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Multiphase tin equation of state using density functional theory
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We perform density functional theory (DFT) calculations of five solid phases and the liquid phase of tin. The
calculations include cold curves of the five solid phases, phonon calculations in the quasiharmonic approximation
over a range of volumes for each solid phase, and DFT-based molecular dynamics (DFT-MD) simulations of the
liquid phase, including those of the melt curve using the Z method. Using the DFT results, we construct a tabular
multiphase SESAME equation of state for tin, referred to as SESAME 2162. Comparisons to experimental data are
made and show a high level of agreement in isobaric data, isothermal data, shock data, and phase boundary
measurements, including measurements of the melt curve. The 2162 EOS will be useful for hydrodynamics
simulations and has been designed with an eye toward hydrodynamics simulations that incorporate materials
strength models and allow for modeling of the kinetics of phase transitions.
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I. INTRODUCTION

Tabular equations of state (EOS) are important for both a
basic understanding of materials properties and for hydrody-
namics applications. As hydrodynamics codes are developed
to incorporate materials strength models [1,2] and to account
for kinetic effects in simulating phase transitions [3–5], the
need for an accurate underlying multiphase EOS becomes
increasingly important. Here we focus on the development of
a new tabular multiphase SESAME [6,7] EOS for tin, referred
to as SESAME 2162. The EOS can be thought of as a successor
to the previous tin EOS, SESAME 2161 [8]. The new EOS
includes four solid phases and the liquid phase.

To generate SESAME 2162, we performed density func-
tional theory (DFT) calculations of the solid phases of tin and
the liquid phase, including static lattice energy (cold curve)
calculations, phonon calculations in the quasiharmonic ap-
proximation, and DFT-based molecular dynamics (DFT-MD)
simulations of the liquid phase, including those of the melt
curve. These calculations provide data in regions of the state
space where experimental data is unavailable and thereby help
to constrain construction of the final EOS. The DFT calcula-
tions are particularly useful for determining phase boundaries
of the high pressure solid phases, the high pressure (�75 GPa)
melt curve, and isotherms in the liquid phase, which have not
been measured experimentally.

Tin is known to exist in at least five different solid phases,
summarized in Table I. Throughout we refer to the phases by
their corresponding Greek letter. Note that the α, β, and γ

naming conventions are all standard. Here we also use δ to
refer to the bcc phase, which has infrequently been referred
to as the σ phase in the past [9], and we use ε to refer to
the hcp phase. The Greek letters are chosen in ascending
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order according to the pressure at which each phase becomes
stable.

Although we performed DFT calculations for all five solid
phases, we include only the β, γ , δ, and ε phases in the 2162
EOS, since the α phase is only stable below room temperature
and at pressures below 1 GPa [10–12] with limited accessibil-
ity in compressive and shock experiments, which are the main
focus of hydrodynamics codes that use the EOS. In addition,
the transition from β → α is slow and therefore unlikely to
show up in experiments [13,14].

Many experiments have been performed on tin, including
isobaric measurements [15–22], isothermal diamond anvil cell
(DAC) measurements [23–32], shock experiments [33–40],
dynamic compression experiments [41], and measurements
of the solid-solid phase boundaries [42–45]. Measurements of
the phonon dispersions for the α, β, and γ phases have also
been made [46–51]. In addition, the melt curve has been mea-
sured in a variety of different ways, including shock-induced
melt [52–56] and resistive and/or laser heating in a DAC or
compressive piston [57–64]. The available melt curve data
show a large variability in the range of measurements. More
recently, studies on liquid spallation and fragmentation have
also been performed [13,65,66]. In addition, a wide range of
theoretical calculations of tin have been performed, including
DFT-based cold curve calculations [67–76], phonon calcula-
tions [77–80], and molecular dynamics calculations [81–84],
and a variety of equations of state for tin have been proposed
over the years [8,85–88].

The rest of the paper is organized as follows: in Sec. II,
we provide an overview of OPENSESAME, the program used
to generate SESAME 2162. In Sec. III, we provide details on
the calculations of the cold curves and phonon calculations
of the solid phases, and of the DFT-MD calculations of the
liquid phase. We also describe how these calculations are
used to determine an initial set of parameters for models used
in OPENSESAME to construct the 2162 EOS. In Sec. IV, we
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TABLE I. Summary of the crystal structures and space groups
of the five known solid phases of tin. Greek letters are used to
refer to the phases in ascending order, from low to high pressure.
DFT calculations are performed using a mixture of primitive and
conventional unit cells, with the number of atoms per cell indicated
in the last column.

Lattice Space Space Number of
Phase type group group No. atoms/cell

α diamond Fd 3̄m 227 2
β bct I41/amd 141 4
γ bct I4/mmm 139 2
δ bcc Im3̄m 229 1
ε hcp P63/mmc 194 2

discuss how the parameters from DFT are modified (when
necessary) to obtain agreement with experimental data and
create the 2162 EOS. We show comparisons of the 2162
EOS to a variety of experimental measurements, including
isobaric data, isothermal DAC data, shock data, solid-solid
phase boundary measurements, and measurements of the melt
curve. While we only summarize the main results here, a more
comprehensive description of the process used to incorporate
DFT calculations into materials models used in OPENSESAME,
as well as a more detailed description of how model param-
eters are adjusted to fit to experimental data, is provided in
Ref. [89].

II. OVERVIEW OF OPENSESAME

The OPENSESAME software is a useful tool for generating
tabular materials equations of state. The multiphase capability
in OPENSESAME [7] relies on individual phase EOS tables and
evaluates the phase with the lowest Gibbs free energy at a
given temperature and pressure. Mixed phases are handled in
a self-consistent manner, as described below. The multiphase
capability allows for an arbitrary number of materials phases
to be included in the final EOS table. For the individual
phase tables, OPENSESAME uses a decomposition of the to-
tal Helmholtz free energy F (V, T ) for each phase into three
pieces,

F (V, T ) = Fcold(V ) + Fion(V, T ) + Fel(V, T ), (1)

where Fcold is the energy associated with a cold curve (T = 0
static lattice energy), Fion is the free energy associated with
ionic motion, and Fel is the electronic free energy. OPENS-
ESAME uses a variety of simple materials models to inform
on these three contributions to the free energy, making it
necessary to determine model parameters from the DFT cal-
culations and/or experimental data. In constructing the 2162
EOS, we first determined model parameters entirely from
DFT calculations, as discussed in Sec. III. Because the DFT
calculations resulted in an EOS that was not in perfect agree-
ment with experimental data, small modifications to the model
parameters were made, as described in Sec. IV.

Model parameters for the solid phases determined by DFT
are outlined in Sec. III. In Sec. III A, we discuss cold curve
calculations that inform directly on Fcold, which we treat with
a Vinet-Rose model. [90] In Sec. III B, we show how phonon

calculations can be used to determine parameters in the Debye
model [91], which informs on Fion for the solid phases. The
Debye model relies on the Debye frequency νD, or equiva-
lently the Debye temperature 	D = hνD/kB. Also necessary
for Fion is a Grüneisen model, also discussed in Sec. III B,
that provides information about the volume dependence of the
Debye frequencies. DFT-based phonon calculations allow for
the determination of all parameters relevant to the Debye and
Grüneisen models for the solid phases. The remaining term Fel

is determined using the Thomas-Fermi-Dirac (TFD) method
[92–95] and does not require additional parametrization from
DFT calculations.

For the liquid phase, the same decomposition in Eq. (1) is
used. The liquid free energy is defined with respect to that of
a reference solid phase, which we denote Frs. This may be one
of the actual solid phases, or may be hypothetical. We define
a scaling temperature Tsc(V ), which marks the transition from
solidlike to liquidlike behavior. For T � Tsc, the liquid free
energy Fl is related to that of the reference solid by a con-
stant entropy shift 
S and a volume-dependent energy shift

Fcold(V ),

Fl (V, T ) = Frs(V, T ) − 
ST + 
Fcold(V ); T � Tsc(V ),

(2)

where Frs is parameterized the same way as the other solid
phases. For T > Tsc(V ) the excess specific heat is assumed to
be a function of the scaled temperature

cV (V, T )/NkB = f (T/Tsc(V )) + 3/2 , (3)

with f (1) = 3/2 and f (x) → 0 as x → ∞. Equations (2) and
(3) allow one to determine the free energy at all temperatures,

Fl (V, T ) = Fl (V, Tsc(V )) − Sl (V, Tsc(V ))(T − Tsc(V ))

−
∫ T

Tsc

dT2

∫ T2

Tsc

dT1
cV (V, T1)

T1
; T > Tsc(V ). (4)

The details of the T dependence of cV are described in
Ref. [96]. We define Tm(V ) = 
Fcold(V )/
S. Then the vol-
ume dependence of the two functions Tsc(V ) and Tm(V ) is
given by

−d ln Tm(V )

d ln V
= 2�m(V ) − 2/3, (5)

−d ln Tsc(V )

d ln V
= 2�rs(V ) − 2/3, (6)

where the Grüneisen parameters �m and �rs have the same
functional form as those of the solid phase Debye tempera-
tures, as given in Eq. (11), discussed in the next section. Note
that the effective Grüneisen parameter for Tsc as defined in
Eq. (6) must be the same as the Debye Grüneisen parameter
for the reference solid, �rs = −d ln 	rs/d ln V , in order for
the pressure to reach the ideal gas limit at high temperature
[97].

The liquid free energy has, in addition to the standard solid
phase parameters, two additional parameters for the volume
dependence of �m, as well as 
S and reference values for Tm

and Tsc. This somewhat complicated formulation was adopted
to facilitate creating liquid models that obey standard Lin-
demann scaling [97] in the case of a single solid phase. For
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that case, the reference solid is the actual solid phase, the
various Grüneisen parameters are the same, and the reference
values of Tm and Tsc are the same and are equal to the melting
temperature at the reference volume. The earlier SESAME 2161
tin EOS was made with the liquid “normal” in this sense with
respect to the high pressure γ phase. For SESAME 2162, there
are more solid phases, we have more data on the high pressure
melting curve, as well as DFT-MD data on the liquid EOS, and
thus were not able to adopt this simplification. When develop-
ing the 2162 EOS, we explored three options for determining
a cold curve for the liquid, as described in Ref. [89]. Because
melt is possible from the β, γ , and δ phases of tin across
a wide compression range, we determined a cold curve that
interpolates across the three solid phases, also described in
Ref. [89].

In the construction of SESAME 2162, we produce an equi-
librium table that includes mixed phase regions. The mixed
phase regions are defined by the following set of equations:

Pa(Va, T ) = Pb(Vb, T ),

Ga(Va, T ) = Gb(Vb, T ),

λaVa + λbVb = V,

λaEa(Va, T ) + λbEb(Vb, T ) = E , (7)

where a and b denote the two coexisting phases, P, G, V ,
and E are the pressure, specific Gibbs free energy, volume,
and internal energy, respectively, and λa denotes the mass
fraction of phase a. For the great majority of states, there are
no solutions to the conditions [Eqs. (7)] satisfying 0 � λi � 1
and

∑
i λi = 1, and the state is a pure phase with the lowest

Helmholtz free energy at the given V and T . The algorithm
for constructing equilibrium tables is described in Ref. [7].

The initial set of model parameters determined from DFT
calculations provide a useful starting point for the determina-
tion of the OPENSESAME model parameters described above.
However, some adjustments are needed to agree fully with
experimental data. The adjustments made are described in
Sec. IV.

III. DFT CALCULATIONS

A. Cold curves

All DFT calculations were computed using the Vienna ab
initio simulation package (VASP) [98–101], version 5.4.4. All
calculations use the projector augmented wave (PAW) method
[102,103] using either 14 valence states, 4d105s25p2 (cold
curves and phonons) or 4 valence states, 5s25p2 (DFT-MD
of the liquid). The cold curves were computed by relaxing the
structures with multiple restarts to ensure convergence of the
atomic positions and lattice constants. The relaxations were
performed using the Methfessel-Paxton scheme [104] with a
400-eV plane-wave energy cutoff. Subsequently, total energy
calculations were performed using fixed ions and lattice con-
stants with tetrahedral integration of the Brillouin zone and
a 520-eV plane-wave energy cutoff. We also computed cold
curves of tin using the all-electron code RSPt [105] with dif-
ferent relativistic treatments [106,107] and found the results
to be in close agreement with the VASP results, indicating the

FIG. 1. Cold curves for the β (blue) and γ (orange) phases
of tin using the AM05 (solid lines) and PBE (dashed lines)
exchange-correlation functionals. Experimental DAC data are from
Refs. [23–25].

adequacy of using the PAW method for treatment of the core
states.

Cold curves were computed using the AM05 [108] and
PBE [109] exchange-correlation functionals. As shown in
Fig. 1, the AM05 results for the β and γ phases are in very
close agreement with experimental room temperature DAC
measurements from Refs. [23–25] (note that the phase transi-
tion from β to γ occurs at approximately 8.5 g/cm3), whereas
the equilibrium density ρ0 predicted by PBE is substantially
lower. For this reason, we chose to use the AM05 functional
to determine the initial set of 2162 model parameters, which
include the AM05 cold curves, AM05 phonon calculations,
and DFT-MD calculations using AM05. The only exception
to this are DFT-MD calculations of the melt curve using the Z
method [110–112], which were computed separately using the
PBE functional [113]. We present the melt curves only in P-T
space (see Fig. 4). These results should be expected to be quite
similar to what would be obtained using the AM05 functional,
since the primary difference between AM05 and PBE is an
offset in the density, while the pressure as a function of the
compression ρ/ρ0 for the two functionals are quite similar,
as can be seen in Fig. 1 and as verified by highly similar
bulk moduli computed from the cold curves (see Ref. [89] for
details).

The Vinet-Rose cold curve model was used to fit to the
AM05 data of each phase. The results for ρ0, E0, B, and
B′ = dB/dP are provided in Table II. Note that for cold curve
calculations of the β, γ , and ε phases, the lattice constants
are allowed to relax at each volume to allow for a volume-
dependent c/a ratio. In the case of the β and ε phases, c/a
remains relatively constant over the full compression range
studied, varying by only a few percent across a compression
range of approximately 0.9 to 3.0. On the other hand, the
γ phase shows a large variation in the c/a ratio, starting at
c/a = 0.88 at ρ0 = 7.53 g/cm3 and converging to c/a = 1
above 9.38 g/cm3, thereby indicating that the bcc δ phase has
the lower energy above a compression ratio of approximately
1.25. The γ -δ phase transition is observed to occur between
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TABLE II. Model parameters used to construct the 2162 EOS. The DFT-calculated values using the AM05 functional are displayed
first. If modifications were made to the parameter to better agree with experimental data, the final value used in the 2162 EOS is listed in
parentheses next to the DFT-calculated value. Note that 	D, �ref , and �′

ref for each phase are calculated at a reference density chosen to be
ρref = 7.581 g/cm3 for all phases. All liquid parameters are listed in parentheses because there is not a unique way to determine the values
strictly from DFT calculations. The values chosen are ones that were found to best agree simultaneously with the DFT-MD data in Fig. 4 and
Hugoniot data in the liquid phase in Fig. 8. Also note that we use the liquid-specific reference parameters Tm = Tsc = 580 K, �m = �rs = 2.45,
and 
S = 0.9 kJ g−1 K−1.

Phase ρ0 (g/cm3) E0 (J/g) B (GPa) B′ 	D (K) �ref �′
ref

β 7.336 (7.4375) 0 52.74 (58.0) 5.369 161.0 1.98 (2.42) −1.31
γ 7.525 6.04 (36.0) 52.32 5.344 121.7 2.48 (2.45) −1.82 (−2.20)
δ 7.561 12.55 (54.0) 52.64 5.383 114.2 (117.5) 2.54 (2.51) −1.73 (−2.10)
ε 7.531 3.05 (44.1) 52.68 5.291 121.1 (124.6) 2.51 (2.48) −1.85 (−2.24)
Liquid (7.470) (24.0) (52.7) (5.540) (131.0) (2.45) (−3.50)

10.5–11 g/cm3 (compression of approximately 1.4–1.45)
in recent isothermal DAC measurements [29], which is in
agreement with the compression range at which the enthalpies
of the γ and δ phases computed using the AM05 cold curves
cross. Additional details regarding cold curve comparisons
and the enthalpy are provided in Ref. [89] and comparisons
of the room temperature 2162 isotherms to experimental DAC
data are provided in Sec. IV.

We also point out that at nonzero temperatures, the elec-
tronic free energy Fel can be determined through the use of
Fermi smearing in DFT calculations. This is analogous to
cold curve calculations, but with the Fermi smearing width set
according to the temperature kBT . Although this can provide
useful information, we did not see any appreciable differ-
ences in the resulting phase boundaries when including Fermi
smearing to treat the electronic free energy at a range of tem-
peratures and volumes. In OPENSESAME, the electronic free
energy is treated with the TFD model, [92–95] which works
over a wide range of densities and temperatures. Similar to
the use of Fermi smearing, the TFD method results in only
small quantitative differences in the resulting solid-solid phase
boundaries, thereby indicating that the TFD method can safely
be used for the solid phases of tin.

B. Phonons

Phonon calculations were performed in the quasiharmonic
approximation [114] using a frozen phonon supercell ap-
proach in VASP. The Phonopy [115] package was used to
generate supercells and atomic displacements for each solid
phase. The plane-wave energy cutoff, k-mesh size, and su-
percell size were tested at the AM05-predicted equilibrium
volume for each phase individually to ensure structural stabil-
ity of each phase and to ensure a converged phonon density of
states. We use a minimum 350-eV plane-wave energy cutoff
for each solid phase and used the method of Methfessel and
Paxton [104] to sample the Brillouin zone. We use a smearing
width of 0.2 eV for all phases except the δ phase, where
we use a smearing width of 0.6 eV. The smearing widths
are chosen to ensure that no imaginary frequency modes
appear in the phonon dispersions [116,117] (see Ref. [118]
for details). In all calculations we determine the k-mesh of
the Brillouin zone using a �-centered Monkhorst-Pack [119]
scheme. The supercells were constructed using the primitive

or conventional cells listed in Table I, including a 54 atom cell
with a 6 × 6 × 6 k-mesh (α phase), a 64 atom cell with an
8 × 8 × 6 k-mesh (β phase), a 54 atom cell with an 8 × 8 × 8
k-mesh (γ phase), a 64 atom cell with a 6 × 6 × 6 k-mesh
(δ phase), and a 54 atom cell with a 10 × 10 × 7 k–mesh
(ε phase). At volumes below the equilibrium volume, we use
the same k-mesh size to ensure that results remain converged
with respect to k-mesh size. The phonon densities of states
g(ν) for each phase at their respective equilibrium volumes
are shown in Fig. 2. Comparisons of the phonon dispersions
and densities of states to experimental data are provided in
Ref. [118].

The phonon calculations provide a rigorous way to de-
termine model parameters in OPENSESAME used to construct
the full tabular EOS. We use the Debye model [91] and
the ‘generalized CHART D’ Grüneisen model [120] within
OPENSESAME to construct the 2162 EOS. Typically moments
of g(ν) are used to determine the Debye frequencies of the
solid phases. [96,121] For tin, we found that the zeroth
moment typically gave free energies F (T ) that matched the
phonon free energy well over a wide range of temperatures
and volumes, whereas the free energy predicted using first and
second moments to determine the Debye frequencies did not

FIG. 2. Phonon densities of states g(ν ) for the different phases
of tin at their respective equilibrium volumes using the AM05
functional.
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FIG. 3. Free energy as a function of temperature for the γ phase
computed from phonon calculations (dots) and the corresponding
Debye model fit (lines) using Eq. (9) over a range of different
volumes.

match the phonon F (T ) results very well. At the same time,
evaluation of the zeroth moment can be prone to numerical
errors when a very small and otherwise negligible density
of states is present around zero frequency (see Ref. [89] for
details). This motivated us to develop an alternative method
for determining the Debye frequencies for each phase and
each volume based on a minimization scheme, motivated by
matching the Debye free energy to the phonon free energy
as closely as possible. Given the phonon or Debye density of
states g(ν), the free energy at fixed volume V is

F (T ;V ) =
∫ ∞

0
g(ν)

(
1

2
hν + kBT ln[1 − e−hν/kBT ]

)
dν.

(8)

We choose the Debye frequency νD via the minimization
procedure

min
νD

‖FD(T ;V ) − Fph(T ;V )‖2, (9)

where FD is the Debye free energy, Fph is the free energy from
phonon calculations, ‖ f (T )‖2

2 = ∫ Tmax

0 f 2(T )dT denotes the
L2 norm, and we use Tmax = 4000 K. The solution is obtained
via a least-squares routine. Note that we determine νD over a
range of volumes, resulting in νD(V ) for each solid phase. The
determination of νD in this way leads to very close agreement
of FD and Fph over a wide range of volumes and temperatures,
as shown in Fig. 3. In Fig. 3, the solid lines are computed using
the Debye model, while the dots are computed from phonon
calculations. We find close agreement at low and high tem-
peratures, with slightly poorer agreement at low temperatures
for small volumes. Also note that the νD determined using
the minimization scheme above were in very close agreement
with the zeroth moment results in cases where the zeroth
moment results were not prone to numerical evaluation errors.
The advantage of the minimization approach is that it is not
prone to the same numerical difficulties.

The calculation of νD(V ) for each phase provides a set of
points that can be used to fit an analytical form that corre-
sponds to a particular Grüneisen model in OPENSESAME. In

this case, we use the form

νD(V ) = νref x−A exp

{
− B(x − 1) − C

2
(x2 − 1)

}
(10)

where x = V/Vref and Vref is a reference volume close to the
equilibrium volume of each phase, to determine parameters
for the Grüneisen model. Here the parameter A is chosen to
be 2/3, while B and C are determined by fitting Eq. (10)
to the Debye frequencies. The Grüneisen parameter � =
−d ln νD/d ln V is then

�(V ) = A + Bx + Cx2. (11)

With this form for � and fixed A, there are effectively
two parameters that determine the Grüneisen model for each
phase, B and C, and these are determined from DFT data by
fitting Eq. (10) to DFT-calculated νD(V ) points. Note, how-
ever, that in OPENSESAME, B and C are not used, but instead the
Grüneisen parameter � and its derivative �′ ≡ d�/d ln ρ are
specified at a reference volume Vref (or equivalently, reference
density ρref ). Therefore, rather than specifying the Grüneisen
model through B and C, we use �ref ≡ �(ρref ) and �′

ref ≡
�′(ρref ), with values listed in Table II. The Debye temperature
	D is also specified at the same reference density ρref . For
the 2162 EOS, ρref = 7.581 g/cm3 is chosen for all phases,
which is within 1% of the equilibrium density ρ0 determined
from the DFT cold curve calculations. Also note that the
form of � in Eq. (11) is only used for V � Vref . Above Vref ,
another form for � is used to prevent � from diverging in the
expansion region well below solid densities, such that � → 1
as V → ∞ (see Ref. [89] for additional details). The values of
	D(ρref ), �ref , and �′

ref for each phase are shown in Table II.
Values not in parentheses are the values computed directly
from DFT calculations, while values that were changed to
fit to experimental data (discussed in Sec. IV) are shown in
parentheses.

The advantage of phonon calculations is that they provide
a way to determine an initial set of Debye frequencies and
Grüneisen model parameters in OPENSESAME to generate the
full tabular EOS. Additional details on the process used to fit
to DFT data are provided in Ref. [89].

C. DFT-MD

All DFT-MD simulations were performed in VASP. We
used an NV T ensemble with a Nosé-Hoover thermostat
[122,123] to determine liquid isotherms and an NV E ensem-
ble to determine the melt curve using the Z method [110–112].

For the NV T simulations, we used the AM05 functional, a
plane-wave energy cutoff of 250 eV, a 2-fs time step, and four
electrons in the valence with the PAW method used to treat
the core states. All simulations used 250 atoms in a cubic cell
(a 5 × 5 × 5 supercell of the conventional bcc δ phase) and
the Brillouin zone was represented using the � point only.
A series of simulations were run at different volumes and
temperatures. Fermi smearing was used for all simulations,
setting the smearing width according to the fixed temperature
of each simulation. Each simulation was started using the
atomic positions of a liquid state that was generated from
a separate DFT-MD simulation in which the solid δ phase
was allowed to melt at 10 000 K over a period of time. The
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FIG. 4. Isotherms from DFT-MD simulations of the liquid phase
(dots) with a comparison to the 2162 EOS (lines).

resulting liquid structures were then used as the initial struc-
tures at each V, T . A total of 8 ps were used to determine
the resulting pressure, with the first 4 ps neglected to allow
enough time for the system to equilibrate (see Ref. [118] for
details regarding equilibration time). The pressure was then
determined through a time average of the last 4 ps using a
block averaging procedure (see Ref. [118] for details). Ad-
ditional details on the DFT-MD calculations are provided in
Ref. [89].

Figure 4 shows liquid isotherms computed in DFT-MD
(dots), along with the isotherms used for the resulting 2162
EOS (lines). Error bars are not included with the points be-
cause the statistical errors in the pressure are small enough to
fit within the dots on the plot (see Ref. [118] for details). The
isotherms help to constrain both the parameters controlling
the thermal response and parameters associated with the liquid
in OPENSESAME. The benefit of these DFT-MD simulations is
that they provide the best available data for isotherms in the
liquid phase, since very little experimental data is available in
this region of the state space. The resulting 2162 EOS fit is
shown in the same figure, with overall good agreement with
the DFT-MD data. Some discrepancies of the 2162 EOS and
the DFT-calculated are present, which is a result of having to
determine liquid model parameters that simultaneously fit the
DFT-MD data and experimental Hugoniot data in the liquid
phase, as described in Sec. IV. We also point out that the
process for determining model parameters for the liquid phase
is more involved than that of the solid phases. We leave this
discussion for Sec. IV, with additional details provided in
Ref. [89].

For the Z-method simulations used to determine the melt
curve, we used an NV E ensemble with the PBE functional
and the PAW method in VASP. Since the simulations were
performed at high-PT conditions, we used accurate PAW po-
tentials where the semi-core 4d states were treated as valence
states, so that each Sn atom included 14 valence electrons
per atom (4d , 5s, and 5p orbitals). The valence states were
represented with a plane-wave energy cutoff of 300 eV.

For all Z method calculations involving noncubic cells, we
first relaxed the structure to determine its unit cell parameters;
those unit cells were used for the construction of the corre-
sponding supercells. We used systems of sizes 512 (4 × 4 ×
8) for the β phase, 504 (6 × 6 × 7) for the γ phase, and 512
(rhombohedral 8 × 8 × 8 with θ = 109.5◦) for the δ phase.
Only the � point was used to represent the Brillouin zone
in each case. Full energy convergence (to ∼1 meV/atom)
was verified by performing short runs with 2 × 2 × 2 and
3 × 3 × 3 k-meshes and by comparing their output with that
of the run with a single � point. The Z-method NV E runs
were 15,000–20,000 time steps, with a time step of 1 fs.
These points were then used to determine an analytic form
for the melt curves of each solid phase, which are presented
in Ref. [118]. The full melt curve is the envelope of the three
melt curves for each individual phase and is shown in Fig. 5.
The Z-method calculations provide the best available data
for the high pressure (�75 GPa) portion of the melt curve,
which extends beyond currently available experimental data.
In addition, the calculations can be considered a fully ab initio
prediction of the melt behavior of the β, γ , and δ phases (see
Ref. [118] for details).

IV. RESULTS

The DFT results presented in Sec. III provide a way to
determine an initial set of parameters for models used in
OPENSESAME. This initial set of parameters provides a good
starting point, but the DFT data will not in general agree
perfectly with experimental data. The reasons for this have
primarily to do with uncertainty in the exchange-correlation
functional used in DFT, as well as inherent uncertainties
in experiments. Different experiments can give significantly
different results, making it necessary to prioritize certain
experimental results based on reasonable criteria when con-
structing the EOS. In this section, we briefly describe the
process used to adjust model parameters determined from
DFT data to fit experimental results, with a focus on the result-
ing fit to experimental data. The final values before and after
fitting are shown in Table II, where values not in parentheses
are determined directly from DFT and values in parentheses
indicate that the value was adjusted to agree with experimental
data. A more detailed description of this process can be found
in Ref. [89].

A. Phase diagram

We first review the overall phase diagram in P-T space
in the final 2162 EOS, shown in Fig. 5. The phase diagram
generated from DFT data alone does not fit perfectly with
experimental data, but the qualitative features are correct, as
described in Ref. [89]. The primary tool for adjusting the
location of the phase boundaries in pressure is by adjusting
the cold curve equilibrium energies E0 = Fcold(V0). The
DFT-predicted values and adjusted values (in parentheses)
are shown in Table II, where the energy is relative to E0 of the
β phase. Although the changes appear to be relatively large,
there are two important reasons for this. First, it is not possible
with GGA xc functionals to simultaneously predict correct
atomization energies and bond lengths [124]; the prediction
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FIG. 5. Phase diagram of tin. (a) A wide range of the state space with the principal Hugoniot (blue line) and principal adiabat (orange line).
Experimental data of the melt curve are from Refs. [52,53,59,64]. The data of Bernard and Maillet are MD simulations discussed in Ref. [81].
(b) A narrow range of the state space around the β-γ -liquid triple point. Experimental data are from Refs. [42,43].

of both is only possible within a meta-GGA framework. The
GGA AM05 functional used for DFT calculations in Sec. III
gives very accurate predictions of bond lengths for tin, but
was not designed with the goal of obtaining accurate relative
values of E0 between phases, but instead to correctly describe
surface effects in solids. Second, adjusting E0 does not change
any properties that depend on derivatives of the energy, mak-
ing E0 the most straight-forward parameter to use to adjust
the relative locations of the phase boundaries in P-T space.

Several points regarding the phase diagram should be
noted. First, the β-γ phase boundary was modified from the
SESAME 2161 EOS to be located at slightly lower pressures.
The 2161 EOS originally determined the phase boundary
based on shock Hugoniot data, which included some kinetic
effects associated with hysteresis in the β → γ phase tran-
sition. With recent developments in modeling the kinetics of
phase transitions in hydrodynamics codes, it is now important
to place the phase boundary at the location of static exper-
iments so that the kinetic effects associated with the β-γ
phase transition can be accounted for in the kinetic models,
rather than in the EOS. This allows the reverse transformation
(γ → β) to properly include kinetic effects, as well. The β-γ
phase boundary and the β-γ -liquid triple point are shown
in Fig. 5(b) with comparisons to experimental data from
Refs. [42,43]. The 2162 EOS is in close agreement with the
experimental data near the triple point and with the β-γ phase
boundary. The higher pressure parts of the phase boundary
are also in close agreement with phase diagrams reported
previously in Refs. [10,11,88].

We also point out that the slope of the γ -δ and δ-ε phase
boundaries in Fig. 5(a) are determined entirely from DFT data.
One challenge in determining the γ -δ phase boundary lies in
the fact that the γ phase cold curves should in principle be
computed in such a way that the lattice is allowed to relax
at each volume. This leads to a c/a ratio that converges to 1
as the volume is decreased, indicating that the δ (bcc) phase
becomes lower in energy. Although, in principle, this is the
correct way to treat the γ phase, in practice, this makes it very

difficult to determine a well-defined γ -δ phase boundary. At
elevated temperatures the Gibbs free energy G(P) of the γ

and δ phases are nearly coincident near the phase boundary,
making it difficult to numerically determine the pressure P
associated with the transition at elevated temperatures. The
ambiguity in defining a phase boundary is also borne out in
experiments. In particular, Salamat et al. find in Ref. [29] evi-
dence of the emergence of body-centered orthorhombic (bco)
phase(s) near the γ -δ phase transition at room temperature.
This finding indicates that near the phase boundary, the rela-
tive energy differences between bct, bco, and bcc structures
are small enough that the presence of local strains within
different grains of the sample can lead to the local stabilization
of different phases. These results provide insight into the fun-
damental difficulty of defining a clear phase boundary in this
region of the state space, rather than indicate a fundamental
failure in the DFT calculations.

In order to address the difficulties associated with defining
the γ -δ phase boundary, we ultimately used a DFT cold curve
for the γ phase in which the c/a ratio is kept fixed at the equi-
librium (zero pressure) value. This allows for more contrast in
the enthalpies (at T = 0) and the Gibbs free energies (T > 0)
near the phase boundary and therefore alleviates difficulties
associated with the numerically ambiguous phase preference
near the phase boundary.

Another point regarding the ε phase is also worth mention-
ing. The experimental evidence for the emergence of the ε

phase is relatively limited, but DAC experiments by Salamat
et al. (Ref. [28]) show a clear transition to the ε phase at
room temperature above 150 GPa. Nonetheless, these exper-
iments do not provide information about the slope of the
phase boundary in P-T at these high pressures, making the
DFT-predicted phase boundary the best currently available
data we have. The DFT results clearly indicate a positive
slope in Fig. 5(a), which is also in qualitative agreement with
experiments performed by Lazicki et al. (Ref. [41]) involving
dynamic compression of tin up to pressures around 1 TPa.
In Ref. [41], no evidence of the ε phase is found, however
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it is noted that very high temperatures are achieved during
compression, which may mean that the (P, T ) states probed
in experiments are located above the δ-ε phase boundary that
we compute using DFT. Furthermore, Lazicki et al. postulate
that strain rates in their compressive experiments may be too
fast to observe nucleation and growth of the ε phase. New
compressive experiments would help to shed light on these
issues and on the location of the phase boundary.

One final point regarding the melt curve is important. Many
measurements of the melt curve have been made using a vari-
ety of experimental techniques, with a large amount of scatter
in the data. Due to the degree of variability, it is necessary
to choose a subset of experimental results to guide the EOS
construction. For the 2162 EOS, we have focused on recent
experiments by La Lone et al. (Ref. [59]) which measure
melt on shock release using a combination of pyrometry,
reflectance, and velocimetry techniques to determine the loca-
tion of the melt curve in (P, T ) space. These results are shown
in Fig. 5(a), where the red lines indicate upper and lower
limits of uncertainty in the measurements. We also include
laser-heated DAC data by Schwager et al. (Ref. [64]), shock-
induced melt data by Mabire & Héreil (Refs. [52,53]), and
classical molecular dynamics (MD) simulations of the melt by
Bernard and Maillet (Ref. [81]). Note that the calculations of
Bernard and Maillet use an interatomic potential optimized by
fitting to DFT-MD simulations. We also show the melt curve
predicted by our Z method calculations in Fig. 5, which are
in very close agreement with the 2162 EOS and with experi-
mental data. Comparisons to other experiments can be found
in Ref. [89]. It is also important to point out that the melt curve
of the 2162 EOS is located at slightly higher temperatures than
the previous 2161 EOS, based primarily on the experimental
data provided in Fig. 5 and also on a trend towards consensus
that the melt curve lies at higher temperatures than what is
shown in the 2161 EOS below ∼50 GPa [59,88].

The melt curve is determined primarily by the liquid phase
parameters, shown in Table II, in addition to values of liquid-
specific parameters �m, �rs, Tm, Trs, and 
S, described in
Sec. II. For these liquid-specific parameters, we use the values
�rs = �m = 2.45, which is the same as the adjusted �ref value
for the γ phase, as well as Tm = Trs = 580 K and 
S = 0.9
kJ/g. Note that all parameters for the liquid phase in Table II
are shown in parentheses because there is not a unique way
to determine the parameters from DFT calculations. The liq-
uid phase parameters are the least straight-forward to adjust,
and we provide a brief overview of how these parameters
were determined below (additional details are provided in
Ref. [89]). First, because the melt curve extends across the
β, γ , and δ phases, it was necessary to construct a cold curve
that interpolated between these three phases. This was done
by stitching together P(ρ) for the β and γ phases near the
T = 0 transition density (the δ phase is left out because the γ

and δ P(ρ) curves are nearly overlapping at high density), so
that an ‘effective’ cold curve that interpolates between phases
could be used. The resulting cold curve has a slightly lower ρ0

than the β, γ , and δ phases, as shown in Table II. The values
of B and B′ are also determined from fitting the Vinet-Rose
model in this way. The parameters E0 and 	D for the liquid
phase mainly influence the location of the melt curve in P-T
space. Because there is no straight-forward way to determine

these parameters directly from DFT data, the adjustment was
done mostly through trial-and-error fitting to the experimental
data of melt curve measurements. Lastly, the Grüneisen pa-
rameter �ref was initially chosen to be the same as �ref of the
γ phase. However, this resulted in pressures that were slightly
too high at elevated temperatures in both the DFT-MD data
(Fig. 3) and in the shock Hugoniot data (Fig. 8). Lowering
this value by ∼2% allowed for better agreement in both the
DFT-MD results and the shock Hugoniot results. As described
in Sec. IV D, lowering this value changed the location of the
phase boundaries in Fig. 5 slightly. We therefore reduced �ref

of the solid phases by the same ratio as was used for the liquid
phase to restore the accuracy of the phase boundaries. Note
that �′

ref of the liquid phase primarily controls the curvature
of the melt curve at high pressures. We determined the value
�′

ref = −3.5 in Table II by fitting to the melt curve at high
pressure. Because this value was relatively higher than that of
the solid phases, �′

ref of the solid phases were decreased to
retain the shapes of the phase boundaries at high pressures.

B. Isobaric data

When adjusting model parameters in OPENSESAME to cre-
ate the 2162 EOS, we started with isobaric data. As described
in Ref. [89], the isobaric data generally allows for some con-
straints to be placed on model parameters of the phases that
are stable at atmospheric pressure. For tin, this includes the β

and liquid phases.
In Fig. 6, we show a variety of isobaric data at 1 bar and at

temperatures above and below the β-liquid phase boundary.
In Fig. 6(a), the temperature dependent bulk modulus B(T )
of the β phase is shown with comparisons to experimental
data determined from Kammer et al. (Ref. [15]). Kammer
et al. measured the elastic constants of β tin at different
temperatures, and from those measurements it is possible to
estimate the bulk modulus B and shear modulus G, as de-
scribed in Ref. [89]. Using the data of Kammer et al., we
found that at T = 0, B = 58 GPa, which can be compared to
the AM05 result of B = 52.7 GPa, as found by fitting the E -V
points to a Vinet-Rose model. [90] Because the DFT result
is slightly low, we modified the value to B = 58 GPa (see
Table II), which provides a constraint that reduces the number
of remaining model parameters that need to be adjusted.

In Fig. 6(b), we show the density along the 1 bar isobar
with comparisons to experimental data from Refs. [16–19].
The 2162 EOS matches very well in the β phase below melt,
and lies in between the data of Alchagirov et al. and Wang
et al. in the liquid phase. Due to the constraint on B at T = 0,
we were able to determine the equilibrium density of the β

phase, ρ0 = 7.437 g/cm3 based on the ρ(T ) data in Fig. 6(b).
This value is roughly 1.2% higher than the AM05-predicted
value of 7.344 g/cm3 (see Table II) and 7.2% higher than
the PBE-predicted value of 6.939 g/cm3. The other piece
that we adjusted slightly to fit to the isobaric ρ(T ) data is
�ref , shown in Table II. The combination of ρ0, B, and �ref

together control the slope and initial value of ρ(T ), and these
values were found to give good agreement with data shown in
Fig. 6(b).

We also show the entropy [Fig. 6(c)] and heat capacity at
constant pressure [Fig. 6(d)] with comparisons to data from
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FIG. 6. Comparison of the 2162 EOS to experimental isobaric data along the 1 bar isobar. (a) The bulk modulus B(T ) and shear modulus
G(T ) are computed from temperature-dependent elastic constant data in Ref. [15]. (b) The density ρ(T ) in the β phase (below 505 K) and in
the liquid phase (above 505 K) are compared to experimental data from Refs. [16–19]. Experimental data from Ref. [20] are compared with
the 2162 EOS for (c) the entropy S(T ) and (d) the heat capacity at constant pressure Cp(T ).

Hultgren et al. (Ref. [20]). Very close agreement is shown be-
tween the experimental data and the 2162 EOS. No additional
adjustment of model parameters was necessary to provide
good agreement for the β phase.

C. Isothermal data

The next step in the EOS construction is to look at
isothermal DAC data at room temperature. A variety of DAC
experiments have been performed over the years, and we focus
specifically on data from Refs. [23–29]. In Fig. 7, we show a
comparison of the 2162 EOS to these experimental results.
Note that due to the high level of agreement of the AM05
cold curves with DAC data (Fig. 1), it was possible to use
the AM05 cold curves directly and without any adjustments,
aside from the β phase which was modified slightly based
on isobaric data. The benefit of using the DFT data for the
cold curves is that it provides a more precise way to define
the cold curves than using the DAC data directly, due to the
limited range of ρ, P data available from DAC experiments for
each phase. The limited range of data available will introduce
uncertainty in the fitted parameters. The benefit of the DFT
calculations is that a wider range of ρ, P can be used to more
precisely determine cold curve parameters for each phase,

which then translates to less uncertainty in the solid phase
properties throughout the phase diagram. The unmodified cold
curve parameters are shown in Table II.

In Fig. 7(a), we show results over a wide range of den-
sity, which spans all four solid phases included in the EOS,
with the β-γ transition occurring at roughly 9 GPa, the γ -δ
transition occurring at roughly 48 GPa, and the δ-ε transition
occurring at roughly 156 GPa. The experiments of Salamat
et al. (Refs. [28,29]) are more recent and are the most pre-
cise data available, and the 2162 EOS shows a high level
of agreement with these results, particularly in the β and γ

phases at low pressure, as shown in Fig. 7(b). Note that small
discrepancies can be seen in the δ phase in Fig. 7(a), where
the 2162 EOS is slightly lower in pressure than the results
of Salamat et al.. This is interesting due to the fact that the
discrepancies start to appear at the onset of the γ -δ phase
transition. In the experiments of Ref. [29], Salamat et al. find
evidence for the emergence of bco phases, indicating that the
γ (bct), δ (bcc), and bco phases are all accessible in this region
of the state space and that the observed stable phase may be
influenced by small local strains present in the samples. For
the purposes of the EOS, we did not try to address all of
these issues, but rather relied on the AM05-calculated values,
since this provided a concrete way for determining model
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FIG. 7. Room temperature isotherm for the 2162 EOS with a comparison to experimental data over (a) the full range of experimental data
and (b) near the β-γ phase transition. Experimental data are from Refs. [23–29].

parameters without leading to significant discrepancies with
the available experimental data.

D. Shock data

The final piece of experimental data we consider is shock
data. Figure 8 shows a comparison of the 2162 EOS to exper-
imental shock measurements from Refs. [33–38]. Note that
the principal Hugoniot is shown in Fig. 5(a). In Figs. 8(a)
and 8(b), we show the US -uP relations along the principal
Hugoniot, where panel (a) shows a wide range of shock speeds
into the liquid phase and panel (b) is zoomed in to focus on the
solid phases. The 2162 EOS is in good agreement throughout.
Note that in panel (b), the β → γ phase transition is shown to
initiate at lower shock speed than the data points of the Marsh
et al. (1980) results. As mentioned previously, this is due to the
fact that some hysteresis associated with the phase transition
is included in the shock data. The goal of the 2162 EOS is
to place the phase boundaries at their equilibrium values and
allow for hydrodynamics codes to capture the kinetic effects
associated with phase transitions. We also point out that the
γ -δ phase transition is very subtle, but can be seen at US ≈ 4.2
km/s in panel (b). This is not expected to be a large effect
since the γ phase exhibits a shear deformation to the δ phase
along the phase boundary. One interesting remaining ques-
tion is if there is any noticeable change in material strength
through this phase transformation.

In Figs. 8(c) and 8(d), we show the corresponding pressure
dependence P(ρ) along the Hugoniot. The 2162 EOS is again
in good agreement with the experimental data through the
three solid phases and into the liquid.

The results of Fig. 8 did not require any additional ad-
justments to the solid phases, but did require adjustments to
the Grüneisen parameters of the liquid phase. Originally, the
liquid phase was constructed using the same �ref and �′

ref val-
ues as the γ phase. However, we found that this value of �ref

caused US to be slightly too high at large uP in Fig. 8(a) and also
caused the pressure to be slightly too high at high densities in
Fig. 8(c). In order to address these issues, we lowered �ref for
the liquid phase from 2.48 to 2.45 (see Table II), a change
of roughly 2%, which brought the Hugoniot down in both UP

and P and resulting in the agreement with experimental data
shown in Fig. 8. However, because of these adjustments, the
solid-solid and solid-liquid phase boundaries in Fig. 5 also
changed to be in worse agreement with experimental data. To
address this, we decreased the �ref values of the γ , δ, and
ε phases by the same ratio as was used for the liquid phase
(see Table II), which restored the agreement of the phase
boundaries with experimental data.

V. CONCLUSION

We have described the construction of a new multiphase
SESAME EOS for tin, referred to as SESAME 2162. The
new EOS includes four solid phases and the liquid phase.
We performed DFT calculations using the AM05 exchange-
correlation functional of the four solid phases and the liquid
phase, including cold curve and quasiharmonic phonon cal-
culations of the solid phases and DFT-MD calculations of the
liquid phase. The DFT calculations greatly aid in constrain-
ing the model parameters used in OPENSESAME to generate
the resulting 2162 EOS. In particular, the DFT calculations
provide the best available data for the slopes of the high
pressure solid-solid phase boundaries, the high pressure melt
curve, isotherms for the high temperature liquid phase, and
the high pressure solid cold curves. Because model parameters
determined from DFT alone are not in exact agreement with
experimental data, slight adjustments of model parameters de-
termined by the DFT calculations are required. We presented
the results of the 2162 EOS construction with comparisons
to a wide range of experimental data, including isobaric data,
isothermal data, shock data, measurements of the triple point
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FIG. 8. Comparison of the 2162 EOS to shock experiments along the principal Hugoniot. The Us-up relations are shown over (a) a wide
range of shock speeds including the liquid phase and (b) over a narrow range of shock speeds focusing on the solid phases. The pressure P(ρ )
along the Hugoniot is shown over (c) a wide range of pressure and (d) a narrow range of pressure focusing on the solid phases. Experimental
data are from Refs. [33–38].

and solid-solid phase boundaries, and measurements of the
melt curve. The 2162 EOS shows an overall high level of
agreement with these experimental results. In addition, in
regions of the state space where experimental data is limited or
does not exist, the DFT calculations provide the best available
information on material properties. Looking forward, it will
be important to develop new methods for EOS construction,
such as automated EOS generation based on both DFT and
experimental data. At the same time, uncertainty quantifica-
tion of EOS will be important. We expect that the process
used to generate the 2162 EOS can be used to inform on both
uncertainty quantification and methods for automatic EOS
generation, as described in more detail in Ref. [89].
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