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Chiral superfluid phase of liquid 3He in planar aerogels
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Motivated by the realization of the chiral superfluid phase of liquid 3He stabilized at lower pressures and over a
wide temperature range in planar aerogels, we examine equilibrium properties of the superfluid A phase suffering
from impurity scatterings due to planar correlated defects. In the specular limit of scattering due to the planar
defects, an analog of Anderson’s theorem for the s-wave Fermi superfluid is well satisfied in the chiral A phase in
the planar aerogels just like in the polar phase in nematic aerogels, and the chiral A phase region is extended by
such a planar anisotropy even with no strong coupling correction. It is also pointed out that the vortex energy in
the chiral A phase depends on the relative sense of the vorticity to the chirality. Based on this result, it is argued
that, due to the presence of chiral domains induced by the randomness, the vortex lattice structure shows broken
time-reversal symmetry and may include vortex loops.
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I. INTRODUCTION

Recent NMR measurements in liquid 3He in strongly
anisotropic aerogels have clarified that the degeneracy in
energy between different pairing states can easily be lifted
by quasiparticle scattering events due to the aerogel. In the
nematic aerogels composed of columnar defects, the super-
fluid 3He was found to be in the one-dimensional (1D) polar
pairing state over wide temperature and pressure ranges [1].
This observation is in qualitative agreement with the expec-
tation [2] following from a weak stretched anisotropy, while
a model starting from the limit of strong 1D-like anisotropy
was necessary to explain the realization of the polar phase
extending over a broad temperature and pressure range [3,4].
In the opposite case with a compressional anisotropy, a chiral
superfluid phase, i.e., the A phase with a perpendicular ori-
entation of its l vector to the easy plane for Cooper pairs, is
expected [2] to be realized even at lower pressures where the
so-called strong-coupling correction [5,6] is negligible.

Such a chiral A phase stabilized over lower pressures has
been found recently in liquid 3He in several aerogel materi-
als [7,8]. In recent experiments using planar aerogels [8] in
which the strands are randomly oriented within a fixed plane,
the chiral A phase with its l vector oriented perpendicularly to
the plane is seen over wide pressure and temperature ranges.
Among the planar aerogel samples [8], the liquid 3He in
mullite aerogel shows a notable depression of the superfluid
transition temperature Tc(P) and a wide A phase region in
the pressure (P)-temperature (T ) phase diagram, indicating a
strong impurity scattering effect and a large planar anisotropy.
On the other hand, the nylon aerogel sample [8] with a similar
A phase extending over broad temperature and pressure ranges
has shown Tc(P) in close vicinity of the superfluid transition
temperature Tc0(P) of the bulk liquid. This feature in the
latter aerogel sample suggests that an analog of Anderson’s
theorem [3,4,9,10] is satisfied even for the A phase in the

planar case like for the polar phase in the nematic aerogels and
implies that a model representing strong anisotropy of such a
planar aerogel is necessary to describe the resulting chiral A
phase realized in a wide region in the phase diagram.

In this work, equilibrium properties of the chiral A phase
suffering from impurity scatterings due to planar correlated
defects are studied. Putting much importance on the phase
diagram in the case of the nylon planar aerogel in Ref. [8],
we examine the weak-coupling P-T phase diagram following
from scattering models covering the limit of strong two-
dimensional (2D) anisotropy. The chiral A phase is stabilized
over a wide temperature range at any pressure by strong
anisotropy. Similarly to Anderson’s theorem [9] for the s-wave
Fermi superfluids, the transition temperature Tc(P) between
the A phase and the normal liquid in the situation with a
moderately strong 2D anisotropy is highly insensitive to the
strength of the impurity scattering just like the corresponding
one in nematic aerogels [3,4]. Nevertheless, the low T behav-
ior of the quasiparticle energy gap is deviated at relatively
low temperatures from the T 4 behavior resulting from the
pointlike gap nodes which, in clean limit, is satisfied even at
higher temperatures than 0.5Tc0(P). This feature is in contrast
to the robustness of the corresponding T 3 behavior in the
polar phase [4]. Next, we focus our attention on the energy of
a half-quantum vortex (HQV) line oriented perpendicularly
to the planar defects of the aerogel which depends on the
relative sense between the vorticity and the l direction, i.e.,
the chirality. By taking account of the fact that the l vector is
pinned by the planar defects in the aerogels, we will discuss
how such a dependence of the vortex energy on the chirality is
reflected in the resulting vortex lattice structure in the rotating
system.

The present paper is organized as follows. In Sec. II, a
model for the impurity scattering due to the defects in the
planar aerogel is introduced, and the resulting phase diagram
and the energy gap are discussed. In Sec. III, the HQV and
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FIG. 1. Schematic pictures describing scattering events of nor-
mal quasiparticles via 2D-like (planar) defects lying in the x-y plane.

the conventional phase vortex (PV) are examined within the
Ginzburg-Landau (GL) approach including the planar impu-
rity scattering effect, and the expected vortex lattice including
antivortices is discussed. In Sec. IV, the results in the present
work are summarized.

II. ANALOG OF ANDERSON’S THEOREM FOR CHIRAL
SUPERFLUID IN PLANAR AEROGELS

We start from describing the nonmagnetic scattering poten-
tial modeling the planar aerogels [8]. Throughout this paper,
the 2D plane characterizing the structure of these aerogels
will be identified hereafter as the x-y plane. By analogy to
the columnar defects stabilizing the polar pairing state, we
introduce a model of the impurity potential which can describe
the scattering events in the limit of strong 2D anisotropy. In
this limit, the x-y components of the quasiparticle momen-
tum are not changed through an impurity scattering event, or
equivalently, the correlation between the random scattering
potential u(r) is infinite-ranged along the x-y plane. Here, u(r)
is defined through the Hamiltonian describing the impurity
scattering events

Himp =
∫

d3r u(r)n(r), (1)

and n(r) is the particle density operator. This term is added to
the BCS Hamiltonian which will be given below.

We imagine that a planar aerogel is a collection of planar
defects. Each of them has mesoscopic area, and its normal
vector is along the z axis. Figure 1 is a rough picture on a
quasiparticle scattering in such a planar aerogel. As an analyt-
ically tractable model of the correlator of the random potential
u(r), we adopt

W (r) = 2πN (0)τ 〈u(r)u(0)〉imp = k2
F

4π2
δ(z) exp

(
−|r⊥|2

2L2
⊥

)
,

(2)
where τ is the quasiparticle lifetime, N (0) the density of states
of the normal quasiparticle lying on the Fermi surface, kF the
Fermi wave number, r⊥ the projection onto the x-y plane of
the coordinate r, and L⊥ is the correlation length defined along
the x-y plane. Below, the Fourier transform of W (r)

w(p − p′) = δD

2π
exp

(
−1

2
L2

⊥(p⊥ − p′
⊥)2

)
(3)

will be used, where p⊥ is the projection onto the x-y plane
of the momentum p on the Fermi surface, and δD = k2

F L2
⊥. In

the limit of the strong planar anisotropy where δD → ∞, each

quasiparticle scattering is specular. We note that the model (3)
cannot be used in δD → 0 limit which erroneously yields the
clean limit. Hereafter, δD will be implicitly assumed to be
nonvanishing.

The planar anisotropy favors 2D-like pairing
states [2,11,12]. By choosing one of the 2D-like pairing
symmetries (see below), the quasiparticle energy gap |�|,
which is also the amplitude of the p-wave order parameter
field Aμ, j , is determined through the total Hamiltonian
H = HBCS + Himp, where

HBCS − μN =
∑
p,σ

[
ξpa†

p,σ ap,σ − 1

2
(�p,σ a†

−p,σ a†
p,σ

+ H.c.)

]
+ V

3|gBCS|A∗
μ, jAμ, j, (4)

gBCS is the coupling constant measuring the attractive inter-
action, V is the system volume, and ξp is the quasiparticle
energy measured from the Fermi energy μ. The gap function
�p,σ will be defined below.

As is well known, the Anderson-Brinkman-Morel
(ABM) [5] and planar pairing states [13] belong to such
candidates of the 2D-like pairing state. As far as the
equilibrium thermodynamic properties are concerned, we
can fix the direction of the gap node to the z axis. Then, the
order parameter tensor of the ABM pairing, i.e., the chiral A
phase, can be chosen to be Aμ, j = �ŷμ(ŷ − ix̂) j , while that of
the planar pairing state is Aμ, j = �(δμ, j − ẑμẑ j ). Actually, in
the present environment consisting of the planar defects, such
a 2D-like pairing state is stabilized by directing the gap node
along the z axis [14]. Alternatively, the 2 × 2 gap matrices
of those states are diagonalized in the spin space, and their
nonzero diagonal elements are

�p,σ = �( p̂x + i p̂y) ≡ |�p|eiφ (5)

for the ABM state, and the corresponding one is

�p,σ = �( p̂x + iσ p̂y) = |�p|eiσφ (6)

for the planar pairing state, respectively, where |�p| = �sinθ ,
σ = +1 (−1) represents the spin-up (spin-down) state [11].
The momentum p is represented by the polar θ and the az-
imuthal φ angles, and θ is measured from the +ẑ axis. We note
that, in HBCS, any spatial variation of � has been neglected
here.

In our calculation in the present work, the strong-coupling
correction stabilizing the bulk ABM state will be neglected
to clarify that the 2D-like pairing states are stabilized only
by a planar anisotropy. Then, as far as the spatiotemporal
variations of the order parameter are neglected, each term
of the GL expansion of the weak-coupling free energy func-
tional is proportional to

∑
p,σ=±1 f (|�p,σ |2) which takes the

same value for the two pairing states. Further, each σ compo-
nent contributes separately to the thermodynamic quantities.
Therefore, in the present weak-coupling approach, the result-
ing thermodynamic properties are the same between the two
pairing states [11]. We need not distinguish the ABM state
from the planar one until considering the transition from the
planar phase to the planar-distorted B phase, which is more
3D-like, at a lower temperature.
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We can use almost the same formalism based on the
Matsubara Green’s functions as in the case of the s-wave
superconductor [15] to describe thermodynamics of a spa-
tially uniform planar pairing state in an impure environment.
For the moment, our analysis will be preceded by assuming
the 2D-like pairing state to be the planar one. Following the
standard procedure [15] and the notation in the case of the
polar phase in the columnar defects [4], the impurity-averaged
diagonal Gp(ε) and the off-diagonal Fp,σ (ε) Green’s functions
are represented in the form

Gp,σ (ε) =
(

Gp(ε) Fp,σ (ε)
F†

p,σ (ε) −G−p(−ε)

)

= 1

ε̃2
p + ξ 2

p + |�̃p(ε)|2
( −iε̃p − ξp −�̃p,σ (ε)

−[�̃p,σ (ε)]∗ −iε̃p + ξp

)
.

(7)

Here, ε is a fermion Matsubara frequency, and

iε̃p = iε − Gp(ε), (8)

�̃p,σ (ε) ≡ |�̃p(ε)|eiσφ = �p,σ − Fp,σ (ε). (9)

Self-consistently, the self-energy terms satisfy the relations

Gp(ε) ≡ g(θ ; ε) = 1

2πN (0)τ

∫
q
w(p − q)Gq(ε),

Fp,σ (ε) ≡ f (θ ; ε)eiσφ = 1

2πN (0)τ

∫
q
w(p − q)[F†

q,σ (ε)]∗,

(10)

and the gap function �p,σ yields the gap equation

�p,σ = −|gBCS|T
∑

ε

∫
p′

3
p · p′

p2
F

Fp′,σ (ε). (11)

In the limit of infinite δD, we have

w(p − p′) → k2
Fδ

(2)(p⊥ − p′
⊥), (12)

and the resulting self-energy terms are given by Gp(ε)/(iε) =
Fp,σ (ε)/�p,σ → −1/(2τ

√
ε2 + |�p,σ |2). Then, just like An-

derson’s theorem [9,15] for the s-wave superconductors, the
gap equation reduces to the τ -independent expression for the
bulk liquid.

For finite δD values, the quantities g(θ ; ε) and f (θ ; ε) sat-
isfy the relations

g(θ ; ε) = δD

4πτ

∫ π/2

0
dθ ′sinθ ′ exp

(
−δD

2
(sin2θ + sin2θ ′)

)
I0(δD sinθ sinθ ′)

−iε + g(θ ′, ε)√
[ε + ig(θ ′, ε)]2 + |�sinθ ′ − f (θ ′, ε)|2

,

f (θ ; ε) = δD

4πτ

∫ π/2

0
dθ ′sinθ ′ exp

(
−δD

2
(sin2θ + sin2θ ′)

)
I1(δD sinθ sinθ ′)

−�sinθ ′ + f (θ ′, ε)√
[ε + ig(θ ′, ε)]2 + |�sinθ ′ − f (θ ′, ε)|2

, (13)

where In(x) = (2π )−1
∫ 2π

0 cos(nφ) exp(x cosφ)dφ is the modified Bessel function of the first kind of order n. By representing
the pressure-dependent coupling constant gBCS in terms of the superfluid transition temperature Tc0(P) of the bulk liquid, the
corresponding gap equation takes the form

� ln

(
T

Tc0(P)

)
= πT

∑
ε

[
3

2

∫ π/2

0
dθ sin2θ

(
�sinθ − f (θ ; ε)√

[ε + ig(θ ; ε)]2 + |�sinθ − f (θ ; ε)|2
)

− �

|ε|
]
. (14)

The superfluid transition temperature Tc and the temperature dependence of the energy gap � of the planar phase in zero
field are described in terms of Eqs. (13) and (14). Reflecting the fact that the low temperature superfluid phase of the bulk
liquid is the B phase, i.e., the Balian-Werthamer (BW) pairing state [16], the high temperature 2D-like superfluid state in the
planar aerogel tends to give way to the planar-distorted or 2D-like B phase at lower temperatures. This 2D-like B phase has
the order parameter [2] Aμ, j = �(δμ, j − ẑμẑ j ) + �zẑμẑ j with |�z| 
 |�| at least close to the continuous transition from the
planar phase [2,11]. The position of this continuous transition between the two superfluid phases is determined, as performed
elsewhere [4], by focusing on the Gaussian term of O(�2

z ) and is given by

1 = |gBCS|T
∑

ε

∫
p

p2
z

p2
F

[Gp,σ (ε)G−p,−σ (−ε) − F†
p,σ (ε)F†

−p,−σ (−ε)], (15)

where the fact that the vertex pz accompanying �z is not dressed with the correlator (3) was used, and �z was assumed to be
real as well as � so that a higher planar to B transition temperature is obtained. More explicitly, the planar to B transition line is
determined by

ln

(
T

Tc0(P)

)
= πT

∑
ε

[∫ π/2

0
dθ sinθ

3 cos2θ√
[ε + ig(θ ; ε)]2 + |�sinθ − f (θ ; ε)|2

− 1

|ε|
]
. (16)

Of course, in real systems with a strong-coupling correc-
tion, the free energy of the chiral A phase is lowered compared
with that of the planar phase, and the 2D-like phase to be
realized at higher temperatures is the chiral A phase. This

suggests that the A-B transition line may be lowered com-
pared with the corresponding planar to B transition point in
Fig. 2 (see below). On the other hand, the A-B transition is
inevitably a discontinuous one, and its position seems to lie at
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FIG. 2. Examples of the resulting pressure (P) to temperature
(T ) phase diagrams. Each red curve denotes the superfluid transi-
tion curve in each case. As noted in the text, the planar (high T )
pairing state can be identified with the chiral or ABM pairing state,
and each planar to B second order transition line (blue curve) is
regarded as a reasonable estimate of the first order A-B transition
curve in each case. In the upper figure, the two transition curves at a
fixed anisotropy (δD = 10) are described by increasing the scattering
strength in the way (2πτ )−1(mK) = 0.5 (solid curves), 1.0 (dotted
ones), and 1.5 (dashed ones), while, in the lower figure, they are
described at a fixed impurity strength (2πτ )−1 = 1.2 (mK) by in-
creasing the anisotropy in the way δD = 5 (solid curves), 10 (dotted
ones), and 50 (dashed ones), respectively.

a higher temperature than the fictitious continuous transition
point. Here, we primarily focus on the low pressure region in
which the effects of the strong-coupling correction we have
neglected here are weak enough, and hence, the deviation
of the A-B transition point in equilibrium from the contin-
uous transition point examined here should be sufficiently
small. Further, depending on the cooling or warming rate
in measurements, the A-B transition obtained experimentally
or numerically will be accompanied by a notable hysteresis.
Discussion about phenomena dependent on the experimental
conditions is beyond the scope of the present work, and we
will identify the planar to B transition line obtained here with
the real chiral A to planar-distorted B transition line which
should be found under a sufficiently low cooling or warming
rate.

Now, the pressure to temperature phase diagram consisting
of the A and B superfluid phases and the normal phase will be

discussed. In Fig. 2, typical examples of the resulting phase
diagram are presented which follow from Eqs. (13), (14),
and (16) in terms of the pressure dependence [13] of the
bulk superfluid transition temperature Tc0(P). The overall be-
haviors of the dependences of the transition curves on the
impurity strength (Tc0τ )−1 and the anisotropy δD are quite
similar to the corresponding ones in the situation in a nematic
aerogel [4]: As τ decreases, or equivalently, the porosity of
the aerogel is reduced, both of the transition curves decrease.
When, as noted in relation to Eq. (12), the 2D-like correlation
of the random potential is fitted to the planar momentum
dependence of the pairing function, the situation becomes
similar to that of the s-wave Fermi superfluid for which the
so-called Anderson’s theorem is satisfied. That is, when the
anisotropy is large enough, the superfluid transition temper-
ature Tc(P) can stay close to the Tc0(P) curve of the bulk
liquid even if the planar-distorted B phase is lost due to a
small enough τ . Thus, a situation in which the only realized
superfluid phase is the ABM pairing state easily occurs [7].
As mentioned in Sec. I, the superfluid phase diagram realized
in the nylon sample [8] has shown a Tc(P) line lying quite
close to the Tc0(P) line together with the A phase extending
over a wide temperature range. These features seen in the
experiment [8] are consistent with those in Fig. 2, suggesting
that the experimental situation is close to the case in which the
impurity scattering is nearly specular in the sense indicated in
Fig. 1.

It will be valuable to compare the present superfluid 3He
in a planar aerogel with the corresponding system in a narrow
slab [11,12]. Broadly speaking, the scattering time τ in the
former corresponds to the film thickness in the latter. Further,
as noted in Eq. (12), the limit of the strong 2D-like anisotropy
in the former is nothing but the limit of the 2D specular scat-
tering which is identical with the corresponding limit of the
surface scattering in the latter. In fact, the superfluid transition
temperature Tc in a narrow slab in the limit of the specular
reflection is independent of the thickness [12]. However, in
general, one cannot identify the mean-field phase diagram of
a 3D system in a correlated random medium with that of a
low dimensional system in a regular restricted geometry. For
instance, in the case of thin slabs, the diffusive nature of the
surface scattering is reflected in Tc through spatial variations
of the order parameter [12], while the mean field Tc in the
present 3D system is believed to be properly determined even
with no gradient terms [17]. Further, the τ and T dependen-
cies of the A-B phase boundary presented in Fig. 2 show no
reentrant behavior of the type seen in a narrower slab [11].

In the 2D-like p-wave pairing state, the analog of Ander-
son’s theorem for the conventional s-wave paired case may
be seen not only in the phase diagram but also in the tem-
perature dependence of the energy gap �. In Ref. [4], it has
been pointed out that the T 3 behavior of |�(T )| in the polar
pairing state originating from its line node is robust in a wide
temperature region and visible until 0.6Tc even in a relatively
dirty system where the polar-distorted A phase has already
been lost at finite temperatures due to the impurity scatterings.
For comparison, the corresponding power law of |�(T )| in
the chiral phase in the planar aerogels will be considered. As
usual, by focusing on the region close to the gap nodes on the
Fermi surface, the low T behavior of the quasiparticle gap in
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FIG. 3. Temperature dependence of the quasiparticle energy gap
|�|. Numerical data points are described in the case of the clean limit
in the upper figure and, in the lower figure, in the present impure
case with (2πτ )−1 = 2.0 (mK) and δD = 50 for which the B phase
is absent even in T → 0 limit. In both of the figures, the parameter
values [13] at P = 0 (bar) have been used. Each solid curve denotes
the best-fitted T 4 curve with a⊥ = 11.73 in (a) and the corresponding
curve with a⊥ = 26.12 in (b), while the �(0)/Tc0 value is 2.026
in (a) and 1.98 in (b). It is found that the ideal T 4 behavior is
satisfied in the impure case only below 0.35Tc. As noted in the text,
this impurity scattering effect in the present planar aerogel seems to
be remarkably different from the corresponding one in the nematic
aerogel where the corresponding T 3 behavior is well satisfied over a
wide temperature range even in the impure case [4].

the bulk A phase is found to obey

�(T ) � �(0)

[
1 − ã⊥

(
T

�(0)

)4]
(17)

with ã⊥ = 7π4/60 = 11.36. The data points in Fig. 3(a) (the
upper figure) are the corresponding results in the A phase
in clean limit obtained by neglecting the strong-coupling
correction. Note that the deviation from the T 4 behavior of
Eq. (17) is relatively small even at higher temperatures. On
the other hand, the corresponding behavior of Fig. 3(b) in the
impure case indicates that the deviation from the T 4 behav-
ior at higher temperatures is more remarkable, although the
pointlike gap node is robust against the impurity scattering
effect. We stress that this result has been obtained in the
weak-coupling limit and, actually, at P = 0 (bar). It is possible
that this deviation from the T 4 behavior in the impure case

becomes less remarkable by incorporating the strong-coupling
correction.

III. VORTICES IN CHIRAL SUPERFLUID IN
PLANAR AEROGELS

Now, we turn to examining possible vortex states in the
chiral superfluid phase in the planar aerogel under a rotation
around the z axis. Hereafter, we assume that the 2D-like pair-
ing state is the ABM or chiral pairing state stabilized due to
a weak but nonzero strong-coupling correction. Further, we
will assume that no vortices are induced according to the
Kibble-Zurek mechanism [18,19] by a supercooling in the
present case because such a vortex occurring with no rotation
should lie along the planar defects so that they are strongly
pinned by the aerogel [20]. We primarily focus on the vortex
lines induced by a rotation around the z axis, i.e., the vortices
extending along the z axis perpendicular to the defect planes
and hence, avoiding the strong pinning via the planar defects.

In the present situation where the l vector of the chiral
phase is kept perpendicular to the defect plane, the stability
of a pair of two HQVs [21] against the ordinary PV unac-
companied by a texture of the d vector can be considered.
Far below the superfluid transition temperature, effects of the
strong-coupling correction [21] and the dipole energy [22]
destabilizing the HQVs are negligible and need not be con-
sidered hereafter. In such a dipole-free case, a texture of the
d vector accompanying the HQV pair may be formed in
any plane. Nevertheless, to be specific, the d vector will be
assumed to lie in the x-y plane.

Conventionally, the order parameter structure far from the
vortex core of a HQV in this situation has been studied in
the London limit where no other order parameter components
than that of the ABM pairing are excited, and the amplitude
|�| of the ABM order parameter is fixed to be a constant.
Then, when the sense (or, sign) of the phase winding number,
i.e., of the vorticity, is the same as that of the orbital chirality,
the ABM order parameter with one pair of HQVs is given
by [23]

A(+)
μ, j = �ei�(x̂μcosθ + ŷμsinθ )(ê+) j, (18)

where

(ê±) j = x̂ j ± iŷ j√
2

, � = 1

2
(φ+ + φ−), θ = 1

2
(φ+ − φ−),

(19)
and

φ± = tan−1
( y

x ∓ a

)
. (20)

As is well known, Eq. (18) can be rewritten in terms of the
spin chirality basis

A(+)
μ, j = �√

2
[(ê−)μeiφ+ + (ê+)μeiφ− ](ê+) j . (21)

On the other hand, the corresponding order parameter in the
case where the sense of the vorticity is opposite to that of the
(orbital) chirality

A(−)
μ, j ≡ A(+)

μ, j [ (ê+) j → (ê−) j ] (22)

is given by the complex conjugate of A(+)
μ, j (� → −�).
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FIG. 4. Spatial distribution of the order parameter components
accompanying a HQV lying at (−a, 0) in the compatible case (see
the text) at P = 3(bars) and T = 1.0(mK). This HQV and another
one lying at (a,0) forms one HQV pair with the size 2a = 1.6 (μm).
We note that Tc[P = 3(bar)] = 1.25 (mK) for the parameter values
(2πτ )−1 = 0.118 (mK) and δ = 4.4 characterizing the model aero-
gel used here [see Eq. (25)]. The left and right figures express |A(+)

++|
and |A(+)

+−|, respectively.

Alternatively, the order parameter A(±)
μ, j may be repre-

sented in the form
∑

a,b=±(êa)μA(±)
ab (êb) j . Then, Eq. (21)

can be represented as A(+)
−+ = �eiφ+/

√
2, A(+)

++ = �eiφ−/
√

2,
and, otherwise, zero. In the same manner, Eq. (22) is
represented by A(−)

−− = �eiφ+/
√

2, A(−)
+− = �eiφ−/

√
2, and,

otherwise, zero. In the London limit with no dipole energy,
the gradient energy is quadratic with respect to � [23] so
that the sign change of � at a fixed orbital chirality does not
lead to any change of the vortex energy. Thus, the broken
time-reversal symmetry in the chiral A phase cannot be seen
in thermodynamic properties associated with the vortices in
the London limit.

Once going beyond the description in the London limit,
however, a HQV in the ABM pairing state does not seem
to be so simple: Each HQV derived numerically based on
the GL free energy is accompanied close to its core by the
order parameter component with a different orbital chirality.
One example of a HQV derived in the present numerical
work based on the GL model and the boundary condition
(20) is presented in Fig. 4, where the l vector is directed
to the +z direction (l̂ ‖ z), and the winding number of this
HQV is +1/2. According to Eq. (21), the left figure in Fig. 4
shows the spatial variation of |A(+)

++|, while the right figure
shows that of |A(+)

+−| which vanishes everywhere in the Lon-
don limit. Essentially the same result has been presented
in Refs. [21,24]. That is, it is found that a single HQV (a
HQV pair) is described by two (four) of the nine complex
scalar components of the order parameter Aμ, j . Such an ap-
pearance of the component with the reversed orbital chirality
suggests a possibility that the vortex energy depends on the
relative sense between the vorticity and the orbital chirality.
Previously, an effect of this relative sense on the observable
quantity has been considered in the context of a chiral p-wave
superconductivity [25].

In the present case with a uniaxial anisotropy, the resulting
GL free energy density has the same form as used in Ref. [26]
and consists of the condensation energy fcond and the O(|�|2)
and O(|�|4) gradient energy terms. Among them, fcond takes

the form

fcond = [α + (αz − α)δiz]AμiA
∗
μi + β1|AμiAμi|2

+β2(AμiA
∗
μi )

2 + β3A∗
μiA

∗
νiAμ jAν j + β4A∗

μiAνiA
∗
ν jAμ j

+β5A∗
μiAνiAν jA

∗
μ j + βz|AμzA

∗
μz|2

+ [β1zAμiAμiA
∗
μzA

∗
μz + β2zAμiA

∗
μiAμzA

∗
μz

+β3zA
∗
μiA

∗
νiAμzAνz + β4zA

∗
μiAνiA

∗
νzAμz

+β5zA
∗
μiAνiAνzA

∗
μz + c.c.], (23)

and the O(|�|2) gradient energy terms of our interest are
expressed by

f (2)
grad = 2K1∂iAμi∂ jA

∗
μ j + K2∂iAμ j∂iA

∗
μ j + K4∂iAμz∂iA

∗
μz.

(24)
In Eq. (24), z-derivative terms were neglected because we are
interested here in the stability of the vortex lines extended
along the z axis, i.e., perpendicular to the x-y plane or the
defects’ plane.

To make analytic evaluation of the coefficients appearing
in fcond and f (2)

grad easier, the simpler model

w(⊥)(k) =
√

δ

1 + δk̂2
⊥

(25)

for the correlator of the impurity potential was used in place of
Eq. (3) in this section. In Eq. (25), (k̂⊥)i = (δi j − ẑi ẑ j )k j/kF,
and δ is the parameter corresponding to δD in Eq. (3). This
model is useful at least for moderate values of the anisotropy.

Derivation of the GL coefficients is essentially the same
as in Ref. [26]. For instance, the coefficients of the quadratic
mass terms are given by

α = 1

3
N (0)

[
ln

( T

Tc0

)
+ 2πT

∑
ε>0

(
1

|ε| − 3

2
I (⊥)
11 C(⊥)

0

)]
,

αz = α − 2πT N (0)
∑
ε>0

[
I (⊥)
10 − I (⊥)

11

(
1 + 1

2
C(⊥)

0

)]
, (26)

where

I (⊥)
mn =

〈
p̂2n

⊥
|ε̃p|m

〉
p̂

, (27)

ε̃p = ε + sgn(ε)

2τ
〈w(⊥)(p − p1)〉p̂1 , (28)

and 〈·〉p̂ denotes the average over the direction of the unit
vector p̂. Based on the notation in Eq. (4), the relation iε̃p = ξp
gives, after the analytic continuation, the dispersion relation of
a single quasiparticle in the normal fluid obtained within the
Born approximation. Further,

C(⊥)
0 (ε) = 1

1 − 2
(
I (⊥)
d11 − I (⊥)

d12

) (29)

with

I (⊥)
dmn(ε) =

〈 √
δ

(2|ε̃p|)mτ
(
1 + δ p̂2

⊥
)n

〉
p̂

(30)

is the ε-dependent factor representing the pairing vertex cor-
rection.
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FIG. 5. Spatial distribution of the order parameter components
accompanying a HQV existing at (a, 0) in the incompatible situation.
The winding number of this HQV is +1/2 as well as in Fig. 4.
The parameter values used to obtain this solution are the same as
those in Fig. 4. The left and right figures express |A(−)

−−| and |A(−)
−+|,

respectively.

In addition to fcond and f (2)
grad, we need to incorporate the

O(|�|4) gradient energy terms to reach the correct understand-
ing on the stability of HQVs within the GL analysis [21]. This
higher order gradient energy inevitably becoming a lengthy
expression has been presented in the Appendix of Ref. [21]
as fFLgrad4. In Ref. [26], the anisotropy-induced corrections
to fFLgrad4 arising from the impurity scattering process were
examined, and it was found that they are safely negligible even
in the limit of strong anisotropy. Hence, we have used fFLgrad4

given in Ref. [21] using the typical value of the Landau pa-
rameter F (s)

1 [13].
The numerical method we have used is the same as in

the previous works [21,26]. The configuration of a HQV pair
in the London limit was used as an initial condition of each
numerical run. This initial configuration in the London limit
plays the role of the outer boundary condition on the order
parameter in the rectangle system. Throughout the present
analysis, we have used the system of the size 40 (μm) in the x
direction and the size 8 (μm) in the y direction.

It is found that all of the order parameter components such
as Aμ,z vanish in the resulting vortex line solutions extending
along the z axis in the chiral A phase of our interest, so that
the terms of fcond and f (2)

grad accompanied by the coefficients
βnz, βz, and K4 may not be taken into account in the present
numerical analysis examining the stability of HQV.

The results in Fig. 4 have been derived by choosing
Eq. (21) as the initial configuration of the numerical run. The
corresponding results of |A(+)

−+| and |A(+)
−−|, which describe the

order parameter distribution accompanying the partner of the
same HQV pair, are similar to those in Fig. 4. On the other
hand, the corresponding results of a HQV of which the relative
sense of the vorticity is opposite to that of the chirality are
shown in Fig. 5 which are obtained by adopting Eq. (22) as
the initial configuration of the numerical run. It is seen that the
region with the reversed chirality close to the core is clearly
narrower compared with that in Fig. 4.

Although the above-mentioned dependence of the core
structure on the relative sense between the vorticity and the
chirality was also seen in a previous GL analysis with no
Fermi liquid (FL) correction included [24], the dependence of
the vortex energy on this relative sense has not been examined
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FIG. 6. Dependencies of the vortex energy of a HQV pair on the
pair size 2a. The red curve denotes the total energy F (a) of one
HQV pair, the blue curve is the contribution to F (a) of the quadratic
gradient term (24), and the green curve is the corresponding one
of O(|�|4) gradient energy fFLgrad4 (see the text). (a) expresses the
results in the case of Fig. 4, while (b) expresses those in the case of
Fig. 5, respectively. The difference in F (a) between the two cases is
estimated to be about 0.25F (a) in the present study using the system
size 40 × 8 (μm2). The HQV pair studied in (a) and (b) has been
created in terms of the same set of parameter values as in Figs. 4
and 5.

in the previous works [21,24,27]. Figure 6 expresses the de-
pendencies on the HQV pair size 2a of the total energy F (a)
of a HQV pair, the corresponding quadratic gradient energy
[Eq. (24)], and the O(|�|4) gradient energy including the FL
correction term. Figure 6(a) (6(b)) is the result in the case
with the same (opposite) sense between the vorticity and the
chirality. It is found that the HQV pair with the same relative
vortex-chirality sense is lower in energy than that with the
opposite relative sense. In both cases, the total energy (red
curve) decreases slowly with increasing a, reflecting the a
dependence of the O(|�|4) gradient energy (green curve) [21]
in each case. The difference in F (a) between the two figures
is found to arise from the corresponding difference in the
quadratic gradient energy. Since, as already noted, both of
the cases have the same energy in the London limit, it is
clear that the origin of this difference is closely related to the
order parameter component with the reversed orbital chiral-
ity appearing close to the core in Figs. 4 and 5. Reflecting
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FIG. 7. Spatial distributions of the order parameter components
of a PV realized in a → 0 limit of Fig. 6 in the compatible (upper
two figures) and the incompatible (lower two figures) configurations.
The upper-left and upper-right figures express A(+)

x+ and A(+)
x− , respec-

tively. The lower-left and lower-right figures express A(−)
x− and A(−)

x+ ,
respectively. We note that, in all figures, the vortex winding number
is +1. The spin index x implies that the d- vector around this PV is
spatially uniform and directed to the x axis (see the text).

this lift of the degeneracy on the relative sense between the
vorticity and the chirality, hereafter the cases with the same
and opposite senses between the vorticity and the chirality
will be called compatible and incompatible configurations,
respectively.

It is well understood that, in a p-wave Fermi superfluid
with the order parameter field consisting of multicomponents,
the vortex energy tends to be lowered by replacing the normal
core of the conventional vortex with a superfluid core formed
by a couple of components of the order parameter. Even in the
present issue, a lower HQV energy is realized by inducing,
close to the core, the order parameter component with the
orbital chirality opposite to that of the order parameter far
from the core. To explain how the vortex energy is lowered
in the present system, for simplicity, we focus below on the
core structure of the PV which is the a → 0 limit of a HQV
pair, because the order parameter structure close to the core
of a PV is qualitatively similar to that of a HQV represented
in the spin chiral basis [24]. In fact, as is seen in Fig. 7,
the spatial distributions of the component with the reversed
orbital chirality close to the PV core seem to be essentially
the same as the corresponding ones of HQVs in Figs. 4 and 5.
We note that, as a result of coalescence of the two HQVs with
different spin chiralities from each other, the order parameter
accompanying the resulting PV takes the form A(±)

x, j , where j
is an orbital index. That is, the d vector of the resulting PV is
uniform and is directed to the x axis in our numerical results
[see also Eq. (21)]. Consequently, the PV is described as well
as a single HQV by two complex scalar components of the
order parameter tensor Aμ, j .

FIG. 8. Spatial distributions of the order parameter components
defined in Eq. (32) accompanying a PV in the compatible (upper two
figures) and the incompatible (lower two figures) configurations, re-
spectively. The upper-left and upper-right figures express the results
of |A(+)

xr | and |A(+)
xφ |, respectively, while the lower-left and lower-right

figures express the results of |A(−)
xr | and |A(−)

xφ |, respectively.

To clarify the consequence of the component of the re-
versed orbital chirality induced close to the core, the p-wave
superfluid order parameter d (±)

μ (p̂) = A(±)
μ, j p̂ j in the presence

of a HQV pair in the compatible (+) and incompatible (−)
configurations will be rewritten in the form

d (±)
μ (p̂) = A(±)

μ,r p̂r + A(±)
μ,φ p̂φ. (31)

Here, p̂r ( p̂φ) is the component of the unit vector p̂ in the
radial (azimuth) direction in the cylindrical coordinate system
where the vortex center is at its origin, and

A(±)
μ,r = 1

2 (A(±)
μ+eiφ + A(±)

μ−e−iφ ),

A(±)
μ,φ = i

2 (A(±)
μ+eiφ − A(±)

μ−e−iφ ). (32)

In Fig. 8, the spatial distributions of the order parameter
components of the PVs in the compatible and incompati-
ble configurations are shown based on the representation of
Eq. (32). Regarding the φ dependencies in each case, A(+)

x+ and
A(+)

x− in the compatible case are approximately proportional to
eiφ and ei3φ , respectively, and the resulting quantities A(+)

x+ e−iφ

and A(+)
x− e−i3φ , which are functions of the radius r, are real and

have the same sign as each other. On the other hand, the cor-
responding quantities A(−)

x+ and A(−)
x− in the incompatible case

are approximately proportional to e−iφ and eiφ , respectively,
and the quantities A(−)

x+ eiφ and A(−)
x− e−iφ are real and have the

opposite sign to each other. These results are consistent with
the features seen in the previous work [24]. It is found that, in
the compatible case, the superfluid core is maintained over a
wider range in the radial direction, while in the incompatible
case, the nonvanishing order parameter amplitude is remark-
ably seen rather in the azimuth direction, and consequently,
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the normal region in the core seems to be wider in the radial
direction. These features imply that the superfluid weight in
the core region is wider in the compatible configuration and
well explains the result seen in Fig. 6 that the vortex energy
is lower in this case. It will be clear that, according to Fig. 6,
this explanation on the lift of the degeneracy due to the relative
sense between the vorticity and the chirality also holds for a
HQV pair with a nonvanishing size 2a. In the remainder of
this section, for simplicity, we will not distinguish a PV from
a HQV pair, and they will be called just a “vortex.”

In considering possible vortex states in the chiral phase in
a planar aerogel under a rotation, we need to take account of
randomness on the surface of the defect planes. In general,
some randomness in the x-y plane will create the chiral do-
mains. Namely, the l vector oriented perpendicularly to the
x-y plane may be directed to the +ẑ or −ẑ directions on
each defect plane depending on the smoothness of the surface
of each defect, and the randomness-induced domain walls
separating the l̂ ‖ −ẑ region from the l̂ ‖ ẑ region are present.

Once taking account of both the presence of the chiral
domains and the energy difference between the vortices in the
compatible and incompatible cases, nontrivial vortex states
are expected to occur in the chiral superfluid phase in a planar
aerogel. First, the dependence of a single vortex energy on the
relative sense between the vorticity and the chirality implies
that the broken time-reversal symmetry of the chiral A phase
is reflected in the vortex lattice structure. That is, a vortex
lattice created on a random configuration of the chirality,
as sketched in Figs. 9(a) and 9(b), does not coincide with
the corresponding vortex state occurring after the rotation
direction is reversed. In the Fig. 9(a), the rotation-induced
vortices are compatible, over a large area in the x-y plane,
with the chirality l̂ ‖ ẑ, which is indicated by the two arrows
orthogonal to each other, while the rotation-induced vortex
inside the ellipse (solid curve) expressing a domain wall has
a higher energy and hence, may not appear in equilibrium.
By contrast, in the Fig. 9(b), the rotation-induced vortices
are incompatible over a large area with the chirality l̂ ‖ −ẑ,
and thus, the vortices prefer to stay inside the same chiral
domain as that included in Fig. 9(a). Therefore, the presence
of more chiral domains would lead to a larger difference
in the vortex lattice structure when the rotation direction is
reversed.

Further, the vortex energy dependent on the relative sense
also suggests the presence of a vortex-antivortex pair or a
vortex loop supported by the pinning to the planar defects.
For instance, as sketched in Fig. 9(c), the rotation-induced
vortex is favored in the elliptic domain in Fig. 9(b), while the
“antivortex” with the opposite sense to the rotation has a lower
energy outside it. Then, a vortex loop may appear depending
on the situation due to the presence of the chiral domains.
We stress that the presence of the planar defects forming
the planar aerogel assists the appearance of such a vortex
loop: In general, the extended or correlated defects strongly
pin the vortex segments. In fact, all the vortices appearing in
the nematic aerogels are extended along the linelike strands
because of the pinning due to them [20]. Similarly to this,
a vortex segment extended along the planar defects tends to
be stabilized, as in Fig. 9(d), because of the pinning effect
due to the planar defects. Therefore, such vortex loops may

y
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(c)
x

V
A

(d)

z

FIG. 9. (a) Schematic figure of a possible defective vortex lat-
tice created by a rotation angular velocity � > 0 in the globally
compatible situation (i.e., with l̂ ‖ ẑ over a large area). A symbol V
denotes a rotation-induced vortex. A chiral domain wall is indicated
by an ellipse. Hence, we have the incompatible situation inside the
chiral domain, and thus, it was assumed that no rotation-induced
vortices are present there. (b) Corresponding figure in the globally
incompatible situation (i.e., with l̂ ‖ −ẑ over a large area). In this
case, the rotation-induced vortices prefer to stay in the chiral domain
where l̂ ‖ ẑ. (c) Possible configuration of one vortex pair (or, vortex
loop) to be realized in the situation of (b). In this case, both a
rotation-induced vortex inside the chiral domain and an antivortex
(denoted as the symbol A) outside it are compatible with the chirality.
(d) The 3D picture drawing the vortex-antivortex pair indicated in
(c) as a vortex loop. Here, the upper and lower planes denote planar
defects composing the aerogel locally. The segments of the vortex
loop perpendicular to the z axis will be strongly pinned by the defect
planes so that such a vortex loop does not easily disappear.

be realized in equilibrium with no substantial energy cost as
the chiral domains increase.

IV. SUMMARY AND DISCUSSION

Motivated by the recent experiment [8] on superfluid 3He
in the planar aerogels composed of randomly stacked planar
defects, we have extended the impurity scattering model used
in the previous study [2] on the superfluid phase diagram in
the uniaxially compressed aerogel to the case in which the
quasiparticle scattering on the planar defects is close to the
specular limit. This specular limit corresponds to the limit
of strong planar anisotropy and to one situation in which an
analog of the Anderson’s theorem for the s-wave paired super-
fluid is satisfied for a p-wave Fermi superfluid. In this limit,
the only superfluid phase to be realized in such an aerogel is
the chiral A phase in which its l̂ vector is kept perpendicular
to the defect planes. We have examined the resulting phase
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diagram in the case of a moderately strong anisotropy and
have explained the main features seen experimentally [8],
such as the superfluid transition temperature quite close to that
of the bulk liquid and the chiral A phase stabilized over wide
pressure and temperature ranges. Further, we have argued that
the T 4 behavior of the quasiparticle energy gap to be seen in
the bulk A phase if this phase is realized at low temperatures
may not be necessarily satisfied in the chiral A phase in a
planar aerogel, although the point node of the energy gap is
robust against the impurity scattering effect.

We have also studied stable vortices in the chiral A phase in
planar aerogels. It is well known that the core of a single HQV
realized in the A phase with a fixed direction of the chirality is
one of the ideal systems for realizing Majorana modes [28,29],

and the stability of a HQV in the present system is also a sub-
ject of much interest. First, we have pointed out that, for both
the half-quantum vortex and the conventional phase vortex,
the vortex energy depends on the relative sense between the
vorticity and the orbital chirality. By combining this feature
with the fact that the chiral domains tend to be realized due
to the randomness on the defect planes, we have argued a
possible reflection of the broken time-reversal symmetry in
the vortex lattice structure and the appearance of the vortex
loops stabilized by the pinning of the transverse vortex seg-
ments due to the defect planes. Observing a dependence of the
vortex lattice structure on the rotated direction would become
evidence of the presence of the chirality [30,31] in the high
temperature equal-spin paired state in the planar aerogels.
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