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The Th;Fe; family of superconductors provides a rich playground for unconventional superconductivity.
La;Ni; is the latest member of this family, which we here investigate by means of thermodynamic and
muon spin rotation and relaxation measurements. Our specific heat data provides evidence for two distinct
and approximately isotropic superconducting gaps. The larger gap has a value slightly higher than that of
weak-coupling BCS theory, indicating the presence of significant correlations. These observations are confirmed
by transverse-field muon spin rotation/relaxation measurements. Furthermore, zero-field measurements reveal
small internal fields in the superconducting state, which occur close to the onset of superconductivity and indicate
that the superconducting order parameter breaks time-reversal symmetry. We discuss two possible microscopic
scenarios—an unconventional E,(1, i) state and an s + i s superconductor, which is reached by two consecutive
transitions—and illustrate which interactions will favor these phases. Our results establish La;Ni; as the first
member of the Th;Fe; family displaying both time-reversal-symmetry-breaking and multigap superconductivity.
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I. INTRODUCTION

While the superconducting transition of the original
Bardeen-Cooper-Schrieffer (BCS) theory is not a symmetry-
breaking phase transition but rather a condensed-matter
realization of a Higgs mechanism [1,2], modern research in
superconductivity is crucially concerned with the aspect of
symmetry [3,4]: First, the superconducting order parameter
might transform nontrivially under a subgroup of the sym-
metries of the normal state. In that case, the superconducting
transition is also a symmetry-breaking phase transition. Sec-
ond, a lot of research is concerned with the realization and
study of superconductivity in systems with reduced symme-
tries, driven by the goal of designing superconductors with
exotic and potentially useful properties. Among these, non-
centrosymmetric crystal structures with significant spin-orbit
coupling are of particular interest [4]; they exhibit inversion
antisymmetric Rashba-Dresselhaus spin-orbit-coupling terms
[5,6], which result in the splitting of the Fermi surfaces into
two opposite spin configurations. This has a pronounced effect
on the possible pairing states and leads to mixed-parity spin
states (singlet and triplet) in the order parameter [4,7-9]. As a
result, it can give rise to some novel and uncommon supercon-
ducting properties, such as unusually high upper critical fields,
larger than the Pauli limit [8,10-13], the presence of nontrivial
line or point nodes [14—18], multiple-gap behavior [12,19],
an enhanced protection against impurity scattering [20-27],
and the more recently proposed topological superconductivity
[28-33].
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One of the most fascinating and intensely studied cases
of broken symmetries in the superconducting state is time-
reversal-symmetry (TRS) breaking. This is not only due to the
fact that TRS-breaking superconductors can exhibit topolog-
ical chiral edge modes [28] but also by the fundamental role
of TRS for superconductivity itself [34], which is associated
with the formation of bound states of electrons at momenta
related by time reversal. While a lot of weakly correlated non-
centrosymmetric superconductors have been studied [35-38],
TRS breaking has only been observed in a handful of them
[10,39-46]. In general, the key ingredients for TRS breaking
at a superconducting transition are mostly unknown, although
some general constraints have recently been derived theo-
retically for spin-orbit-coupled noncentrosymmetric systems
[47,48].

Noncentrosymmetric superconductivity in compounds
with «-Mn structure (with or without Re concentration) has
been examined a lot; however, indications of TRS breaking
have only been observed for Re-based [ResX (X = Zr,Hf,Ti)]
superconductors, where the strength of the internal field is
found out to be almost equivalent for the mentioned al-
loys which suggests the contribution of Re in inducing TRS
breaking in these systems [10,42-44]. Re’s relevance is cor-
roborated further by theoretical calculations [49] that suggest
the dominance of the density of states of Re at the Fermi
level. These observations indicate the vital role of Re together
with the lack of inversion symmetry for the formation of
superconductivity.

Similarly, the study of other noncentrosymmetric super-
conductors with a heavy element (other than Re) whose
density of states at the Fermi level dominates can help us
establish a relation between broken inversion symmetry and
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TRS of the superconductor, and the existence of a dominant
density of states of a particular element in a compound. In
this regard, the noncentrosymmetric superconducting family
La;X; (X = Ir, Rh, Ni), crystallizing in a ThyFes-type struc-
ture, which already shows examples of TRS breaking [45,50],
provides potential candidates to investigate the above sugges-
tions. In these cases also, the magnitude of the TRS-breaking
signal remains approximately unchanged after replacing a 5d
[La;Irs] [45] by a 4d element [La;Rhs] [50], like in the
RegX series compounds [10,42—44]. This may be due to the
dominant role played by Re and La at the respective Fermi
surfaces [49,51].

In this paper, the properties of La;Nijz, the youngest
member of the La;X3 series, are analyzed using muon spin
relaxation and rotation («SR) supplemented by thermody-
namic measurements. SR in zero-field mode is one of the
best-suited techniques for studying TRS breaking as it is sus-
ceptible to tiny changes in the internal fields (~10 uT). Our
zero-field measurements reveal the appearance of spontaneous
internal magnetic fields in the superconducting state. This pro-
vides substantial evidence for broken TRS in La;Nisz, with a
magnitude similar to LayIr; and La;Rhs. Generally, the spin-
orbit coupling contribution from a 3d element, such as Ni,
is considered negligible, which points towards the probable
dominance of La in determining the superconducting ground
state of La;Nisz. We further perform ©SR measurements in
the presence of a transverse magnetic field, which allows
us to determine the temperature evolution of the magnetic
penetration depth (1) and, thus, infers additional information
on the superconducting gap of La;Nis.

The remainder of the paper is organized as follows: After
presenting details on the sample preparation and measurement
techniques in Sec. II, we show our specific heat and ©SR data
in Sec. IIT and how it was fitted. Section IV contains a discus-
sion of possible microscopic pairing scenarios and of the role
of disorder. A summary and outlook can be found in Sec. V.
Two appendices provide details on how physical parameters
are extracted from the data and discuss phenomenological
models for the possible microscopic pairing scenarios.

II. EXPERIMENTAL DETAILS

The sample of La;Ni3 was prepared by arc melting sto-
ichiometric amounts of La (99.9%) and Ni (99.95%) in a
high purity argon gas atmosphere on a water-cooled copper
hearth. The sample button was melted several times to en-
sure phase homogeneity with negligible weight loss (<1%).
Magnetization and specific heat measurements were carried
out using Quantum Design MPMS 3 and physical property
measurement system (PPMS).

Muon-spin rotation and relaxation measurements were
performed at the ISIS pulsed neutron and muon source,
Rutherford Appleton Laboratory, the United Kingdom, in two
different configurations (transverse, zero/longitudinal field).
A detailed account on the uSR technique can be found in
Ref. [52]. Three sets of orthogonal coils and an active com-
pensation system are used to cancel the stray fields within 1
uT, which can be present at the sample position due to the
Earth and neighboring instruments. La;Ni3 in powdered form
was placed in a dilution refrigerator after mounting on a silver

TABLE 1. Parameters obtained from various measurements.

Parameters Units La;Nis La;Rh; [50] La;Ir; [84]
T. K 2.3 2.65 2.25
H,.(0) mT 5.19 251 3
H,»(0) T 0.71 1.02 0.97
£6.(0) A 215 179 174
AaL(0) A 2940 4620 4720

KgL 26 26 21

holder, with diluted GE varnish operated in the temperature
range 0.1 K< T<<3.0K.

III. RESULTS

The powder x-ray diffraction (XRD) collected at room
temperature, shown in Fig. 1(a), confirmed the crystal struc-
ture as hexagonal with space group P63mc (No. 186). The
lattice constants are: a = b = 10.1434+0.010 A and ¢ =
6.468 £ 0.006 A which are in agreement with the previously
published data [53]. From the magnetization measurements
shown in Fig. 1(b) we find a superconducting transition
temperature of 7. = 2.3 £0.1 K, which also agrees with
previously published results [54] and is found to be ac-
companied by a drop in resistivity (see Appendix A). The
superconducting parameters coherence length, penetration
depth, and critical fields of La;Ni3 have been extracted from
our magnetization/susceptibility measurements and are sum-
marized in Table I.

A. Specific heat

We have also measured the specific heat C and the normal
state data was fitted with C = y,T 4 B3T3 + BsT> where y,
is the Sommerfeld constant representing the electronic con-
tribution, and B3, Bs characterize the phononic contribution.
The fit yields y, = 44.43 +0.84 mJ mol "' K2, 83 = 3.94 +
0.07 mJ mol ™' K=, and s = 2.16 = 0.16 J mol~' K=°. To
extract the electronic part C, we subtracted the phononic
contribution from the total heat capacity, Ce; = C — Gy =
C — B3T3 — BsT?. C,, normalized with respect to y,T, is
shown in Fig. 1(c) as a function of reduced temperature, 7' /7.
The data of C; were fitted to the following models: (i) a single
s-wave gap, which is taken to be isotropic and where o =
A(T = 0)/kgT. is set to the BCS value, o = apcs =~ 1.764;
(i1) an isotropic s-wave gap with « as a variable parameter,
also known as the o model [55]; (iii) a line-nodal d-wave
gap; (iv) a phenomenological two-gap « model [56] with three
fitting parameters—the values of o; = A;(0)/kgT. of the two
gaps, and x (with 0 < x < 0.5 without loss of generality),
which parameterizes the ratio of the partial Sommerfeld coef-
ficients (or densities of states), y; = xy,, and y» = (1 — x)y,,
of the parts of the Fermi surface with gap values A; and A,,
respectively.

The resulting fits for the different models are shown in
Fig. 1(c). We can clearly see that the medium- and low-
temperature behavior is captured only by the two-gap model.
Fitting yields x = 0.23, o; = 0.65, and o, = 1.95. We, thus,
find a quite large difference in gap magnitude with ratio
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FIG. 1. (a) Powder XRD pattern of La;Nijs is presented by red dots whereas the black line corresponds to the Rietveld refinement.
(b) Magnetization as a function of temperature collected in the zero-field cooled warming (ZFCW) and field cooled cooling (FCC), confirming
superconductivity with critical temperature 7, = 2.3 K. (¢) Temperature dependence of normalized electronic specific heat data, where the
dashed and solid lines represent fits to the different models described in the main text.

A>(0)/A1(0) = 3. As expected, the relative weight of the
smaller gap is suppressed, x: (1 —x) ~23% :77%. The
value of ay, which represents the larger gap, is a bit higher
than the BCS value, corresponding to moderately coupled
superconductivity in La;Nis. These findings provide evidence
that La;Ni; might be a two-gap superconductor where both
gaps open up at a common 7, and have a similar temper-
ature dependence. Further experiments and theoretical band
structure calculations are required to shed more light on the
two-gap feature in La;Nis.

B. Transverse-field uSR and penetration depth

To obtain complementary information on the nature of
the superconducting gap, transverse-field (TF) SR measure-
ments were performed on La;Niz. Magnetic fields in the
range 10 mT to 40 mT, well above the lower critical field
and perpendicular to the initial muon spin direction, were
applied before cooling it through 7 to 0.1 K. This generates
a well-ordered flux line lattice in the mixed superconducting
state of a type II superconductor, resulting in a distinctive
field distribution throughout the sample. The muon asymme-
try spectra for temperatures above and below 7. are shown
in Fig. 2. For T > T, spectra show a weak depolarization
rate because of the nuclear dipolar fields and also confirm
the homogeneous field distribution throughout the sample.
In contrast, below T, the pronounced Gaussian damping at-
tributes to the inhomogeneous field distribution in the flux
line lattice. The time-domain spectra are best described by the
sum of sinusoidally oscillating functions, each damped with a
Gaussian relaxation component [57,58],

N
1
A(t) = ZAi exp (_50i2t2> cos(yuBit + ¢)

i=1
+Abg COS(V/I.Bbgt + ¢)9 (1)

where ¢ is the initial phase, A; is the initial asymmetry,
B; is the mean field of the ith component of the Gaussian
distribution, o; is the relaxation rate, and y, /2w = 135.5
MHz/T is the muon gyromagnetic ratio. Ay, and By, are the

temperature-independent background contribution for asym-
metry and field, respectively, which originates from the muon
stopping at the sample holder. Two Gaussian components
(N = 2) are found sufficient to fit the time spectra for our
sample. The second-moment method [59] is applied to cal-
culate the temperature dependence of the total depolarization
rate o for different applied magnetic fields. The first and
second moments of the local magnetic field distribution p(B)
for N = 2 are given by [59]:

A,’B,’
(B) = ; A )
2
o 00~ Ail(0i/vu)’ + (B — (B))]
(AB7) = Z_Z Al + A, ’

" i=1

where (-) denotes average over magnetic fields. Figure 3(a)
displays the resultant o (7"). It has an almost constant value
above T, which is due to the contribution of the nuclear dipo-

Asymmetry

FIG. 2. The time-domain TF spectra taken above and below T in
an applied magnetic field of 10 mT. The solid lines show the fitting
using Eq. (1).
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FIG. 3. (a) Temperature dependence of the muon spin depolarization rate at different applied magnetic fields from 10 mT to 40 mT
in TF-uSR measurements. The approximately constant value in the normal state is indicated by the solid black line. (b) o, (H) at various
temperatures (7' = 0.125 Kto T = 2.80 K), including the one designated by the dashed line in (a). The data were fitted using Eq. (3) to extract
the temperature dependence of the inverse square of the magnetic penetration depth. (c) The calculated A ~2(T) where the solid line represents

the best fit using Eq. (5).

lar field, (T 2 T.) =~ onaip = 0.0333 pus™! [represented by
horizontal solid line in Fig. 3(a)]. The superconducting con-
tribution oy was extracted by subtracting oyq;p, = 0.0333 st
from o using the following expression: oy, = (02 — onzdip)l/z.
Figure 3(b) represents oy, evaluated using isothermal cuts
perpendicular to the temperature axis of the o (7)) data sets
in Fig. 3(a). The magnetic-field dependence of the penetra-
tion depth, Az, for Ginzburg-Landau parameters kg, > 5 (we
estimate kg =~ 26, see Appendix A) is given by [60]

oe(us™") = 4.854 x 10°(1 — b)[1 + 1.21(1 — Vb)* 112,

3)
for small reduced magnetic fields b = (B)/B.»(T ). Equation
(3) was fitted to each oy curve in order to extract the tem-
perature dependence of A. Figure 3(c) represents the behavior
of the corresponding A~2(T"). To gain information about the
form of the superconducting gap from A~%(T'), the latter can
be expressed in the semiclassical approximation as [18,61,62]

AT, Ag) - 1 /2” /00 af

)L_Z(O, A()) T Jo A(T,$) oF
where we have, for concreteness, focused on an isotropic
3D system with a gap A(T, ¢) that only depends on the
azimuthal angle ¢ and f = [exp(E /kzT) + 1]~! is the Fermi-
Dirac function. We use A(T, ¢) = Aod(T/T.)g(¢), where
8(T/T,.) = tanh[1.82(1.018((T,/T) — 1))*3'] describes (ap-
proximately) the temperature dependence of the overall gap
magnitude, and g(¢) captures its angular dependence. We
have g(¢) = 1 for an isotropic gap function; note that such
a gap function is not only consistent with s-wave pairing
but also with the (single-gap limit of the) E,(1, i)-wave and
s+ is pairing states discussed below. For a d-wave state,
it holds g(¢) = | cos(2¢)|, leading to nodal points for ¢ =

+m /4, £37 /4. To capture a possible two-gap scenario, we
use a weighted sum [12]

EdEd¢
E2 — AT, )
(4)

AT, Aop)

AX(T) _ AT, Ao1)
1720, App)’

2 20) - 220, Agy) ©)

+ (1 —x)

where x < 0.5 without loss of generality. Exactly as in the
multigap o model for the specific heat above, the factor x
in Eq. (5) expresses the fact that the density of states (or
Sommerfeld coefficients) of the parts of the Fermi surface
with gap Ag,; and Ay are in general different (x # 0.5).

The data shown in Fig. 3(c) was fitted with various models,
consisting of a single isotropic gap [Eq. (4) with g(¢) =
1], a single d-wave gap [g(¢) = | cos(2¢)| in Eq. (4)], and
a model with two isotropic gaps [Eq. (5) with g(¢) = 1].
As can be seen, a nodal d-wave scenario is not consistent
with the data, in accordance with our discussion of the spe-
cific heat. While both single- and two-gap s-wave models
yield good agreement, the fit is slightly better for the lat-
ter (x> = 1.2). More importantly, the best fit is obtained
for a quite significant imbalance of the gap magnitudes,
Ap2(0)/Ap,1(0) = 2.7, where the larger gap is hosted by the
Fermi pocket(s) with the larger density of states—again, in
line with the specific heat. The absolute values, however,
of the gaps, Ap (0) =0.18 meV [Ag,/kgT. = 0.94] and
Ap2(0) =0.49 meV [Ag2(0)/kgT. = 2.57], are a bit larger
and x is smaller than the corresponding values obtained from
the specific heat. This discrepancy might be attributed to var-
ious approximations of our modeling, such as the assumption
of isotropy and the fact that we neglected interband scat-
tering. Notwithstanding this slight discrepancy, our specific
heat and penetration depth measurements coherently indicate
the presence of two fully established but significantly distinct
superconducting gaps in La;Nis.

C. Zero-field SR and broken TRS

Zero-field muon spin relaxation (ZF-uSR) measurements
were carried out to search for the presence of TRS break-
ing in LayNiz. The ZF-uSR asymmetry spectra recorded
below (I = 0.2 K) and above (T =2.9 K) 7, = 2.3 K are
shown in Fig. 4(a). The spectra do not exhibit any oscillatory
components, which rules out the presence of any long-range
magnetically ordered state. The asymmetry spectra recorded
below and above 7, show an appreciable change in the
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FIG. 4. (a) The asymmetry spectra collected at 0.2 K (orange) and 2.9 K (brown) in ZF-u SR, together with the LF- SR data taken at 0.1 K
in an applied field of 5 mT (green). The solid lines are fits of Eq. (7). (b) A(T') exhibits a significant increase below 7. = 2.3 K and suggests
the appearance of a spontaneous magnetic field in the superconducting state. (c) Temperature dependence of A, the relaxation of muon spins

due to the static distribution of magnetic fields produced by nuclear magnetic moments which shows no dependence on temperature.

relaxation rates, and the stronger relaxation rate below T
indicates the presence of internal magnetic field fluctuations
in the superconducting state.

In the absence of atomic moments and at low temperatures
where muon diffusion is not appreciable, the relaxation rate
is expected to arise from the local fields associated with the
nuclear moments. In this case, the behavior of asymmetry
spectra is described by the Gaussian Kubo-Toyabe (KT) func-
tion [63]

12 - — A2
GKT(T)=§+§(1—A t )exp 5 (6)

where A represents the relaxation of muon spin due to the
randomly oriented, static nuclear moments experienced at the
muon site. The following function gives the best description
of the ZF spectra for La;Nis:

A(t) = AoGir(r)exp(—=Ar) + Ay, @)

where Ag is the initial sample-related asymmetry, A; is the
background contribution to the asymmetry from the muons
stopping in the sample holder whereas A accounts for the
electronic relaxation channels. The only parameter which ex-
hibits a significant change as a function of temperature is
the electronic relaxation rate A as shown in Fig. 4(b), while
Ay, Ay, and A, see Fig. 4(c), are found to be temperature
independent. The magnetic field of 5 mT was sufficient to
decouple the muon spins from the relaxation channel, as
shown in Fig. 4(a). This points towards the presence of a static
or quasistatic magnetic field and excludes the possibility of
any extrinsic effects such as magnetic impurities. Since for
any ordered magnetic impurity, a significantly higher value
of the longitudinal field would be required to decouple the
muon spins from the impurity-induced relaxation channel.
Such a notable increase in A below the onset of supercon-
ductivity suggests the appearance of a spontaneous magnetic
field, providing convincing evidence of TRS breaking on
entering the superconducting state of La;Nis;. Note that the
signal corresponding to TRS breaking in La;Nij is similar
to the one observed in other materials such as Sr,RuQ,4 [64],
LaNiC; [40], SrPtAs [41], LusRheSn;s [65], YsRheSns [39],
Ba;_,K,Fe,As, [66], 4Hb-TaS, [67], and La;Ir; [45] which

is considered to be a clear indication of broken TRS in these
materials. Our data also imply a dilute distribution of the
sources of the TRS-breaking field. The increase in the re-
laxation rate below 7, is 0.0081 ws~! and the corresponding
characteristic field strength is A /y,, = 0.1 G. Similar strength
is reported for other compounds with superconducting states
that break TRS [40,41,45,50,65]. Moreover, the relaxation due
to the randomly oriented, static nuclear dipolar fields from TF
and ZF measurements represented by o and ASP, respec-
tively, have a relation as follows: Adzlg decays approximately

/5 times faster than the agin [63]. Considering o}jin =0.0333
us__l [as shown by horizontal solid line in Fig. 3(a)], and
Adzlg = 0.0963 us~' [by taking the average of all temperature

data points as shown in Fig. 4(c)], the ratio ASY /P s found

out to be 1.29 x +/5 for La;Ni3 which is pretty close to the
expected ratio.

Following T, there is first a decrease in A upon lowering
T below the normal state value and the true increase in A
starts at Tonser 2~ 1.7 K. This leads to the small diplike feature
in Fig. 4(b). We emphasize that there is no indication for
any second phase transition from other measurements such
as TF uSR (penetration depth) and specific heat. However,
this type of feature with Tyt < T, has also been observed
for other superconducting compounds such as in the odd-
parity triplet state candidates PrPt,;Ge;,, Pri_,Ce,Pt4Ge»,
Pr,_.La Pt;Ge |, [68-70], which are also believed to exhibit
only a single superconducting transition. In these materials,
screening of diluted magnetic impurity dipolar field was sug-
gested as one of the origins [68], but a later work indicated
that the mechanism is too weak to originate this effect [69].
The possibilities corresponding to the presence of impurities
for La;Nij are discussed as follows: (i) Any small presence
of dilute rare earth impurity (La < 0.03%) would lead to
dynamic dipolar fields whose contribution can be seen from
Lorentzian-Kubo Toyabe or root exponential term to muon
relaxation. In any case, it will show a smooth variation with
respect to temperature. (ii) The presence of residual ferro-
magnetic impurity (Ni < 1%) will result in reduced initial
asymmetry. No such effects were noticed in our sample to
discard the possibility of any such magnetic impurity. The
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Voigtian function, which is a convolution of Lorentzian and
Gaussian field distribution, has also been tried to fit the zero-
field asymmetry spectra. Still, the obtained results were the
same as for the static Kubo-Toyabe times exponential decay
function with a diplike feature in A. Hence, at the moment,
we do not have an explanation for the dip observed.

IV. DISCUSSION

We next discuss the implications of these experimental
findings for the microscopic form and origin of the su-
perconducting phase in La;Ni3. We describe two possible
microscopic scenarios separately. Since mean-free path and
coherence length are estimated to be of the same order of
magnitude in our sample, we also comment on the impact of
disorder for these two different scenarios.

A. A single transition and E, (1, i) pairing

Since there are currently no direct indications of two con-
secutive superconducting transitions, let us first assume that
the TRS-breaking phase is reached by a single, continuous
phase transition. Then the superconducting order parameter
must transform under an irreducible representation (IR) of
the point group, Ce,, of the crystal. Only multidimensional
IRs, i.e., E| or E; for our case of Cg,, are consistent with the
broken TRS. As already discussed in Ref. [50], among the two
associated superconductors E; »(1, i) that break TRS, E1(1, i)
is a less natural candidate: This follows from the observation
that it generically gives rise to line nodes, signs of which
are not seen in our data. E,(1, i), however, can be gapless
as long as no nondegenerate Fermi surfaces go through the
high-symmetry lines indicated in the inset of Fig. 5(a) and
will, otherwise, exhibit point nodes.

To describe this pairing state microscopically, we first
note that the broken inversion symmetry together with the
presence of spin-orbit coupling removes the spin degener-
acy of the bands. Therefore, spin is not a good quantum
number at a generic crystal momentum k anymore and it is
more natural [47] to study the projection, A(k) € C, of the
superconducting order parameter (multiplied by the unitary
part of the time-reversal operator) onto the band closest to
or at the Fermi level at k. For the E>(1,i) pairing state,
it has the form A(k) = x1(k) + i xo(k), where x; and x>
are real-valued and Brillouin-zone-periodic basis functions
transforming as k)% —kg and 2k.k, under Ce,; x12(k) are
further required to be even under kK — —k as a consequence
of Fermi statistics and TRS [47]. Here k, , are momenta in
the ab plane of the system and perpendicular to two of the
six mirror planes of Cg,. In Fig. 5(a), we show the result-
ing phase ¢ of the order parameter, A(k) = ¢'%|A(k)|, for
the lowest-order (i.e., with fewest number of zeros) basis
functions, x;(k) = cos(k,/2) cos(\/gky/Z) —cosky, xo(k) =
ﬁsin(kx/Z)sin(«/gky/Z), where we set a = 1. We see that
e'% is a smooth function, except for the I'-A and the K-
H® lines, where both ;. and, thus, the gap vanish due to
threefold rotation symmetry C; along z.

While we do not know the precise form of the Fermi
surfaces of the system, we expect several pockets [71]. For
illustration purposes, we show pockets (in gray) encircling

Hl

FIG. 5. Schematic illustration of the two possible pairing scenar-
ios, E5(1, i) and s + i s, consistent with experiment. (a) Phase of the
order parameter (color) for the E,(1, i) state in a 2D cut (at fixed k,)
of the Brillouin zone for the lowest-order basis functions. As long as
no Fermi surfaces (such as the examples shown in gray) go through
the high-symmetry lines marked by black dots (thick black lines in
the inset), the state is fully gapped. As indicated by the thickness
of the gray lines, the gap in generals differs on symmetry-unrelated
Fermi pockets, |A{| # |A;|, in agreement with experiment. For the
s + i s state, shown in (b), the TRS breaking results from nontrivial
relative phases (indicated by colors) of the order parameter between
pockets that are not related by symmetry, i.e., A;/|A ;| depends on j.

both the I'-A and the three M-L lines in Fig. 5(a). The gap,
given by |A(k)|, is constrained by symmetry to be the same
(and here approximated to be constant, |A(k)| = A;) on the
three disconnected sheets at the boundary of the Brillouin
zone, enclosing the three symmetry related M-L lines. It is
generically not equal to that (A) in the Brillouin-zone center;
Ay # A, will give rise to the two-gap behavior seen in the
specific heat and penetration depth. Note that, in this scenario,
the k-dependent phase that breaks TRS occurs between parts
of the Fermi surface that are related by symmetry, such as the
three pockets at the Brillouin-zone boundary which are related
by C¢ and exhibit a relative phase of (approximately) >3,

Such a pairing state is expected to be realized, for instance,
when the dominant interaction in the Cooper channel is a
repulsion between the three pockets at the Brillouin-zone
boundary in Fig. 5(a); we refer to the toy model in Appendix B
for an illustration. In fact, it was very generally shown [48]
that conventional electron-phonon pairing alone cannot give
rise to a TRS-breaking superconducting state. Instead, an
unconventional mechanism is required, associated with the
fluctuation of a time-reversal-odd collective electronic mode,
such as spin fluctuations.
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B. Two consecutive transitions and s + i s pairing

A totally different route to TRS-breaking, full-gap super-
conductivity proceeds by two consecutive transitions, which
could be too close to be resolved experimentally. Such a
scenario arises when the dominant repulsive Cooper-channel
interactions in the system scatter Cooper pairs of symmetry-
unrelated parts of the Fermi surface—for instance between
the three symmetry-unrelated sets of sheets py, p», and p; =
P3q U p3p U p3. in Fig. 5(b). Let us assume that Ay only varies
weakly on each of the pockets and approximate Ay = A; if
k € pj. The system is “frustrated” in the sense that these in-
teractions favor A| = —A,, A; = —Aj3, but also Ay, = —Aj3
simultaneously. If these dominant interactions are of the same
order, the best compromise consists of nontrivial relative
complex phases between A » 3, shown as differently colored
Fermi pockets in Fig. 5(b). These relative phases break TRS
and lead to spontaneous fields [72] that can be detected by
our ZF-uSR measurements. Note that this fully-gapped s + i s
state, with complex phases between symmetry-unrelated parts
of the Fermi surface, cannot be reached by a single second-
order phase transition as it transforms trivially under Cg, (IR
Aj) and yet breaks TRS. Instead, there have to be two con-
secutive transitions and A(k) = n,, (T) x5, (k) + 05, (T) x5, (k),
with x;,(gk) = xs,(k) € R for all g € Cs, but changing sign
between different p;; at Ty, first n;, # 0 while n,, only be-
comes finite below T, < T, with a nontrivial complex phase
relative to n,,. The two temperatures can get very close if
the different dominant interaction scales (times the respective
density of states) are close to each other. We further illustrate
this in Appendix B and also point out that it is conceptually
related to the mechanism of TRS breaking believed to be real-
ized in certain (centrosymmetric) iron-based superconductors
[66,73].

C. Relevance of disorder

Finally, our measurements indicate (see Appendix A) that
the electronic mean-free path [ of our sample of La;Nij is
of the same order as the superconducting coherence length
&. One would, thus, naively expect that any superconducting
state with a significantly momentum-dependent order param-
eter, such as the k-dependent phases of A (k) above, should be
strongly suppressed [74,75]. However, more recent theoretical
works [20-24] have shown that the pair-breaking effect of
impurities can be significantly reduced in the presence of
spin-orbit coupling; this is also confirmed by experiments
[25-27] indicating that the critical temperature of pairing
states transforming under a nontrivial representation of the
point group might only be weakly suppressed in the presence
of spin-orbit coupling—even when [ becomes smaller than
& (or even of the order of the Fermi wavelength). The basic
reason for this protection mechanism is that matrix elements
of an impurity potential between certain pairs (kq, ky) of
momenta can be suppressed due to spin-orbit mixing and
that only certain scattering processes are pair breaking. As
follows immediately from the generalized Anderson theorem
of Refs. [23,76,77] (see Appendix B for more details), the
Ei(1,i) state in Fig. 5(a), for instance, is not affected by
scattering within each of the three pockets at the zone bound-
aries. Similarly, the s 4 i s state is protected against scattering

events where both k; and k, belong to one of the three sets
of sheets p;, p», and p3. We, thus, believe that systematic
combined experimental and theoretical studies of the impact
of disorder can provide further information about the form of
the superconducting pairing state.

V. SUMMARY AND CONCLUSION

In summary, we have studied the superconducting state
of LasNijz, the most recent member of the Th;Fe; family of
superconductors, using a combination of specific heat, TF-
uSR, and ZF-u SR measurements. Both specific heat and TF
measurements reveal the presence of two significantly distinct
superconducting gaps, which are both found to be nodeless
and isotropic. In ZF measurements, we have detected a static
internal magnetic field that starts to develop below the su-
perconducting transition temperature and grows as we further
decrease temperature; this provides substantial evidence for
TRS breaking and, hence, reveals the unconventional nature
and pairing mechanism [48] of the superconducting state of
La;Nis. The change in the relaxation rate for La;Nij is almost
equivalent to other compounds such as La;Ir; and La;Rh;j.
This points towards the relevance of La in inducing the un-
conventional superconducting state in this family of materials.
We have discussed possible microscopic scenarios for the
order parameter and pairing interactions of the superconduct-
ing phase. In order to pinpoint which of those possibilities
is realized, further experimental work on single crystals of
La;Nis, in particular, uniaxial and hydrostatic pressure studies
[78], theoretical modeling, and band structure calculations are
required.
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APPENDIX A: PARAMETERS OF La;Ni; FROM DATA
1. Critical fields

To determine the lower critical field, H. (T = 0), field-
dependent magnetization, M (H), measurements have been
performed with T ranging from 1.8 K to 2.16 K, as shown
in the inset of Fig. 6(a). H. is defined as the value of H
where M (H) starts to deviate from linearity. The main panel
of Fig. 6(a) shows the estimated value of H,; as a function of
T. The solid blue line is a fit to the data using the following
equation:

T 2
He (T) =Hc1<0>[1 -(7) } (A1)

It provides H.;(0) = 5.19 + 0.07 mT.
The upper critical field has been extracted from the x (7)
curves in the inset of Fig. 6(b), measured at different magnetic
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He, (0) =5.19+0.07 mT -

(a)

He; (mT)

T/Te

FIG. 6. (a) Lower critical field H,, as a function of temperature.
Inset shows the low-field magnetization curves obtained at different
fixed temperatures. (b) Upper critical field H, of La;Ni; versus
temperature, where the blue line represents a fit with Eq. (A2). Inset
shows the susceptibility as a function of temperature at different
fields.

fields starting from 5 mT to 90 mT by considering the onset of
the diamagnetic signal. Figure 6(b) shows a linear behavior in
H»(T) when plotted with respect to temperature and can be
well described using the Ginzburg-Landau equation

1 —1?
HcZ(T) = HCZ(O)—

, A2
1412 (A2)

where t = T /T.. The data fits well and provides H.»(0) =
0.71 £0.01 T. The Pauli paramagnetic limit is given by
HL(0)=CT,, where C =1.86T/K. It is evaluated to be
4.28 T which is higher than the value of the upper critical field
and indicates the dominance of spin singlet component in the
superconducting state.

The value of H.,(0) is also used to determine the Ginzburg-
Landau coherence length £g1.(0) by using the expression [79]:
H,»(0) = 20 where & (=2.07 x 1071 Tm?) is the su-

2mER
perconductingmagnetic-ﬂux quantum. For H,(0) =0.71T,
&6L(0) is evaluated to be 215 A. In order to calculate the
Ginzburg-Landau penetration depth Agp(0), the values of
&6L(0) and H,;(0) can be employed in the relation [79]:

Dy <ln AcL(0)
472 (0)\ &6L(0)

H.1(0) = -+012>. (A3)

200

150

p (uQ—cm)
S

OL \ \
0 50 100 150 200 250 300
T (K)

FIG. 7. Resistivity as a function of temperature in zero applied
field over the range 1.9 K < T < 300 K. The line shows a fitting with
parallel resistor model. Inset: po(7) at low temperature exhibiting a
drop in resistivity at 7, opset = 2.6 K.

With H.(0)=5.19 mT and &g (0) =215 A, we find
AL(0) = 2940 A. Consequently, the Ginzburg-Landau pa-
rameter kg, = ’;gtgg)) = 26 suggests that La;Nij is a strong
type Il superconductor. All the calculated parameters are sum-
marized in Table I together with its isostructural compounds
La;Rh; and LasIr;. We finally note that the expressions we
use to extract these parameters are not generally guaranteed
to be accurate, in particular in the vicinity of the transition
[80], in the case of the s + i s scenario, which involves two
consecutive transitions.

2. Electrical resistivity

Electrical resistivity measurements in the temperature
range 1.9 K to 300 K have been performed in zero applied field
and are shown in Fig. 7. Inset shows the zero-resistivity drop
with onset temperature T, onser = 2.6 K. Above T >~ 50 K, the
resistivity data exhibits a saturationlike behavior which can
occur when the mean free path is of the order of the in-
teratomic spacing [81]. This type of behavior in p(7T) was
described by Wiesmann ez al. [82] by the following expression

1 1 1!
o(T) = [— + —] , (A4)

Ps pi(T)
where p; is the temperature-independent saturation resistivity
attained at higher temperatures and p;(7') is given by [83]

T \5 /T X
mU“ZMﬂ+CQiﬁ‘£ @-Di—en™
A5)

where p; o represents the temperature-independent residual re-
sistivity due to scattering from defects in the crystal structure;
the second term in Eq. (AS) is a temperature-dependent con-
tribution which can be described by the generalized BG model
in which C is a material-dependent factor and ®p, is the Debye
temperature obtained from resistivity measurements. The red
dashed line in the main panel of Fig. 7 shows the best fitting to
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the data and yields pp = 29.6 £ 0.3 u2 cm, C = 1674 £ 39
u2em, pgs =303+ 1 puQ2cm, and Op = 152 £2 K.

3. Electronic properties

The Sommerfeld coefficient y,, and quasiparticle number
density n are related by

T\2/3 klzi,m*Vf,u,nl/3
o () e

"3 72N,
where kg is the Boltzmann constant, V¢, is the volume of
a formula unit, N4 is the Avogadro number, and m* is the
effective mass of quasiparticles. The residual resistivity pg is

related to Fermi velocity vp and electronic mean free path / by
the expression

; (A6)

I 372h A7)
- eZpOm*ZU}Z: ’

whereas the Fermi velocity vg can be expressed in terms of
quasiparticle carrier density and effective mass by

1 (m*vg 3
n=———1».
372\ A

The expression for the penetration depth Agp(0) in the dirty

limit is given by [79]
£ N\ 12 12
he) (+7)
one? l

where &, is the BCS coherence length and the first term in
the bracket represents the London penetration depth Ay. In
the dirty limit at 7 = 0 K, Ginzburg-Landau coherence length
£5L(0) and BCS coherence length & are related by the expres-
sion

(A8)

AgL(0) = ( (A9)

~12
@ _ 7 <1+‘§l—°> . (A10)

&  2v3

By providing the values of y, = 44.44 mJmol~' K2, &g
(0) =215 A, and py = 29.6 uS-cm, the above equations
were solved simultaneously which provides m* = 6.3 m,,
n=43x107 m3, I, =182 A, & =202 A. The ratio of
&y/l. = 1.1 indicates that the superconductor is characterized
by significant disorder (“dirty limit”), which is consistent with
published data [54].

APPENDIX B: TOY MODELS FOR TRS BREAKING

In this Appendix, we will discuss symmetry-based,
phenomenological models for each of the two possible
TRS-breaking pairing scenarios—the E»(1,i) and s+is
states—discussed in the main text. We will also briefly study
their disorder sensitivity, using the results of Refs. [23,76].

1. E,(1, i) pairing model

To provide an example of how an E,(l,i) state can
arise, let us assume that the energetics of superconductivity
is mainly determined by the interactions between the three
distinct pockets encircling the M-L lines in Fig. 5(a) and
that the superconducting order parameter can be taken to be
constant on each of these three separate sheets, j = 1,2, 3,

with value A(k) = A;. Neglecting the subleading energetic
contributions from other Fermi surfaces for simplicity, the
superconducting free energy can be written as

3
AF(T)= > Najp(T)Ay+...,

JJ'=1

(B

where the ellipsis stands for terms higher order in the
superconducting order parameter. It is straightforward to
derive the representations of the symmetries on the super-
conducting order parameter: under time reversal, A; — Ajf;
under C¢, A; — Ajyy (with Ay = Ay), and under o, A =
(A, Ay, A3) — (A3, Ay, Ay). Combined with AF € R, we
thus end up with

ajj/(T) = Ol(T)aj,j’ + ﬂ(T)(l - Sj,j')’

such that the dominant superconducting instability [eigen-
vector of a(T) with eigenvalue that first becomes negative
upon lowering T to 7] just depends on the sign of B(T.):
If it is negative, which corresponds to attractive interpocket
interactions, we get the s-wave state (transforming under IR
A; of Goy)

a,feR, (B2

A= A(T)(1,1,1), Ao(T) € C, (B3)

which preserves TRS. For repulsive interpocket interactions,
B(T:) > 0, the leading instability is doubly degenerate,

A= Z NuXyr Mu €C,
n=1,2

with the two components x; , transforming as K — k‘z, and
2kyk, under Cg, and, hence, under the IR E. While the two
complex numbers 7, are determined by the higher-order
terms omitted in Eq. (B1), it has been shown [47] that, ir-
respective of microscopic details, only the solution with a
nontrivial relative complex phase, n, = =£in;, is possible ener-
getically for spin-orbit coupled noncentrosymmetric systems.
Therefore, we end up with

A= AT (1, 0,07, w=er, (B4)

in accordance with the form of the complex phase shown in
Fig. 5(a).

To demonstrate the statements of the main text about which
scattering processes are pair breaking, we employ the gener-
alized form of the Anderson theorem of Ref. [76] (see Sec.
7.1 therein): For our case of singly-degenerate Fermi surfaces,
a superconductor is protected against nonmagnetic, fy = +1,
(magnetic, fyy = —1) impurity scattering with matrix elements
Wy & if the commutator (anticommutator)

Cew = AW g — twWj w AK) (B5)

vanishes. In fact, it was shown [23] that the same commutator
also quantitatively determines how fragile a superconductor
is, since the reduction 87, = T, — T, o of the transition tem-
perature 7, relative to its value in the clean limit 7, ( can be
written as

5T, ~ —%fl; (B6)
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for small total scattering rates 7~

rameter reads as [23]

— 0. The sensitivity pa-

lICII2

=— B7
4IWIIE (1AP)Es ®7

¢

where ||C|[Z = ,fsk |Cix’)? is Frobenius norm on the Fermi
surface (FS) and (-)gg is the Fermi surface average (normal-
ized such that (1)gg = 1).

This expression is readily applied to any superconducting
system and impurity potential [23,85]. For our model here,
with order parameter given in Eq. (B4), the scattering matrix
W effectively becomes a Hermitian 3 x 3 matrix, W;; = W;},,
J»J = 1,2, 3. After straightforward matrix algebra, Eq. (B7)
yields for nonmagnetic disorder (ty = +1)

3ti;tlar
= e BS
CEy(1,0) 2T 4] (B3)

intra inter

with inter- and intrasheet scattering rates given by 7, | =

2(|Wial? + IWis|* + [Was]?) and 7, L = Zizl |Wj;|?, respec-
tively. In particular, it follows that only intersheet scattering
is pair breaking, as stated in the main text. This can also be
directly seen from the commutator (B5) of the generalized An-
derson theorem, which vanishes for momentum pairs (k, k")
with Ax = Ay in the current case of nonmagnetic scattering
(tw = 1). Further note we get ¢ = 1/2 from Eq. (BS) for
momentum-independent scattering matrix elements, |W;;| =
const., as expected for a pairing state transforming under a
nontrivial IR.

2. s + is pairing model

To illustrate how an s + i s state can arise, let us consider
three different sets of symmetry-unrelated Fermi pockets,
such as py, p», and p3 = p3, U p3p U p3. in Fig. 5(b). Since
we are interested in s-wave pairing, we will assume that A (k)
is invariant under all g € Cg, and, for simplicity, take it to be
constant on each of these three sets of sheets, A(k) = A; if
k € pj. The free energy can again be written in the form (B1)
to quadratic order in A; however, since the pockets are not
related by symmetry operators, there are fewer constraints on
a(T): It only needs to be real and symmetric, a’ = a € R¥*3,
due to AF € R and TRS. Further assuming that the form of
the pairing state is predominantly determined by the repulsion
between the different pockets, we can use

0 1 148
a(T) = ag(T)lz3 + B(T)| 1 0 146, |,
1+6 1+ 0

with B(T) < 0, 8; > —1. As such, the form of the leading
instability only depends on the two real parameters §; », which
we rewrite according to (8, §;) = 8(cos 8, sin#). For |§| < 1,

two superconducting states are asymptotically degenerate and

A= (AL A2 A =D (D)X, 1. €C,  (BY
n==%
where

cosf —sinf + /1 —cosf sin6
sin 0

F+/1 —cosfsinfd — cosb

with normalization factor N1(0). As follows from the re-
spective eigenvalues, 1 (n-) first becomes nonzero at T
upon cooling down while n_ =0 (ny = 0),if 6 > 0 (§ < 0).
This first superconducting phase respects TRS since A* oc A.
However, due to the near degeneracy of the states, a second
transition can take place at which n_ # 0 (n4 # 0), with
transition temperature T,,; note that 7., — T., becomes van-
ishingly small as § — 0.

To obtain the relative weight and phase of 1, and n_, we
need to go beyond quadratic order in AF. Among the quartic
contributions to the free energy,

y(T)Re[(n} )’ n* ]

is sensitive to the relative phase. It straightforwardly follows
from the structure of the underlying one-loop diagram that
y(T) > 0, see, e.g., Ref. [73] for an explicit computation.
Therefore, we obtain that the relative complex phase of 74
and n_ is /2 below T,,. Since x, in Eq. (B10) are linearly
independent, the superconducting state breaks TRS as stated
in the main text.

As follows from this discussion, the s + i s state is possible
as long as neither A = x, nor A = x_ are suppressed by
disorder. While it is straightforward to evaluate Eq. (B7) for
the general form in Eq. (B10), let us for notational simplicity
focus on §; = 6, = 8§ where x, ~ (1 +48/3,1+48/3, -7,
to linear order in 8, and x_ o (—1, 1,0)7. For x_, we then
get

X+~ NL(®) ., (B10)

(B11)

3zl /24 3|Wpal?)

inter

_ = , B12
; 4(ri;tla + Ti;tler ( )
and x, leads to
O+68)7  3(Wisl> + [Was|*)
§+ = 1 1 ) (B13)
2T+ 6(6 + 8) 4(TinLra + Tinter)

where we again took fy = +1. As expected, we see that, while
X_ 1is particularly sensitive to scattering between the pockets
p1 and p,, only scattering events between patches p; and
p3 and between p, and p3 are pair breaking for x,, which
can also be immediately inferred from the commutator (BS5)
directly. It is thus manifest that intrasheet scattering is not
expected to suppress the s + i s state.
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