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Quantitative nondiagonal phase field modeling of eutectic and eutectoid transformations
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We develop a three-phase field model for the simulation of eutectic and eutectoid transformations on the
basis of a nondiagonal model obeying Onsager relations for a kinetic cross coupling between diffusion and the
phase fields. This model overcomes the limitations of existing phase field models concerning the fulfillment of
local equilibrium boundary conditions at the transformation fronts in the case of a finite diffusional contrast
between the phases. We benchmark our model in the well understood one-sided case with diffusion only in the
parent phase against results from the literature. In addition to this solidification scenario, the case of solid-state
transformations with diffusion in the growing phases is investigated. Our simulations validate the relevance of
the theory developed by Ankit et al. [Acta Mater. 61, 4245 (2013)], that describes in a single frame the two
limiting regimes where diffusion mainly takes place whether in the mother phase or in the growing phases. In
both the one-sided and two-sided cases, we verify the necessity of the kinetic cross coupling for quantitative
phase field simulations.
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I. INTRODUCTION

Eutectic and eutectoid alloys are widely used as struc-
tural materials due to their excellent mechanical properties
[1,2]. During eutectic and eutectoid transformations two solid
phases (α and β) emerge from the parent phase (γ ). The pre-
diction of their growth kinetics is the prerequisite to forecast
the complex growth patterns. In addition to the inherent mate-
rials properties, such as interfacial energies, diffusivities, and
the nature of phase diagrams, solidification conditions such as
the undercooling for isothermal transformations, the magni-
tude and orientation of the temperature gradient for directional
solidification, as well as additional impurities influence the
growth kinetics.

Lamellar microstructures are common growth patterns dur-
ing eutectic and eutectoid transformations. For the lamellar
growth in a binary alloy during eutectic solidification, Jackson
and Hunt (JH) have adopted the Zener-Hillert model [3,4]
and found a steady-state solution which gives an analytical
expression of the average undercooling of the solidification
front �T , depending on the growth velocity V and the lamel-
lar spacing λ [5],

�T = K JH
1 λV + K JH

2

λ
, (1)

where K JH
1 and K JH

2 are constants that depend on the
thermophysical properties of liquid and solid phases. The
Jackson-Hunt theory assumes that the bulk diffusion takes
place only in the mother phase γ (one-sided case), i.e., the
diffusion coefficients in the growing α and β phases obey
Dα, Dβ � Dγ . Although this hypothesis is reasonable for eu-
tectic solidification for which the mother phase is the liquid
phase, diffusion in the growing phases can play a crucial role
during eutectoid transformations. In such a case, the mother
phase is also a solid phase and the diffusivities in the growing
phases are of the same order (two-sided case) or several orders
of magnitudes larger than in the mother phase. For the pearlite
transformation, which is a well-known eutectoid transforma-
tion, the diffusivity of ferrite is two orders of magnitudes
larger than the one of austenite. The analytic velocity of the
stable cooperative pearlite growth with diffusion restricted to
austenite is much smaller than the experimental data [3,4].
Further studies of the pearlite transformation in the two-sided
case were conducted by Ankit et al. [6]. They extended the
Jackson-Hunt theory and obtained a linear relation to predict
the pearlite growth velocity,

V =
(
�T − K JH

2
λ

)
K JH

1 λ
ρ = VJHρ, (2)
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with

ρ = 1 + tαμαηα + tβμβηβ, (3)

where μα = Dα/Dγ and μβ = Dβ/Dγ . ηα and ηβ are the
equilibrium volume fractions of phases α and β, respectively.
tα and tβ are constants depending on the ratio of the liquidus
slopes to the solidus slopes of α and β phases.

The phase field (PF) method has emerged in the last
decades as an efficient way to investigate interface dynam-
ics during eutectic and eutectoid transformations [7–11]. The
characteristic feature of this diffuse interface approach is to
avoid tracking an explicit moving interface by introducing
a PF variable φ, which exhibits spatial variations inside the
interface on the scale of the interface thickness W . The inter-
face thickness has no physical meaning but is typically chosen
to be orders of magnitude larger than the atomistic scale to
simulate mesoscopic microstructure evolutions. This enhance-
ment of the interface thickness gives rise to anomalous
interface effects.

The elimination of these abnormal interface effects has
been of particular interest in the past 20 years. In Ref. [12],
this problem was solved, for equal diffusivity in the solid and
liquid phase (symmetric model), by linking the classical PF
model and the free-boundary problem based on the so-called
thin-interface limit. This pioneering work made it possible
to remove the abnormal interface effects and achieve local
equilibrium boundary conditions by choosing the appropriate
PF kinetic parameters. This quantitative PF model was ex-
tended to binary alloys with negligible solid diffusivity during
solidification (one-sided model) [13]. A correction term called
antitrapping current that is proportional to the interface veloc-
ity was introduced to remove the interface effects originating
from the discontinuity of the chemical potential at the inter-
face. However, for general alloy solidification with unequal
diffusivities in the solid and parent phase (two-sided model),
the thin-interface analysis of the classical PF model may not
be achieved without altering the thermodynamics of the in-
terface with some unphysical adsorption [14]. Only recently,
a cross coupling between the conserved and nonconserved
variables was introduced in the PF kinetic equations, in ac-
cordance with Onsager out-of-equilibrium thermodynamics.
This yields a nondiagonal PF model with a new degree of free-
dom allowing to eliminate all the abnormal interface effects
[15–18]. In Ref. [19], the capabilities of the nondiagonal PF
model were investigated during the two-dimensional dendritic
solidification of pure substances with diffusional contrast in
the solid and liquid phases (two-sided) and benchmarked
against Green’s function calculations and the Barbieri-Langer
theory. The excellent agreement between the nondiagonal PF
results and the sharp interface method calculations illustrates
the requirement of the kinetic cross coupling and elimination
of surface diffusion.

However, quantitatively modeling eutectic and eutectoid
transformations is still a challenge for PF simulations, espe-
cially when the diffusivities in the parent and growing phases
are arbitrary. For the one-sided case, Folch and Plapp [11]
developed a quantitative PF model with antitrapping current to
reproduce the free-boundary conditions. The advantage of this
model is to ensure the disappearance of spurious third phases
in the two-phase interface by proposing a fifth-order interpo-

lation function and linking the PF model to free-boundary
descriptions. For the two-sided case, Ohno and Matsuura
[20,21] extended the antitrapping current by an additional
prefactor (1 − Ds/Dl ) for three-phase solidification.

The purpose of this paper is to extend the nondiagonal
PF model for eutectic and eutectoid transformations in binary
A-B alloys when the diffusivities in the growing phases are
neither equal to the one in the mother phase nor negligible,
to benchmark the quantitative capabilities of the extended
nondiagonal PF model, and to better understand the role
and effect of diffusion in the growing phases. Therefore, we
first introduce the formulation of a nondiagonal three-phase
field model. Subsequently, we present the elimination of the
abnormal effects at the α/γ , β/γ , and α/β interfaces and
the link to equilibrium boundary conditions. Following this,
nondiagonal PF simulations are performed in the one-sided
case to compare with boundary integral method calculations
and Jackson-Hunt theory for a model alloy that is direction-
ally solidified. Additionally, in the two-sided case, isothermal
transformations at eutectoid and off-eutectoid compositions
are carried out and the growth velocities at a steady state
are compared to the extended Jackson-Hunt theory by Ankit
et al. [6]. PF simulations without cross-coupling terms are
also performed in order to evidence the necessity of using a
nondiagonal PF model.

II. PHASE FIELD MODEL

In this section, we present the nondiagonal three-phase
field model by defining three scalar phase field order parame-
ters φi (i = α, β, γ ), to distinguish the different phases α, β,
and γ , obeying the constraint∑

i=α,β,γ

φi = 1. (4)

In the following we use the vector notation �φ = (φα, φβ, φγ ).
Generally, the phase field parameter φi represents the volume
fraction of phase i and is allowed to vary from 0 to 1, such
that φα = 1, φβ = φγ = 0 indicates the α phase. Additionally,
an α/β interface is characterized by a spatial profile of phase
fields in which φα and φβ smoothly vary from 0 to 1 across
the diffusional interface.

A. Free-energy functional

We start with the Ginzburg-Landau-type free-energy func-
tional,

F =
∫

V
dV

[
H

{
W 2

2

∑
i=α,β,γ

(∇φi )
2

+
∑

i=α,β,γ

φ2
i (1 − φi )

2

}
+ X fc

( �φ, c, T
)]

, (5)

which consists of three parts. The first one represents the
gradient energy term, in which W is the interface width. The
second part is a triple-well potential, which is constructed as
the sum of double-well potentials for all phase fields. The
free-energy density H determines the height of the potential.
The last term, formed as a function of phase fields �φ, solute
concentration c, and temperature T , describes the free energy
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of the different bulk phases,

fc( �φ, c, T ) = 1

2

[
c −

∑
i=α,β,γ

Ai(T )gi( �φ)

]2

+
∑

i=α,β,γ

Bi(T )gi( �φ), (6)

where Ai(T ) and Bi(T ) are functions of temperature T , to con-
struct the desirable phase diagram, and gi is an interpolating
function, which is written as

gi( �φ) = φ2
i

4

{
15(1− φi )[1+ φi − (φk − φ j )

2] + φi
(
9φ2

i − 5
)}

,

(7)

where i, j, k are pairwise distinct (i.e., are all different). For
binary interfaces, for example, for an α/β interface with
�φ = (φ, 1 − φ, 0), the function gα ( �φ) reduces to the polyno-
mial p(φ) = φ3(10 − 15φ + 6φ2). The last term in Eq. (5) is
parametrized by another free-energy density X that sets the
relation between the capillary length and the interface width
W through the ratio H/X (see later).

The chemical potential can be written as

u = ∂ fc

∂c
= c −

∑
i=α,β,γ

Ai(T )gi( �φ). (8)

Specifically, the advantage of the fifth-order interpolation
function employed in the chemical free-energy function is
avoiding the appearance of spurious third-phase contributions
in a two-phase interface [11].

B. Time evolution equations

We define our a scaled concentration field as

c = C − CE

Cβ − Cα

, (9)

where C is the local alloy concentration, and CE , Cα , Cβ are
the equilibrium concentrations at the eutectic and eutectoid
temperature TE of the parent phase (γ ) and growing phases
α and β, respectively. The concentration c is a conserved
quantity that obeys the continuity equation

ċ = −∇ · J, (10)

where J is the diffusion flux.
Our goal is to write down a nondiagonal PF model in

the spirit of Ref. [15] that formally maintains the symme-
try between the different phase fields. In order to fulfill the
condition (4), one may introduce a Lagrange multiplier in the
free-energy functional and its elimination yields the following
definitions:

δF

δφi

∣∣∣∣∑
φn=1

= 2

3

δF

δφi
− 1

3

δF

δφ j
− 1

3

δF

δφk
, (11)

∇φi|∑ φn=1 = 2

3
∇φi − 1

3
∇φ j − 1

3
∇φk. (12)

Again, (i, j, k) is a permutation of (α, β, γ ). The terms on
the left-hand side of these equations are operators explicitly

informing that the constraint in Eq. (4) is fulfilled, while on
the right-hand side, the operators are calculated as if φα , φβ ,
and φγ were independent. In particular, we have

∑
i

δF

δφi

∣∣∣∣∑
φn=1

= 0, (13)

∑
i

∇φi|∑ φn=1 = 0. (14)

The Onsager linear relations between the driving forces and
the fluxes that define the kinetics within the PF model are
then

− δF

δφi

∣∣∣∣∑
φn=1

= τ φ̇i + {
MW ∇φi

∣∣∑
φn=1

} · J, (15)

−∇ δF

δc
= −∇u =

∑
i=α,β,γ

{
MW ∇φi

∣∣∑
φn=1

}
φ̇i + J

D
, (16)

associated with the continuity equation (10) providing u̇
through Eq. (8). We see that, due to Eqs. (13) and (14),

∑
i=α,β,γ

φ̇i = 0 (17)

is locally satisfied at any time in accordance with the con-
straint in Eq. (4).

On the one hand, for each driving force in Eq. (15), we
have a coupling to the conjugate flux φ̇i via the phase field
dependent timescale τ = τ ( �φ), and a cross coupling to the
diffusion flux J via the phase field dependent inverse velocity
scale M = M( �φ). The structure of the cross-coupling term,
and especially the reason for introducing the gradient of the
phase field, is described in detail in Refs. [15,16]. On the other
hand, for the diffusion driving force, we have a coupling to
the conjugate diffusion flux J via the phase field dependent
diffusion coefficient D = D( �φ), and to the three fluxes φ̇i via
three cross-coupling terms obeying Onsager symmetry, i.e.,
parametrized by the same coefficient as in the second term
on the right-hand side of Eq. (15). Let us note that when one
omits the cross-coupling term in Eq. (15) as in Ref. [11], the
model corresponds to the PF model with the so-called anti-
trapping current. This model is suited to a one-sided situation
for eutectic growth, that does not require Onsager symmetry
to be obeyed, as will be seen later. The Onsager relations given
above may be represented using a 4 × 4 (symmetric) matrix,
whose determinant should be positive for a positive energy
dissipation in the simulated system. Let us note that, while we
have defined some phase field dependence of τ , M, and D, we
do not assume any for W , that is strictly a constant, yielding
isotropic interface energies.

An explicit form of the evolution equations provided
by Eqs. (15) and (16) can be obtained from a matrix
inversion,

⎡
⎢⎣

φ̇α

φ̇β

φ̇γ

⎤
⎥⎦ =

⎡
⎢⎣

Pαα Pαβ Pαγ

Pβα Pββ Pβγ

Pγα Pγ β Pγ γ

⎤
⎥⎦

−1⎡
⎢⎣

Qα

Qβ

Qγ

⎤
⎥⎦, (18)

184111-3



WANG, BOUSSINOT, BRENER, AND SPATSCHEK PHYSICAL REVIEW B 103, 184111 (2021)

where, for i �= j,

Pii = τ − D
[
MW ∇φi|∑ φn=1

]2
, (19)

Pi j = −DM2W 2∇φi

∣∣∑
φn=1 · ∇φ j

∣∣∑
φn=1, (20)

Qi = − δF

δφi

∣∣∣∣∑
φn=1

+ DMW ∇φi|∑φn=1 · ∇u, (21)

with

− δF

δφi

∣∣∣∣∑
φn=1

= HW 2∇2φi − 2H

3
[2φi(1 − φi )(1 − 2φi )

−φ j (1 − φ j )(1 − 2φ j ) − φk (1 − φk )(1 − 2φk )]

+
∑

j=α,β,γ

(uAj − Bj )

[
∂g j

∂φi
( �φ) − 1

3

∂g j

∂φ j
( �φ)

]
(22)

and

∂gi

∂φi
= 15φi

4
[(3φi + 2)(1 − φi )

2 + (3φi − 2)(φ j − φk )2],

(23)

∂gi

∂φ j
= − ∂gi

∂φk
= 15

2
φ2

i (1 − φi )(φk − φ j ), (24)

for a permutation (i, j, k) of (α, β, γ ).
For the chemical potential, we have

u̇ = ∇ ·
{

D

[
∇u +

∑
i=α,β,γ

MW φ̇i∇φi|∑ φn=1

]}

−
∑

i=α,β,γ

[
Ai(T )

∑
j=α,β,γ

φ̇ j
∂gi

∂φ j
( �φ)

]
. (25)

Again, if one sets M = 0, the evolution equations presented in
Ref. [11] are recovered.

At equilibrium between two phases, for example, between
phase i and phase j, the one-dimensional (x is the spatial
variable) phase field profile reads

φ
eq
i (x) = 1 − φ

eq
j (x) = φeq(x) = 1

2

[
1 − tanh

(
x√
2W

)]
,

(26)

with φ
eq
i (x → −∞) = 1 and φ

eq
i (x → ∞) = 0. The constant

chemical potential equals

ueq
i j = Bj − Bi

Aj − Ai
, (27)

and the concentration profile reads

ceq
i j (x) = c0

i j + c0
ji

2
+ c0

i j − c0
ji

2

{
2p

[
φ

eq
i (x)

] − 1
}
, (28)

where c0
i j (c0

ji) is the concentration in phase i (phase j) when
in equilibrium with phase j (phase i).

It is important to generically map (not only for equilibrium)
our three-phase field model to the problem of a two-phase
system for which a single phase field φ is used. The fact that

the variations of two phase fields are involved for a binary
interface in our three-phase model brings additional contribu-
tions. In particular, the free energy of an interface between
phase i and phase j reads now

σi j = 2ωW H, (29)

with the factor 2 coming from the fact that two phase fields
are exhibiting hyperbolic tangent variations, and with the
usual integral ω = W

∫ ∞
−∞[∂xφ

eq
i (x)]2dx = √

2/6. We note
here that in our fully symmetric model all interface energies
are isotropic and equal, i.e., σi j = σ jk = σik . As for the classi-
cal eutectic growth, our results are expected to be qualitatively
unchanged when, while remaining atomically rough, the in-
terfaces present an anisotropic free energy. They are even
expected to be quantitatively unchanged in the limit of small
anisotropy. Concerning the dynamics, the three-phase field
model for a two-phase system reduces to Onsager relations
given by

−δF

δφ
= 2τ φ̇ + (2MW ∇φ) · J, (30)

−∇ δF

δc
= (2MW ∇φ)φ̇ + J

D
. (31)

These are, up to the factors 2 arising from the double contribu-
tions of the phase fields, the same Onsager relations presented
in Ref. [15] where the kinetic cross coupling parametrized by
M was introduced.

Before presenting the thin-interface results that link the pa-
rameters of the PF model with sharp interface conditions at the
interfaces, let us define the dissipation function. It corresponds
to the positive form built out of the products of the driving
forces and their respective conjugate flux:

Ṡ =
∫

V
dV

(
−

∑
i=α,β,γ

δF

δφi

∣∣∣∣∑
φn=1

φ̇i − ∇ δF

δc
· J

)

=
∫

V
dV

{
τ

∑
i=α,β,γ

(φ̇i)
2

+ 2MW

( ∑
i=α,β,γ

φ̇i∇φi|∑ φi=1

)
· J + J2

D

}
. (32)

For a binary interface, for example, j/k for which φi = 0,
φ j = φ, φk = 1 − φ, the dissipation reads

Ṡ j/k =
∫

V
dV

{
2τ (φ̇)

2 + 4MW φ̇∇φ · J + J2

D

}
, (33)

and we recover the dissipation function for a PF model
with a single phase field φ, i.e., Ṡ = ∫

V dV [(−δF/δφ)φ̇ +
(−∇δF/δc) · J], with Onsager relations given by Eqs. (30)
and (31). The condition of positiveness of the dissipation Ṡ j/k

then reads 2τ/D − 4M2W 2φ′2
eq > 0.

C. Link with the free-boundary description:
Thin-interface limit

In this section, we present the relation between the param-
eters that enter the PF model and the parameters that enter
the sharp interface boundary conditions. This is called the
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thin-interface limit of the PF model and allows us to set the PF
parameters such that, even with a varying interface width W ,
the desired boundary conditions are achieved in the equivalent
sharp interface model. In particular, at low enough interface
velocities, equilibrium boundary conditions may be assumed.
We restrict ourselves to the binary interfaces, whereas an
analysis of the triple junction is beyond the scope of the paper.

The conservation of atoms A and B at a moving interface
between phase i and j implies the relation

Di∇c|i · n + V c0
i j = Dj∇c| j · n + V c0

ji = JB. (34)

V and JB are the total normal flux of all atoms through the
interface (i.e., the normal velocity) and the normal flux of
atoms B through the interface, respectively. If JA is the normal
flux of atoms A, then V = JA + JB (we neglect any volume
density differences between the phases). The concentration
gradient ∇c|i (∇c| j) is evaluated at the interface on the side of
phase i (phase j) and n is the local unit vector normal to the
interface V and JB are then the scalar products of the actual
fluxes and n. Di (Dj) is the bulk diffusion coefficient in phase
i (phase j). Here, we have assumed weak out-of-equilibrium
conditions such that the concentration in phase i (phase j)
that enters the mass conservation equations is the equilibrium
concentration c0

i j (c0
ji).

Together with mass conservation, kinetic boundary con-
ditions are defined. They relate linearly the jumps δ� and
δu across the interface of the grand potential and the chem-
ical potential (rigorously the diffusion potential), respectively,
to the two fluxes V and JB. These boundary conditions in-
volve the bulk free energies fi(c) and f j (c) of the two
phases and especially their second derivatives at i/ j equi-
librium [which is equal to 1 for the parabolic free energies
in Eq. (6)]. They prescribe the interface concentrations ci j

and c ji when the sharp interface problem is solved, according
to δ� = f ′′

j (c0
ji )c

0
ji(c ji − c0

ji ) − f ′′
i (c0

i j )c
0
i j (ci j − c0

i j ) and δu =
f ′′
i (c0

i j )(ci j − c0
i j ) − f ′′

j (c0
ji )(c ji − c0

ji ). Consequently, the ki-
netic boundary conditions are written as

δ� = ĀV + B̄JB + d0κ, (35)

δu = B̄V + C̄JB, (36)

where Ā, B̄, C̄ are the components of the 2 × 2 Onsager
matrix of kinetic coefficients, d0 is the capillary length (as
mentioned in Sec. II A, the relation between the capillary
length and the interface width in the present PF model is given
by d0/W = 2ωH/X ), and κ the curvature of the interface. In
the following we present the strategy to achieve equilibrium
boundary conditions, i.e., δ� = 0 and δu = 0, even when V
and JB do not vanish. In this case one recovers the Gibbs-
Thomson relation,

ci j − c0
i j = (

c ji − c0
ji

)
f ′′

j / f ′′
i = −d̃κ, (37)

where

d̃ = d0(
c0

i j − c0
ji

)
f ′′
i

. (38)

The equilibrium concentrations c0
i j and c0

ji are temperature
dependent through Ai and Bi.

In Ref. [17], the general expressions for the kinetic
coefficients Ā, B̄, and C̄ in terms of the PF model
equilibrium properties were derived. For our equilibrium
i/ j interface centered at x = 0, we have φi(x) = φeq(x)
given by Eq. (26), φ j (x) = 1 − φeq(x), and φk (x) = 0. Fur-
thermore, we have c(x) = ceq(x) = (c0

i j + c0
ji )/2 + {(c0

i j −
c0

ji )/2}{2p[φeq(x)] − 1} given by Eq. (28). Here, we note that,
since p(φ) = φ3(10 − 15φ + 6φ2), 2p − 1 is an odd function
of x. Taking into account the double contribution of the phase
fields at binary interfaces, the kinetic coefficients read

Ā = 2
∫ ∞

−∞
τ [φ′

eq(x)]2dx − 4
∫ ∞

−∞
{MW [φ′

eq(x)]2ceq(x)}dx

+
∫ ∞

−∞

{
c2

eq(x)

D
−

(
c0

i j

)2

2Di
−

(
c0

ji

)2

2Dj

}
dx, (39)

B̄ = 2
∫ ∞

−∞
{MW [φ′

eq(x)]2}dx

−
∫ ∞

−∞

{
ceq(x)

D
− c0

i j

2Di
− c0

ji

2Dj

}
dx, (40)

C̄ =
∫ ∞

−∞

{
1

D
− 1

2Di
− 1

2Dj

}
dx. (41)

We recall at this point that in these expressions τ = τ ( �φ),
M = M( �φ), and D = D( �φ), which we have not specified yet.

For a two-phase PF model with a single phase field φ, it
was shown that constant τ and M are sufficient to achieve the
desired boundary conditions, both for a one-sided [17] and a
two-sided model [16]. Here, for the three-phase model, the
necessity for the constraint in Eq. (4) to be fulfilled imposes
that τ ( �φ) and M( �φ), as single quantities, contain enough in-
formation for the properties of the three kinds of interfaces
to be ascribed independently. We have chosen the following
forms with six parameters:

τ ( �φ) = ταβ (1 + φαφβ ) + τβγ (1 + φβφγ ) + τγα (1 + φγ φα ),

(42)

M( �φ) = Mαβφαφβ + Mβγ φβφγ + Mγαφγ φα. (43)

The diffusion coefficient D( �φ) should be able to reproduce
the three different bulk diffusion coefficients but also to allow
for a tuning of the effective surface diffusion coefficient that
arises due to the finiteness of the interface width W [18].
As shown in Ref. [16], the phase field dependent diffusion
coefficient appears as a harmonic mean in order for C̄ to
vanish. Here, we define

1

D( �φ)
= 1

3

∑
i=α,β,γ

{
1

Di
+ hi( �φ)

(
1

Di
− 1

2Dj
− 1

2Dk

)}
,

(44)

where

hi( �φ) = (2φi − 1)(1 + 4ai jφiφ j + 4aikφiφk ), (45)

for a permutation (i, j, k) of (α, β, γ ).
We have here three additional parameters ai j . We will see

in the following how the assumptions of equilibrium boundary
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conditions and vanishing surface diffusion allow us to deter-
mine the nine parameters τi j , Mi j , ai j .

For a binary i/ j interface, Di/ j (φ) = D(φi = φ, φ j = 1 −
φ, φk = 0) is such that

1

Di/ j (φ)
= 1

2Di
+ 1

2Dj
+ hi/ j (φ)

(
1

2Di
− 1

2Dj

)
, (46)

where

hi/ j (φ) = (2φ − 1)[1 + 4ai jφ(1 − φ)]. (47)

This is precisely the phase field dependent diffusion coef-
ficient that was used in the two-phase model presented in
Ref. [18]. Let us however note that in Ref. [18] φ varies from
−1 to 1, while here it is in the range 0–1. The factor 4 in
hi/ j (φ) then allows ai j to be identified with a in Ref. [18].

Returning to our calculation of the kinetic coefficients
given in Eqs. (39)–(41), we find for the i/ j interface

Ā = 2
ω(ταβ + τβγ + τγα ) + χτi j

W

− ζ
(
c0

i j − c0
ji

)2

4

(
W

2Di
+ W

2Dj

)
, (48)

B̄ = 2χMi j − �i j
(
c0

ji − c0
i j

)
2

(
W

2Di
− W

2Dj

)
, (49)

C̄ = 0, (50)

where

χ = W
∫ ∞

−∞
φeq[1 − φeq][φ′

eq]2dx ≈ 0.047 14, (51)

ζ = 1

W

∫ ∞

−∞
(1 − {2p[φeq] − 1}2)dx ≈ 1.407 48, (52)

�i j = 1

W

∫ ∞

−∞
{1 − [2p(φeq) − 1]hi/ j (φeq)}dx. (53)

As mentioned above, C̄ vanishes, and this is due to the oddness
of hi/ j (φeq), i.e., the oddness of 2φeq − 1. In order to achieve
equilibrium boundary conditions at the i/ j interface, i.e., hav-
ing δ� = 0 and δu = 0 in Eqs. (35) and (36), we need also
Ā = 0 and B̄ = 0. Moreover, we want to achieve equilibrium
conditions also at the j/k and the k/i interfaces. The condition
Ā = 0 at each interface yields three equations for the three
parameters ταβ , τβγ , τγα ,

χτi j + ω(ταγ + ταβ + τβγ )

= ζ
(
c0

i j − c0
ji

)2

8

(
W 2

2Di
+ W 2

2Dj

)
= Ai j, (54)

where i, j, k are pairwise different, and the solution for τi j

reads

τi j = 1

χ

[
Ai j − ω

3ω + χ
(Aαγ + Aαβ + Aβγ )

]
. (55)

On the other hand, B̄ = 0 at the three interfaces yields three
more equations,

Mi j = �i j
(
c0

ji − c0
i j

)
4χ

(
W

2Di
− W

2Dj

)
. (56)

FIG. 1. Selected parameter ai j in the range 0.06 < Di/Dj < 1 to
eliminate the surface diffusion and corresponding value of �i j .

We note here that no cross coupling is necessary, i.e., Mi j =
0, when Di = Dj . In the general case, Mi j does not vanish
and depends on �i j , that remains to be determined. This is
achieved by the assumption of a vanishing surface diffusion
coefficient, through the determination of ai j . This corresponds
to the condition∫ ∞

−∞
dx

(
Di/ j (φeq) − Di

2
− Dj

2

)
= 0. (57)

This gives three additional equations in order to be able to
fully determine the nine aforementioned parameters. The co-
efficient ai j that satisfies Eq. (57) is a function of the ratio
Di/Dj , and it has the property ai j (Di/Dj ) = ai j (Dj/Di ) [14].
Hence, we have also �i j (Di/Dj ) = �i j (Dj/Di ). In Fig. 1,
we present the values of ai j and �i j as a function of
Di/Dj > 0.06.

Let us give a brief comment before presenting the one-
sided model. We have seen that the condition of positiveness
of the dissipation corresponds to the inequality 2τ/D −
4M2W 2φ′2

eq > 0, and thus the magnitude of M may not be
too large. When considering equilibrium boundary conditions,
this inequality sets an upper bound for the contrast Di/Dj

beyond which M is too large. According to our definition of
τ ( �φ), τi j is a function of all three diffusion coefficients [see
Eq. (55)] and the maximum contrast Di/Dj depends on the
other contrasts Di/Dk and Dj/Dk . In this respect, more suit-
able definitions of τ ( �φ) may be used. In Fig. 1, Di/Dj = 0.06
corresponds roughly to the maximum contrast that is used in
the simulations in the following section, i.e., Dj/Di = 15.

One-sided model. In this paper, we present simulations for
a negligible diffusion coefficient in the growing phases α and
β (Dα, Dβ � Dγ ). In the PF model, we then use

ταβ = 0, (58)

Mαβ = 0, (59)

D( �φ) = D1s( �φ) = Dγ (1 − φα − φβ ). (60)
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In the mass conservation equation (34) for an interface be-
tween the mother phase γ and one of the growing phases j
( j = α, β), the diffusion flux in the growing phase vanishes,
yielding

V c0
jγ = JB. (61)

The kinetic boundary conditions (35) and (36) become

δ� = (
Ā + c0

jγ B̄
)
V + d0κ, (62)

δu = (
B̄ + c0

jγ C̄
)
V. (63)

The two fluxes V and JB are no longer linearly independent,
and Onsager symmetry becomes irrelevant since, for example,
two driving forces are expressed in terms of a single flux. As
mentioned earlier, this allows us to use the PF model with the
so-called antitrapping current.

In view of Eqs. (62) and (63), the assumption of equilib-
rium boundary conditions thus demands Ā + c0

jγ B̄ = 0 and
B̄ + c0

jγ C̄ = 0. According to Eqs. (39)–(41), we have

Ā + c0
jγ B̄ = 2

(ω + χ )τ jγ + ωτkγ

W
−

(
c0
γ j − c0

jγ

)2
W ξ

4Dγ

, (64)

B̄ + c0
jγ C̄ = 2χMjγ −

(
c0
γ j − c0

jγ

)
W κ

2Dγ

, (65)

where

κ = 1

W

∫ ∞

−∞

φeq + 1 − 2p[φeq]

1 − φeq
dx ≈ 2.121 32, (66)

ξ = 1

W

∫ ∞

−∞

1 − (2p[φeq] − 1)2

1 − φeq
dx ≈ 3.427 78. (67)

The assumption of equilibrium boundary conditions at inter-
faces α/γ and β/γ provides four equations for ταγ , τβγ , Mαγ ,
Mβγ ( j = α, β, k �= j),

Mjγ =
(
c0
γ j − c0

jγ

)
W κ

4χDγ

, (68)

and

(ω + χ )τ jγ + ωτkγ =
(
c0
γ j − c0

jγ

)2
W 2ξ

8Dγ

= A1s
j , (69)

yielding

τ jγ = 1

χ

[
A1s

j − ω

2ω + χ

(
A1s

α + A1s
β

)]
. (70)

Here, for an interface j/γ for which φ j (x) = φeq(x), we have
D = 1 − φeq and surface diffusion is automatically elimi-
nated, i.e.,

∫ ∞
−∞(D − Dγ /2)dx = (Dγ /2)

∫ ∞
−∞(1−2φeq)dx=0.

III. SIMULATION DETAILS

To investigate the capabilities of the nondiagonal three-
PF model during eutectic and eutectoid transformations, we
perform two-dimensional simulations of lamellar steady-state
growth with different diffusivities in the growing phases,
and different global compositions C∞, i.e., different compo-
sitions in the mother phase far ahead of the growth front. In
dimensionless units we thus define c∞ = (C∞ − CE )/(Cβ −

Cα ). In a first step we perform simulations corresponding
to eutectic directional solidification (with one-sided diffu-
sion). The scaled undercooling at the steady-state growth front
is extracted from simulations and benchmarked against the
boundary integral calculations reported in Ref. [11]. In a
second step we perform simulations of isothermal transfor-
mations in the two-sided case. The nondiagonal PF simulation
results are analyzed in the frame of the extended Jackson-Hunt
theory by Ankit et al. [6] for various lamellar spacings λ at the
eutectoid and one off-eutectoid compositions.

The simulation boxes of total size nx × ny with the grid
spacing �x = �y = 0.4W are illustrated in Figs. 2(a) and
2(b), where nx and ny are the length of simulation boxes in the
direction parallel and perpendicular to the solidification front.
We require λ � 0.1ny to ensure that the simulation domain
is large enough in order to describe the diffusion field in
the parent phase. For the purpose of obtaining steady-state
periodic lamellar arrays, periodic boundary conditions are
prescribed at the boundaries parallel to the growth direction,
while no-flux boundary conditions are used at the boundaries
perpendicular to the growth direction (see Fig. 2). Also, a
moving-frame method and GPU acceleration are applied in
the simulations to reduce the computational effort.

Following Ref. [11], we assume for the symmetric phase
diagram that Aγ = Bγ = 0, that the Ai’s are independent of
the temperature T , i.e.,

Aα = −Aβ = −0.5, (71)

and that

Bα = Aα� = Bβ = −Aβ�. (72)

In this way, the concentration of phase i in equilibrium with
phase j reads c0

i j = Ai + (Bj − Bi )/(Aj − Ai ). Explicitly, this
gives

c0
αβ = −c0

βα = Aα, (73)

c0
γα (T ) = c0

αγ (T ) − Aα = −c0
γ β (T ) = Aβ − c0

βγ (T ) = �,

(74)

where � = TE −T
m(Cβ−Cα ) with m > 0 the liquidus slope. Thus �

is the dimensionless undercooling. The corresponding phase
diagram is schematically presented in Fig. 2(c). In a positive
thermal gradient in the z direction, we have � = (zE − z)/lT ,
where zE is the position of the eutectic and eutectoid temper-
ature and lT > 0 denotes the corresponding thermal length.

In the first step corresponding to eutectic directional so-
lidification, we choose three different values for λe/W , i.e.,
λe/W = 64, 96, and 128, where λe is the Jackson-Hunt spac-
ing (corresponding to the minimum undercooling) given in
Eq. (2.17) in Ref. [11] (recall that here sin θα = sin θβ = 1/2),

i.e., λe =
√

lDd̃/P(η), where lD = Dγ /V and the polynomial
P(η) = ∑∞

n=1 sin2(πηn)/(πn)3 depends on the phase fraction
η = (c0

βα − c∞)/(c0
βα − c0

αβ ) of phase α (which is 1/2 at eu-
tectic composition). For each of these values, we then choose
d̃ and lD such that lD/d̃ = 51 200. The thermal gradient is
chosen such that lT /lD = 4.

In the second step corresponding to isothermal eutectoid
transformations, we prescribe d̃/W = 0.5 and an undercool-
ing � = 0.031 25 [see Eq. (74)]. This gives λe such that,
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FIG. 2. (a) and (b) show the schematic step of the simulations during directional solidification and during isothermal transformations,
respectively. (c) Symmetric phase diagram for eutectic and eutectoid transformations.

according to λe = d̃/[η(1 − η)�], λe/W = 64 for c∞ = 0
(i.e., η = 0.5), and λe = 66.6667 for c∞ = 0.1 (i.e., η = 0.4).

IV. RESULTS AND DISCUSSIONS

A. Verification of the nondiagonal PF model
in the one-sided case

In the present section, we perform nondiagonal PF [NPF,
i.e., with the cross-coupling term M( �φ)] and classical PF
[CPF, M( �φ) = 0] simulations in the one-sided case for dif-
ferent lamellar spacings, λ = λe = 64W , 96W , and 128W ,
during directional solidification. λe is related to the spac-
ing with the minimum interface undercooling for directional
solidification and to the maximum growth velocity for isother-
mal solidification. We extract the scaled interface shapes
in a steady state from the PF simulations and benchmark
them with boundary integral (BI) calculations, as presented in
Fig. 3(a). The position z is the distance to the eutectic tempera-
ture, that lies ahead at a higher temperature, and is normalized
by the thermal length lT . As can be seen, when the abnormal
interface effects are eliminated in the NPF simulations, the
quantitative agreement with the BI calculation is significantly
improved compared to the CPF simulations. We quantify this
improvement in Fig. 3(b) where we give the deviation of
the lamella’s tip position in the PF simulations from the one
obtained in the BI calculation. Let us note also that, as the

inset in Fig. 3(a) and the dependence on W/λe in Fig. 3(b)
show, we obtain a better agreement with the BI method when
a better separation of the length scale is achieved, i.e., when
λe/W increases.

Next, using the parameters as aforementioned, a series of
NPF simulations is performed at λ = λe for various λe dur-
ing directional solidification. The dependence on the lamellar
spacing of the extracted average interface undercooling in the
steady-state regime can then be compared with the Jackson-
Hunt theory and is exhibited in Fig. 4. As can be seen from
the comparison, there exists a 5%–7% discrepancy with the
JH theory, due to the assumption of a flat solidification front
in the latter theory. In addition, we also show the results from
Ref. [11] in Fig. 4. We see a slight discrepancy with our
NPF results, certainly due to the fact that we use a symmetric
matrix in the force-flux Onsager relations, while only the
antitrapping current is present in the model used in Ref. [11]
[see the brief discussion immediately after Eq. (63)]. Overall,
the capabilities of the NPF model for eutectics, i.e., when
diffusion in the growing phases is inhibited, are demonstrated.

B. Comparison of the nondiagonal PF model with the extended
JH theory in the two-sided case

In this section, we investigate the case where diffusion is
also present in the growing phases, i.e., where μα = Dα/Dγ

and μβ = Dβ/Dγ are finite. As mentioned in the Introduction,
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(a) (b)

FIG. 3. (a) Comparison between NPF (solid lines) and CPF (dashed lines) simulation results with the boundary integral method (BIM,
squares) taken from Ref. [11] for λe/W = 64, 96, and 128. Inset: Enlargement of the dashed rectangle. (b) Deviation of the lamella’s tip
position (x/λ = 0.25) between NPF and CPF simulation results and BI calculations.

an extension of the JH theory was developed [6] in order to
take into account these additional ingredients in the dynamics
of the system. Within this theory, diffusion fluxes in the grow-
ing phases are simply added to the flux in the mother phase,
and in isothermal conditions, the velocity

V = VJHρ (75)

is multiplied by the factor ρ given in Eq. (3). For our symmet-
ric phase diagram, we have

ρ = 1 + A[μαη + μβ (1 − η)], (76)

where A is described as a factor related to the difference in
solidus and liquidus slopes. First we perform simulations for
μα = μβ . The cross-coupling parameter Mαβ thus vanishes
and surface diffusion is automatically suppressed at the α/β

interface [there is no need to adjust the coefficient �αβ—see

FIG. 4. Comparison between the PF simulation results and
Jackson-Hunt theory during directional solidification for different
λe/W . The solid line is the Jackson-Hunt theory. The blue points
present the NPF results. The red points indicate the results taken from
Ref. [11].

the discussion following Eq. (56)]. Moreover, we use c∞ = 0
(η = 0.5), yielding a fully symmetric pattern. We investigate
the dependence of the growth velocity on λ (we recall that
λe/W = 64 and d̃/W = 0.5).

Since the extension of the JH theory in Ref. [6] is only ap-
proximate, at least because it neglects some curvature effects
just as Jackson and Hunt do, we have decided to determine
A by choosing the value for which Eq. (75) best fits our
simulations results for μα = μβ = 1. We found A = 0.8924.

In order to investigate the relevance of the scaling proposed
by Eq. (75), we plot in Fig. 5 the rescaled dimensionless
velocity

Ṽ = V λe

Dγ

1

ρ
(77)

as a function of λ for 0 � μ � 15 where μ = μα = μβ . Here,
we thus have ρ = 1 + 0.8924μ. The solid line corresponds to

FIG. 5. Rescaled dimensionless growth velocities obtained from
NPF simulations for different lamellar spacings with a varying diffu-
sion coefficient being equal in the growing phases, i.e., 0 � μ � 15
(μ = μα = μβ ). The solid lines corresponds to μ = 1 (see text). The
relatively small amplitude of the scattering of the results for a given λ

validates the relevance of Eq. (75) to predict the velocity as a function
of μ.
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FIG. 6. The scaled shapes of the growth fronts extracted from the NPF simulation results for μα = μβ = 0, 5, 10, 15, ∞ and λ/λe = 1, 2.

the reference case, i.e., μ = 1, that provides through the fit
the quantity ρ (through A) by which we divide the velocity.
We clearly observe a scattering of the simulations results
around the solid line, showing that Ṽ is not independent of
μ. However, the relatively small amplitude of this scattering
demonstrates that Eq. (75) provides a very good prediction
of the velocity. Indeed, in view of the fact that μ spans a
huge range within which the velocity is multiplied by a factor
close to 15, a discrepancy of at most 30% for Ṽ between the
cases μ = 0 and μ = 15 corresponds to a rather convincing
data collapse. If the arguments developed in Ref. [6] were
inappropriate and, for example, diffusion would not take place
in the growing phases even if their diffusion coefficient is
large, the velocity would not change much when this diffusion
coefficient increases, and Ṽ would end up close to 0.01 at
λ/λe = 1. The situation here is very different.

When we look, for a given λ, at the dependence of Ṽ on
μ, our simulations suggest that it converges when μ becomes
large. When μ 
 1, i.e., when the diffusion coefficient in
the growing phases α and β is much larger than the one in
the mother phase γ , the main diffusion path is within the
growing phases and the diffusion fluxes in the mother phase
become negligible. Then, ρ ∼ μ, and the steady-state velocity
becomes proportional to Dα = Dβ according to V/Dγ ∼ ρ ∼
Dα(β )/Dγ . Thus, V exhibits a linear variation with μ (i.e., Ṽ
becomes independent of μ) when μ 
 1, and the shape of
the interfaces becomes self-similar. This is what we see in
Fig. 6, where we plot the shape of the α/γ and β/γ interfaces
(we recall that due to symmetry the α/β interface is straight
behind the triple junction) for λ/λe = 1 and λ/λe = 2, and for
μ = 0, 5, 10, and 15. We also plot the shape that is obtained
for the case where μ is formally infinite, i.e., when Dγ is
strictly vanishing (we then use the one-sided model). This
situation is at odds with the usual assumption for eutectic
growth, and we are not aware of any description of such a

steady state in the literature. Let us note that we have checked
that this scenario exists also for off-eutectoid concentrations,
showing that the existence of the steady state is not restricted
to high-symmetry conditions.

On the other hand, since ρ = 1 + Aμ, V − VJH varies lin-
early with μ when μ � 1. We exhibit these two linear regimes
in Fig. 7 where we plot our simulations results (squares)

FIG. 7. Dimensionless velocity obtained with the nondiagonal
PF model (NPF, squares) and the classical PF model (CPF, crosses)
as a function of the diffusion coefficient in the growing phases μα =
μβ for two different lamellar spacings λ/λe = 1 and 2. The solid
lines illustrate the small μ linear regime for which the steady-state
velocity is proportional to the diffusion coefficient in the mother
phase γ and the dashed lines illustrate the large μ linear regime for
which the velocity scales as the diffusion coefficient in the growing
phases.
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FIG. 8. (a) Rescaled dimensionless growth velocities obtained from NPF simulations during an isothermal transformation at the eutectoid
composition and λ = λe, with unequal μα and μβ (the dashed line corresponds to μα = μβ ). (b)–(j) show the alteration of the lamellar shapes
extracted from NPF results for μα = 10, μβ = 1–9, respectively. (k) The rotation angle (θ ) of the triple junction in (b)–(j).

for V λe/Dγ as a function of μ for λ/λe = 1 and 2. We see
that close to the origin we may approximate our results by
the straight solid lines, and that this linear regime actually
extends to values of μ of order unity. As mentioned before,
the diffusivity ratio μ may not be too small due to the stability
constraints. Moreover, small μ simulations show minor inac-
curacies owing to the sharp variations across the interface of
the function that allows for elimination of surface diffusion hi.
Note that a tensorial diffusivity [22] has been proposed as an
alternative to hi in Ref. [23], and according to the authors no
constraint on the diffusivity ratio then exists.

Complementary, when μ is large enough, our results are
well approximated by the dashed straight lines. In the same
plot in Fig. 7, we also display the results (crosses) that one
obtains for the classical PF model (CPF). We see that the
larger μ, the larger the discrepancy between the NPF and CPF
models, indicating the importance of the cross-coupling terms
parametrized by M( �φ).

C. Influence of the different diffusivity ratios of growing phases
on the lamellar growth patterns at eutectoid

and off-eutectoid composition

Let us now investigate the situation where the three dif-
fusion coefficients are different, i.e., μα �= μβ (here, all
cross-coupling terms Mi j are thus nonvanishing and surface
diffusion should be eliminated at each interface, i.e., all values
�i j should be adjusted).

We first perform simulations at c∞ = 0 and λ/λe = 1.
In Fig. 8, we present Ṽ for μβ � μα (owing to the choice
c∞ = 0, the velocity is invariant under an exchange of μα and
μβ). The coefficient A in the expression for ρ is the same as
in the previous study, i.e., ρ = 1 + 0.8924(μα + μβ )/2. The

dashed line represents the results corresponding to μα = μβ .
Again, we observe some scattering of the results showing that
Ṽ is not strictly independent of ρ. However, the amplitude of
this scattering, that reaches at most around 30% for μβ = 1,
is still much smaller than the variation of ρ, demonstrating
that Eq. (75) is able to predict quite faithfully the steady-state
velocity as a function of μα and μβ .

Even though c∞ = 0, the pattern is nonsymmetric owing
to μα �= μβ . In particular, as can be seen in Figs. 8(b)–8(e),
where we present the interfaces shapes for different ratios
μβ/μα and μα = 10, the α/β interface forms a finite angle
with the vertical direction, and we denote it as θ at the triple
junction. In Fig. 8(f), we plot θ (in degrees) as a function of μβ

(1 � μβ � 10) for μα = 10. It decreases when μβ increases
and vanishes at μβ = μα as expected for a fully symmetric
pattern.

Let us now investigate a case where the composition
is off-eutectoid, i.e., c∞ = 0.1. Then η = 0.4 and ρ = 1 +
A(0.4μα + 0.6μβ ). Here, the best fit to our simulation results
for μα = μβ = 1 gives A = 0.8989. We use this value to cal-
culate the rescaled dimensionless velocity Ṽ , and we plot the
latter in Fig. 9 for different μα and μβ . While the dashed line
corresponds to the fit providing A, we see again a scattering
of the simulations results, with a small enough amplitude that
validates the scaling V ∼ ρ. In opposition to the case c∞ = 0,
i.e., η = 0.5, the α/β interface is vertical only when μα =
μβ = 0. This is indeed the usual assumption when one studies
eutectic growth within the one-sided model at an arbitrary
global composition [24]. However, as soon as the diffusion
coefficient in the growing phases is finite, the α/β interface
becomes curved. Noticeably, when μα = μβ , the width of the
lamella with the larger (smaller) phase fraction, here β (α),
is larger (smaller) at the triple junction than at equilibrium,
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FIG. 9. (a) Rescaled dimensionless growth velocities obtained from NPF simulations at an off-eutectoid composition for different μα and
μβ . (b)–(i) show the alteration of the lamellar shapes extracted from NPF simulations for λ/λe = 1.44.

i.e., far behind the triple junction. This yields a rotation of
the triple junction. This rotation is further accentuated when
μβ > μα , and in opposition, when μβ < μα , the sign of the
rotation angle is opposite.

Until now it was proposed that the scatter observed for Ṽ
in our results, i.e., in Figs. 5, 8, and 9, is due to the inaccuracy
of the theory developed in Ref. [6]. However, it should be
verified that this scatter is not instead related to interfacial
effects, that are eliminated with different choices of param-
eters when μα and μβ change. Therefore, here, we finally
perform a convergence study with respect to d̃/W . For the
sake of generality, we choose the asymmetric situation where

FIG. 10. Convergence study with the interface width W for a
situation corresponding to Fig. 8, i.e., c∞ = 0, μα = 10, μβ = 3. The
encircled data point for d̃/W = 0.5, that corresponds to the interface
width used in Fig. 8 (and also in Figs. 5 and 9), shows a 2% error
compared to the converged value of Ṽ , which is quite satisfactory.

c∞ = 0, μα = 10, and μβ = 3. This corresponds to a result
presented in Fig. 8, more precisely the third blue diamond
when starting from the left. In Fig. 10, we present the con-
vergence of Ṽ when d̃/W increases, i.e., when the interface
width W decreases. At the interface width used in Fig. 8
(and also in Figs. 5 and 9), i.e., for the encircled data point
at d̃/W = 0.5, a 2% error on Ṽ is found (compared to the
converged value), which is quite satisfactory. This supports
that the scatter observed in our results is indeed due to the,
small but still existing, inaccuracy of the theory developed in
Ref. [6].

V. CONCLUSIONS

In this paper, we have developed a quantitative nondiagonal
phase field model for three-phase transformations, such as
eutectic and eutectoid. In the latter case, the diffusion coef-
ficients in the growing phases Dα and Dβ are of the same
order as the diffusion coefficient in the mother phase Dγ , and
a kinetic cross coupling between the diffusion field and the
phase fields is thus required. Special attention is paid to the
elimination of all abnormal interface effects that arise when
analyzing the thin-interface limit of the model.

First, we have benchmarked our model against phase field
and boundary integral results from Ref. [11] in the one-
sided case (when Dα = Dβ = 0). Second, we have performed
simulations in the two-sided case where Dα and Dβ are
non-negligible. We evidence the relevance of the scaling law
suggested in Ref. [6] for the steady-state velocity as a function
of the ratio of diffusion coefficients. We observe the two
limiting cases, i.e., the classical one for which diffusion is
mainly present in the mother phase due to Dα, Dβ � Dγ , and
the one for which diffusion is mainly present in the growing
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phases due to Dα, Dβ 
 Dγ . In both one- and two-sided cases
we verify the necessity of using a nondiagonal phase field
model, i.e., having a kinetic cross coupling, for quantitative
simulations.

In the present work, the influence of the bulk diffusion
in the growing phase has been investigated. During eutec-
toid transformations such as the pearlite transformation, not
only bulk diffusion in the growing ferrite but also surface
diffusion are believed to play a crucial role. The nondiagonal
phase field model provides the possibility to tune the surface
diffusion coefficient, while eliminating other kinetic effects
such as solute trapping. Thus, it may be a potential tool
for a future study of the pearlite transformation at a steady
state and the divorced pearlite microstructure [25,26] with
the consideration of all possible diffusion paths. In this re-
gard, the complex thermodynamics of pearlite may necessitate

the usage of a phase field model based on a grand-potential
formulation [27].
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