define this point according to two con-
ditions: (

∂P

∂ρ

)
T

=
(

∂2P

∂ρ2

)
T

= 0. (6)

We need to note here that a small size and short simulation
time of a QMD system can lead to a significant statistical error
(0.5–1 kbar) of calculated mean pressure [62]. To reduce the
influence of this error while determining the critical point,
we fit the pressure-temperature data on each isochor by a
linear or quadratic function. Supercritical isotherms are then

FIG. 1. Schematic phase diagram in the P-ρ and ρ-T planes:
(a) method of successive approach to the critical isotherm;
(b) method of successive approach to the binodal curve by near-
critical isobars.

interpolated by a cubic polynomial using the fitted isochoric
curves. Thus the parameters of a stationary inflection point
can be determined from the solution of a cubic equation.

The averaged critical point parameters and their standard
errors in turn are estimated with a Monte Carlo method also
referred to as the bootstrap procedure [69]. For each QMD-
calculated point at a given temperature and density, we choose
random pressure according to the normal distribution with the
expectation equal to the calculated pressure and the standard
deviation equal to the statistical error. Then we make again
the polynomial fitting and inflection point determination as
described above. We repeat the whole procedure 3000 times
to get statistical significance. The averaging then gives us the
estimate of the critical point parameters and their error bars.
As the critical isobar is very close to the liquid-gas coexistence
curve, Fig. 1(b), we simultaneously obtain the approximate
location of the liquid branch of the binodal curve.

IV. RESULTS AND DISCUSSION

A. Interpretation of shock-wave experiments

Molybdenum has been widely studied in shock-wave ex-
periments [70–76]. There are, however, only a few adiabatic
release measurements [77,78]. In our simulations, we repro-
duced solid and some porous Hugoniots, as well as one of
the release isentropes corresponding to the unloading of a
shock-compressed solid Mo sample and all available data on
the adiabatic release response of shock-compressed porous
samples with a porosity of m = 2.31.

Figure 2 demonstrates the principal and porous shock
Hugoniots and release isentropes of molybdenum in the P-ρ
diagram. Excellent agreement of the solid QMD Hugoniot
with experimental data is observed. However, the situation
with porous Hugoniots is more complicated. In Fig. 2 it may
be seen that the highest pressure experimental point [70] at
250 GPa for porosity m = 2.31 is not reproduced by our
calculations. The semiempirical multiphase EOS of molyb-
denum by Fortov and Lomonosov (FLEOS) [37] predicts
a steeper slope of the porous Hugoniot m = 2.31 so that
the FLEOS curve turns out to be closer to the experimental
point at 250 GPa than the QMD one. To clarify this issue,
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FIG. 2. Shock Hugoniots and release isentropes of solid and
porous samples of molybdenum with porosity m = 2.31 and 4 in the
P-ρ plane. Shock QMD data are shown as red stars, and QMD release
isentropes are shown as red lines. Empty symbols are experimental
shock-wave measurements [70,73–75,79]. Shock Hugoniots and re-
lease isentropes according to FLEOS are shown by the black dashed
line for reference. The melting region according to FLEOS is shown
by the blue hatched area.

we calculated several Hugoniot points for porosity m = 4 to
check whether it is a systematic overestimation of density of
compressed porous samples or just a single point mismatch.
As can be seen from Fig. 2, experimental points [70] for
this higher porosity are described excellently by our QMD
calculations. Thus we can assume that there is no systematic
deviation between our calculations and experiments [70] for
porous samples.

Three release isentropes were calculated using Eq. (4) with
initial conditions at different shock Hugoniots: for S1 at the
point with uH = 2.7 km/s at the principal Hugoniot, and
for S2 and S3 at the points with uH = 3.31 and 3.97 km/s,
respectively, at the Hugoniot with m = 2.31. Isentropes S2

and S3 are shown in Fig. 2. The first release isentrope S1

was calculated using the method of reshock Hugoniots [64],
while S2 and S3 were calculated by the global reconstruction
as described in Sec. III. The QMD EOS table, which was used
for the global reconstruction, is presented in the supplemental
material [80].

The particle velocity for each isentrope was calculated
using Eq. (5). The comparison with experimental data is
shown in Fig. 3. As can be seen from the figure, our release
isentropic curves are in very good agreement with the exper-
imental data by Zhernokletov et al. [78] and with FLEOS.
However, QMD isentropes S2 and S3 do not reproduce the
kinks in the experimental dependences. A change in slope
of an experimental isentrope may occur due to the partial
evaporation (in the case of entry from the liquid phase), so the
substance is in a nonhomogeneous state at low pressures. It is
believed that the evaporation process is nonequilibrium due to
uneven energy distribution in a hot expanded substance [81].
Another explanation considers the formation of jets caused by

FIG. 3. Shock compression of solid and porous samples of
molybdenum and subsequent expansion into different anvil materials
in the P-up plane; m is the porosity. Experimental points on shock
compression [70–75] are shown as empty symbols. Filled triangles
are release isentrope measurements by Zhernokletov et al. [78].
QMD-calculated Hugoniots and release isentropes are red solid lines
with initial points for isentropes corresponding to the experiments
[78]. The black dashed lines are according to FLEOS.

the reflection of a shock wave at the rough back surface of
a porous sample [82]. The FLEOS isentropes (black dashed
lines in Fig. 3) take into account the effect of equilibrium
evaporation, so that the kinks determine the position of the
binodal curve. The thermodynamics of the slope discontinuity
at the phase boundary is described in detail in early studies
[83,84]. Actually, the experimental kinks were used for the
calibration of FLEOS; the FLEOS release isentropes change
their slope at pressures of 1.67 and 5.48 kbar for S2 and S3,
respectively [37]. Our QMD isentropic curves at low pressure
correspond to the metastable liquid state due to the small size
of the system and the short simulation time, and thus they do
not have kinks.

We also present the temperature-density diagram for
porous Hugoniot m = 2.31 and the corresponding release
isentropes S2 and S3 in Fig. 4. Despite good agreement in
the previous figure, a strong difference between QMD and
FLEOS is observed in the T -ρ plane. Since there are no exper-
imental measurements of temperature in isentropic expansion
experiments, we can only provide a comparison with the EOS.
As can be seen, FLEOS predicts higher temperature in release
waves at the same density as QMD; a possible explanation
for this is that FLEOS gives lower heat capacity values in the
liquid state (see also Sec. IV C). The QMD-predicted critical
isobar is also shown in Fig. 4, and it will be discussed in
detail below. Thus, it is also noticeable that the QMD entry
temperature to the two-phase region for the studied release
isentropes will be lower than the FLEOS one.
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FIG. 4. Shock compression and expansion of porous samples of
molybdenum in the T -ρ plane. Shock QMD data are shown as red
stars, QMD release isentropes are shown as solid red lines, and the
dash-dotted red line is the QMD critical isobar. The dashed and dash-
dotted black lines are according to FLEOS.

B. Investigation of subcritical and supercritical areas

To obtain an accurate ab initio EOS of liquid molybde-
num in the subcritical and supercritical regions, we calculate
a set of isochores in the range of densities from 1.25 to
7 g/cm3. We have previously presented our ab initio EOS
data table for Mo for densities higher than 7.35 g/cm3, and
we have shown that QMD can successfully describe some
pulse heating and electrostatic levitation experiments; see
Ref. [62]. The isochores calculated in this work are shown
in Fig. 5. A drastic change in the slopes and intersections of

FIG. 5. QMD-calculated pressure with respect to temperature
along isochores for liquid molybdenum. Lines are linear and
quadratic polynomial fits for isochores [densities (in g/cm3) are
shown in rectangles]. The solid red line is an approximation of the
Hultgren [85] data with the QMD-estimated critical point at the end.

FIG. 6. QMD-calculated pressure with respect to density for
molybdenum. Circles are QMD data, while dashed lines are cubic
approximations of isotherms calculated from linear approximations
of isochores. The estimate of the critical point with error bars is
shown as the red star.

low-density isochores indicates the presence of the critical
point region. More accurately, this region can be analyzed
from the behavior of supercritical and subcritical isotherms
presented in Fig. 6. We calculated a number of points along
isotherms at densities from 5 to 1.25 g/cm3. Temperatures
from 12.5 kK and below were taken to reveal oscillations on
isotherms in the near-critical region. We strictly ensured that
we have a homogeneous state in all our QMD simulations
at the near-critical conditions. In fact, we detected a loss of
homogeneity and the appearance of a void for temperatures
below 10.5 kK, so we had to restrict our analysis to this
temperature. Calculations detected a critical isotherm in the
vicinity of 11 kK. We performed the polynomial fitting and
inflection point determination using the Monte Carlo simula-
tion described in Sec. III B to obtain smooth isothermal curves
and to estimate the critical parameters and their errors. Thus
we obtained the following parameters of the critical point of
molybdenum: Tc = 10.73 ± 0.12 kK, ρc = 2.3 ± 0.2 g/cm3,
and Pc = 4.6 ± 0.7 kbar. The critical compressibility factor is
Zc = Pcμ/ρRTc = 0.22 ± 0.03, where μ is the molar mass of
molybdenum and R is the universal gas constant. The influ-
ence of simulation parameters on the near-critical isotherms
and critical point is presented in Appendix.

An accurate experimental determination of the critical pa-
rameters of most metals is impossible due to very extreme
conditions [86]. The available critical point estimates for
molybdenum vary from 8 to 20 kK for temperature and from
1.0 to 3.7 g/cm3 for density [15,37,39,87–96]. The lowest
and highest values for temperature are given by the estimates
of Gathers [15] and Kopyshev [97], respectively, and the
equation of state [37] gives the highest critical density. We
have collected available estimates of the critical parameters
for molybdenum in Table I.

Hereafter, the obtained critical pressure Pc = 4.6 kbar is
used for the estimation of the liquid-gas coexistence curve.
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TABLE I. Estimations of the critical parameters of molybdenum.

Authors Tc (kK) ρc (g/cm3) Pc (kbar)

Kopyshev and Medvedev [97] 19.72 25.15
Hess and Schneidenbach [87] 18.766 29.3
Grosse [98] 17.00
Fortov et al. [88] 16.14 3.18 12.63
Young and Alder [89] 14.59 2.61 11.84
Seydel et al. [90] 14.3 3.02 5.68
Khomkin and Shumikhin [91] 12.87 2.8 22.4
Emelyanov et al. [39] 12.5 ± 1 10 ± 1
Martynyuk and Tamanga [99] 11.33 1.37 1.75
Seydel and Fucke [92] 11.15 ± 0.55 2.63 5.46 ± 1.16
Martynyuk [93] 10.78 2.47 6.92
This work 10.73 ± 0.12 2.3 ± 0.2 4.6 ± 0.7
Baikov and Shestak [94] 10.4
Fortov and Lomonosov [37] 10.18 3.69 7.59
Levashov et al. [95] 9.6 1.73 4.32
Gathers [15] 8 2.31 9.7
Young [96] 8 1.02 9.7

The critical isobar was accurately reconstructed using linear
and quadratic polynomial fits of our QMD isochores. It is pre-
sented in Fig. 7. The near-melting region with experimental
isobaric expansion data (IEX) [15,100–106] was discussed
in our previous work [62]. The best polynomial fit for our
critical isobar in the range of temperatures Tm = 2896 � T �
10 730 K = Tc is

T = A1(ρ/ρ0)3 + B1(ρ/ρ0)2 + C1(ρ/ρ0) + D1, (7)

where A1 = −5941.85894, B1 = −10527.01079, C1 =
5701.8218, D1 = 10047.63496, and 0.879 � ρ/ρ0 � 0.227.
We use ρ0 ≡ ρ

QMD
0 = 10.126 g/cm3 in the case of the QMD

data, because the calculated density at normal conditions
differs slightly from the experimental value.

The FLEOS binodal curve is also shown in Fig. 7. The
slope of the binodal and, consequently, FLEOS low-pressure
isobars is flatter than that of the QMD critical isobar. Thus,
FLEOS does not agree with any available IEX data in the
liquid phase. We assume again that this is connected to the
underestimation of the heat capacity of liquid in FLEOS [see
Sec. IV C and Eq. (12) below].

Some critical point estimates are also shown in Fig. 7.
It can be seen that our estimation of the critical point of
molybdenum in the ρ/ρ0-T plane is close to the experi-
mental estimation made by Seydel and Fucke [92] using
submicrosecond resistive pulse heating of wire-shaped metal-
lic samples in a highly incompressible medium; the critical
temperature was calculated on the basis of an equation for the
spinodal derived by Skripov [107]. A very close value of the
critical temperature and density was predicted by Martynyuk
[93] (Tc = 10.78 kK, ρc = 2.47 g/cm3, Pc = 6.92 kbar) from
the analysis of all available experimental data at that time.
It is worth noting that all estimates using the soft-sphere
model [15,95,96] lie in the left-hand region from our value
and underestimate the temperature and density in comparison
with the experiment [39,92,98]. It is also interesting to observe
significant differences in the estimation of the critical point
by the soft-sphere model [96] (Tc = 8 kK, ρc = 1.02 g/cm3,

FIG. 7. Phase diagram of molybdenum at low densities in the
relative density vs temperature diagram. QMD data: orange stars
are the zero-pressure isobar [62]; red line with stars is the 4.6 kbar
critical isobar. The IEX experimental data: microsecond and submi-
crosecond pulse-heating measurements [15,100–104] are shown by
empty symbols, millisecond pulse heating [105] is the dark blue line,
and electrostatic levitation [106] is the light green line. The FLEOS
binodal is the dashed line. Soft sphere prediction of the binodal by
Levashov [95] is the dotted line. Critical point estimates: this work
is the red star; Khomkin [91] (cross), Fortov and Lomonosov [37]
(filled circle), Levashov et al. [95] (filled left triangle), Gathers [15]
(filled triangle), Martynyuk [93] (filled square), Seydel and Kitzel
[90] (asterisk), Seydel and Fucke [92] (filled diamond), Young [96]
(right triangle), Fortov et al. [88] (filled pentagon), and Young and
Alder [89] (filled down-triangle).

Pc = 9.7 kbar) and the hard-sphere van der Waals model
[89] (Tc = 14.59 kK, ρc = 2.61 g/cm3, Pc = 11.84 kbar),
both made by the same author. In the experimental study by
Emelyanov et al. [39], only temperature and pressure were
measured in the vicinity of the critical point.

Both our critical point and the saturated vapor pressure data
of Hultgren [85] can be described well using the empirical
relation [108]

ln P = A2 + B2/T + C2 ln(T ), (8)

where the coefficients are A2 = 15.901 42, B2 =
−75 784.721 56, C2 = −0.043 68, P is in bars, and T is
in K. The approximation curve is shown in Fig. 5.

C. Heat capacity and Grüneisen parameter

Since we have an accurate ab initio EOS table data be-
tween the melting and evaporation curves up to the critical
temperature, we can examine thermodynamic coefficients or
second derivatives of thermodynamic potential. In Fig. 8 we
plot isochoric and isobaric heat capacities as a function of
temperature along the critical isobar. Isochoric heat capacity
was calculated using internal energy along isochores CV =
(∂E/∂T )V . To derive a smooth function of isobaric heat
capacity CP = (∂H/∂T )P, we approximated the temperature
dependence of enthalpy H = E + PV at the critical pressure.
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FIG. 8. Isochoric and isobaric heat capacity vs temperature along
the critical isobar in liquid Mo.

With the function of linear plus exponential terms, the analytic
expression for the enthalpy change in the range of tempera-
tures Tm = 2896 � T � 10 600 K is

HT − H300 = A3 + B3T + C3 exp(D3T ), (9)

where H is given in J/mol, and the coefficients A3 =
15 000, B3 = 38, C3 = 1312.468 13, and D3 = 4.921 45 ×
10−4; H300 = E300 + PcV0, the internal energy at 300 K is
E300 = −1.048 912 × 106 J/mol obtained from QMD [62],
and V0 = 1/ρ0. For CP we therefore have

CP = B3 + C3D3 exp(D3T ), (10)

where CP is in J/(mol K). As expected, CP demonstrates a
significant growth while approaching the critical point. It is
interesting to note a nonmonotonic behavior of isochoric heat
capacity. A small segment of decrease after the melting is
followed by a noticeable growth at temperatures higher than
4.5 kK, where CV rises from 2R up to 8R at the critical
temperature. Such high values of heat capacity are determined
by strong interparticle interaction and electronic excitations.
The last effect includes not only free electrons but also the
electrons of inner shells [109]. Therefore, the model of ideal
electron gas used in FLEOS for the description of the elec-
tronic subsystem underestimates the electronic heat capacity.
Another problem of FLEOS is a rough approximation of the
number of free electrons as a function of temperature and
density; this parameter is ambiguous for a dense medium
and depends on the theoretical model in use. Experimental
studies of the isochoric heat capacity of liquid metals are
generally limited by the low melting temperature of the metals
[110–113]. We highlight here the estimation of the CV (T )
dependence for liquid cobalt by Hess et al. [114] derived
using the experimental isobaric heat capacity, the volume
expansion coefficient, and the speed of sound. Experimental
dependences are usually limited by the boiling temperature
and predict the decrease of CV with temperature in liquid met-
als. However, it should be mentioned that current theoretical
[115,116] and experimental [117] studies on the isochoric heat

FIG. 9. Grun̈eisen parameter vs relative density along the critical
isobar in liquid Mo.

capacity in the vicinity of the critical point for inert gases
predict significant growth or even divergence at the critical
point.

We also calculated the Grüneisen parameter γ =
V (∂P/∂E )V along the critical isobar. Figure 9 shows γ as a
function of relative density ρ/ρ0 in liquid Mo. We approxi-
mated the calculated points with a polynomial fit

γ = A4(ρ/ρ0)3 + B4(ρ/ρ0)2 + C4(ρ/ρ0) + D4, (11)

where A4 = 3.169 25, B4 = −2.259 31, C4 = 1.661 91, and
D4 = 0.006 16.

As can be seen, the Grüneisen parameter exhibits a non-
linear dependence on density and reaches a value of 0.3 at
the critical point, which is lower than the ideal gas limit of
γ = 2/3. This result is consistent with previous and recent
experimental works on pulsed isochoric heating of gold [118],
aluminum [119], and lead [120]. It was shown by Rakhel
[119] that this may indicate a strong Coulomb interaction
between the particles of a liquid metal resulting in a very high
value of the coupling parameter.

Finally, it is possible to calculate one more thermodynamic
coefficient: the sound speed. In single-phase states, thermal
expansion is related to the Grüneisen coefficient γ , the iso-
baric heat capacity Cp, and the speed of sound cs by the
expression [121] (

∂ρ

∂T

)
P

= −γ ρCp

c2
s

. (12)

Thus we can check the consistency of the calculated deriva-
tives by a comparison with experimental data on the sound
speed at P = 2 kbar provided by Hixson and Winkler [101].
Recently, relation (12) was applied by Lomonosov as a crite-
rion of self-consistency between the shock-wave and isobaric
expansion experiments [122]. We used the approximation
functions (7), (10), and (11) presented above to restore the
density dependence of the sound speed of molybdenum along
the critical isobar. The corresponding curve is presented in
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FIG. 10. Speed of sound in liquid molybdenum along the critical
isobar. Experimental measurements [101] at 2 kbar are shown as
black circles.

Fig. 10. As can be clearly seen from the figure, our curve is in
excellent agreement with experimental data.

V. CONCLUSIONS

In this work, we have demonstrated that various exper-
iments for hot expanded molybdenum can be consistently
described by a single first-principles method. Our QMD cal-
culations have conclusively reproduced a number of shock
Hugoniots and release isentropes for both solid and porous
samples. In addition, we have obtained temperature data
for shock-wave experiments. In contrast to the semiempir-
ical multiphase EOS by Fortov and Lomonosov [37], we
reproduced some IEX experiments in the liquid phase, in-
cluding the speed of sound measurements by Hixson and
Winkler [101]. Also, we discovered that FLEOS gives sig-
nificantly higher temperatures in an adiabatic expansion
in comparison with QMD. We assume that the FLEOS
model underestimates the isochoric heat capacity in liquid
molybdenum.

We have presented the ab initio estimate of the critical pa-
rameters of molybdenum: Tc = 10.73 ± 0.12 kK, ρc = 2.3 ±
0.2 g/cm3, and Pc = 4.6 ± 0.7 kbar. Our QMD critical point
is close to the experimental estimation of Seydel and Fucke
[92] obtained from submicrosecond resistive pulse heating
measurements, and to the theoretical prediction of Martynyuk
[93], made by a comprehensive analysis of IEX experimental
data. We have calculated the critical isobar of molybdenum
and estimated the liquid branch of the liquid-gas coexistence
curve up to the critical point.

Using our QMD EOS table, we have calculated a number
of second derivatives of thermodynamic potential along the
critical isobar, including isochoric and isobaric heat capac-
ities, the Grüneisen parameter, and the speed of sound. We
have revealed a significant rise in the isochoric heat capac-
ity with temperature; a value as high as 8R was obtained
in the vicinity of the critical point. On the contrary, the

Grüneisen parameter exhibited a substantial drop along the
critical isobar, reaching a value of 0.3 well below the ideal-gas
limit.

Our entire QMD EOS table for liquid molybdenum is pre-
sented in the supplemental material [80].
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APPENDIX: CONVERGENCE OF THERMODYNAMIC
FUNCTIONS AND INFLUENCE OF COMPUTATIONAL

PARAMETERS

1. Dependence on the system size

Preliminary investigation of the near-critical region for
Mo was performed using QMD simulations with 54 atoms
in the supercell. As can be seen from Fig. 11, further cal-
culations with 128 atoms demonstrate higher pressure along
the isotherms, however this difference is decreasing at low
densities. We performed several calculations with 250 atoms
at T = 11.2 kK to check the convergence on the system size,
and we noted that increasing the number of atoms to 250 leads
to a very slight difference in pressure of about 0.5 kbar. Taking
into account an enormous increase of computational costs
for first-principles simulations at low densities [123,124], we
found it reasonable to use 128 atoms in our main calcula-
tions. It should also be noted that the analysis of a stationary
inflection point for isotherms obtained with 54 atoms pro-
vides an estimate for the critical point as Pc = 5.6 ± 0.4 kbar,

FIG. 11. QMD-calculated supercritical isotherms of Mo. Lines
are polynomial approximations. Dotted lines with empty circles are
54 atoms, solid lines with solid circles are 128 atoms, and diamonds
are 250 atoms in a supercell. The colors correspond with the temper-
atures shown in the key.
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FIG. 12. Isochoric heat capacity of electrons CV vs temperature
of electrons Te in bcc Mo at normal density. The solid blue line is the
PAW potential with six valence electrons, the solid green line is 12
valence electrons, and the dashed red line is 14 valence electrons.

Tc = 11.18 ± 0.07 kK, and ρc = 2.40 ± 0.07 g/cm3, which
is rather close to our final estimate made with 128 atoms.

2. Dependence on the PAW potential

The use of the pseudopotential (PP) approximation with
frozen core electrons in DFT calculations may lead to incor-
rect results at high temperatures due to neglect of thermal
excitations of core electrons [109,125,126]. In this regard, we
are obliged to analyze the limitations of the pseudopotential
in use through a comparison with more accurate pseudopo-
tentials or full-electron calculations. Figure 12 shows the
electronic isochoric heat capacity versus electron tempera-
ture in bcc molybdenum at normal density calculated using
PAW PPs with a different number of valence electrons. As
can be seen from the figure, all pseudopotentials demonstrate
identical behavior at Te < 1.2 eV; at higher temperatures, the
PAW PP with six valence electrons underestimates the heat
capacity. The difference between CV obtained using the six-
electron PAW PP and more accurate ones with 12 and 14
valence electrons is about 2% at Te = 2 eV.

Thus, the analysis of heat capacity showed the applicability
of PPs at temperatures corresponding to near-critical condi-
tions. Nevertheless, we performed direct QMD calculations
of the near-critical isotherm T = 11.2 kK with various PPs.
Results are presented in Fig. 13. The figure shows that all three
PAW PPs provide a consistent description of the near-critical
isotherm. We observe only a slight difference of less than 1
kbar at 4 g/cm3 between the PP with six valence electrons
and more accurate ones, and it becomes even more negligible
at lower densities.

3. Influence of the exchange-correlation functional

The choice of the exchange-correlation (XC) functional is
expected to have the most significant impact on the results
of ab initio calculations. We use the GGA XC functional

FIG. 13. QMD-calculated supercritical and subcritical isotherms
of Mo. Solid circles are six valence electrons, and dashed lines are
corresponding polynomial approximations. Blue left triangles are 12
valence electrons, red right triangles are 14 valence electrons.

with the Perdew-Burke-Ernzerhof (PBE) parametrization
[56,57], which does not contain any empirical fitting param-
eters. The other nonempirical functional that is widely used
in QMD calculations nowadays is the Armiento-Mattsson
(AM05) functional [127]. The technical difficulty connected
with the AM05 functional is the convergence issue of the
self-consistent cycle for expanded states [51]. It is very chal-
lenging to get long enough QMD trajectories at low densities,
so we are forced to limit our analysis to a single isotherm
rather than a comparison of critical point estimations. In
Fig. 14 we show QMD points calculated using AM05 along
the T = 11.6 kK isotherm. As can be seen from the figure,
AM05 predicts lower pressure than PBE at the same tem-
perature. The difference is about 5.5 kbar at 4 g/cm3, and

FIG. 14. QMD-calculated supercritical and subcritical isotherms
of Mo. Solid circles are the GGA XC-functional with the PBE
parametrization, and dashed lines are corresponding polynomial ap-
proximations. Open circles are the AM05 XC-functional.
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it becomes less at lower densities. On the other hand, the
AM05 11.6 kK isotherm is very close to the PBE 11.0 kK
isotherm, which, in turn, is very close to the critical one
estimated with the use of PBE (10.73 kK). That means that
the AM05 11.6 kK isotherm should be very close to the
AM05 critical isotherm. So, we can assume with reasonable

certainty that the AM05 prediction of the critical temperature
may be slightly higher than the PBE one, and AM05 criti-
cal pressure and density should be quite close to the PBE
estimate. We must stress, however, that these assumptions
are very difficult to verify with the current implementation
of AM05.
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