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Spin susceptibility of superconductors with strong spin-orbit coupling
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We show that in some trigonal and hexagonal crystals the Zeeman coupling of band electrons with an external
magnetic field is strongly anisotropic and necessarily vanishes along the main symmetry axis. This leads to
qualitative changes in the temperature dependence of the electron spin susceptibility in the superconducting state.
In particular, the power-law exponents at low temperatures due to the contribution of the nodal quasiparticles are
considerably modified compared to their textbook values.
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I. INTRODUCTION

Measuring the spin magnetic response is an important
characterization tool of superconductors, both conventional
and unconventional [1,2]. The usual assumption is that the
Zeeman interaction of the conduction electrons with an exter-
nal magnetic field has essentially the same form as for bare
electrons, i.e., is independent of the wave vector. Then the
temperature behavior of the spin susceptibility depends only
on the superconducting gap structure, but not on the character
of the electron Bloch bands. If the superconducting pairing
occurs in the spin-singlet channel, then the susceptibility ten-
sor χi j (T ) = χ (T )δi j is entirely determined by the thermally
excited quasiparticles and in a fully gapped superconducting
state one would see an exponentially decreasing χ (T ) at low
temperatures. In contrast, if the gap has zeros on the Fermi
surface, then χ (T ) ∝ T 2 for isolated first-order point nodes,
or χ (T ) ∝ T for line nodes or second-order point nodes. In
the triplet case, the susceptibility acquires a nontrivial tensor
structure depending on the mutual orientation of the order
parameter d and the external magnetic field H . For d ‖ H
the spin response is determined only by the excitations and
the susceptibility has the same temperature dependence as
in the singlet case, whereas for d ⊥ H both the Cooper pairs
and the excitations contribute to the spin response and the
susceptibility is unchanged compared to the normal state.

The electron-lattice spin-orbit (SO) coupling in many
superconductors of current interest, in particular, the heavy-
fermion compounds, is strong compared with the Zeeman
energy and the energy scales associated with superconduc-
tivity, and one can call into question the validity of the
assumption that the effective Zeeman interaction in the Bloch
bands has the same simple form ĤZ = μBHσ̂ as for bare elec-
trons (here the spin magnetic moment is equal to −μBσ̂, μB is
the Bohr magneton, the electron charge is −e, the Landé factor
is set to 2, and σ̂ are the Pauli matrices). Even in the presence
of the SO coupling, the Bloch bands in a centrosymmetric
crystal are twofold degenerate [3]. Focusing on just one band,
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one can write the effective Zeeman Hamiltonian at the wave
vector k in the general form as ĤZ = −m̂(k)H , where the
Hermitian 2×2 matrix m̂ has the meaning of the magnetic
moment of the band electrons [4–6].

While the effects of the Zeeman coupling anisotropy due
to the SO coupling have been extensively studied in the con-
text of semiconductors (see, e.g., Ref. [7]), its consequences
for the spin response of superconductors have received rel-
atively little attention in the literature. These consequences
are expected to be profound, especially in the light of the
recent developments in the field [8–14], which demonstrated
that the SO coupling can significantly affect the symmetry
of the Bloch bands and invalidate the pseudospin picture
[15,16] commonly used in the theory of unconventional
superconductivity.

The pseudospin approach is based on the assumption that
the twofold degenerate Bloch states transform under the crys-
tal point group operations in the same way as the pure spin
states |↑〉 and |↓〉 at each wave vector, including the center
of the Brillouin zone (the � point). However, the latter cannot
always be true, because, mathematically, not all double-valued
irreducible representations of the crystal point group (or, more
accurately, corepresentations of the magnetic point group)
are equivalent to the spin-1/2 representation. We will show
how a “nonpseudospin” character of the Bloch states leads to
a strongly anisotropic Zeeman interaction in some bands in
trigonal and hexagonal crystals.

Our main goal is to calculate the spin susceptibility of
superconductors with an anisotropic Zeeman coupling, whose
form is constrained only by the symmetry of the system.
Impurities are neglected, as are the effects of the interaction
of the electron charges with the magnetic field. In Secs. II
and III we develop the general symmetry-based theory of the
spin response of the Bloch bands in crystals with the SO cou-
pling and identify the cases in which the Zeeman interaction
is qualitatively different from the usual isotropic expression.
In Sec. IV the spin response in the superconducting state
is studied and the spin susceptibility of a general multiband
superconductor is derived. In Sec. V we discuss applications
to singlet and triplet superconductors of hexagonal symme-
try. Some technical details are relegated to the Appendixes.
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Throughout the paper we use the units in which h̄ = 1 and
kB = 1, neglecting, in particular, the difference between the
quasiparticle momentum and the wave vector.

II. ZEEMAN COUPLING IN THE BAND
REPRESENTATION

We consider a centrosymmetric nonmagnetic crystal with
N twofold degenerate bands crossing the Fermi level. The
Bloch states are degenerate at each wave vector k due to
the conjugation symmetry C = KI [3]: the states |k, n, 1〉
and |k, n, 2〉 ≡ C|k, n, 1〉 are orthogonal and have the same
energy. Here K is the time reversal (TR) operation, I is the
space inversion, n = 1, . . . , N labels the bands, and the index
s = 1, 2, which distinguishes two degenerate states within the
same band, is called the conjugation index. The conjugation
operation is antiunitary, and, since the Bloch states are spin-
1/2 spinors, we have C|k, n, 2〉 = −|k, n, 1〉, i.e., C2 = −1.
The conjugation degeneracy, which is also called the Kramers
degeneracy, can be lifted by an external magnetic field. Note
that the assumption of inversion symmetry is important: in
a noncentrosymmetric crystal the band degeneracy is lifted
by the SO coupling even at zero magnetic field, with wide-
reaching implications for superconductivity [17].

The Zeeman coupling of electrons with the magnetic
field H is described by the Hamiltonian ĤZ = −Hm̂, where
(m̂x, m̂y, m̂z ) = −μB(σ̂1, σ̂2, σ̂3) is the operator of the spin
magnetic moment. In the band representation, the Zeeman
Hamiltonian is diagonal in the wave vector, but not in the band
and conjugation indices:

〈k, n, s|ĤZ |k, n′, s′〉 = −Hmnn′,ss′ (k). (1)

The matrix elements of the spin magnetic moment in the
Bloch basis can be represented as linear combinations of the
unit matrix and the Pauli matrices in the conjugacy space as
follows:

mnn′,ss′, j (k) ≡ 〈k, n, s|m̂ j |k, n′, s′〉
= iAnn′, j (k)δss′ + Bnn′, j (k)σss′ . (2)

The intraband and interband components correspond to n = n′
and n �= n′, respectively.

In principle, the functions A and B in Eq. (2) can be
calculated if a treatable model of the band structure is avail-
able. Here we adopt a different approach: without resorting
to any particular microscopic model, we regard A and B
as phenomenological parameters, whose form is constrained
only by the symmetries of the system. In particular, from
the requirement that m̂ is a Hermitian operator, we have
〈ψ |m̂|ψ ′〉 = 〈ψ ′|m̂|ψ〉∗, therefore,

Ann′,i(k) = −A∗
n′n,i(k), Bnn′,i(k) = B∗

n′n,i(k). (3)

Additional constraints are obtained by analyzing the response
of the spin magnetic moment to TR and the point group oper-
ations, which in turn depends on the transformation properties
of the Bloch states.

From the group-theoretical point of view, the spinor Bloch
states |k, n, 1〉 and |k, n, 2〉 form the basis of an irreducible
double-valued two-dimensional (2D) corepresentation (corep)
of the magnetic point group of the wave vector k; see

Appendix A. Four-dimensional coreps, which are possible in
crystals of cubic symmetry, are not considered here. If the
corep at the � point is described by 2×2 matrices D̂n(g),
where g is an element of the crystal point group G, then one
can construct the Bloch bases at k �= 0 using the following
expression [13,14]:

g|k, n, s〉 =
∑

s′
|gk, n, s′〉Dn,s′s(g), (4)

which defines the basis at the wave vector gk given the
basis at k.

In a “pseudospin” band, the �-point corep is equivalent
to the spin-1/2 corep and the conjugate Bloch states affected
by the SO coupling respond to the point group operations in
exactly the same way as the pure spin states. Therefore, one
can put D̂n(g) = D̂(1/2)(R) for both proper rotations (g = R)
and improper rotations (g = IR). Here

D̂(1/2)(R) = e−iθ (nσ̂)/2 (5)

is the spin-1/2 representation of a counterclockwise rotation R
through an angle θ about an axis n. Thus, in a pseudospin band
Eq. (4) reproduces the well-known Ueda-Rice formula [16].

In general, however, the Bloch states at the � point cor-
respond to a corep which is not equivalent to the spin-1/2
corep. Therefore, D̂n(g) �= D̂(1/2)(R) for some g and the Ueda-
Rice prescription does not work. In this case, the band is
called a “nonpseudospin” band. The corep matrices in twofold
degenerate nonpseudospin bands are shown in Table I; see
Appendix A for details.

It follows from Eq. (4) that under the space inversion the
conjugate Bloch states transform as I|k, n, s〉 = pn| − k, n, s〉,
where pn = ± denotes the parity of the band. The pseu-
dovector quantity m̂ must remain invariant under inversion,
Im̂I−1 = m̂, therefore

〈k, n, s|m̂|k, n′, s′〉 = pn pn′ 〈−k, n, s|m̂| − k, n′, s′〉.
Using the representation (2), we find that the parity of A and
B is determined by the relative parity of the bands pn pn′ . For
the transformation under the TR operation K = CI , we have

K|k, n, 1〉 = pn| − k, n, 2〉,
K|k, n, 2〉 = −pn| − k, n, 1〉. (6)

Being a magnetic moment operator, m̂ must change sign under
TR: Km̂K−1 = −m̂, therefore

〈k, n, s|m̂|k, n′, s′〉 = −〈k, n, s|K†m̂K|k, n′, s′〉
= −pn pn′

∑
s1s2

σ2,s′s1

×〈−k, n′, s1|m̂| − k, n, s2〉σ2,s2s.

In the second line here we used Eq. (6) and the expression
〈ψ |K†|ψ ′〉 = 〈ψ ′|K|ψ〉, which follows from the antiunitar-
ity of K . In terms of A and B, we obtain Ann′,i(k) =
−pn pn′An′n,i(−k) and Bnn′,i(k) = pn pn′Bn′n,i(−k). Putting all
together, we find that the functions A and B are real and satisfy

Ann′,i(k) = −An′n,i(k),

Ann′,i(−k) = pn pn′Ann′,i(k), (7)
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TABLE I. The �-point corepresentation matrices in twofold degenerate nonpseudospin bands; R denotes the rotational generators of the
point group G and the spin rotation matrix D̂(1/2)(R) is given by Eq. (5). The notations for the point group elements are the same as in Ref. [18].

G Corep D̂(R)

C4h (�7, �8) D̂(C4z ) = −D̂(1/2)(C4z )
D4h �7 D̂(C4z ) = −D̂(1/2)(C4z ), D̂(C2y ) = D̂(1/2)(C2y )
C3i �6 D̂(C3z ) = −σ̂0

D3d (�5, �6) D̂(C3z ) = −σ̂0, D̂(C2y ) = D̂(1/2)(C2y )
C6h (�9, �10) D̂(C6z ) = −D̂(1/2)(C6z )

(�11, �12) D̂(C6z ) = −D̂(1/2)(C2z )
D6h �8 D̂(C6z ) = −D̂(1/2)(C6z ), D̂(C2y ) = D̂(1/2)(C2y )

�9 D̂(C6z ) = −D̂(1/2)(C2z ), D̂(C2y ) = D̂(1/2)(C2y )
Oh �7 D̂(C4z ) = −D̂(1/2)(C4z ), D̂(C2y ) = D̂(1/2)(C2y ), D̂(C3xyz ) = D̂(1/2)(C3xyz )

and

Bnn′,i(k) = Bn′n,i(k),

Bnn′,i(−k) = pn pn′Bnn′,i(k). (8)

Additional constraints are imposed by the requirement of
invariance under the remaining elements of the crystal point
group.

Under a point-group operation g (e.g., a rotation), an ar-
bitrary state of the system is transformed into another state
as |ψ〉 → |ψ̃〉 = g|ψ〉 and the magnetic field is transformed
into gH . The matrix elements of the Zeeman Hamiltonian
ĤZ (H ) in the basis |ψ〉 are equal to the matrix elements of the
Hamiltonian ĤZ (gH ) in the transformed basis |ψ̃〉. Therefore,

〈k, n, s|(m̂ · H )|k, n′, s′〉 = 〈k, n, s|g†(m̂ · gH )g|k, n′, s′〉;
see, e.g., Ref. [19]. Using Eqs. (2) and (4), the invariance
condition under g ∈ G takes the following form:

iAnn′, j (k)σ̂0 + Bnn′, j (k)σ̂ =
3∑

k=1

Rjk (g)[iAnn′,k (g−1k)τ̂nn′,0(g)

+ Bnn′,k (g−1k)τ̂nn′ (g)], (9)

where R̂ is the 3×3 rotation matrix and

τ̂nn′,0(g) = D̂n(g)D̂†
n′ (g),

τ̂nn′,ν (g) = D̂n(g)σ̂νD̂†
n′ (g), ν = 1, 2, 3.

We used the fact that any element of the point group is either
a proper rotation g = R or an improper rotation g = IR, and
that the magnetic field is a pseudovector and not affected
by inversion, therefore gH = R(g)H . The most general phe-
nomenological expressions for the functions A and B in a
given pair of bands n and n′ can be found by solving Eq. (9)
for all generators of G, taking into account the constraints (7)
and (8).

III. INTRABAND ZEEMAN COUPLING

We shall see below, in Sec. IV, that the intraband and
interband components of the Zeeman coupling produce quali-
tatively different contributions to the spin magnetic response.
Namely, the temperature dependence of the spin susceptibility
in the superconducting state is almost entirely determined by
the intraband coupling. Putting n = n′ in Eq. (7), we find

Ann,i = 0. Introducing the notation Bnn,i = −μn,i, the spin
magnetic moment in the nth band can be written as

m̂nn,i(k) = −μn,i(k)σ̂, (10)

so that the intraband Zeeman coupling takes the following
form:

〈k, n, s|ĤZ |k, n, s′〉 =
∑
i,ν

μn,iν (k)Hiσν,ss′ , (11)

where i = x, y, z and ν = 1, 2, 3. The coefficients μn,iν (k)
form a 3×3 matrix, denoted as μ̂n(k), which generalizes the
Bohr magneton μB in the nth band. This matrix is real and
even in k, according to Eq. (8), but not necessarily symmetric,
as we shall see below.

From the requirement of invariance under the point group
operations [see Eq. (9)], we obtain

μ̂n(k) = R̂(g)μ̂n(g−1k)R̂−1
n (g), g ∈ G, (12)

where the 3×3 orthogonal matrix R̂n is defined by the
following expression:

D̂†
n (g)σ̂μD̂n(g) =

3∑
ν=1

Rn,μν (g)σ̂ν . (13)

This matrix depends on the symmetry of the nth band, namely,
the �-point corep, but not on the band parity. We see that,
while the Zeeman coupling matrix μ̂n(k) is invariant under
the point group operations, in the sense given by Eq. (12), it
does not transform like a tensor, in general.

In all pseudospin bands, we have D̂n(g) = D̂(1/2)(R) and,
using the well-known identity

D̂(1/2),†(R)σ̂μD̂(1/2)(R) =
∑

ν

Rμνσ̂ν, (14)

we find that R̂n(g) = R̂(g) for all elements of the point group.
Therefore, Eq. (12) becomes

μ̂n(k) = R̂(g)μ̂n(g−1k)R̂−1(g). (15)

It is easy to see that the simplest solution of this last equation
is given by

μn,iν (k) = μnδiν . (16)

Thus, in pseudospin bands one can use the “usual,” i.e.,
isotropic and momentum-independent, expression for the in-
traband Zeeman coupling. Note that μn includes the effects
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of the crystal field and the SO coupling and therefore does not
have to be equal to the Bohr magneton μB. In uniaxial crystals,
one can use, if needed, a more general solution of Eq. (15):
μn,x1 = μn,y2 = μn,⊥ and μn,z3 = μn,z, which distinguishes
between the basal-plane and z-axis Zeeman couplings, but is
still k-independent.

In nonpseudospin bands, using the �-point corep matrices
from Table I, we obtain that in most cases R̂n(g) = R̂(g) and
the expression (16) still works. However, in certain bands
in trigonal and hexagonal crystals we have R̂n(g) �= R̂(g)
for some elements of the point group, so that the invariance
equation for μ̂n(k) does not have the form (15). Namely, this
happens in the following four exceptional cases:

�6 of C3i, (�5, �6) of D3d ,

(�11, �12) of C6h, �9 of D6h. (17)

Note that these are the same bands in which the usual classi-
fication of triplet superconducting states fails; see Ref. [14].
Below we show that the intraband Zeeman coupling in the ex-
ceptional cases is very anisotropic and that some components
of μ̂n(k) necessarily vanish, for symmetry reasons, along
the main symmetry axis. The band index n will be dropped,
for brevity.

A. �6 of C3i

The group C3i is generated by the rotations C3z about the
vertical (z) axis and by the inversion I . According to Table I,
the �-point corep matrix is given by D̂� (C3z ) = −σ̂0, there-
fore R̂(C3z ) = 1̂ (the 3×3 unit matrix) and the invariance
condition (12) takes the following form:

μ̂(k) = R̂(C3z )μ̂
(
C−1

3z k
)
. (18)

Here the rotation matrix is given by

R̂(C3z ) =
⎛
⎝−1/2 −√

3/2 0√
3/2 −1/2 0
0 0 1

⎞
⎠

and the rotations act on the wave vector as C−1
3z k± = e∓2π i/3k±

and C−1
3z kz = kz, where k± = kx ± iky.

The solution of Eq. (18) has a block-diagonal form:

μ̂ =
⎛
⎝μx1 μx2 0

μy1 μy2 0
0 0 μz3

⎞
⎠. (19)

While the equation μz3(k) = μz3(C−1
3z k) is trivially satisfied

by a constant μz3(k) = μz, the solutions for the other com-
ponents are more involved. Introducing q±

1 = μx1 ± iμy1 and
q±

2 = μx2 ± iμy2, we obtain from Eq. (18)

q±
1 (k) = e±2π i/3q±

1

(
C−1

3z k
)
,

q±
2 (k) = e±2π i/3q±

2

(
C−1

3z k
)
. (20)

One can easily see that q±
1,2(0, 0, kz ) = 0, therefore

μx1 = μx2 = μy1 = μy2 = 0 at kx = ky = 0. (21)

Thus, the basal-plane components of the Zeeman coupling
matrix necessarily depend on k and vanish along the threefold
symmetry axis. Using the lowest-order polynomial solutions
of Eq. (20), we have

μ̂(k) =
⎛
⎝ (α1k+ + α∗

1k−)kz (α2k+ + α∗
2k−)kz 0

(−iα1k+ + iα∗
1k−)kz (−iα2k+ + iα∗

2k−)kz 0
0 0 μz

⎞
⎠, (22)

where α1,2 are complex constants and μz is a real constant.
Note that the vanishing of the basal-plane components of μ̂ at
kz = 0 is accidental, since one can consider a more general so-
lution, e.g., μx1 = (α1k+ + α∗

1k−)kz + (α3k2
+ + α∗

3k2
−), which

has zeros only along the main axis, as dictated by symmetry.

B. (�5, �6) of D3d

The group D3d is generated by the rotations C3z and C2y,
and also by I . From Table I we obtain R̂(C3z ) = 1̂ and
R̂(C2y) = R̂(C2y). The first of the two invariance conditions
is the same as Eq. (18), while the second one has the form

μ̂(k) = R̂(C2y)μ̂
(
C−1

2y k
)
R̂−1(C2y), (23)

where

R̂(C2y) =
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠

and C−1
2y (k+, k−, kz ) = (−k−,−k+,−kz ).

The solution for the Zeeman coupling matrix has a block-
diagonal form (19), with μz3(k) = μz. The condition (23)
produces two additional constraints: q±

1 (k) = q∓
1 (C−1

2y k) and

q±
2 (k) = −q∓

2 (C−1
2y k). Imposing them on Eq. (22), we obtain

μ̂(k) =
⎛
⎝β1kxkz −β2kykz 0

β1kykz β2kxkz 0
0 0 μz

⎞
⎠, (24)

where β1,2 and μz are real constants. The zeros of the
basal-plane components of μ̂ at kx = ky = 0 are required by
symmetry, whereas the zero at kz = 0 is accidental and can
be removed by taking into account additional terms in the
solution, e.g., μx1 = β1kxkz + β3(k2

x − k2
y ), with a real β3.

C. (�11, �12 ) of C6h

The group C6h is generated by C6z and I . From Table I we
obtain R̂(C6z ) = R̂(C2z ), therefore the invariance condition
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(12) takes the following form:

μ̂(k) = R̂(C6z )μ̂(C−1
6z k)R̂−1(C2z ). (25)

Here

R̂(C6z ) =
⎛
⎝ 1/2 −√

3/2 0√
3/2 1/2 0
0 0 1

⎞
⎠,

R̂(C2z ) =
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠,

while the action of rotations on the wave vector is given by
C−1

6z k± = e∓π i/3k± and C−1
6z kz = kz.

The Zeeman coupling matrix has a block-diagonal
form (19), with μz3(k) = μz. The basal-plane components
satisfy the equations q±

1 (k) = e∓2π i/3q±
1 (C−1

6z k), q±
2 (k) =

e∓2π i/3q±
2 (C−1

6z k), and necessarily vanish along the sixfold
symmetry axis. For the lowest-order polynomial solution we
obtain

μ̂(k) =

⎛
⎜⎝

α1k2
+ + α∗

1k2
− α2k2

+ + α∗
2k2

− 0

iα1k2
+ − iα∗

1k2
− iα2k2

+ − iα∗
2k2

− 0

0 0 μz

⎞
⎟⎠, (26)

where α1,2 are complex constants and μz is a real constant.

D. �9 of D6h

The group D6h is generated by the rotations C6z and
C2y, and by I . It follows from Table I that R̂(C6z ) = R̂(C2z )
and R̂(C2y) = R̂(C2y), therefore the invariance conditions are
given by Eqs. (25) and (23). As before, the solution for
the Zeeman coupling matrix has a block-diagonal form (19),
where μz3 is k-independent, but the basal-plane components
necessarily depend on k.

Imposing the constraint (23) on Eq. (26), we obtain

μ̂(k) =

⎛
⎜⎝

β1
(
k2

x − k2
y

)
2β2kxky 0

−2β1kxky β2
(
k2

x − k2
y

)
0

0 0 μz

⎞
⎟⎠, (27)

where β1,2 and μz are real constants. The vanishing of the
basal-plane components along the sixfold axis is required by
symmetry.

E. Summary

We have shown that the intraband Zeeman coupling in the
four exceptional nonpseudospin bands (17) has a nontrivial
matrix structure and momentum dependence; see Eqs. (22),
(24), (26), and (27). The components of the spin magnetic
moment operator in the band representation, Eq. (10), have
the following form:

m̂x,y(k) =
(

0 x,y(k)
∗

x,y(k) 0

)
, (28)

m̂z(k) =
(−μz 0

0 μz

)
. (29)

The basal-plane components m̂x,y vanish along the main sym-
metry axis, with the functions x and y being either linear in

kx, ky (in trigonal crystals) or quadratic in kx, ky (in hexagonal
crystals).

IV. SPIN SUSCEPTIBILITY IN THE
SUPERCONDUCTING STATE

Let us now introduce the superconducting pairing of
quasiparticles in the Bloch bands constructed using Eq. (4).
Suppose there are N bands crossing the Fermi level and
participating in superconductivity, then the intraband pairing
affected by the Zeeman interaction with an external magnetic
field can be described by the following Bardeen-Cooper-
Schrieffer (BCS) mean field Hamiltonian:

Ĥ = Ĥ0 + ĤZ + Ĥsc. (30)

The three terms here are as follows:

Ĥ0 =
∑
k,n,s

ξn(k)c†
k,n,sck,n,s, (31)

where ξn(k) = ξn(−k) are the band dispersions counted from
the chemical potential,

ĤZ = −
∑

k,nn′,ss′
Hmnn′,ss′ (k)c†

k,n,sck,n′,s′ , (32)

where the matrix elements of the spin magnetic moment are
given by Eq. (2), and

Ĥsc = 1

2

∑
k,n,ss′

[�n,ss′ (k)c†
k,n,sc̃

†
k,n,s′ + H.c.] (33)

describes the pairing between time-reversed states [20,21] in
the same band, with

c̃†
k,n,s = Kc†

k,n,sK
−1 = pn

∑
s′

c†
−k,n,s′ (−iσ̂2)s′s, (34)

according to Eq. (6). In the weak-coupling picture, the gap
functions are nonzero only inside the BCS shells near the
Fermi surfaces: �̂n(k) ∝ θ (εc − |ξn(k)|), where εc is the
energy cutoff.

By analogy with the standard theory of unconventional su-
perconductivity [1,2], one can consider separately the pairing
in the singlet and triplet channels, keeping in mind that the
Kramers index s is neither spin nor pseudospin, in general.
The matrix structure of the gap functions in the Kramers space
can be represented in the following form:

�̂n(k) = ψn(k)σ̂0, ψn(−k) = ψn(k), (35)

in the singlet channel and

�̂n(k) = dn(k)σ̂, dn(−k) = −dn(k), (36)

in the triplet channel. Note that, since we defined the gap
function in Eq. (33) as a measure of the pairing between the
time-reversed states |k, n, s〉 and K|k, n, s′〉, instead of be-
tween |k, n, s〉 and | − k, n, s′〉, the expressions (35) and (36)
do not contain the factors iσ̂2, in contrast to the convention
used in Refs. [1] and [2].

According to Eq. (4), the transformation rule for the
electron creation operators in the Bloch states is given by
gc†

k,n,sg
−1 = ∑

s′ c†
gk,n,s′Dn,s′s(g). Using the fact that the TR

operation K commutes with all elements of the point group
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and is antilinear, we obtain that the point-group rotations
and reflections in the physical space induce the following
transformation of the gap function matrix in the momentum
space [14]:

g : �̂n(k) → D̂n(g)�̂n(g−1k)D̂†
n (g).

In terms of the singlet and triplet components, this becomes

g : ψn(k) → ψn(g−1k), dn(k) → Rn(g)dn(g−1k), (37)

where the 3×3 orthogonal matrix R̂n is defined by Eq. (13).
It follows from Eq. (37) that the singlet gap function al-

ways transforms under the point group as a complex scalar,
regardless of the band symmetry, therefore the usual classifi-
cation of the singlet superconducting states [1,2] is applicable.
In contrast, the transformation properties of the triplet gap
function essentially depend on the band symmetry at the �

point. In a pseudospin band, we have R̂n(g) = R̂ and dn(k)
transforms under g into Rdn(g−1k), i.e., like a pseudovector.
However, this is not the case in general: if the �-point corep is
such that R̂n(g) �= R̂, which happens in the exceptional bands
in trigonal and hexagonal crystals [see Eq. (17)], then dn(k)
does not transform under g like a pseudovector, with profound
consequences for its momentum dependence and the nodal
structure [14].

A. Magnetic response

Writing the Zeeman Hamiltonian (32) in the form ĤZ =
−HM̂, where M̂ is the operator of the total spin magnetic

moment of electrons, we define the magnetization as M =
V−1〈M̂〉 (the angular brackets denote the thermodynamic av-
erage and V is the volume of the system). Introducing the
normal and anomalous Green’s functions (see Appendix B)
and taking the thermodynamic limit V → ∞, we obtain

M = T
∑

m

∫
d3k

(2π )3

∑
nn′

tr [m̂nn′ (k)Ĝn′n(k, ωm)], (38)

where ωm = (2m + 1)πT is the fermionic Matsubara fre-
quency and “ tr ” denotes the 2×2 matrix trace with respect
to the conjugation indices. We would like to note that the
nonpseudospin character of the electron bands does not affect
the way M transforms under the symmetry operations. If the
physical state of the system is acted upon by an operation
g ∈ G, then 〈M̂〉 is transformed into 〈g−1M̂g〉. Using Eq. (9),
it is easy to show that g−1M̂ig = ∑

j Ri j (g)M̂ j , where R(g)
is the rotational part of g, and therefore M → R(g)M, as
expected.

In a weak field, expanding the Green’s function in Eq. (38)
in powers of H , we find M = M0 + M1 + O(H2). The first
term here is the spontaneous magnetization given by

M0,i = −T
∑

m

∫
d3k

(2π )3

∑
n

μn,i(k) tr [σ̂Ĝn(k, ωm)], (39)

according to Eq. (10), whereas the second term describes
the linear magnetic response and can be written as M1,i =∑

j χ
(spin)
i j Hj , where

χ
(spin)
i j = −T

∑
m

∫
d3k

(2π )3

∑
nn′

tr [m̂nn′,i(k)Ĝn′ (k, ωm)m̂n′n, j (k)Ĝn(k, ωm) + m̂nn′,i(k)F̂n′ (k, ωm)m̂n′n, j (k)F̂ †
n (k, ωm)] (40)

is the spin susceptibility tensor. The Green’s functions in
Eqs. (39) and (40) correspond to zero field and are band-
diagonal; see Appendix B. The expressions (39) and (40) are
the multiband generalizations of the standard formulas for
the spontaneous magnetization and the spin susceptibility in
unconventional superconductors.

In this paper, we consider only unitary superconducting
states, which satisfy �̂n�̂

†
n ∝ σ̂0. According to Eqs. (35) and

(36), any singlet state is unitary, whereas a triplet state is
unitary only if dn × d∗

n = 0. The Green’s functions have the
following form:

Ĝn(k, ωm) = − iωm + ξn(k)

ω2
m + E2

n (k)
σ̂0,

F̂n(k, ωm) = �̂n(k)

ω2
m + E2

n (k)
, (41)

where

En(k) =
√

ξ 2
n (k) + |�n(k)|2 (42)

is the energy of quasiparticle excitations. The energy gap is
given by |�n| = |ψn| in the singlet case and |�n| = |dn| in the
unitary triplet case. The zeros of the energy (the “gap nodes”)
in the nth band correspond to the intersections of the Fermi

surface, defined by ξn(k) = 0, with the manifold of zeros of
ψn(k) or dn(k).

We obtain from Eq. (39) that M0 = 0, i.e., there is no
spontaneous spin magnetization in a unitary state, regardless
of the symmetry of the electron bands involved in the pairing.
The spin susceptibility tensor (40) can be represented in the
following form:

χ
(spin)
i j = χ̃i j +

∑
n

χn,i j, (43)

where the first term contains the interband contributions (cor-
responding to n �= n′) and the second term is the sum of the
intraband susceptibilities:

χn,i j = −T
∑

m

∫
d3k

(2π )3
tr [(μn,iσ̂ )Ĝn(μn, j σ̂)Ĝn

+ (μn,iσ̂ )F̂n(μn, j σ̂)F̂ †
n ]. (44)

Below we show that the temperature dependence of the sus-
ceptibility in the superconducting state is determined by the
intraband terms, while the interband contribution is essentially
unaffected by the superconducting transition.

Let us start with the normal (“N”) state. Using the fact
that the intraband Zeeman coupling μ̂n is real, we obtain from
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Eq. (44) the following expression:

χN
n,i j = 2

∫
d3k

(2π )3

(
− ∂ f

∂ξn

)
[μ̂n(k)μ̂†

n(k)]i j

= 2NF,n〈[μ̂n(k)μ̂†
n(k)]i j〉FS,n, (45)

where f (ε) = 1/(eε/T + 1) is the Fermi function, NF,n is
the Fermi-level density of states in the nth band, and the
angular brackets denote the Fermi-surface average. Thus,
the intraband susceptibility is determined by the quasipar-
ticles near the Fermi surface and is essentially temperature
independent. The “usual” expression is recovered if one
neglects the anisotropy of the effective Zeeman coupling:
putting μn,iν (k) = μBδiν , we obtain χN

n,i j = χPδi j , where
χP = 2NF,nμ

2
B is the Pauli susceptibility.

Regarding the interband susceptibility, we focus on just
one pair of bands (n, n′ = 1, 2) with ξ2(k) > ξ1(k), so that the
band splitting is given by E (k) = ξ2(k) − ξ1(k). Introducing
the notations A12,i = −A21,i = ai and B12,i = B21,i = bi [see
Eqs. (7) and (8)], the interband components of the magnetic
moment take the following form:

m̂12,i(k) = iai(k) + bi(k)σ̂,

m̂21,i(k) = −iai(k) + bi(k)σ̂. (46)

Here ai and bi are real functions of k, whose parity is de-
termined by the relative parity of the bands. From Eq. (40),
we obtain

χ̃N
i j = 4

∫
d3k

(2π )3
(aia j + bib j )

f (ξ1) − f (ξ2)

ξ2 − ξ1
. (47)

We see that the interband susceptibility is determined by all
quasiparticles in the momentum-space shell “sandwiched” be-
tween the two Fermi surfaces, and its temperature dependence
is negligible at temperatures small compared to the band
splitting.

One can also expect that the interband susceptibility is
not affected by the superconducting transition. Indeed, the
difference between its values in the superconducting (“S”)
and normal states is very small: even at T = 0, it can be esti-
mated as χ̃S

i j − χ̃N
i j ∝ (|�|2/E2) ln(εc/|�|); see Appendix C.

In weak-coupling superconductors, the band splitting far ex-
ceeds the energy scales associated with superconductivity:
|�1,2| � εc � E , therefore one can put χ̃S

i j = χ̃N
i j .

Summarizing our findings so far, the total spin susceptibil-
ity (43) can be written in the form

χ
(spin)
i j (T ) = χ̃N

i j +
∑

n

χn,i j (T ), (48)

where the first term is the temperature-independent interband
contribution (47). The second term is given by Eq. (44) and
can be calculated in each band individually.

B. Intraband susceptibility

The normal and anomalous Green’s functions are given
by Eq. (41). In a singlet state, dropping the band index n
and summing over the Matsubara frequencies in Eq. (44), we
obtain

χi j (T ) = 2NF 〈[μ̂(k)μ̂†(k)]i jY (k, T )〉FS, (49)

where

Y (k, T ) = 1

2T

∫ ∞

0

dξ

cosh2(
√

ξ 2 + |�(k)|2/2T )
(50)

is the angle-resolved Yosida function [2] and |�(k)| = |ψ (k)|
is the energy gap. Being a measure of the number of the
thermally excited Bogoliubov quasiparticles in the supercon-
ducting state, the Yosida function vanishes at T → 0. In the
normal state, we have Y = 1 and Eq. (45) is recovered.

In the triplet case, the calculation is somewhat more in-
volved. Introducing the parallel and transverse projectors onto
the triplet gap function d(k),

�‖,μν = Re (dμd∗
ν )

|d|2 , �⊥,μν = δμν − Re (dμd∗
ν )

|d|2 ,

we obtain

χi j (T ) = 2NF 〈[μ̂(k)�̂‖(k)μ̂†(k)]i jY (k, T )〉FS

+ 2NF 〈[μ̂(k)�̂⊥(k)μ̂†(k)]i j〉FS; (51)

see Appendix D for details. Here Y is the Yosida function (50)
with |�(k)| = |d(k)|.

As explained in Sec. III, in most bands one can use the
isotropic Zeeman coupling of the form μiν (k) = μBδiν [see
Eq. (16)] with the Bohr magneton used for simplicity. This
leads to the standard expressions for the spin susceptibility.
Namely, in the singlet case Eq. (49) yields χi j (T ) = χ (T )δi j ,
with

χ (T ) = χP〈Y (k, T )〉FS

= χP
1

2T

∫ ∞

0

ν(E ) dE

cosh2(E/2T )
. (52)

We introduced the dimensionless density of states (DoS) of
the Bogoliubov quasiparticles:

ν(E ) =
〈

E√
E2 − |�(k)|2

〉
FS

, (53)

where the angular integration is performed over the direc-
tions satisfying |�(k)| � E . Thus, at low temperatures the
susceptibility is entirely determined by the thermally ex-
cited quasiparticles near the gap nodes and has the following
asymptotics [1,2]:

χ (T ) ∝
⎧⎨
⎩

e−�/T , fully gapped,

T 2/k, kth order point nodes,
T, line nodes.

(54)

Here � denotes the value of the gap in an isotropic supercon-
ducting state or the minimum gap in a nodeless anisotropic
state.

In the triplet case with the isotropic Zeeman coupling
μiν (k) = μBδiν , we obtain from Eq. (51):

χi j (T ) = χP〈�‖,i j (k)Y (k, T )〉FS + χP〈�⊥,i j (k)〉FS; (55)

i.e., the magnetic response depends on the relative orientation
of d and H (Ref. [22]). If d(k) ‖ H , then the susceptibility
is determined only by the excitations [see the first term in
Eq. (55)] and vanishes at T → 0. If d(k) ⊥ H , then both the
Cooper pairs and the excitations contribute to the suscepti-
bility [see the second term in Eq. (55)], leading to a nonzero
residual susceptibility at T = 0.
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In the exceptional bands, the intraband Zeeman coupling
has a nontrivial matrix structure and a complicated momen-
tum dependence; see Sec. III. Therefore, Eqs. (52) and (55)
are no longer applicable. In particular, the quasiparticle contri-
bution to the susceptibility is determined not only by the gap
nodal structure through the quasiparticle DoS (53), but also
by the zeros of the Zeeman coupling. Namely, if the nodal
excitations are weakly coupled with the external magnetic
field, then they do not contribute to the magnetization, which
leads to significant changes in the temperature dependence
of χi j .

V. APPLICATION TO HEXAGONAL SUPERCONDUCTORS

As an application of the general theory developed above, in
this section we calculate the spin susceptibility of a hexago-
nal superconductor described by the point group D6h = D6 ×
{E , I}. This group has six double-valued coreps of even or odd
parity [23], corresponding to the �±

7 , �±
8 , or �±

9 bands, with
only the �+

7 bands being pseudospin ones. The parity super-
script can be omitted, because neither the intraband pairing
nor the intraband Zeeman coupling are affected by the band
parity. We assume that there is just one isotropic band of �7,
�8, or �9 symmetry crossing the Fermi level and participating
in superconductivity.

According to the Landau theory of phase transitions, the
superconducting gap functions are classified according to
single-valued irreducible representations (irreps) γ of the
point group G, called the pairing channels. In a d-dimensional
pairing channel, the singlet gap function can be represented
in the form ψ (k) = ∑d

a=1 ηaϕa(k), where a labels the scalar
basis functions ϕ of an even irrep γ . Similarly, the triplet gap
function can be represented as d(k) = ∑d

a=1 ηaϕa(k), where
the basis functions ϕ of an odd irrep γ have different form
in the pseudospin and nonpseudospin bands; see Ref. [14]. In
both singlet and triplet cases, the components of the supercon-
ducting order parameter η1, . . . , ηd are found by minimizing
the free energy of the superconductor [1,2]. The point group
D6 has four one-dimensional (1D) irreps A1, A2, B1, B2, and
two 2D irreps E1, E2 (we use the “chemical” notation [18]
for the pairing channels, reserving the � notation [23] for the
double-valued coreps describing the symmetry of the Bloch
bands). Taking into account the parity, there are six singlet
and six triplet pairing channels.

A. Singlet pairing

Examples of the basis functions for the even irreps of D6h

are shown in Table II. The basis functions in all channels
except A1g (which corresponds to the trivial, or “s-wave,” pair-
ing) have zeros imposed by symmetry. The A2g gap has twelve
vertical lines of nodes, whereas the B1g and B2g gaps have six
vertical lines of nodes as well as a horizontal line of nodes
at kz = 0. For the 2D pairing channels, the nodal structure
depends on the state, i.e., on the order parameter components
(η1, η2). The stable states correspond to (η1, η2) ∝ (1, 0) or
(1,1) [1].

1. �7 and �8 bands

In the nonexceptional �7 and �8 bands, one can use the
usual expression for the Zeeman coupling, μiν (k) = μBδiν .

TABLE II. Examples of the basis functions ϕ(k) in the even
pairing channels for G = D6h (a is a real constant and k± = kx ± iky).

γ �7, �8, and �9 bands

A1g k2
x + k2

y + ak2
z

A2g i(k6
+ − k6

−)
B1g (k3

+ + k3
−)kz

B2g i(k3
+ − k3

−)kz

E1g k+kz, k−kz

E2g k2
+, k2

−

The susceptibility is determined by the quasiparticle DoS [see
Eq. (52)] with the standard low-temperature asymptotics (54).

2. �9 bands

Substituting the Zeeman coupling (27) into Eq. (49) and
using the fact that the Yosida function has the same symmetry
as the energy gap, one can show that the off-diagonal elements
of the susceptibility tensor vanish after the Fermi-surface av-
eraging, whereas the diagonal elements have the following
form:

χxx = 2NF
〈[
β2

1

(
k2

x − k2
y

)2 + 4β2
2 k2

x k2
y

]
Y (k, T )

〉
FS,

χyy = 2NF
〈[

4β2
1 k2

x k2
y + β2

2

(
k2

x − k2
y

)2]Y (k, T )
〉
FS

, (56)

χzz = 2NF μ2
z 〈Y (k, T )〉FS.

In the normal state, we have Y = 1 and the susceptibility
components are given by

χN
xx = χN

yy = 8
15 NF k4

F

(
β2

1 + β2
2

) ≡ χN
⊥ ,

χN
zz = 2NF μ2

z , (57)

assuming a spherical Fermi surface of radius kF . In all su-
perconducting states, the temperature dependence of χzz is
entirely determined by the quasiparticle DoS [see Eq. (52)]
and has the asymptotics (54).

In contrast, the basal-plane components χxx and χyy con-
tain the Yosida function multiplied by strongly anisotropic
factors, which vanish along the sixfold symmetry axis, there-
fore the contribution of the quasiparticles near the main axis
to the Fermi-surface averages is suppressed. The effect of this
suppression is most pronounced in the superconducting states
which have only isolated point nodes at kx = ky = 0. Using
Table II, it is easy to see that there is only one such singlet
state, namely, the “chiral” d-wave state of the form ψ (k) ∝ k2

+
(or k2

−), which corresponds to the E2g irrep and has isolated
second-order point nodes along the main axis. In this state,
the expressions (56) yield

χxx(T ) = χyy(T ) ∝ T 3, χzz(T ) ∝ T, (58)

at T → 0. In all other singlet states, χxx and χyy have the
asymptotics (54).

B. Triplet pairing

In the triplet case, the gap function d(k) and the basis
functions ϕ(k) can be represented as linear combinations
of three orthonormal pseudovectors e1, e2, and e3, whose
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TABLE III. Examples of the basis functions ϕ(k) in the odd pairing channels for G = D6h, where a1,2,3 are real constants, k± = kx ± iky,
and e± = (e1 ± ie2)/

√
2. Second column: the bands in which d transforms under rotations like a vector. Third column: the bands in which d

does not transform like a vector.

γ �7 and �8 bands �9 bands

A1u a1(kxe1 + kye2) + a3kze3 a1(k3
+ + k3

−)e1 + ia2(k3
+ − k3

−)e2 + a3kze3

A2u a1(kye1 − kxe2) + ia3(k6
+ − k6

−)kze3 ia1(k3
+ − k3

−)e1 + a2(k3
+ + k3

−)e2 + ia3(k6
+ − k6

−)kze3

B1u a1(k2
+kze+ + k2

−kze−) + a3(k3
+ + k3

−)e3 a1kze1 + ia2(k6
+ − k6

−)kze2 + a3(k3
+ + k3

−)e3

B2u ia1(k2
+kze+ − k2

−kze−) + ia3(k3
+ − k3

−)e3 ia1(k6
+ − k6

−)kze1 + a2kze2 + ia3(k3
+ − k3

−)e3

E1u a1kze+ + a3k+e3, a1k2
−kze1 + a2k2

−kze2 + a3k+e3,
a1kze− + a3k−e3 a1k2

+kze1 − a2k2
+kze2 + a3k−e3

E2u a1k+e+ + a3k2
+kze3, a1k+e1 + a2k+e2 + a3k2

−kze3,
a1k−e− + a3k2

−kze3 a1k−e1 − a2k−e2 + a3k2
+kze3

transformations induced by the point group operations follow
from Eq. (37), namely, eμ → R(g)eμ = ∑

ν eνRνμ(g). Note
that e1, e2, e3 are not the same as the Cartesian basis vectors
x̂, ŷ, ẑ in the physical space, which is easily seen from their
different response to inversion. However, they are not entirely
independent: if the spin quantization axis is chosen along ẑ,
then all corep matrices for the rotations about ẑ, see Table I,
commute with σ̂3, and we obtain from Eq. (13) that e3 is
unchanged by these rotations. It is in this sense that e3 is
“parallel” to ẑ.

The triplet basis functions for the odd pairing channels are
shown in Table III. In the �7 and �8 bands we have R̂(g) = R̂
for all g, therefore d and eμ transform under rotations like
vectors and the standard expressions for the basis functions
[1,2] are applicable. In contrast, in the �9 bands we have
R̂(g) �= R̂ for some g, therefore d and eμ do not transform
under all rotations like vectors, which changes the momentum
dependence of the basis functions [14]. Note that all three
components of d never vanish simultaneously in a whole
plane in the momentum space, so that Blount’s theorem about
the absence of line nodes in a generic triplet state [21] holds
in the exceptional nonpseudospin bands as well.

The precise form of the basis functions in a given material,
in particular, the relative values of the coefficients in Table III,
is dictated by the microscopic details. We will consider two
cases: d ‖ ẑ, which corresponds to a1 = a2 = 0 in all basis
functions, and d ⊥ ẑ. In both cases, the triplet states have
isolated point nodes and/or accidental lines of nodes.

1. �7 and �8 bands

In the nonexceptional �7 and �8 bands, one can
put μiν (k) = μBδiν . Therefore, the susceptibility is given
by Eq. (55) and has the usual temperature dependence.
For instance, if d ‖ ẑ, then χxx = χyy = χP and χzz =
χP〈Y (k, T )〉FS , i.e., the basal-plane susceptibility is the same
as in the normal state, whereas the z-axis susceptibility is de-
termined by the nodal quasiparticles and has the asymptotics
(54) at T → 0.

2. �9 bands

The Zeeman coupling in the �9 bands has the form
(27). If d ‖ ẑ, then we obtain from Eq. (51) that the
off-diagonal components vanish after the Fermi-surface av-
eraging, the basal-plane susceptibility is not affected by the

superconductivity, and the z-axis susceptibility is determined
by the nodal quasiparticles:

χxx(T ) = χyy(T ) = χN
⊥ ,

χzz(T ) = χN
zz 〈Y (k, T )〉FS, (59)

where χN
⊥ and χN

zz are given by Eq. (57). The low-temperature
asymptotics of χzz are the same as in Eq. (54). Therefore,
the nonpseudospin character of the �9 bands does not qual-
itatively affect the spin response for d ‖ ẑ.

In the case d ⊥ ẑ, let us first put a2 = a3 = 0 in all basis
functions in the third column of Table III, which corresponds
to d ‖ x̂. In all stable states, the off-diagonal elements of the
susceptibility tensor vanish and we obtain

χxx = 2NF
[
β2

1

〈(
k2

x − k2
y

)2Y (k, T )
〉
FS + 4β2

2

〈
k2

x k2
y

〉
FS

]
,

χyy = 2NF
[
4β2

1

〈
k2

x k2
yY (k, T )

〉
FS + β2

2

〈(
k2

x − k2
y

)2〉
FS

]
,

χzz = 2NF μ2
z . (60)

We see that, while χzz is not affected by the superconductivity:
χzz(T ) = χN

zz , the basal-plane components are suppressed in
the superconducting state, but not completely, as both χxx and
χyy attain a nonzero value at T = 0:

χxx(T = 0) = χyy(T = 0) = β2
2

β2
1 + β2

2

χN
⊥ . (61)

In contrast, in the case of the usual isotropic Zeeman coupling
one has χxx = χP〈Y (k, T )〉FS and χyy = χzz = χP.

The temperature dependence of χxx and χyy is deter-
mined by the Fermi-surface averages in the first terms in
Eq. (60). Since the Yosida functions are multiplied by strongly
anisotropic factors, which vanish in the vertical planes |kx| =
|ky| (in χxx) or kxky = 0 (in χyy), the quasiparticle contribution
to the susceptibility is suppressed if the superconducting gap
has zeros only in these planes. Using Table III, it is easy to
see that this happens in the nonchiral “nematic” p-wave state
d(k) ∝ kxe1 (or kye1), which corresponds to the E2u irrep and
has vertical line nodes. In this state, we obtain

χxx(T ) − χxx(0) ∝ T, χyy(T ) − χyy(0) ∝ T 3. (62)

In the chiral p-wave state d(k) ∝ k+e1 (or k−e1), the gap
has isolated first-order point nodes along the main axis. The
anisotropic Zeeman factors in the first terms in χxx and χyy
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vanish along this axis, and we obtain

χxx(T ) − χxx(0) = χyy(T ) − χyy(0) ∝ T 6. (63)

We see that the spin susceptibility in both chiral and nonchiral
E2u states in the �9 bands exhibits the temperature dependence
which is never found in the �7 and �8 bands.

In a more general state with d ⊥ ẑ, the direction of d may
change as a function of momentum and the expressions (60)
are no longer applicable. As an example, let us consider an
f -wave A2u state with a1 = a2 �= 0 and a3 = 0; see Table III.
The gap function

d(k) ∝ i(k3
+ − k3

−)e1 + (k3
+ + k3

−)e2 (64)

has two isolated third-order point nodes at the main symmetry
axis. From Eq. (51), we obtain the following nonzero compo-
nents of the susceptibility tensor:

χxx = NF
〈[
β2

1

(
k2

x − k2
y

)2 + 4β2
2 k2

x k2
y

]
[1 + Y (k, T )]

〉
FS

,

χyy = NF
〈[

4β2
1 k2

x k2
y + β2

2

(
k2

x − k2
y

)2]
[1 + Y (k, T )]

〉
FS

,

χzz = 2NF μ2
z . (65)

Therefore, χzz is the same as in the normal state, whereas the
basal-plane components are suppressed in the superconduct-
ing state, but have a residual value at T = 0:

χxx(T = 0) = χyy(T = 0) = 1
2χN

⊥ . (66)

At nonzero temperatures, we calculate the Fermi-surface av-
erages in Eq. (65) containing the Yosida function and obtain

χxx(T ) − χxx(0) = χyy(T ) − χyy(0) ∝ T 2, (67)

which is very different from the T 2/3 behavior expected for
isolated third-order nodes in the isotropic Zeeman coupling
case; see Eq. (54).

C. Discussion

The point group D6h describes, for instance, the symmetry
of the heavy-fermion material UPt3 (Ref. [24]), in which a
variety of thermodynamic and transport measurements have
revealed an unconventional superconducting state. Although
there is still no consensus on the pairing symmetry in UPt3,
the most promising candidate model is based on the 2D irrep
E2u of D6h. The corresponding order parameter is real in the
high-temperature A phase and complex (TR symmetry break-
ing) in the low-temperature B phase [25–27]. The electron
bands in UPt3 originate from the jz = ±1/2, ±3/2, and ±5/2
doublets at the � point, which correspond, respectively, to the
�7, �9, and �8 coreps of D6h.

Unfortunately, the NMR Knight shift in UPt3 changes very
little in the superconducting state for all field orientations
and the experimental results “are not conclusive in favor of
any theory” [24]; see also Ref. [28]. One possible expala-
nation is that in this material there are five bands crossing
the Fermi level, which alone would lead to a significant
temperature-independent interband contribution [see Eq. (48)]
regardless of the pairing symmetry. Additional contribution
to the residual susceptibility can come, e.g., from impurity
scattering [29].

VI. CONCLUSIONS

We have derived the general symmetry-constrained ex-
pressions for the Zeeman coupling in crystals with the SO
coupling. We showed that in some Bloch bands in trigonal
and hexagonal crystals the effective Zeeman interaction of
the band electrons with a magnetic field directed in the basal
plane necessarily vanishes along the main symmetry axis,
either linearly or quadratically in kx and ky. This significantly
changes the low-temperature behaviour of the spin suscepti-
bility in the superconducting states with the gap nodes. For
example, in a hexagonal crystal, the basal-plane intraband
susceptibility in the �9 bands has the form χxx(T ) = χyy(T ) ∝
T 3 in the singlet chiral d-wave state (instead of the “usual”
linear in T dependence, for the isotropic Zeeman coupling).
In the triplet states, one has χxx(T ) − χxx(0) ∝ T , χyy(T ) −
χyy(0) ∝ T 3 in the nematic p-wave state (instead of the lin-
ear in T dependence for χxx and a temperature-independent
χyy), and χxx(T ) − χxx(0) = χyy(T ) − χyy(0) ∝ T 6 in the chi-
ral p-wave state (instead of the T 2 dependence for χxx and a
temperature-independent χyy).
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APPENDIX A: SYMMETRY OF THE BLOCH STATES

The Bloch states |k, n, 1〉 and |k, n, 2〉 in a crystal with the
SO coupling form the basis of an irreducible double-valued
corep of the magnetic point group of the wave vector k. The
full symmetry group of k is “magnetic,” because it contains
the antiunitary conjugation operation C. A detailed review of
magnetic groups and their coreps can be found, for instance,
in Refs. [30] and [31]. If the crystal point group is G, then
the magnetic group at the � point is G = G + CG. Since we
consider only crystals with a center of inversion, the coreps of
G have a definite parity, i.e., are either inversion-even (�+) or
inversion-odd (�−).

The double-valued coreps of G can be obtained from the
double-valued irreducible representations (irreps) of G, with
the results listed in Table IV. All the coreps are 2D, except
(�±

6 , �±
7 ) for G = Th and �±

8 for G = Oh, which are 4D.
These latter coreps correspond to the bands which are fourfold
degenerate at the � point, e.g., the �±

8 (“ j = 3/2”) bands in
cubic crystals (Ref. [32]), and are not considered here. Pairs of
complex conjugate irreps (�,�∗) produce coreps of the “pair-
ing” type of twice the dimension, while the 1D irreps �±

2 of Ci

and �±
6 of C3i produce 2D coreps of the “doubling” type [23].

The fourth and fifth columns in Table IV show the spinor
basis functions (φ1, φ2) which reproduce the corep matrices
in Table I. For the pseudospin coreps, the basis functions can
be chosen to be the pure spin states |↑〉 and |↓〉 (the eigen-
states of the spin operator ŝz), whereas the basis functions
for the nonpseudospin coreps contain the pure spin states
multiplied by additional nonremovable coordinate-dependent
factors. The phases are chosen to satisfy the conjugation con-
dition φ2 = Cφ1.
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TABLE IV. The double-valued coreps of the centrosymmetric
magnetic point groups at the � point, with examples of even and odd
spinor basis functions for the 2D coreps; f� (r) is a real basis function
of a single-valued irrep � of G, and ρ± = x ± iy.

G Corep dim Even basis Odd basis

Ci �2 2 (|↑〉, |↓〉) i f�−
1

(r)(|↑〉, |↓〉)
C2h (�3, �4) 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

D2h �5 2 (|↑〉, |↓〉) i f�−
1

(r)(|↑〉, |↓〉)
C4h (�5, �6) 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

(�7, �8) 2 (ρ2
−|↑〉, ρ2

+|↓〉) (ρ+|↑〉,−ρ−|↓〉)
D4h �6 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

�7 2 (ρ2
−|↑〉, ρ2

+|↓〉) (ρ+|↑〉,−ρ−|↓〉)
C3i (�4, �5) 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

�6 2 (ρ2
−|↑〉, ρ2

+|↓〉) (ρ+|↑〉,−ρ−|↓〉)
D3d �4 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

(�5, �6) 2 (ρ2
−|↑〉, ρ2

+|↓〉) (ρ+|↑〉,−ρ−|↓〉)
C6h (�7, �8) 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

(�9, �10 ) 2 (ρ2
+|↑〉, ρ2

−|↓〉) (ρ3
−|↑〉,−ρ3

+|↓〉)
(�11, �12) 2 (ρ2

−|↑〉, ρ2
+|↓〉) (ρ+|↑〉,−ρ−|↓〉)

D6h �7 2 (|↑〉, |↓〉) i f�−
1

(r)(|↑〉, |↓〉)
�8 2 (ρ2

+|↑〉, ρ2
−|↓〉) (ρ3

−|↑〉,−ρ3
+|↓〉)

�9 2 (ρ2
−|↑〉, ρ2

+|↓〉) (ρ+|↑〉,−ρ−|↓〉)
Th �5 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

(�6, �7) 4 — —
Oh �6 2 (|↑〉, |↓〉) i f�−

1
(r)(|↑〉, |↓〉)

�7 2 f�+
2

(r)(|↑〉, |↓〉) i f�−
2

(r)(|↑〉, |↓〉)
�8 4 — —

Transformation of the Bloch states at the � point in a
twofold degenerate band corresponding to a 2D corep Dn is
given by

g|0, n, s〉 =
∑

s′
|0, n, s′〉Dn,s′s(g). (A1)

The explicit form of the corep matrices depends on the
choice of the basis: an arbitrary unitary rotation of the
basis, |0, n, s〉 → |0, n, s〉′ = ∑

s1
|0, n, s1〉Un,s1s, produces an

equivalent corep with D̂′
n(g) = Û −1

n D̂n(g)Ûn and D̂′
n(C) =

Û −1
n D̂n(C)Û ∗

n . The “orientation” and the phases of the Bloch
basis at the �-point can always be chosen to reproduce both
the matrices in Table I and the matrix representation of the
conjugation, D̂n(C) = −iσ̂2. The prescription (4) is obtained
from Eq. (A1) by using the fact that the Bloch states in the
bands that are only twofold degenerate due to the conjugation
symmetry are analytic functions of k, at least in the vicinity
of the � point, which can be shown, e.g., using the k · p
perturbation theory.

APPENDIX B: GREEN’S FUNCTIONS

We introduce the normal and anomalous Green’s functions
in the Matsubara representation [33]:

Gnn′,ss′ (k, τ ) = −〈Tτ ck,n,s(τ )c†
k,n′,s′ (0)〉,

Fnn′,ss′ (k, τ ) = 〈Tτ ck,n,s(τ )c̃k,n′,s′ (0)〉, (B1)

F̄nn′,ss′ (k, τ ) = 〈Tτ c̃†
k,n,s(τ )c†

k,n′,s′ (0)〉.

These Green’s functions form 2N×2N matrices, denoted be-
low by Ǧ etc., in the direct product of the band and Kramers
spaces. We reserve the notation Ĝ for 2×2 matrices in the
Kramers space. Introducing the four-component Nambu oper-
ators in the nth band,

Ck,n =

⎛
⎜⎜⎝

ck,n,1

ck,n,2

c̃†
k,n,1

c̃†
k,n,2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ck,n,1

ck,n,2

pnc†
−k,n,2

−pnc†
−k,n,1

⎞
⎟⎟⎠,

one can combine the expressions (B1) into

Gnn′ (k, τ ) = −〈TτCk,n(τ )C†
k,n′ (0)〉

=
(

Ĝnn′ (k, τ ) −F̂nn′ (k, τ )
− ˆ̄Fnn′ (k, τ ) ˆ̄Gnn′ (k, τ )

)
, (B2)

where the auxiliary normal Green’s function is given by

Ḡnn′,ss′ (k, τ ) = −〈Tτ c̃†
k,n,s(τ )c̃k,n′,s′ (0)〉

= −pn pn′ [σ̂2Ĝn′n(−k,−τ )σ̂2]s′s,

using Eq. (34).
The Green’s functions satisfy the Gor’kov equations ob-

tained from the Hamiltonian (30) using the standard procedure
[33]:

−∂G(k, τ )

∂τ
= δ(τ )14N +

(
ε̌(k) �̌(k)

�̌†(k) − ˇ̃ε(k)

)
G(k, τ ), (B3)

where 14N is the 4N×4N unit matrix,

εnn′,ss′ (k) = ξn(k)δnn′δss′ − Hmnn′,ss′ (k),

ε̃nn′,ss′ (k) = ξn(k)δnn′δss′ + Hmnn′,ss′ (k),

and �nn′,ss′ (k) = �n,ss′ (k)δnn′ . Note that the gap functions
are band-diagonal (since we neglected the interband pairing),
whereas the single-particle energy ε̌ and its time-reversed
counterpart ˇ̃ε are not. Using the Matsubara frequency rep-
resentation, G(k, τ ) = T

∑
m G(k, ωm)e−iωmτ , where ωm =

(2m + 1)πT , one can solve Eq. (B3), with the following
result:

Ǧ = [iωm − ε̌ − �̌(iωm + ˇ̃ε)−1�̌†]−1,

F̌ = −(iωm − ε̌)−1�̌ ˇ̄G,

ˇ̄F = −(iωm + ˇ̃ε)−1�̌†Ǧ,

ˇ̄G = [iωm + ˇ̃ε − �̌†(iωm − ε̌)−1�̌]−1. (B4)

These expressions are valid at arbitrary magnetic field.
At zero field, ε̌ and ˇ̃ε become band-diagonal. Therefore, the

Green’s functions are also band-diagonal: G(0)
nn′,ss′ = δnn′G(0)

n,ss′ ,
etc., where

Ĝ(0)
n = −(iωm + ξn)

(
ω2

m + ξ 2
n + �̂n�̂

†
n

)−1
,

F̂ (0)
n = �̂n

(
ω2

m + ξ 2
n + �̂†

n�̂n
)−1

= (
ω2

m + ξ 2
n + �̂n�̂

†
n

)−1
�̂n,

ˆ̄F (0)
n = �̂†

n

(
ω2

m + ξ 2
n + �̂n�̂

†
n

)−1

= [
F̂ (0)

n

]†
.
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In a weak field, one can expand Eq. (B4), with the following
result:

Ǧ = Ǧ(0) − Ǧ(0)(Hm̌)Ǧ(0) − F̌ (0)(Hm̌) ˇ̄F (0) + O(H2).

Substituting this into Eq. (38) and dropping the superscript
“(0)”, we arrive at the expressions (39) and (40) for the sponta-
neous magnetization and the spin susceptibility, respectively.

APPENDIX C: INTERBAND SUSCEPTIBILITY

We consider just one pair of bands (n, n′ = 1, 2) with
ξ2(k) > ξ1(k) and focus on the terms with n �= n′ in Eq. (40).
Using Eq. (46), we obtain the following expression for the
interband contribution to the spin susceptibility:

χ̃i j = 4T
∑

m

∫
d3k

(2π )3

[
Pi j

(
ω2

m − ξ1ξ2
) − Qi j

]

× 1(
ω2

m + ξ 2
1 + |�1|2

)(
ω2

m + ξ 2
2 + |�2|2

) , (C1)

where Pi j = aia j + bib j ,

Qi j = (aia j + bib j ) Re (ψ∗
1 ψ2)

in the singlet case, and

Qi j = (aia j − bib j ) Re (d∗
1d2) − (aib j + a jbi ) Re (d∗

1 × d2)

+ Re (bid
∗
1 )(b jd2) + Re (bid

∗
2 )(b jd1)

in the unitary triplet case. In the normal state, the inter-
band susceptibility (C1) takes the form (47). To calculate the
interband susceptibility in the superconducting state, we as-
sume the weak-coupling picture, so that the gap functions are
nonzero only inside the BCS shells near the Fermi surfaces:
ψn(k), dn(k) ∝ θ (εc − |ξn(k)|). For a large band splitting,
E (k) � εc, the BCS shells in the bands 1 and 2 do not overlap,
and therefore Qi j = 0 in both singlet and triplet cases.

One can expect that the interband susceptibility is almost
unchanged when the system undergoes a superconducting
phase transition, in which only the electrons near the Fermi
surfaces are affected. To find the upper bound on the effect
of superconductivity on χ̃i j , it is sufficient to calculate the
latter at T = 0, where the Matsubara sum in Eq. (C1) can be
replaced by a frequency integral. In this way, we obtain

χ̃S
i j (T = 0) − χ̃N

i j = 2
∫

d3k
(2π )3

Pi j

[(
1 − ξ1ξ2

E1E2

)
1

E1 + E2

− 1 − sgn(ξ1ξ2)

|ξ1| + |ξ2|
]
,

where the excitation energies E1,2 are given by Eq. (42). The
expression in the square brackets is nonzero only near the two
Fermi surfaces, therefore the susceptibility deviation can be
written as a sum of the independent contributions from the

two BCS shells: χ̃S
i j − χ̃N

i j = I (1)
i j + I (2)

i j , where

I (1)
i j = 2

∫
d3k

(2π )3
θ (εc − |ξ1|)Pi j

×
[(

1 − ξ1

E1
sgn ξ2

)
1

E1 + |ξ2| − 1 − sgn(ξ1ξ2)

|ξ1| + |ξ2|
]
,

and I (2)
i j is obtained from I (1)

i j by replacing ξ1 ↔ ξ2, E1 ↔ E2.
Note that ξ2 > 0 in the BCS shell in band 1, while ξ1 < 0
in the BCS shell in band 2. Next, we neglect the energy
dependence of the single-particle DoS, of Pi j , and of E near
the Fermi surface and obtain

I (1)
i j = 2NF,1〈Pi jI1〉FS,1, (C2)

where

I1 =
∫ xm

−xm

dx

(
1 − x/

√
x2 + δ2

1 + x + √
x2 + δ2

− 1 − sgn x

1 + x + |x|
)

,

xm = εc/E , and δ = |�1|/E . Since δ � xm � 1, the last inte-
gral can be easily calculated with the logarithmic accuracy:
I1 � −2δ2 ln(xm/δ). Substituting this into Eq. (C2) and re-
peating the calculation for the second band, we finally obtain:
χ̃S

i j (T = 0) − χ̃N
i j ∝ (|�|2/E2) ln(εc/|�|).

APPENDIX D: DERIVATION OF Eq. (51)

Substituting the Green’s functions (41) in Eq. (44), the
intraband susceptibility in the triplet state can be represented
in the form χi j = χ

(1)
i j + χ

(2)
i j , where

χ
(1)
i j = 2T

∑
m

∫
d3k

(2π )3

ω2
m − ξ 2 − |d|2

(ω2
m + ξ 2 + |d|2)2

(μ̂μ̂†)i j

and

χ
(2)
i j = 4T

∑
m

∫
d3k

(2π )3

|d|2
(ω2

m + ξ 2 + |d|2)2
(μ̂�̂⊥μ̂†)i j,

where �⊥,μν = δμν − Re (dμd∗
ν )/|d|2. Summing over the

Matsubara frequencies in χ (1), we obtain

χ
(1)
i j = 2NF 〈(μ̂μ̂†)i jY〉FS, (D1)

where Y is the Yosida function (50) with |�(k)| = |d(k)|.
To express χ (2) in terms of the Yosida function, we use the

fact that d(k) is nonzero only inside the BCS shell near the
Fermi surface, which allows one to write

χ
(2)
i j = 2NF 〈(μ̂�̂⊥μ̂†)i j (J+ − J−)〉FS,

where

J± = T
∑

m

∫ ∞

−∞
dξ

ω2
m − ξ 2 ± |d|2(

ω2
m + ξ 2 + |d|2)2 .

It is easy to see that J+ = 1 (this can be shown by adding and
subtracting the value of J+ in the normal state and performing
the energy integration before the Matsubara summation) and
J− = Y , therefore

χ
(2)
i j = 2NF 〈(μ̂�̂⊥μ̂†)i j (1 − Y )〉FS. (D2)
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Combining this with Eq. (D1), we obtain

χi j (T ) = 2NF 〈[μ̂(k)μ̂†(k)]i jY (k, T )〉FS + 2NF 〈[μ̂(k)�̂⊥(k)μ̂†(k)]i j[1 − Y (k, T )]〉FS, (D3)

which becomes Eq. (51) after rearranging the terms.
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