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The Th7Fe3 family of superconductors provides a rich playground for unconventional superconductivity.
La7Ni3 is the latest member of this family, which we here investigate by means of thermodynamic and
muon spin rotation and relaxation measurements. Our specific heat data provides evidence for two distinct
and approximately isotropic superconducting gaps. The larger gap has a value slightly higher than that of
weak-coupling BCS theory, indicating the presence of significant correlations. These observations are confirmed
by transverse-field muon spin rotation/relaxation measurements. Furthermore, zero-field measurements reveal
small internal fields in the superconducting state, which occur close to the onset of superconductivity and indicate
that the superconducting order parameter breaks time-reversal symmetry. We discuss two possible microscopic
scenarios—an unconventional E2(1, i) state and an s + i s superconductor, which is reached by two consecutive
transitions—and illustrate which interactions will favor these phases. Our results establish La7Ni3 as the first
member of the Th7Fe3 family displaying both time-reversal-symmetry-breaking and multigap superconductivity.
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I. INTRODUCTION

While the superconducting transition of the original
Bardeen-Cooper-Schrieffer (BCS) theory is not a symmetry-
breaking phase transition but rather a condensed-matter
realization of a Higgs mechanism [1,2], modern research in
superconductivity is crucially concerned with the aspect of
symmetry [3,4]: First, the superconducting order parameter
might transform nontrivially under a subgroup of the sym-
metries of the normal state. In that case, the superconducting
transition is also a symmetry-breaking phase transition. Sec-
ond, a lot of research is concerned with the realization and
study of superconductivity in systems with reduced symme-
tries, driven by the goal of designing superconductors with
exotic and potentially useful properties. Among these, non-
centrosymmetric crystal structures with significant spin-orbit
coupling are of particular interest [4]; they exhibit inversion
antisymmetric Rashba-Dresselhaus spin-orbit-coupling terms
[5,6], which result in the splitting of the Fermi surfaces into
two opposite spin configurations. This has a pronounced effect
on the possible pairing states and leads to mixed-parity spin
states (singlet and triplet) in the order parameter [4,7–9]. As a
result, it can give rise to some novel and uncommon supercon-
ducting properties, such as unusually high upper critical fields,
larger than the Pauli limit [8,10–13], the presence of nontrivial
line or point nodes [14–18], multiple-gap behavior [12,19],
an enhanced protection against impurity scattering [20–27],
and the more recently proposed topological superconductivity
[28–33].
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One of the most fascinating and intensely studied cases
of broken symmetries in the superconducting state is time-
reversal-symmetry (TRS) breaking. This is not only due to the
fact that TRS-breaking superconductors can exhibit topolog-
ical chiral edge modes [28] but also by the fundamental role
of TRS for superconductivity itself [34], which is associated
with the formation of bound states of electrons at momenta
related by time reversal. While a lot of weakly correlated non-
centrosymmetric superconductors have been studied [35–38],
TRS breaking has only been observed in a handful of them
[10,39–46]. In general, the key ingredients for TRS breaking
at a superconducting transition are mostly unknown, although
some general constraints have recently been derived theo-
retically for spin-orbit-coupled noncentrosymmetric systems
[47,48].

Noncentrosymmetric superconductivity in compounds
with α-Mn structure (with or without Re concentration) has
been examined a lot; however, indications of TRS breaking
have only been observed for Re-based [Re6X (X = Zr,Hf,Ti)]
superconductors, where the strength of the internal field is
found out to be almost equivalent for the mentioned al-
loys which suggests the contribution of Re in inducing TRS
breaking in these systems [10,42–44]. Re’s relevance is cor-
roborated further by theoretical calculations [49] that suggest
the dominance of the density of states of Re at the Fermi
level. These observations indicate the vital role of Re together
with the lack of inversion symmetry for the formation of
superconductivity.

Similarly, the study of other noncentrosymmetric super-
conductors with a heavy element (other than Re) whose
density of states at the Fermi level dominates can help us
establish a relation between broken inversion symmetry and
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TRS of the superconductor, and the existence of a dominant
density of states of a particular element in a compound. In
this regard, the noncentrosymmetric superconducting family
La7X3 (X = Ir, Rh, Ni), crystallizing in a Th7Fe3-type struc-
ture, which already shows examples of TRS breaking [45,50],
provides potential candidates to investigate the above sugges-
tions. In these cases also, the magnitude of the TRS-breaking
signal remains approximately unchanged after replacing a 5d
[La7Ir3] [45] by a 4d element [La7Rh3] [50], like in the
Re6X series compounds [10,42–44]. This may be due to the
dominant role played by Re and La at the respective Fermi
surfaces [49,51].

In this paper, the properties of La7Ni3, the youngest
member of the La7X3 series, are analyzed using muon spin
relaxation and rotation (μSR) supplemented by thermody-
namic measurements. μSR in zero-field mode is one of the
best-suited techniques for studying TRS breaking as it is sus-
ceptible to tiny changes in the internal fields (�10 μT). Our
zero-field measurements reveal the appearance of spontaneous
internal magnetic fields in the superconducting state. This pro-
vides substantial evidence for broken TRS in La7Ni3, with a
magnitude similar to La7Ir3 and La7Rh3. Generally, the spin-
orbit coupling contribution from a 3d element, such as Ni,
is considered negligible, which points towards the probable
dominance of La in determining the superconducting ground
state of La7Ni3. We further perform μSR measurements in
the presence of a transverse magnetic field, which allows
us to determine the temperature evolution of the magnetic
penetration depth (λ) and, thus, infers additional information
on the superconducting gap of La7Ni3.

The remainder of the paper is organized as follows: After
presenting details on the sample preparation and measurement
techniques in Sec. II, we show our specific heat and μSR data
in Sec. III and how it was fitted. Section IV contains a discus-
sion of possible microscopic pairing scenarios and of the role
of disorder. A summary and outlook can be found in Sec. V.
Two appendices provide details on how physical parameters
are extracted from the data and discuss phenomenological
models for the possible microscopic pairing scenarios.

II. EXPERIMENTAL DETAILS

The sample of La7Ni3 was prepared by arc melting sto-
ichiometric amounts of La (99.9%) and Ni (99.95%) in a
high purity argon gas atmosphere on a water-cooled copper
hearth. The sample button was melted several times to en-
sure phase homogeneity with negligible weight loss (<1%).
Magnetization and specific heat measurements were carried
out using Quantum Design MPMS 3 and physical property
measurement system (PPMS).

Muon-spin rotation and relaxation measurements were
performed at the ISIS pulsed neutron and muon source,
Rutherford Appleton Laboratory, the United Kingdom, in two
different configurations (transverse, zero/longitudinal field).
A detailed account on the μSR technique can be found in
Ref. [52]. Three sets of orthogonal coils and an active com-
pensation system are used to cancel the stray fields within 1
μT, which can be present at the sample position due to the
Earth and neighboring instruments. La7Ni3 in powdered form
was placed in a dilution refrigerator after mounting on a silver

TABLE I. Parameters obtained from various measurements.

Parameters Units La7Ni3 La7Rh3 [50] La7Ir3 [84]

Tc K 2.3 2.65 2.25
Hc1(0) mT 5.19 2.51 3
Hc2(0) T 0.71 1.02 0.97
ξGL(0) Å 215 179 174
λGL(0) Å 2940 4620 4720
κGL 26 26 21

holder, with diluted GE varnish operated in the temperature
range 0.1 K � T � 3.0 K.

III. RESULTS

The powder x-ray diffraction (XRD) collected at room
temperature, shown in Fig. 1(a), confirmed the crystal struc-
ture as hexagonal with space group P63mc (No. 186). The
lattice constants are: a = b = 10.143 ± 0.010 Å and c =
6.468 ± 0.006 Å which are in agreement with the previously
published data [53]. From the magnetization measurements
shown in Fig. 1(b) we find a superconducting transition
temperature of Tc = 2.3 ± 0.1 K, which also agrees with
previously published results [54] and is found to be ac-
companied by a drop in resistivity (see Appendix A). The
superconducting parameters coherence length, penetration
depth, and critical fields of La7Ni3 have been extracted from
our magnetization/susceptibility measurements and are sum-
marized in Table I.

A. Specific heat

We have also measured the specific heat C and the normal
state data was fitted with C = γnT + β3T 3 + β5T 5 where γn

is the Sommerfeld constant representing the electronic con-
tribution, and β3, β5 characterize the phononic contribution.
The fit yields γn = 44.43 ± 0.84 mJ mol−1 K−2, β3 = 3.94 ±
0.07 mJ mol−1 K−4, and β5 = 2.16 ± 0.16 μJ mol−1 K−6. To
extract the electronic part Cel, we subtracted the phononic
contribution from the total heat capacity, Cel = C − Cph =
C − β3T 3 − β5T 5. Cel, normalized with respect to γnT , is
shown in Fig. 1(c) as a function of reduced temperature, T/Tc.
The data of Cel were fitted to the following models: (i) a single
s-wave gap, which is taken to be isotropic and where α =
�(T = 0)/kBTc is set to the BCS value, α = αBCS � 1.764;
(ii) an isotropic s-wave gap with α as a variable parameter,
also known as the α model [55]; (iii) a line-nodal d-wave
gap; (iv) a phenomenological two-gap α model [56] with three
fitting parameters—the values of α j = � j (0)/kBTc of the two
gaps, and x (with 0 � x � 0.5 without loss of generality),
which parameterizes the ratio of the partial Sommerfeld coef-
ficients (or densities of states), γ1 = xγn and γ2 = (1 − x)γn,
of the parts of the Fermi surface with gap values �1 and �2,
respectively.

The resulting fits for the different models are shown in
Fig. 1(c). We can clearly see that the medium- and low-
temperature behavior is captured only by the two-gap model.
Fitting yields x = 0.23, α1 = 0.65, and α2 = 1.95. We, thus,
find a quite large difference in gap magnitude with ratio
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µ
FIG. 1. (a) Powder XRD pattern of La7Ni3 is presented by red dots whereas the black line corresponds to the Rietveld refinement.

(b) Magnetization as a function of temperature collected in the zero-field cooled warming (ZFCW) and field cooled cooling (FCC), confirming
superconductivity with critical temperature Tc = 2.3 K. (c) Temperature dependence of normalized electronic specific heat data, where the
dashed and solid lines represent fits to the different models described in the main text.

�2(0)/�1(0) � 3. As expected, the relative weight of the
smaller gap is suppressed, x : (1 − x) � 23% : 77%. The
value of α2, which represents the larger gap, is a bit higher
than the BCS value, corresponding to moderately coupled
superconductivity in La7Ni3. These findings provide evidence
that La7Ni3 might be a two-gap superconductor where both
gaps open up at a common Tc and have a similar temper-
ature dependence. Further experiments and theoretical band
structure calculations are required to shed more light on the
two-gap feature in La7Ni3.

B. Transverse-field μSR and penetration depth

To obtain complementary information on the nature of
the superconducting gap, transverse-field (TF) μSR measure-
ments were performed on La7Ni3. Magnetic fields in the
range 10 mT to 40 mT, well above the lower critical field
and perpendicular to the initial muon spin direction, were
applied before cooling it through Tc to 0.1 K. This generates
a well-ordered flux line lattice in the mixed superconducting
state of a type II superconductor, resulting in a distinctive
field distribution throughout the sample. The muon asymme-
try spectra for temperatures above and below Tc are shown
in Fig. 2. For T > Tc, spectra show a weak depolarization
rate because of the nuclear dipolar fields and also confirm
the homogeneous field distribution throughout the sample.
In contrast, below Tc, the pronounced Gaussian damping at-
tributes to the inhomogeneous field distribution in the flux
line lattice. The time-domain spectra are best described by the
sum of sinusoidally oscillating functions, each damped with a
Gaussian relaxation component [57,58],

A(t ) =
N∑

i=1

Ai exp

(
−1

2
σ 2

i t2

)
cos(γμBit + φ)

+ Abg cos(γμBbgt + φ), (1)

where φ is the initial phase, Ai is the initial asymmetry,
Bi is the mean field of the ith component of the Gaussian
distribution, σi is the relaxation rate, and γμ/2π = 135.5
MHz/T is the muon gyromagnetic ratio. Abg and Bbg are the

temperature-independent background contribution for asym-
metry and field, respectively, which originates from the muon
stopping at the sample holder. Two Gaussian components
(N = 2) are found sufficient to fit the time spectra for our
sample. The second-moment method [59] is applied to cal-
culate the temperature dependence of the total depolarization
rate σ for different applied magnetic fields. The first and
second moments of the local magnetic field distribution p(B)
for N = 2 are given by [59]:

〈B〉 =
2∑

i=1

AiBi

A1 + A2
, (2)

〈�B2〉 = σ 2

γ 2
μ

=
2∑

i=1

Ai[(σi/γμ)2 + (Bi − 〈B〉)2]

A1 + A2
,

where 〈·〉 denotes average over magnetic fields. Figure 3(a)
displays the resultant σ (T ). It has an almost constant value
above Tc, which is due to the contribution of the nuclear dipo-

FIG. 2. The time-domain TF spectra taken above and below Tc in
an applied magnetic field of 10 mT. The solid lines show the fitting
using Eq. (1).
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FIG. 3. (a) Temperature dependence of the muon spin depolarization rate at different applied magnetic fields from 10 mT to 40 mT
in TF-μSR measurements. The approximately constant value in the normal state is indicated by the solid black line. (b) σsc(H ) at various
temperatures (T = 0.125 K to T = 2.80 K), including the one designated by the dashed line in (a). The data were fitted using Eq. (3) to extract
the temperature dependence of the inverse square of the magnetic penetration depth. (c) The calculated λ−2(T) where the solid line represents
the best fit using Eq. (5).

lar field, σ (T � Tc) � σndip = 0.0333 μs−1 [represented by
horizontal solid line in Fig. 3(a)]. The superconducting con-
tribution σsc was extracted by subtracting σndip = 0.0333 μs−1

from σ using the following expression: σsc = (σ 2 − σ 2
ndip)1/2.

Figure 3(b) represents σsc, evaluated using isothermal cuts
perpendicular to the temperature axis of the σ (T ) data sets
in Fig. 3(a). The magnetic-field dependence of the penetra-
tion depth, λL, for Ginzburg-Landau parameters κGL � 5 (we
estimate κGL � 26, see Appendix A) is given by [60]

σsc(μs−1) = 4.854 × 104(1 − b)[1 + 1.21(1 −
√

b)3]λ−2,

(3)
for small reduced magnetic fields b = 〈B〉/Bc2(T ). Equation
(3) was fitted to each σsc curve in order to extract the tem-
perature dependence of λ. Figure 3(c) represents the behavior
of the corresponding λ−2(T ). To gain information about the
form of the superconducting gap from λ−2(T ), the latter can
be expressed in the semiclassical approximation as [18,61,62]

λ−2(T,�0)

λ−2(0,�0)
= 1 + 1

π

∫ 2π

0

∫ ∞

�(T,φ)

∂ f

∂E

EdEdφ√
E2 − �(T, φ)2

,

(4)
where we have, for concreteness, focused on an isotropic
3D system with a gap �(T, φ) that only depends on the
azimuthal angle φ and f = [exp(E/kBT ) + 1]−1 is the Fermi-
Dirac function. We use �(T, φ) = �0δ(T/Tc)g(φ), where
δ(T/Tc) = tanh[1.82(1.018((Tc/T ) − 1))0.51] describes (ap-
proximately) the temperature dependence of the overall gap
magnitude, and g(φ) captures its angular dependence. We
have g(φ) = 1 for an isotropic gap function; note that such
a gap function is not only consistent with s-wave pairing
but also with the (single-gap limit of the) E2(1, i)-wave and
s + i s pairing states discussed below. For a d-wave state,
it holds g(φ) = | cos(2φ)|, leading to nodal points for φ =
±π/4,±3π/4. To capture a possible two-gap scenario, we
use a weighted sum [12]

λ−2(T )

λ−2(0)
= x

λ−2(T,�0,1)

λ−2(0,�0,1)
+ (1 − x)

λ−2(T,�0,2)

λ−2(0,�0,2)
, (5)

where x � 0.5 without loss of generality. Exactly as in the
multigap α model for the specific heat above, the factor x
in Eq. (5) expresses the fact that the density of states (or
Sommerfeld coefficients) of the parts of the Fermi surface
with gap �0,1 and �0,2 are in general different (x �= 0.5).

The data shown in Fig. 3(c) was fitted with various models,
consisting of a single isotropic gap [Eq. (4) with g(φ) =
1], a single d-wave gap [g(φ) = | cos(2φ)| in Eq. (4)], and
a model with two isotropic gaps [Eq. (5) with g(φ) = 1].
As can be seen, a nodal d-wave scenario is not consistent
with the data, in accordance with our discussion of the spe-
cific heat. While both single- and two-gap s-wave models
yield good agreement, the fit is slightly better for the lat-
ter (χ2 = 1.2). More importantly, the best fit is obtained
for a quite significant imbalance of the gap magnitudes,
�0,2(0)/�0,1(0) � 2.7, where the larger gap is hosted by the
Fermi pocket(s) with the larger density of states—again, in
line with the specific heat. The absolute values, however,
of the gaps, �0,1(0) = 0.18 meV [�0,1/kBTc = 0.94] and
�0,2(0) = 0.49 meV [�0,2(0)/kBTc = 2.57], are a bit larger
and x is smaller than the corresponding values obtained from
the specific heat. This discrepancy might be attributed to var-
ious approximations of our modeling, such as the assumption
of isotropy and the fact that we neglected interband scat-
tering. Notwithstanding this slight discrepancy, our specific
heat and penetration depth measurements coherently indicate
the presence of two fully established but significantly distinct
superconducting gaps in La7Ni3.

C. Zero-field μSR and broken TRS

Zero-field muon spin relaxation (ZF-μSR) measurements
were carried out to search for the presence of TRS break-
ing in La7Ni3. The ZF-μSR asymmetry spectra recorded
below (T = 0.2 K) and above (T = 2.9 K) Tc = 2.3 K are
shown in Fig. 4(a). The spectra do not exhibit any oscillatory
components, which rules out the presence of any long-range
magnetically ordered state. The asymmetry spectra recorded
below and above Tc show an appreciable change in the
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FIG. 4. (a) The asymmetry spectra collected at 0.2 K (orange) and 2.9 K (brown) in ZF-μSR, together with the LF-μSR data taken at 0.1 K
in an applied field of 5 mT (green). The solid lines are fits of Eq. (7). (b) �(T ) exhibits a significant increase below Tc = 2.3 K and suggests
the appearance of a spontaneous magnetic field in the superconducting state. (c) Temperature dependence of �, the relaxation of muon spins
due to the static distribution of magnetic fields produced by nuclear magnetic moments which shows no dependence on temperature.

relaxation rates, and the stronger relaxation rate below Tc

indicates the presence of internal magnetic field fluctuations
in the superconducting state.

In the absence of atomic moments and at low temperatures
where muon diffusion is not appreciable, the relaxation rate
is expected to arise from the local fields associated with the
nuclear moments. In this case, the behavior of asymmetry
spectra is described by the Gaussian Kubo-Toyabe (KT) func-
tion [63]

GKT(t ) = 1

3
+ 2

3
(1 − �2t2) exp

(−�2t2

2

)
(6)

where � represents the relaxation of muon spin due to the
randomly oriented, static nuclear moments experienced at the
muon site. The following function gives the best description
of the ZF spectra for La7Ni3:

A(t ) = A0GKT(t )exp(−�t ) + A1, (7)

where A0 is the initial sample-related asymmetry, A1 is the
background contribution to the asymmetry from the muons
stopping in the sample holder whereas � accounts for the
electronic relaxation channels. The only parameter which ex-
hibits a significant change as a function of temperature is
the electronic relaxation rate � as shown in Fig. 4(b), while
A0, A1, and �, see Fig. 4(c), are found to be temperature
independent. The magnetic field of 5 mT was sufficient to
decouple the muon spins from the relaxation channel, as
shown in Fig. 4(a). This points towards the presence of a static
or quasistatic magnetic field and excludes the possibility of
any extrinsic effects such as magnetic impurities. Since for
any ordered magnetic impurity, a significantly higher value
of the longitudinal field would be required to decouple the
muon spins from the impurity-induced relaxation channel.
Such a notable increase in � below the onset of supercon-
ductivity suggests the appearance of a spontaneous magnetic
field, providing convincing evidence of TRS breaking on
entering the superconducting state of La7Ni3. Note that the
signal corresponding to TRS breaking in La7Ni3 is similar
to the one observed in other materials such as Sr2RuO4 [64],
LaNiC2 [40], SrPtAs [41], Lu5Rh6Sn18 [65], Y5Rh6Sn18 [39],
Ba1−xKxFe2As2 [66], 4Hb-TaS2 [67], and La7Ir3 [45] which

is considered to be a clear indication of broken TRS in these
materials. Our data also imply a dilute distribution of the
sources of the TRS-breaking field. The increase in the re-
laxation rate below Tc is 0.0081 μs−1 and the corresponding
characteristic field strength is �/γμ = 0.1 G. Similar strength
is reported for other compounds with superconducting states
that break TRS [40,41,45,50,65]. Moreover, the relaxation due
to the randomly oriented, static nuclear dipolar fields from TF
and ZF measurements represented by σ

dip
TF and �

dip
ZF , respec-

tively, have a relation as follows: �
dip
ZF decays approximately√

5 times faster than the σ
dip
TF [63]. Considering σ

dip
TF = 0.0333

μs−1 [as shown by horizontal solid line in Fig. 3(a)], and
�

dip
ZF = 0.0963 μs−1 [by taking the average of all temperature

data points as shown in Fig. 4(c)], the ratio �
dip
ZF /σ

dip
TF is found

out to be 1.29 × √
5 for La7Ni3 which is pretty close to the

expected ratio.
Following Tc, there is first a decrease in � upon lowering

T below the normal state value and the true increase in �

starts at Tonset � 1.7 K. This leads to the small diplike feature
in Fig. 4(b). We emphasize that there is no indication for
any second phase transition from other measurements such
as TF μSR (penetration depth) and specific heat. However,
this type of feature with Tonset < Tc has also been observed
for other superconducting compounds such as in the odd-
parity triplet state candidates PrPt4Ge12, Pr1−xCexPt4Ge12,
Pr1−xLaxPt4Ge12 [68–70], which are also believed to exhibit
only a single superconducting transition. In these materials,
screening of diluted magnetic impurity dipolar field was sug-
gested as one of the origins [68], but a later work indicated
that the mechanism is too weak to originate this effect [69].
The possibilities corresponding to the presence of impurities
for La7Ni3 are discussed as follows: (i) Any small presence
of dilute rare earth impurity (La < 0.03%) would lead to
dynamic dipolar fields whose contribution can be seen from
Lorentzian-Kubo Toyabe or root exponential term to muon
relaxation. In any case, it will show a smooth variation with
respect to temperature. (ii) The presence of residual ferro-
magnetic impurity (Ni < 1%) will result in reduced initial
asymmetry. No such effects were noticed in our sample to
discard the possibility of any such magnetic impurity. The
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Voigtian function, which is a convolution of Lorentzian and
Gaussian field distribution, has also been tried to fit the zero-
field asymmetry spectra. Still, the obtained results were the
same as for the static Kubo-Toyabe times exponential decay
function with a diplike feature in �. Hence, at the moment,
we do not have an explanation for the dip observed.

IV. DISCUSSION

We next discuss the implications of these experimental
findings for the microscopic form and origin of the su-
perconducting phase in La7Ni3. We describe two possible
microscopic scenarios separately. Since mean-free path and
coherence length are estimated to be of the same order of
magnitude in our sample, we also comment on the impact of
disorder for these two different scenarios.

A. A single transition and E2(1, i) pairing

Since there are currently no direct indications of two con-
secutive superconducting transitions, let us first assume that
the TRS-breaking phase is reached by a single, continuous
phase transition. Then the superconducting order parameter
must transform under an irreducible representation (IR) of
the point group, C6v , of the crystal. Only multidimensional
IRs, i.e., E1 or E2 for our case of C6v , are consistent with the
broken TRS. As already discussed in Ref. [50], among the two
associated superconductors E1,2(1, i) that break TRS, E1(1, i)
is a less natural candidate: This follows from the observation
that it generically gives rise to line nodes, signs of which
are not seen in our data. E2(1, i), however, can be gapless
as long as no nondegenerate Fermi surfaces go through the
high-symmetry lines indicated in the inset of Fig. 5(a) and
will, otherwise, exhibit point nodes.

To describe this pairing state microscopically, we first
note that the broken inversion symmetry together with the
presence of spin-orbit coupling removes the spin degener-
acy of the bands. Therefore, spin is not a good quantum
number at a generic crystal momentum k anymore and it is
more natural [47] to study the projection, �(k) ∈ C, of the
superconducting order parameter (multiplied by the unitary
part of the time-reversal operator) onto the band closest to
or at the Fermi level at k. For the E2(1, i) pairing state,
it has the form �(k) = χ1(k) + i χ2(k), where χ1 and χ2

are real-valued and Brillouin-zone-periodic basis functions
transforming as k2

x − k2
y and 2kxky under C6v; χ1,2(k) are

further required to be even under k → −k as a consequence
of Fermi statistics and TRS [47]. Here kx,y are momenta in
the ab plane of the system and perpendicular to two of the
six mirror planes of C6v . In Fig. 5(a), we show the result-
ing phase ϕk of the order parameter, �(k) = eiϕk |�(k)|, for
the lowest-order (i.e., with fewest number of zeros) basis
functions, χ1(k) = cos(kx/2) cos(

√
3ky/2) − cos kx, χ2(k) =√

3 sin(kx/2) sin(
√

3ky/2), where we set a = 1. We see that
eiϕk is a smooth function, except for the �-A and the K(′)-
H(′) lines, where both χ1,2 and, thus, the gap vanish due to
threefold rotation symmetry Cz

3 along z.
While we do not know the precise form of the Fermi

surfaces of the system, we expect several pockets [71]. For
illustration purposes, we show pockets (in gray) encircling

A

K

H

(a)

(b)

p1

p2

p3a

p3a

p3b

p3b

p3c

p3c

K–H

K'–H'

M–L

–A

K'

H'

FIG. 5. Schematic illustration of the two possible pairing scenar-
ios, E2(1, i) and s + i s, consistent with experiment. (a) Phase of the
order parameter (color) for the E2(1, i) state in a 2D cut (at fixed kz)
of the Brillouin zone for the lowest-order basis functions. As long as
no Fermi surfaces (such as the examples shown in gray) go through
the high-symmetry lines marked by black dots (thick black lines in
the inset), the state is fully gapped. As indicated by the thickness
of the gray lines, the gap in generals differs on symmetry-unrelated
Fermi pockets, |�1| �= |�2|, in agreement with experiment. For the
s + i s state, shown in (b), the TRS breaking results from nontrivial
relative phases (indicated by colors) of the order parameter between
pockets that are not related by symmetry, i.e., � j/|� j | depends on j.

both the �-A and the three M-L lines in Fig. 5(a). The gap,
given by |�(k)|, is constrained by symmetry to be the same
(and here approximated to be constant, |�(k)| = �2) on the
three disconnected sheets at the boundary of the Brillouin
zone, enclosing the three symmetry related M-L lines. It is
generically not equal to that (�1) in the Brillouin-zone center;
�1 �= �2 will give rise to the two-gap behavior seen in the
specific heat and penetration depth. Note that, in this scenario,
the k-dependent phase that breaks TRS occurs between parts
of the Fermi surface that are related by symmetry, such as the
three pockets at the Brillouin-zone boundary which are related
by Cz

6 and exhibit a relative phase of (approximately) e2π i/3.
Such a pairing state is expected to be realized, for instance,

when the dominant interaction in the Cooper channel is a
repulsion between the three pockets at the Brillouin-zone
boundary in Fig. 5(a); we refer to the toy model in Appendix B
for an illustration. In fact, it was very generally shown [48]
that conventional electron-phonon pairing alone cannot give
rise to a TRS-breaking superconducting state. Instead, an
unconventional mechanism is required, associated with the
fluctuation of a time-reversal-odd collective electronic mode,
such as spin fluctuations.
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B. Two consecutive transitions and s + i s pairing

A totally different route to TRS-breaking, full-gap super-
conductivity proceeds by two consecutive transitions, which
could be too close to be resolved experimentally. Such a
scenario arises when the dominant repulsive Cooper-channel
interactions in the system scatter Cooper pairs of symmetry-
unrelated parts of the Fermi surface—for instance between
the three symmetry-unrelated sets of sheets p1, p2, and p3 =
p3a ∪ p3b ∪ p3c in Fig. 5(b). Let us assume that �k only varies
weakly on each of the pockets and approximate �k = � j if
k ∈ pj . The system is “frustrated” in the sense that these in-
teractions favor �1 = −�2, �1 = −�3, but also �2 = −�3

simultaneously. If these dominant interactions are of the same
order, the best compromise consists of nontrivial relative
complex phases between �1,2,3, shown as differently colored
Fermi pockets in Fig. 5(b). These relative phases break TRS
and lead to spontaneous fields [72] that can be detected by
our ZF-μSR measurements. Note that this fully-gapped s + i s
state, with complex phases between symmetry-unrelated parts
of the Fermi surface, cannot be reached by a single second-
order phase transition as it transforms trivially under C6v (IR
A1) and yet breaks TRS. Instead, there have to be two con-
secutive transitions and �(k) = ηs1 (T )χs1 (k) + ηs2 (T )χs2 (k),
with χs j (gk) = χs j (k) ∈ R for all g ∈ C6v but changing sign
between different p j ; at Tc1, first ηs1 �= 0 while ηs2 only be-
comes finite below Tc2 < Tc1, with a nontrivial complex phase
relative to ηs1 . The two temperatures can get very close if
the different dominant interaction scales (times the respective
density of states) are close to each other. We further illustrate
this in Appendix B and also point out that it is conceptually
related to the mechanism of TRS breaking believed to be real-
ized in certain (centrosymmetric) iron-based superconductors
[66,73].

C. Relevance of disorder

Finally, our measurements indicate (see Appendix A) that
the electronic mean-free path l of our sample of La7Ni3 is
of the same order as the superconducting coherence length
ξ . One would, thus, naively expect that any superconducting
state with a significantly momentum-dependent order param-
eter, such as the k-dependent phases of �(k) above, should be
strongly suppressed [74,75]. However, more recent theoretical
works [20–24] have shown that the pair-breaking effect of
impurities can be significantly reduced in the presence of
spin-orbit coupling; this is also confirmed by experiments
[25–27] indicating that the critical temperature of pairing
states transforming under a nontrivial representation of the
point group might only be weakly suppressed in the presence
of spin-orbit coupling—even when l becomes smaller than
ξ (or even of the order of the Fermi wavelength). The basic
reason for this protection mechanism is that matrix elements
of an impurity potential between certain pairs (k1, k2) of
momenta can be suppressed due to spin-orbit mixing and
that only certain scattering processes are pair breaking. As
follows immediately from the generalized Anderson theorem
of Refs. [23,76,77] (see Appendix B for more details), the
E1(1, i) state in Fig. 5(a), for instance, is not affected by
scattering within each of the three pockets at the zone bound-
aries. Similarly, the s + i s state is protected against scattering

events where both k1 and k2 belong to one of the three sets
of sheets p1, p2, and p3. We, thus, believe that systematic
combined experimental and theoretical studies of the impact
of disorder can provide further information about the form of
the superconducting pairing state.

V. SUMMARY AND CONCLUSION

In summary, we have studied the superconducting state
of La7Ni3, the most recent member of the Th7Fe3 family of
superconductors, using a combination of specific heat, TF-
μSR, and ZF-μSR measurements. Both specific heat and TF
measurements reveal the presence of two significantly distinct
superconducting gaps, which are both found to be nodeless
and isotropic. In ZF measurements, we have detected a static
internal magnetic field that starts to develop below the su-
perconducting transition temperature and grows as we further
decrease temperature; this provides substantial evidence for
TRS breaking and, hence, reveals the unconventional nature
and pairing mechanism [48] of the superconducting state of
La7Ni3. The change in the relaxation rate for La7Ni3 is almost
equivalent to other compounds such as La7Ir3 and La7Rh3.
This points towards the relevance of La in inducing the un-
conventional superconducting state in this family of materials.
We have discussed possible microscopic scenarios for the
order parameter and pairing interactions of the superconduct-
ing phase. In order to pinpoint which of those possibilities
is realized, further experimental work on single crystals of
La7Ni3, in particular, uniaxial and hydrostatic pressure studies
[78], theoretical modeling, and band structure calculations are
required.
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APPENDIX A: PARAMETERS OF La7Ni3 FROM DATA

1. Critical fields

To determine the lower critical field, Hc1(T = 0), field-
dependent magnetization, M(H ), measurements have been
performed with T ranging from 1.8 K to 2.16 K, as shown
in the inset of Fig. 6(a). Hc1 is defined as the value of H
where M(H ) starts to deviate from linearity. The main panel
of Fig. 6(a) shows the estimated value of Hc1 as a function of
T . The solid blue line is a fit to the data using the following
equation:

Hc1(T ) = Hc1(0)

[
1 −

( T

Tc

)2]
. (A1)

It provides Hc1(0) = 5.19 ± 0.07 mT.
The upper critical field has been extracted from the χ (T )

curves in the inset of Fig. 6(b), measured at different magnetic
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µ
µ

FIG. 6. (a) Lower critical field Hc1 as a function of temperature.
Inset shows the low-field magnetization curves obtained at different
fixed temperatures. (b) Upper critical field Hc2 of La7Ni3 versus
temperature, where the blue line represents a fit with Eq. (A2). Inset
shows the susceptibility as a function of temperature at different
fields.

fields starting from 5 mT to 90 mT by considering the onset of
the diamagnetic signal. Figure 6(b) shows a linear behavior in
Hc2(T ) when plotted with respect to temperature and can be
well described using the Ginzburg-Landau equation

Hc2(T ) = Hc2(0)
1 − t2

1 + t2
, (A2)

where t = T/Tc. The data fits well and provides Hc2(0) =
0.71 ± 0.01 T. The Pauli paramagnetic limit is given by
HP

c2(0) = C Tc, where C = 1.86 T/K . It is evaluated to be
4.28 T which is higher than the value of the upper critical field
and indicates the dominance of spin singlet component in the
superconducting state.

The value of Hc2(0) is also used to determine the Ginzburg-
Landau coherence length ξGL(0) by using the expression [79]:
Hc2(0) = �0

2πξ 2
GL

where �0 (= 2.07 × 10−15 Tm2) is the su-

perconducting magnetic-flux quantum. For Hc2(0) = 0.71 T ,
ξGL(0) is evaluated to be 215 Å. In order to calculate the
Ginzburg-Landau penetration depth λGL(0), the values of
ξGL(0) and Hc1(0) can be employed in the relation [79]:

Hc1(0) = �0

4πλ2
GL(0)

(
ln

λGL(0)

ξGL(0)
+ 0.12

)
. (A3)

FIG. 7. Resistivity as a function of temperature in zero applied
field over the range 1.9 K � T � 300 K. The line shows a fitting with
parallel resistor model. Inset: ρ(T ) at low temperature exhibiting a
drop in resistivity at Tc,onset = 2.6 K.

With Hc1(0) = 5.19 mT and ξGL(0) = 215 Å, we find
λGL(0) = 2940 Å. Consequently, the Ginzburg-Landau pa-
rameter κGL = λGL(0)

ξGL(0) = 26 suggests that La7Ni3 is a strong
type II superconductor. All the calculated parameters are sum-
marized in Table I together with its isostructural compounds
La7Rh3 and La7Ir3. We finally note that the expressions we
use to extract these parameters are not generally guaranteed
to be accurate, in particular in the vicinity of the transition
[80], in the case of the s + i s scenario, which involves two
consecutive transitions.

2. Electrical resistivity

Electrical resistivity measurements in the temperature
range 1.9 K to 300 K have been performed in zero applied field
and are shown in Fig. 7. Inset shows the zero-resistivity drop
with onset temperature Tc,onset = 2.6 K. Above T � 50 K, the
resistivity data exhibits a saturationlike behavior which can
occur when the mean free path is of the order of the in-
teratomic spacing [81]. This type of behavior in ρ(T ) was
described by Wiesmann et al. [82] by the following expression

ρ(T ) =
[

1

ρs
+ 1

ρi(T )

]−1

, (A4)

where ρs is the temperature-independent saturation resistivity
attained at higher temperatures and ρi(T ) is given by [83]

ρi(T ) = ρi,0 + C
( T

�D

)5 ∫ �D/T

0

x5

(ex − 1)(1 − e−x )
dx,

(A5)
where ρi,0 represents the temperature-independent residual re-
sistivity due to scattering from defects in the crystal structure;
the second term in Eq. (A5) is a temperature-dependent con-
tribution which can be described by the generalized BG model
in which C is a material-dependent factor and �D is the Debye
temperature obtained from resistivity measurements. The red
dashed line in the main panel of Fig. 7 shows the best fitting to
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the data and yields ρ0 = 29.6 ± 0.3 μ� cm, C = 1674 ± 39
μ� cm, ρ0,s = 303 ± 1 μ� cm, and �D = 152 ± 2 K.

3. Electronic properties

The Sommerfeld coefficient γn and quasiparticle number
density n are related by

γn =
(π

3

)2/3 k2
Bm∗Vf.u.n1/3

h̄2NA
, (A6)

where kB is the Boltzmann constant, Vf.u. is the volume of
a formula unit, NA is the Avogadro number, and m∗ is the
effective mass of quasiparticles. The residual resistivity ρ0 is
related to Fermi velocity vF and electronic mean free path l by
the expression

l = 3π2h̄3

e2ρ0m∗2v2
F

, (A7)

whereas the Fermi velocity vF can be expressed in terms of
quasiparticle carrier density and effective mass by

n = 1

3π2

(
m∗vF

h̄

)3

. (A8)

The expression for the penetration depth λGL(0) in the dirty
limit is given by [79]

λGL(0) =
(

m∗

μ0ne2

)1/2(
1 + ξ0

l

)1/2

, (A9)

where ξ0 is the BCS coherence length and the first term in
the bracket represents the London penetration depth λL. In
the dirty limit at T = 0 K, Ginzburg-Landau coherence length
ξGL(0) and BCS coherence length ξ0 are related by the expres-
sion

ξGL(0)

ξ0
= π

2
√

3

(
1 + ξ0

l

)−1/2

. (A10)

By providing the values of γn = 44.44 mJ mol−1 K−2, ξGL

(0) = 215 Å, and ρ0 = 29.6 μ�-cm, the above equations
were solved simultaneously which provides m∗ = 6.3 me,
n = 4.3 × 1027 m−3, le = 182 Å, ξ0 = 202 Å. The ratio of
ξ0/le = 1.1 indicates that the superconductor is characterized
by significant disorder (“dirty limit”), which is consistent with
published data [54].

APPENDIX B: TOY MODELS FOR TRS BREAKING

In this Appendix, we will discuss symmetry-based,
phenomenological models for each of the two possible
TRS-breaking pairing scenarios—the E2(1, i) and s + i s
states—discussed in the main text. We will also briefly study
their disorder sensitivity, using the results of Refs. [23,76].

1. E2(1, i) pairing model

To provide an example of how an E2(1, i) state can
arise, let us assume that the energetics of superconductivity
is mainly determined by the interactions between the three
distinct pockets encircling the M-L lines in Fig. 5(a) and
that the superconducting order parameter can be taken to be
constant on each of these three separate sheets, j = 1, 2, 3,

with value �(k) = � j . Neglecting the subleading energetic
contributions from other Fermi surfaces for simplicity, the
superconducting free energy can be written as

�F (T ) =
3∑

j, j′=1

�∗
j a j j′ (T )� j′ + . . . , (B1)

where the ellipsis stands for terms higher order in the
superconducting order parameter. It is straightforward to
derive the representations of the symmetries on the super-
conducting order parameter: under time reversal, � j → �∗

j ;
under Cz

6, � j → � j+1 (with �4 ≡ �1), and under σv , � :=
(�1,�2,�3) → (�3,�2,�1). Combined with �F ∈ R, we
thus end up with

a j j′ (T ) = α(T )δ j, j′ + β(T )(1 − δ j, j′ ), α, β ∈ R, (B2)

such that the dominant superconducting instability [eigen-
vector of a(T ) with eigenvalue that first becomes negative
upon lowering T to Tc] just depends on the sign of β(Tc):
If it is negative, which corresponds to attractive interpocket
interactions, we get the s-wave state (transforming under IR
A1 of C6v)

� = �0(T )(1, 1, 1), �0(T ) ∈ C, (B3)

which preserves TRS. For repulsive interpocket interactions,
β(Tc) > 0, the leading instability is doubly degenerate,

� =
∑

μ=1,2

ημχμ, ημ ∈ C,

χ1 =
(

1√
6
,−

√
2

3
,

1√
6

)
, χ2 =

(
1√
2
, 0,− 1√

2

)
,

with the two components χ1,2 transforming as k2
x − k2

y and
2kxky under C6v and, hence, under the IR E2. While the two
complex numbers η1,2 are determined by the higher-order
terms omitted in Eq. (B1), it has been shown [47] that, ir-
respective of microscopic details, only the solution with a
nontrivial relative complex phase, η2 = ±iη1, is possible ener-
getically for spin-orbit coupled noncentrosymmetric systems.
Therefore, we end up with

� = �0(T ) (1, ω, ω2), ω = e
2π i

3 , (B4)

in accordance with the form of the complex phase shown in
Fig. 5(a).

To demonstrate the statements of the main text about which
scattering processes are pair breaking, we employ the gener-
alized form of the Anderson theorem of Ref. [76] (see Sec.
7.1 therein): For our case of singly-degenerate Fermi surfaces,
a superconductor is protected against nonmagnetic, tW = +1,
(magnetic, tW = −1) impurity scattering with matrix elements
Wk,k′ if the commutator (anticommutator)

Ck,k′ = �(k)Wk,k′ − tW Wk,k′�(k′) (B5)

vanishes. In fact, it was shown [23] that the same commutator
also quantitatively determines how fragile a superconductor
is, since the reduction δTc = Tc − Tc,0 of the transition tem-
perature Tc relative to its value in the clean limit Tc,0 can be
written as

δTc ∼ −π

4
τ−1ζ (B6)
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for small total scattering rates τ−1 → 0. The sensitivity pa-
rameter reads as [23]

ζ = ||C||2F
4||W ||2F 〈|�|2〉FS

, (B7)

where ||C||2F = ∑FS
k,k′ |Ck,k′ |2 is Frobenius norm on the Fermi

surface (FS) and 〈·〉FS is the Fermi surface average (normal-
ized such that 〈1〉FS = 1).

This expression is readily applied to any superconducting
system and impurity potential [23,85]. For our model here,
with order parameter given in Eq. (B4), the scattering matrix
W effectively becomes a Hermitian 3 × 3 matrix, Wj j′ = W ∗

j j′ ,
j, j′ = 1, 2, 3. After straightforward matrix algebra, Eq. (B7)
yields for nonmagnetic disorder (tW = +1)

ζE2(1,i) = 3τ−1
inter

4(τ−1
intra + τ−1

inter )
, (B8)

with inter- and intrasheet scattering rates given by τ−1
inter =

2(|W12|2 + |W13|2 + |W23|2) and τ−1
intra = ∑3

j=1 |Wj j |2, respec-
tively. In particular, it follows that only intersheet scattering
is pair breaking, as stated in the main text. This can also be
directly seen from the commutator (B5) of the generalized An-
derson theorem, which vanishes for momentum pairs (k, k′)
with �k = �k′ in the current case of nonmagnetic scattering
(tW = 1). Further note we get ζ = 1/2 from Eq. (B8) for
momentum-independent scattering matrix elements, |Wi j | =
const., as expected for a pairing state transforming under a
nontrivial IR.

2. s + i s pairing model

To illustrate how an s + i s state can arise, let us consider
three different sets of symmetry-unrelated Fermi pockets,
such as p1, p2, and p3 = p3a ∪ p3b ∪ p3c in Fig. 5(b). Since
we are interested in s-wave pairing, we will assume that �(k)
is invariant under all g ∈ C6v and, for simplicity, take it to be
constant on each of these three sets of sheets, �(k) = � j if
k ∈ pj . The free energy can again be written in the form (B1)
to quadratic order in �; however, since the pockets are not
related by symmetry operators, there are fewer constraints on
a(T ): It only needs to be real and symmetric, aT = a ∈ R3×3,
due to �F ∈ R and TRS. Further assuming that the form of
the pairing state is predominantly determined by the repulsion
between the different pockets, we can use

a(T ) � α0(T )13×3 + β(T )

⎛
⎝ 0 1 1 + δ1

1 0 1 + δ2

1 + δ1 1 + δ2 0

⎞
⎠,

with β(T ) < 0, δ j > −1. As such, the form of the leading
instability only depends on the two real parameters δ1,2, which
we rewrite according to (δ1, δ2) = δ(cos θ, sin θ ). For |δ| � 1,

two superconducting states are asymptotically degenerate and

� = (�1,�2,�3)T =
∑
μ=±

ημ(T )χμ, ημ ∈ C, (B9)

where

χ± ∼ N±(θ )

⎛
⎝cos θ − sin θ ± √

1 − cos θ sin θ

sin θ

∓√
1 − cos θ sin θ − cos θ

⎞
⎠, (B10)

with normalization factor N±(θ ). As follows from the re-
spective eigenvalues, η+ (η−) first becomes nonzero at Tc1

upon cooling down while η− = 0 (η+ = 0), if δ > 0 (δ < 0).
This first superconducting phase respects TRS since �∗ ∝ �.
However, due to the near degeneracy of the states, a second
transition can take place at which η− �= 0 (η+ �= 0), with
transition temperature Tc2; note that Tc1 − Tc2 becomes van-
ishingly small as δ → 0.

To obtain the relative weight and phase of η+ and η−, we
need to go beyond quadratic order in �F . Among the quartic
contributions to the free energy,

γ (T )Re
[
(η∗

+)2η2
−
]

(B11)

is sensitive to the relative phase. It straightforwardly follows
from the structure of the underlying one-loop diagram that
γ (T ) > 0, see, e.g., Ref. [73] for an explicit computation.
Therefore, we obtain that the relative complex phase of η+
and η− is π/2 below Tc2. Since χ± in Eq. (B10) are linearly
independent, the superconducting state breaks TRS as stated
in the main text.

As follows from this discussion, the s + i s state is possible
as long as neither � = χ+ nor � = χ− are suppressed by
disorder. While it is straightforward to evaluate Eq. (B7) for
the general form in Eq. (B10), let us for notational simplicity
focus on δ1 = δ2 ≡ δ where χ+ ∼ (1 + δ/3, 1 + δ/3,−2)T ,
to linear order in δ, and χ− ∝ (−1, 1, 0)T . For χ−, we then
get

ζ− = 3(τ−1
inter/2 + 3|W12|2)

4(τ−1
intra + τ−1

inter )
, (B12)

and χ+ leads to

ζ+ = (9 + δ)2

27 + δ(6 + δ)

3(|W13|2 + |W23|2)

4(τ−1
intra + τ−1

inter )
, (B13)

where we again took tW = +1. As expected, we see that, while
χ− is particularly sensitive to scattering between the pockets
p1 and p2, only scattering events between patches p1 and
p3 and between p2 and p3 are pair breaking for χ+, which
can also be immediately inferred from the commutator (B5)
directly. It is thus manifest that intrasheet scattering is not
expected to suppress the s + i s state.
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