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Generic accommodations of an atom in the Lennard-Jones
fcc and hcp rare-gas solids: A computational study
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A comprehensive computational analysis of the stable accommodations of an atom in the Lennard-Jones
(LJ) face-centered-cubic (fcc) and hexagonal-closest-packed (hcp) lattices is presented. For a wide range of
the guest-host LJ interaction parameters and the number of host atoms removed, N , global optimizations are
performed to find the minimum energy structures. Stable accommodations are determined using the convex hull
of the energy dependence on N . The most stable ground accommodations are mapped onto the guest-host LJ
parameter space for the hosts representing the rare-gas solids from Ne to Xe. The radial distribution function
analysis is used to classify the structures found as originating from the guest placements in the lattice voids or at
the node. Ten generic accommodations are identified for each lattice. Comparing to mostly polyhedral structures
in fcc, the hcp ones have generally lower symmetry, which should affect the band shapes of atomic absorption
spectra. Despite the well-known wrong prediction of higher hcp phase stability in the LJ model, the cases of
strong accommodation preferences in one phase or another are identified. Being generic, the obtained results can
be useful for a qualitative interpretation of atomic matrix isolation experiments.
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I. INTRODUCTION

Cryogenic rare-gas (RG) solids provide a very convenient
inert environment for isolating and detecting metastable and
highly reactive chemical species. The soft and (generally)
nonmagnetic nature of these compressible solids and their
transparency in a wide spectral range make it possible to
deposit or generate various atomic and molecular species and
characterize them using a variety of spectroscopic techniques,
laying the foundation of matrix isolation spectroscopy; see,
e.g., Refs. [1–5]. In comparison to this mainstream topic, less
attention has been paid to the fact that the spectra of isolated
species yield important information on the structure of the
host solid. This is especially true for atomic and nonpolar
molecular guests, whose interaction with the host has the
same weak dispersion nature as the interaction that holds the
host solid together. Most of the related studies concentrate
on the point defects, or more precisely, on how the ma-
trix accommodates the impurities. The electron paramagnetic
resonance, infrared and optical spectroscopy, recombination-
induced thermoluminescence, neutron scattering, and x-ray
absorption spectroscopy have been proven to be useful in
revealing the nature, symmetry, and sometimes the structure
of the stable atomic and molecular trapping sites in RG solids
(see Refs. [6–14] for selected examples).

Moreover, it is also known that matrix isolation studies can
probe and affect the phase composition and disorder of the
host. A particularly interesting issue is the existence of the
two solid RG phases, namely the face-centered-cubic (fcc)
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and hexagonal-closest-packed (hcp) ones [15]. The hexago-
nal phase appears mostly in the nonequilibrium conditions
[16–19], indicating that the stable one has fcc packing.
Modeling of the crystal structure using the Lennard-Jones
(LJ) atom-atom potentials inevitably gives a slight prefer-
ence to the hcp phase [20–22], and the same is apparently
true for more realistic pairwise potentials [23]. Numerous
explanations of the controversy using surface effects, dis-
tinct equilibration pathways, many-body interactions, and
phonon contributions were considered; see, for instance,
Refs. [24–26]. The most accurate analysis to date [27] points
to the phonon coupling as the decisive factor stabilizing the
fcc phase. Still, the mechanism of the fcc to hcp phase tran-
sition is not well understood despite numerous experimental
and theoretical studies (see Refs. [26,28–31] and literature
cited therein).

Being sensitive to the surrounding, the spectroscopy of
impurities may serve as a probe for the phase composition
of the matrix. The most certain example is the hindered ro-
tation of methane and some other spherical-top molecules.
The structure of infrared absorption spectra [8,32] and neutron
scattering patterns [11,33–35] revealed rotational transitions
firmly assigned to distinct guest accommodations in the pure
fcc and hcp crystallites and at the stacking faults of the hcp
phase. The coexistence of the two phases and the stacking
faults was also suggested to interpret the electron spin reso-
nance (ESR) spectra of a hydrogen atom and methyl radical
[6,36], the absorption spectra of a barium atom [37–39],
and the excitation and fluorescence spectra of some diatomic
molecules [40–42]. The interesting observation that impurities
can induce the local fcc to hcp phase transition was re-
ported by Savchenko and co-workers [43], who monitored the

2469-9950/2021/103(18)/184110(11) 184110-1 ©2021 American Physical Society

https://orcid.org/0000-0003-0658-3844
https://orcid.org/0000-0002-3173-2146
https://orcid.org/0000-0003-0701-5531
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.184110&domain=pdf&date_stamp=2021-05-26
https://doi.org/10.1103/PhysRevB.103.184110


OZEROV, BEZRUKOV, AND BUCHACHENKO PHYSICAL REVIEW B 103, 184110 (2021)

luminescence of Ar, Kr, and Xe atoms in the Ne matrix ex-
cited by electron-impact excitation. The formation of quite
extended hcp domains was found at impurity concentrations
as low as 0.01%.

Although these observations strongly suggest the possibil-
ity of spectral monitoring of the metastable phase formation in
RG solids, no systematic modeling of the stable accommoda-
tions of impurities in an hcp lattice and their comparison with
those inherent to fcc has been performed (except for one that
was exemplary for the large planar anthracene molecule [44]).
Understanding the generic structure of the stable trapping sites
pertinent to two crystal phases should reveal the differences in
the respective spectral signatures, while a comparison of their
relative energies should provide insight into the preferential
occupations and the propensity to local phase transitions.

In this paper, we present a comprehensive computational
analysis of atomic accommodations in the fcc and hcp RG
lattices. We employed the pairwise LJ model, a conventional
zero-order approximation to RG-RG interactions that can un-
cover generic results and general guidelines. In addition, the
LJ model is universal, thus it can scale to any host parameters.
Unbiased global structure optimization in the wide physically
meaningful ranges of interaction parameters followed by ther-
modynamic stability assessment provided exhaustive lists of
generic accommodations in each lattice, classified by effective
size, structure type, and symmetry. The difference between the
ground accommodation energies in two lattices was analyzed,
and the cases of strong preference were found at an energy
scale much larger than the deficiency of the LJ model for the
pure phases.

II. COMPUTATIONAL

The techniques used for structure generation, thermody-
namic stability assessment, and symmetry classifications have
already been tested for stable accommodations of atoms and
dimers in the LJ fcc Ar lattice [45,46]. This work extends the
fcc results to wider parameter ranges, other hosts (Ne, Kr, and
Xe), and it covers generic accommodations in the hcp lattice.

A. Crystal trapping site model

The present model for identification of the stable atomic
and molecular accommodations in RG crystals was proposed
in Refs. [47,48] and further adapted to global searches in
Refs. [45,46].

Our aim is to model the equilibrium accommodation pro-
cess of an atom within the bulk crystal,

G + [H] → [G@H],

where the short-hand notations H and G for the Host RG
and the Guest atoms, respectively, are introduced, and square
brackets indicate the crystal phase. We assume that the crystal
fragment [H] is large enough that we can neglect the surface
effects and disregard the defect formation. To distinguish
between accommodations that differ in size, we introduce
parameter N , the number of host atoms dislodged by the guest
from its surrounding in the bulk to the periphery of the crystal,

symbolically,

G + [H]M → [G@H]M−N [H]N ,

where M is the total number of host atoms included in the
atomic model. The respective accommodation energy, as a
function of N , is defined as

�E (M, N ) = E[G@H](M, N ) − E[H](M ) − EG − NE at. (1)

The last term here approximates the energy of crystal ex-
pansion in terms of individual atomic contributions equal
to crystal atomization energy per atom E at. As the overall
number of particles in the system is always fixed at (M + 1),
the minimum of Eq. (1) in N , N0, identifies the most stable
(ground) accommodation.

Setting up the numerical procedure, we first consider a
large fragment of an ideal host crystal [H]fcc,hcp

M confined by a
sphere centered on an arbitrary H atom. Within this fragment,
the lattice constants are optimized by minimizing its energy to
E[H](M ) for a given pairwise potential field uHH(ri j ), where ri j

is the distance between the ith and jth host atoms. To describe
the fcc lattice, the single constant a = afcc is used. The hcp
lattice is generally described by two constants, ahcp and chcp,
which define the base and the height of the hexagonal unit cell,
respectively. For the ideal case, they are related to each other
as chcp = √

8/3ahcp and to an fcc constant as ahcp = a/
√

2
and chcp = 2a/

√
3. Thus, the single constant a is used here to

parametrize both lattices. For each lattice, accurate E at values
were obtained in the converged calculations with M → ∞.

At the next stage, we introduce the single guest atom G,
which interacts with host atoms by the potential uGH(r). To
this end, the fragment [H]M is stratified by making a distinc-
tion between fixed and movable host atoms. The fixed atoms
located far from the center always keep their lattice positions,
while the movable ones residing in the central region can
be removed, added, and displaced at will upon the sampling,
and they should follow the force field upon optimization; see
Sec. II C for more details. Replacing N host atoms by G, as
described below for the sampling procedure, we minimize
the potential energy U to evaluate the term E[G@H](M, N ) in
Eq. (1). It should be pointed out here that the dependence
on M only reflects the range of uGH interaction and should
vanish if M is large enough. From a numerical standpoint,
it is a matter of convergence and can be omitted together
with the constant term EG. The simplified expression for the
accommodation energy reads

�E (N ) = E[G@H](N ) − E[H] − NE at. (2)

An analysis of thermodynamic stability entails calculations
of the free energy, i.e., an evaluation of the zero-point energy,
temperature-dependent phonon contributions, and the work
against the pressure. Estimation of these mass-dependent
terms would require us to set the atomic masses as the ad-
ditional model parameters. Moreover, in the low-temperature
limit the missed contributions are smaller than the errors in
the potential due to the LJ approximation to two-body terms
and the omission of higher-order terms in the many-body
expansion [23,25,27]. Thus, Eq. (2) is enough to identify the
site stability within the NV T or NPT ensemble at the generic
coarse energy scale.
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In addition to identification of the lowest-energy (ground)
accommodation N0, Eq. (2) provides a way to find out all
the thermodynamically stable trapping sites using the con-
vex hull concept of the discrete composition phase diagrams
[49,50]. Indeed, the �Ẽ (N ) = �E (N ) + NE at quantity gives
the accommodation energy for a certain replica of the μV T
thermodynamic ensemble. Allowing the exchange of H atoms
between replicas in the trapping site disproportionation pro-
cesses in the spirit of Frost diagrams [51], one can attribute
the �Ẽ energies forming the convex hull in N to thermody-
namically stable trapping sites. As the convex hull condition
for a function does not change if a constant or linear correction
is added, Eq. (2) is equally applicable for this purpose. In what
follows, we mainly consider the ground trapping sites. Higher-
lying stable sites with N �= N0 are discussed only sketchily
if they reveal new structure types. We also note that within
this approach, only N , an integer measure of the effective
trapping site size, is uniquely defined. The features of the
corresponding geometric structures should still be deciphered
by analyzing the respective atomic configurations.

Accommodation energies for fcc and hcp lattices can be
directly compared with each other, with reference to the lim-
its of the respective infinite ideal crystals. The negative or
positive difference between the lowest fcc and hcp accom-
modation energies thus defines the preferred host phase for
trapping an atomic impurity with a certain interaction poten-
tial with the host.

B. Interaction potentials

For any system [G@H] ≡ [G@H]M−N , the total interac-
tion potential is given by

U[G@H](x) =
M−N∑
i=1

M−N∑
i< j

uHH(ri j ) +
M−N∑
i=1

uGH(ri ), (3)

where ri j = |xi − x j | and ri = |xG − xi| are the interatomic
distances defined through the position vectors of host and
guest atoms, xi and xG, respectively. Each pairwise term has
the LJ form

uHH(r) = εHH

[(ρHH

r

)12
− 2

(ρHH

r

)6]

and a similar expression with ρ, ε parameters for the uGH(r)
potential.

Our goal is to find generic stable accommodations for an
arbitrary guest atom [Eq. (3) only requires an isotropic GH
interaction, or zero orbital electronic angular momentum of
the guest]. This can be achieved by fixing the host param-
eters ρHH, εHH and mapping the stability region of N onto
the guest-host interaction parameter plane (ρ, ε) [45,46]. The
advantage of the LJ potential model is its universality, or the
scaling property upon the parameter transformation, e.g., for
(ρHH, εHH) �→ (ρ∗

HH, ε∗
HH),

u∗
HH(r) = ε∗

HH

εHH
uHH

(
ρHH

ρ∗
HH

r

)
.

The same scaling obviously applies to the total potential U (3),
so the stability analysis can be performed once the (ρHH, εHH)
parameters are fixed, and then it can be extended to other host

potentials (provided that the coverage of the ρ, ε parameter
plane is good enough).

C. Sampling and optimization

Once the reference host parameters εHH, ρHH are fixed,
the global minimum (3) should be found in the configuration
space within the nested loops over ε, ρ, and N values. To
perform the numerous global searches efficiently, we followed
the strategy described in Ref. [46].

In brief, further subdivision of the movable atom region
was introduced to minimize the efforts to find identical con-
figurations. Atomic embedding and removal at the sampling
stage were restricted to the very central “active” region with
a radius of about 2a. Combinatorial presampling within the
central region used the auxiliary lattice of vacant positions
that included all nodes, natural lattice voids, and face and
edge centers. All the combinations of the node occupations
(host atom, guest atom, no atom) that comply with certain N
were probed, and 6–12 configurations with the lowest energies
were selected. After checking and tuning the stratification
to preselected energy cutoffs, the global optimization based
on the Metropolis algorithm [52–54] with stepwise gradient
refinement was performed for each structure, as described in
Ref. [46]. At this stage, more layers of host atoms outside
the central region were engaged sequentially. The final low-
est energy configuration reached in all runs was treated as
the global minimum and was refined by the local steepest-
descent minimization involving the positions of all movable
atoms subjected to small random displacements. This seem-
ingly redundant strategy is a prerequisite for not missing even
completely counterintuitive accommodations if they appeared
to be a global configuration-space minimum. To avoid any
bias, no information on the structures found with other (ρ, ε)
parameters was used.

As a reference, the Ar host with the parameters ρHH =
3.35 Å and εHH = 100 cm−1 was adopted [55]. The initial
lattices were generated using 12 translations in each direc-
tion of the unit cell with further isolation of the maximum
spherical fragment. Next, the central active region with a
radius 2a was constructed. For each point of the combinatorial
presampling, the size of the spherical fragment was checked
against the criterion max

i∈surface
|uGH(ri)|/ max

i∈active
|uGH(ri )| � 10−6.

Otherwise, the fragment was enlarged and the procedure was
repeated. Typically, the radius of the whole spherical fragment
varied from 6 to 9a. The inner region consisting of movable
host atoms was 3–4a on average, depending on the scaling for
each initial configuration. The scaling required that the maxi-
mum interaction between the G atom and the fixed host atoms
be smaller by eight orders of magnitude than the minimum
GH interactions for host atoms included in the active region.
For the representative case when the GH interaction is equal to
the HH one, we considered M ≈ 3600 host atoms, from which
about 3000 atoms were movable (with ∼150 included in the
active region and ∼450 involved in the global optimization).

As a result, the errors in accommodation energies due
to the finite size of the system and energy convergence
amounted typically to a few tens of wave numbers. This accu-
racy is enough to discern the thermodynamically stable sites
through the convex hull analysis, except in the border cases.
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FIG. 1. Origins of the reference RDFs for fcc (a) and hcp (b)
lattices. The origins marked by T (tetrahedral voids, red), O (octahe-
dral voids, green), V5 (bipyramidal void, orange), and C or A (lattice
nodes, blue) are shown with first coordination polyhedra shown with
dotted, dashed, long-dashed, and solid lines, respectively.

Exceptions were detected for cramped structures of very tight
or spacious sites. These structures, however, lie at very high
energies, so large errors do not affect the results for the ground
sites discussed here.

The parametric (ρ, ε) plane for the guest-host interaction
was discretized as 0.25 × 1.1n cm−1, n = 0, . . . , 87 for ε and
(0.3 + 0.1m) Å, m = 0, . . . , 97 for ρ. N values were scanned
from 0 to 24.

D. Structure analysis

By construction, N , the number of guest atoms removed, is
uniquely defined by the convex hull analysis, and it confirms
the effective size of a trapping site. However, it does not
contain any information on the symmetry and structure of the
corresponding site. It may well happen that distinct structures
correspond to the same N , e.g., tetrahedral and octahedral
interstitials in the fcc lattice [45,46].

Analysis of the radial distribution functions (RDFs) pro-
vides a computationally efficient and straightforward way
to establish the origin of the stable trapping sites. (More
elaborated techniques, like clustering, were shown to be ex-
cessive for the analysis of atomic guests [46].) Following
Refs. [45,46], we introduced a set of reference RDFs for ideal
lattices,

�̃P(r) = 1√
32πσ

∑
i

exp [−(r − rPi )
2/2σ 2], (4)

which is used in the form �P(r) = w(r)�̃P(r) with w(r) =
1/[4π max (r0, r)2] and r0 = a/2. Here rPi = |xP − xi| gives
the position of the host atom i with respect to some reference
lattice point P. The choice of such origins for the fcc lattice is
trivial [45,56]: it includes the centers of tetrahedral and octa-
hedral voids and the lattice node, which has a cuboctahedral
environment [T, O, and C points in Fig. 1(a), respectively].
For the hcp structure, the same choice looks natural [with
a slight difference in the anticuboctahedral (A) environment
of the node]. Also, the spacious bipyramidal void of the D3h

TABLE I. Parameters of the LJ interactions used for RG crystals
and optimized lattice constants and atomization energies per atom.
Distances in angstroms, energies in wave numbers.

RG ρHH εHH fcc hcp

a E at a E at

Ne 3.091 29 4.246 252.84 4.246 252.85
Ar 3.758 100 5.162 861.03 5.162 861.06
Kr 4.030 140 5.535 1205.44 5.535 1205.48
Xe 4.361 197 5.990 1696.23 5.990 1696.28

symmetry, hereafter V5, was added to this reference set; see
Fig. 1(b).

For each stable accommodation, the RDF �(r) is presented
in the form of Eq. (4) but referenced to the guest atom (ri

replaces rPi). A comparison of the real RDFs computed across
the (ρ, ε) domain, where the sites with given N are stable,
with the reference RDFs suggests the type of guest lattice
position. A more automatic auxiliary procedure involved the
linear regression

min

∥∥∥∥∥�(r) −
∑

P

WP�P(r)

∥∥∥∥∥. (5)

If the reference points are reasonably chosen, the regression
coefficients WP suggest the tentative guest position with re-
spect to the lattice and the symmetry of its closest environment
for any ρ, ε, N . When perfect matching with one of the refer-
ence positions occurs, WP = δP′P for the sites of P′ origin, so
the deviation of the leading coefficient from unity reflects the
uncertainty of assignment. The use of reference RDFs greatly
reduces the need for visual inspections of the structures found.

III. RESULTS

A. Ideal fcc and hcp crystals

The LJ parameters for the host-host interactions are taken
as the equilibrium properties of the potentials by Aziz and
co-workers [55,57–59]. The advantage of the latter is that they
provide realistic approximations to the two-body components
of the more elaborate many-body ab initio potentials [25,48].
These parameters are listed in Table I together with the op-
timized lattice constants and atomization energy values. In
agreement with the previous experience, the LJ model gives
very similar lattice constants for two phases (note that for hcp
we use ahcp = a/

√
2) and a slight preference to the hcp lattice

[20–23].

B. Mapping of N0: Sizes of the stable sites

At each point of the parameter plane (ρ, ε), the convex
hull analysis identifies all stable sites including the ground
one having a certain effective size N0 as is shown in Fig. 2
[examples of the �E (N ) dependences at certain parameters
are given below in Sec. IV]. Due to universal parameter scal-
ing, the maps for each lattice type are similar for all hosts and
likely exhaust all the generic ground stable sites for the LJ
potential model.
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FIG. 2. Maps of the N0 parameters for the ground sites in the LJ parameter space (ρ, ε). The rows from the top to the bottom present the
results for Ne, Ar, Kr, and Xe; left and right columns correspond the fcc and hcp lattices, respectively. The bars on the right specify the N0

color coding.

The results for the fcc lattice essentially confirm the find-
ings of Refs. [45,46] for the case of the Ar host, namely
that the accommodations with N0 = 0, 1, 4, and 6 are stable.
Extension of the ρ range and use of the finer parameter space
scanning bring five new stable sites with N0 = 8, 10, 13,
16, and 19. The domains where most of these sites corre-
spond to the ground accommodation are marked in Fig. 2 for
Ar (N0 = 8 and 16 domains form very tiny strips between
those of N0 = 6, 10 and N0 = 13, 19, respectively). Regular
patterns can also be found among the larger structures, e.g.,
N0 = 20, 28, 29, . . . , but we did not analyze them here as they

appear at nonphysical interaction parameters. The structures
with N0 > 13 may also not be realistic except for the Ne
host. The case of the hcp lattice reveals stable structures with
N0 = 0, 1, 4, 5, 6, 13, 15, and 19. For both lattices, N0 strongly
correlates with the interaction range ρ (N0 ∼ ρ2+α , α � 1)
and exhibits a weaker dependence on interaction energy ε.

Comparing accommodations in the fcc and hcp lattices, we
consider the difference between the ground accommodation
energies,

�Efcc/hcp = �Efcc
(
N fcc

0

) − �Ehcp
(
Nhcp

0

)
,
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FIG. 3. The maps of �Efcc/hcp, accommodation energy difference
between fcc and hcp phases, for Ar hosts. Top and bottom panels
show the regions of preferable accommodation in the hcp and fcc
phases, respectively. Black lines delineate top-right corners popu-
lated by the sites with N0 > 19 not analyzed here.

at each (ρ, ε) point. This difference indicates which phase
would preferably accommodate a certain guest atom disre-
garding the phase coexistence, the trapping mechanism, and
the local phase transition. Note that for each phase accom-
modation energy (2) is referred to distinct energy limits,
which cannot be connected to each other within the LJ model
wrongly favoring the hcp phase. Nevertheless, it is still pos-
sible to make plausible predictions about the coarse energy
scale. Indeed, assuming that the majority of the bulk contri-
butions to the E[G@H](N ) terms of Eq. (2) cancel each other,
and disregarding local lattice relaxation effects, �Efcc/hcp can
be estimated as N fcc

0 E at
fcc − Nhcp

0 E at
hcp. In the case of equivalent

effective trapping site sizes, N fcc
0 = Nhcp

0 = N0, the energy dif-
ference �Efcc/hcp ≈ N0(E at

fcc − E at
hcp) is directly affected by the

wrong phase stability and other minor effects. In the opposite
case, �Efcc/hcp ≈ (N fcc

0 − Nhcp
0 )E at

fcc. Taking the maximum N
considered here, i.e., 24, and the maximum difference in fcc
and hcp atomization energies for Xe, 0.05 cm−1 (see Ta-
ble I), we can estimate the uncertainty of the phase preference
prediction in our model as a few wave numbers. The same un-
certainty estimate (with correct opposite sign) can be derived
from the accurate atomization energy values computed for Ar
in Ref. [27]. It is much lower than the E at values themselves.

The maps of �Efcc/hcp for Ar are shown in Fig. 3, where
the top and bottom panels correspond to the regions with
the preferred hcp and fcc accommodations, respectively.

Accommodation energies are the same for the two phases
in the most important part of the entire parameter plane,
where the guest-host interaction is weaker than the host-host
one. This indicates that the structures of the trapping sites in
both lattices are very close to each other. However, as the
guest-host interaction range and, consequently, N0 increase,
the narrow strips with alternating fcc-hcp preference emerge.
As expected, the origin is the difference in the effective vol-
umes occupied by the guest in two phases; cf. Figs. 2 and
3. First, the stable hcp N0 = 5 site emerges being stabilized
with respect to the N0 = 6 site in the fcc lattice. Then, the
fcc N0 = 8 and 10 accommodations become more stable than
the hcp N0 = 13 alternative. As ρ grows further, the N0 = 15
hcp site gains preference over the N0 = 16 accommodation in
the fcc lattice. The alterations continue for the sites N0 > 19,
delineated in Fig. 3 by black lines, but we did not analyze
them as they are probably not feasible for atomic impurities.

The maps show that atomic impurity, depending on the
range and strength of its interaction with the host atoms, may
have a clear preference for the fcc or hcp accommodation.
This preference is mainly determined by the effective size of
the trapping site, with tighter sites always favored. In the case
of Ar, |�Efcc/hcp| approaches ∼400 cm−1. That means that a
single impurity may be worth more than 1000 differences in
atomization energies between the fcc and hcp lattices [27].

C. RDF analysis

Figure 4 illustrates the radial distribution functions ob-
tained for the ground stable sites in the Ar hcp lattice. A
comparison with the reference RDFs classifies N0 = 1, 13,
and 15 sites as being anticuboctahedral and N0 = 4 as tetrahe-
dral. The coexistence of several types can be suggested for the
N0 = 0 and 19 cases. The bipyramidal V5 type is represented
by N0 = 0 and 5 sites. An example of a similar comparison for
small fcc sites can be found in Ref. [45]. In combination with
the present results, it establishes N0 = 0, 4, and 16 sites as
tetrahedral, another N0 = 0 and N0 = 6, 8, 10 as octahedral,
and N0 = 1, 13, 19 as cuboctahedral.

The RDF analysis makes it possible to classify the site
types over the entire parameter plane, as is shown in Fig. 5
for both fcc and hcp lattices of Ar. Regression (5) was used
first to color the points where the dominant weight WP ex-
ceeded 0.9. Otherwise, the long-range part of the RDFs was
inspected visually to find the best correspondence with one of
the references. Note that N0 = 0 sites appearing at very small
ρ, comparable to host van der Waals radius ρHH/2 ≈ 2 Å,
should be discarded from the analysis.

D. Structure overview

Presenting the structures of the generic sites, it is conve-
nient to follow their symmetry types and consider two lattices
in parallel. Schematic illustrations are drawn, for clarity, for
ideal unperturbed lattices. Their local symmetry confirmed
through the symmetry of the first coordination polyhedron,
however, is the same as that in the optimized structures.

The smallest interstitial N0 = 0 sites in both lattices are
tetrahedral. Their structures shown in Figs. 6(a) and 6(b)
for fcc and hcp crystals, respectively, correspond to impurity
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FIG. 4. Radial distribution functions for the ground stable sites in
the Ar hcp lattice shown as the thin black lines. Lines with symbols
correspond to the reference RDFs: red triangles for tetrahedral, blue
dots for anticuboctahedral, green squares for octahedral, and orange
diamonds for bipyramidal reference points, respectively (see Fig. 1
for definition). Note that distances are given in units of the lattice
parameter a.

placed in the tetrahedral lattice voids, and they have identi-
cal coordination polyhedra of perfect Td symmetry. The next
stable tetrahedral site in both lattices, N0 = 4, is derived from
these interstitials by removing four host atoms forming the
closest tetrahedron. In the fcc N0 = 4 site, the guest atom is
coordinated by the frustum of the tetrahedron with Td symme-
try [see Fig. 6(c)], while the symmetry of its hcp counterpart
is reduced to axial C3v [Fig. 6(d)]. In the fcc lattice, removal of
the next coordination polyhedron consisting of 12 host atoms
gives the stable N0 = 16 site that maintains Td symmetry. No
other tetrahedral ground sites emerge in the hcp lattice below
N0 = 20.

Placement of impurity into octahedral voids produces the
second type of interstitials N0 = 0 in both lattices. Fig-
ures 7(a) and 7(b) show the structures of the perfect Oh local
symmetry. Upon removing the six-atom coordination octahe-
dron, one arrives at the N0 = 6 stable sites, which are generic
for both lattices [Figs. 7(c) and 7(d)]. The fcc lattice maintains
an Oh environment, while in hcp the symmetry lowers to
D3d . This exhausts the generic octahedral type in hcp with
N0 < 20, whereas two more sites of this type, N0 = 8 and
10, were found in the fcc lattice. Both can be derived from

FIG. 5. Maps of the structural types of the ground sites in the LJ
parameter plane (ρ, ε) according to the RDF analysis. The top and
bottom panels present the hcp and fcc Ar lattices, respectively. The
bars on the right specify the color coding according to the reference
RDF types, tetrahedral (T), octahedral (O), and cuboctahedral (C) for
fcc lattice, and tetrahedral (T), octahedral (O), anticuboctahedral (A),
and bipyramidal (V5) for hcp lattice. See Sec. II D for explanations.

N0 = 6 by removing two host atoms lying on the edge of
the coordination cube or four host atoms lying on its face,
respectively. Their symmetries are C2v and C4v .

FIG. 6. Schematic structures of the tetrahedral stable sites de-
rived from the ideal lattices. (a),(b) N0 = 0 interstitials in fcc and
hcp lattices; (c),(d) N0 = 4 sites in fcc and hcp lattices. Guest atom
is represented by a large sphere; host atoms forming an initial cell and
a first coordination shell are shown as medium spheres connected by
colored solid lines. Small spheres indicate other host atoms added for
presentation clarity.
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FIG. 7. Same as Fig. 6, but the octahedral stable sites.
(a),(b) N0 = 0 interstitials in fcc and hcp lattices; (c),(d) N0 = 6 sites
in fcc and hcp lattices.

A single substitution produces the stable N0 = 1 sites
coordinated by the perfect Oh cuboctahedron in fcc and an-
ticuboctahedron (hexagonal cuboctahedron) of D3h symmetry
in hcp; see Figs. 8(a) and 8(b). Then the N0 = 13 sites follow
with the missed first coordination polyhedra at the substituted
node [Figs. 8(c) and 8(d)]. They maintain the local symmetries
of the precursors. Upon removing the next six neighbors, one
arrives at the N0 = 19 sites, which are stable in both fcc and
hcp lattices, again of Oh and D3h coordination. Lattice relax-
ation of these spacious sites renders a very strong dependence
of their geometry on guest-host interaction parameters, which,
in turn, blurs the RDF distributions shown in Fig. 4. Study of
the hexagonal packing reveals one more stable site not present
in the fcc case,, i.e., the N0 = 15 site. It can be viewed as
an N0 = 13 structure without two more nearest-neighbor host
atoms. In contrast to the fcc N0 = 8, 10 cases discussed above,
we detected a set of structures that differ by missing pairs with
the highest symmetry C2v .

FIG. 8. Same as Fig. 6, but the cuboctahedral/anticuboctahedral
stable sites. (a),(b) N0 = 1 interstitials in fcc and hcp lattices;
(c),(d) N0 = 13 sites in fcc and hcp lattices.

FIG. 9. Same as Fig. 6, but the bipyramidal stable sites in an hcp
lattice. (a) N0 = 1 interstitial, (b) N0 = 5 site.

Bipyramidal (V5) structures are typical only to an hcp
lattice. Two stable sites, namely the third interstitial N0 = 0
and N0 = 5, are shown in Fig. 9. In both sites, the impurity
has a D3h local environment.

IV. DISCUSSION

Extensive computational analysis of the LJ model of an
atom embedded in the fcc and hcp rare-gas solids revealed
a handful of the thermodynamically stable trapping sites that
can provide the lowest-energy guest accommodation. They
are classified by the number of host atoms substituted by a
guest, or the effective size, and by structure type, or the loca-
tion of the guest close to a certain lattice point. For physically
relevant ranges of the guest-host interaction parameters, the
fcc list is N0 = 0(T), N0 = 0(O), N0 = 1(C), N0 = 4(T), N0 =
6(O), N0 = 8(O), N0 = 10(O), N0 = 13(C), N0 = 16(T), and
N0 = 19(C), where T, O, and C relate the site type to the
tetrahedral void, the octahedral void, and the node of the fcc
cell. In the hcp lattice, the stable site set includes N0 = 0(T),
N0 = 0(V5), N0 = 0(O), N0 = 1(A), N0 = 4(T), N0 = 5(V5),
N0 = 6(O), N0 = 13(A), N0 = 15(A), and N0 = 19(A), where
A corresponds to the node replacing C in the fcc cell, and V5
is associated with the bipyramidal void; see Fig. 1.

In principle, the mapping of the ground sites and their
types onto the guest-host parameter plane allows one to pre-
dict the most probable accommodation of any S-state atom
provided that its interaction parameters with the host atom
are known. We had shown elsewhere [45] that such predic-
tions on the ground site structure and the number of stable
sites indeed agree with more sophisticated simulations and
well-interpreted experimental absorption, excitation, and ESR
spectroscopy data for H, Mn, Na, Ba, Eu, and Yb atoms
isolated in an Ar matrix.

Enlisted ground accommodations tightly pave the entire
parameter plane and thus they are generic. However, the ques-
tion arises as to whether or not new unlisted site types can
be found with finer discretization of the continuous parameter
space. One argument against this possibility can be found
in the analysis of the sites, which, according to the convex
hull concept, are stable but lie above the ground in energy.
Applying precisely the same symmetry and structure analysis
as exposed for the ground sites, we found that in both lattices
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practically all N �= N0 stable sites belong to the above lists.
One exception is known for the fcc lattice: the N = 7(O)
site [39,45] of C3v symmetry that is derived from N0 = 6
by removing one host atom from its coordination cube; see
Fig. 7(c). Two rare exceptions of the anticuboctahedral type
were found in the hcp lattice at N = 2 and 3. The correspond-
ing structures have C2v and C3v symmetries. The sporadic
appearance of some N � 14 structures was also detected,
but at very high energy. It is unlikely that any other accom-
modation can appear as the ground one to append generic
sites already enlisted. Of course, these findings are valid only
for the LJ model, and nothing prevents the formation of
other ground sites in the models with more elaborate realistic
potentials. Such deviations from LJ motifs would indicate
qualitatively important effects in the guest-host interactions.

Our classification of the generic sites by type uncovers
quite a simple rule: the majority of the sites can be derived
from interstitials and single substitution by sequential removal
of their coordination polyhedra. Exceptions are fcc N0 = 8, 10
and hcp N0 = 15, which can be viewed as the partial poly-
hedron destruction. An important difference between the two
lattices is that the fcc sites that follow the rule maintain
high polyhedral symmetry, Td or Oh, while coordination of
the hcp sites generally has lower symmetry. Indeed, only
two interstitial hcp sites possess perfect Td and Oh coordi-
nations. All others have only one threefold symmetry axes.
It has an interesting implication to optical spectroscopy of
the matrix-isolated S-state atoms. Bright states normally have
P-symmetry associated with a unit electron orbital (or total)
angular momentum. Triple degeneracy in momentum projec-
tion remains in polyhedral environments with groups having
an irreducible representation of dimension 3, it splits to 2+1
for axial groups with the axis order 3 or higher, and it is fully
lifted for lower symmetries. A more realistic picture of the
dynamic Jahn-Teller effect [60] tells us that in the former case,
the single absorption band should appear with a triplet struc-
ture, while in the second case two bands would emerge, one
with a secondary doublet structure. Three separate bands are
expected in the latter case. To our knowledge, the only firm ex-
perimental observation of the 2+1 bands through fluorescence
excitation spectroscopy was reported for Ba by McCaffrey
and co-workers [37,38]. They were interpreted as belonging
to the axially symmetric N = 7 fcc site mentioned above [39]
and/or to a stacking fault accommodation, very similar to
the hcp N0 = 5 site reported here [37]. It is true that such
assignments require extensive and sophisticated modeling and
meet uncertainty due to the overlapping of broad bands, but
the understanding that the hcp phase should likely give more
complex band shapes than the fcc phase may be taken as a
useful hint.

Accommodations in two lattices can be compared not only
in symmetry but also in energy. Despite the wrong prefer-
ence of the hcp phase inherent to the LJ model, it is still
possible to discern the situations when accommodation in
one of the phases is strongly preferred. Our analysis showed
that they emerge when the effective sizes of the ground sites
N0 in two phases differ from one another; see Fig. 3. The
structures of small fcc and hcp sites up to N0 = 6 are very
similar, so the only case of a sharp hcp preference is related
to the bipyramidal N0 = 5 accommodation, which is more

FIG. 10. The �E (N ) dependence for Ar, Kr, and Xe guests in
the Ne crystals.

stable with respect to the fcc N0 = 6 accommodation. For the
guest-host interactions of longer range, fcc accommodation
appears to be preferred due to axially symmetric N0 = 8, 10
sites that coexist with N0 = 13 in hcp phase. Then hcp is
preferred again because the N0 = 15 site gains energy with
respect to the fcc N0 = 16. These qualitative considerations
are valid only within the LJ model, and they have nothing to
do with the intricate issue of phase transitions in the presence
of impurities. They can only suggest that for some atomic
impurities, an hcp environment should be considered as quite
realistic.

To illustrate the use of these results, we consider the stable
sites of Ar, Kr, and Xe atoms in Ne crystals in relation to
Ref. [43], which indicated the preference of the hcp accom-
modations. For compatibility with the RG-RG LJ potentials,
the ρ and ε LJ parameters for Ne-RG pairs were taken from
Refs. [61,62]. The �E (N ) diagrams obtained with these pa-
rameters for both the fcc and hcp phases are shown in Fig. 10.
According to the convex hull concept, stable fcc sites include
N = 0, 1, 4, 6, plus marginal stability can also be guessed
for N = 7 and 8. In the hcp lattice, N = 0, 1, 4, and 5 sites
appear as stable. All of them are identified by the global
optimization and described above. In the fcc phase, Ar tends
to substitute one Ne atom, while its accommodation in the
N = 4 tetravacancy is less probable. The order of these sites
in energy is changed for Kr and Xe. In the latter case, the
N = 6 hexavacancy becomes a more preferable secondary
accommodation than the N = 1 one. This pattern illustrates
the smooth changes in the lowest energy sites as the effective
size of the guest increases (along the Ar, Kr, Xe sequence, ρ

goes from 3.14 to 3.86 Å, while ε is about 50 cm−1 and does
not change much [61,62]). Ar and Kr accommodations in the
hcp lattice follow a very similar trend. The slight preference of
the fcc phase at N = 4, 6 originating from different lattice re-
laxation energy may not be considered as significant due to the
simplicity of the potential model and the omission of entropy
contributions. A qualitative difference should be noted only in
the case of Xe, where the ground sites in the two lattices are
distinct: N0 = 4 fcc and N0 = 5 hcp. Although their energy
mismatch is still beyond the expected accuracy of the model,
one can suggest that such a qualitative difference may give
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strong preference to accommodation in one of the phases and
even cause local rearrangement of the host structure.

V. CONCLUSIONS

A comprehensive computational analysis of the stable trap-
ping sites of an atomic guest in the LJ fcc and hcp rare-gas
lattices reveals a limited number of generic structures that
may appear to be the lowest energy accommodation. Most of
the structures found can be derived from the interstitial and
substitutional accommodations by successive removal of the
first coordination polyhedra. Generally, those typical of the
fcc lattice possess higher polyhedral symmetry in compari-
son to hcp structures with predominantly axial symmetries.
The cases of a strong preference of guest accommodation in
one phase or another are identified and discussed. They take

place when one phase offers a tighter guest accommodation
than the other. The corresponding difference between the ac-
commodation energy is much larger than the overall phase
stability difference, and thus it can be discerned even within
the LJ model, which notoriously favors the hcp phase. The
implications of the present generic results to matrix isolation
spectroscopy are briefly discussed and illustrated for Ar, Kr,
and Xe atoms trapped in Ne crystals.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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