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Levitation of superconducting microrings for quantum magnetomechanics
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Levitation of superconductors is becoming an important building block in quantum technologies, particularly,
in the rising field of magnetomechanics. In most of the theoretical proposals and experiments, solid geometries,
such as spheres are considered for the levitator. Here we demonstrate that replacing them by superconducting
rings brings two important advantages: First, the forces acting on the ring remain comparable to those expected
for solid objects, whereas the mass of the superconductor is greatly reduced. In turn, this reduction increases
the achievable trap frequency. Second, the flux trapped in the ring by in-field cooling yields an additional
degree of control for the system. We construct a general theoretical framework with which we obtain analytical
formulations for a superconducting ring levitating in an anti-Helmholtz quadrupole field and a dipole field for
both zero-field and field cooling. The positions and the trapping frequencies of the levitated rings are analytically
found as a function of the parameters of the system and the field applied during the cooling process. Unlike what
is commonly observed in bulk superconductors, lateral and rotational stabilities are not granted for this idealized
geometry. We, therefore, discuss the requirements for simple superconducting structures to achieve stability in
all degrees of freedom.
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I. INTRODUCTION

Levitation of superconductors (SCs) has been an active
topic of research in the past decades due to its significant
scientific and technological potentials. Until recently, most of
the research pertained to large-scale systems with applications
including transportation and energy storage [1–5]. A typical
levitation system consists of a source of the magnetic field
(e.g., one or several permanent magnets) and one (or several)
superconducting objects. The performance and optimization
of such devices are based mainly on the choice and con-
trol of the magnetic-field sources on the optimization of the
superconducting properties and on the selection of an advan-
tageous geometry for the superconductor. Typically, a set of
bulk high-Tc superconductors are used as levitators, each of
them with sizes on the order of a few centimeters [6]. As a
rule of thumb, levitation forces are enhanced by increasing
the critical-current density of the SCs and the gradients of
external fields; stability is increased by an adequate tuning
of the field distribution and the cooling procedure [7]. At
these scales, apart from the geometry, the key parameter of
the superconductor is the critical-current density Jc, which
is related to the internal vortex structure as a macroscopic,
averaged quantity. The critical-state model is commonly used
to describe the superconductor response [6]. The calculation
of the current density distribution inside the superconducting
materials is the basic step from which one can evaluate all the
relevant parameters, such as force, stability, or energy.
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The presence of an external magnetic field during the
cooling below Tc [field-cooling (FC) process] can result in a
substantially different current distribution in the SC compared
to the case where the superconductor is cooled in the ab-
sence of an external magnetic-field [zero-field-cooling (ZFC)
process], yielding different levitation forces and stabilities At
macroscopic scales, the effects of cooling procedures have
previously been considered in several works [8,9].

An important property of superconductors with nonsimply
connected geometries, such as rings, is that the flux which
threads a hole surrounded by a superconducting region must
be conserved. At the macroscopic scale, one also needs to
evaluate the current distribution inside the rings; the flux con-
servation through the hole is a consequence of the resulting
flux distribution [10,11].

Here, we discuss superconducting rings with sizes on
the order of hundreds of micrometers or smaller. At these
scales, the basic principles of superconductivity still hold, but
some assumptions generally taken for granted in macroscopic
systems need to be addressed in more detail. In particular,
macroscopic approximations, such as the critical-state model,
are not applicable, and other approaches are required.

One of the key points, however, is that the details of the
current distribution inside the ring become irrelevant, and flux
conservation can be used as the condition for evaluating the
total circulating current, which becomes the relevant quantity.

Recently, new applications of levitating superconductors
have emerged in the context of quantum magnetomechan-
ics where magnetically trapped superconducting objects can
be used to create low-loss mechanical oscillators with long
coherence times [12–17] or highly sensitive inertial sensors
[18]. A typical system consists of a superconducting object
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levitated in a specifically designed magnetic field, which cre-
ates a trap for the superconductor. The objective of these
proposed experiments is to perform ground-state cooling of
these objects, allowing the creation of nonclassical states.

An example is the creation of a superposition in which the
separation of the wave-function peaks is larger than the object
itself. In the case of a sphere, this goal requires a separation
of twice the radius, whereas for a ring the relevant dimension
is the thickness, which can be far smaller. This geometry is,
therefore, also advantageous for experiments seeking to probe
gravitational interactions.

In this paper, we develop a comprehensive analytical the-
ory for the levitation of superconducting microrings and
demonstrate how their use can be highly advantageous for
applications in quantum magnetomechanics. We use the flux
conservation condition to analyze the motion of microrings
in dipolar and quadrupolar magnetic-field geometries. For
vertical displacements, we derive analytical expressions for
the circulating current and the resulting oscillator dynamics.

We find that a ring with the same mass as a given sphere
can achieve significantly higher trap frequencies by distribut-
ing the mass on a larger radius. This alleviates perturbations
caused by low-frequency noise, and the larger forces that can,
thus, be exerted are beneficial for active expansion of the wave
function [12,15,19].

The idealized ring geometry does not lead to stable
trapping in the lateral or angular degrees of freedom. We
describe modifications by which stable levitation can nonethe-
less be achieved.

After defining key parameters of the levitator in Sec. II,
we study different scenarios for cooling and trapping small
superconducting rings in the presence of external fields
(Fig. 1). The flux-conservation equation is used to derive
analytical expressions for the circulating currents and to eval-
uate the interaction energy between the magnetic-field source
and the levitating superconductor. We focus on two cases of
interest. The first, a magnetic landscape created by a pair of
anti-Helmholtz coils (AHC), is introduced in Sec. III. This
geometry is of practical importance since it has been proposed
for experiments in quantum magnetomechanics with spheres
[12] and is discussed at length in Sec. III B. The second case
studied is a superconducting ring coaxial with the field created
by a point dipole. We find that for a given cooling position, a
single parameter is sufficient to characterize the dynamics of
the system along the rings’ axis. We derive the equilibrium
positions and study its vertical stability for the ZFC and FC
cases in Secs. IV and V. In Sec. VI, we discuss the lateral
and angular degrees of freedom of the ring and modifications
to the architecture which enables stable trapping in all spatial
directions. Conclusions are presented in Sec. VII.

II. MODEL FOR THE SUPERCONDUCTING RING

Consider a superconducting ring of mean radius R through
which a total current I is circulating so that the cross section
is a circle of radius a � R. The self-inductance of the ring can
be regarded as [20]

L = μ0R

[
ln

(
8R

a

)
− b

]
, (1)

FIG. 1. Ring levitation scenarios. (a) SC ring of radius R in the
field of anti-Helmholtz coils (AHC) of radius C. The colored arrows
represent the movement of the ring. (b) A magnetic dipole generates
the field, and the SC ring moves from infinity (zero-field-cooled
case), or it is cooled down below its critical temperature at a given
field-cooling position (zFC) and moved afterwards.

where μ0 is the vacuum permeability and b is a dimensionless
constant that accounts for the particular current distribution
across the cross section of the superconductor: If the current
is uniformly distributed over the cross section b � 1.75, and
if it flows over the surface b � 2. Since a � R, the particular
distribution of current inside the ring hardly affects the self-
inductance. Thus, the total circulating current I is the relevant
parameter. Note that the inductance L depends on the radius
of the ring as L ∼ R ln R. In this paper, we assume that the
superconducting ring is in the Meissner state with a London
penetration depth λ smaller than all other relevant dimensions.
This allows us to set b = 2.

While the ring is in the superconducting state, the mag-
netic flux threading it is maintained [21]. We will distinguish
between the ZFC regime in which the ring has reached the
superconducting state far from any field source so that the flux
that threads it is zero and will be zero after any subsequent
displacement; and the FC regime where the SC has been
cooled when some flux was threading it, a flux that will
remain after movements. Except otherwise indicated, the su-
perconducting ring has the axis coincident with the z axis.
The levitated superconductor has a total mass of M. Gravity
has direction −ẑ. We use standard cylindrical coordinates
(ρ, φ, z).

In the limit λ � a assumed throughout this paper, the
flux threading the superconducting ring is quantized in multi-
ples of the flux quantum �0. If one is dealing with smaller
dimensions such that λ is no longer negligible, instead of
considering flux quantization, one should consider fluxoid
quantization (which includes not only the flux threading
the ring, but also a contribution of the currents in the
superconductor volume) [22].
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III. A SMALL RING IN THE FIELD OF AN
ANTI-HELMHOLTZ COIL

A. Analytical description

The first case we analyze corresponds to a superconducting
ring levitating in the field created by a pair of AHCs. Such a
field configuration, using a levitated superconducting sphere,
has been recently proposed for improving the performance in
quantum systems with respect to optical counterparts (e.g.,
longer coherence times), enabling in this way access to a
completely new parameter regime of macroscopic quantum
physics [12,19].

We consider AHC coils with radii C (and, thus, separation
between parallel coils C), coaxial with the z axis and centered
at the origin, and with a circulating current I0. The magnetic
field created by the AHC BAHC and the vector potential AAHC

at the central region (ρ, |z| � C) can be approximated by

BAHC(ρ, z) = μ0
24

25
√

5

I0

C2
(−ρρ̂ + 2zẑ), (2)

AAHC(ρ, z) = μ0
24

25
√

5

I0

C2
zρφ̂. (3)

We begin our discussion by assuming that the supercon-
ducting ring of radius R � C is located at the origin in the
absence of any applied field or current. The flux threading the
SC ring is zero. We also consider that the ring can be moved
in the vertical direction, maintaining the condition |z| � C.
The current induced in the ring can be evaluated from the
flux-conservation equation as

2πRAφ (R, z) + LI = 0. (4)

Here Aφ (R, z) is the φ component of the magnetic vector
potential evaluated at position (R, z). The first term in Eq. (4)
is the flux threading the superconducting ring due to the field
produced by the AHC coils, and the second one is the flux due
to the current circulating in the ring.

From Eqs. (3) and (4), the current in the ring is

I = −�
z

R
, (5)

where we have defined the constant,

� ≡ μ0I0
48π

25
√

5

R3

C2L
= ∂zBAHC,z

R3

L
, (6)

that characterizes the system and can be identified as the
current induced in the ring when the displacement is equal to
the rings’ radius. The field of the AHC is fully characterized
by the gradient of the magnetic field along the axis ∂zBAHC,z.

The z component of the Lorentz force, Fz acting on a ring
centered on the axis of the field is

Fz = −�2 L

R2
z ẑ, (7)

yielding a spring constant for vertical displacement,

κz ≡ −∂Fz

∂z
= �2 L

R2
. (8)

κz is always positive, which indicates vertically stable
levitation. The vertical frequency of this trap is obtained from

the spring constant as

ωz = �

R

√
L

M
. (9)

Following Eqs. (1) and (6), ωz depends on R as ωz ∼
R3/2(ln R)−1/2.

The potential-energy E of the system is the sum of its
magnetic and gravitational potential energies. The magnetic
energy of the system is given by the interaction of the AHC
field with an induced dipole of magnetic moment IπR2ẑ.
Setting the gravitational potential energy to zero at z = 0 gives

E = Mgz − 1
2 IπR2ẑ · BAHC(0, z), (10)

where g is the gravitational acceleration. By minimizing E
with respect to the vertical position z we find the equilibrium
position,

zeq = −M gR2

�2L
. (11)

If the ring is cooled below the critical temperature at a ver-
tical position zFC �= 0 where some flux is threading it before
cooling (FC case), this flux is maintained after subsequent
movements. The flux conservation equation for this case is

2πRAφ (R, z) + LI = 2πRAφ (R, zFC ). (12)

Owing to the linear dependence of the potential vector on
the vertical position (within the approximations considered
here), the above expressions for the ZFC case remain valid
with the change z → z − zFC or zeq → zeq − zFC . Actually,
this result permits selecting the desired value for the levitation
position zeq by adjusting the cooling position zFC in an actual
experimental setting.

B. Considerations for practical implementation

We now discuss the implementation of the system intro-
duced above and apply the established theory. In Fig. 2, we
compare the oscillation frequencies and resulting zero-point
motion

√
h̄/2Mω for levitated rings of varying inner radius

to spheres of the same radius. These plots rest on several
assumptions and choices, which we describe in what follows.

Let the field source be a macroscopic coil pair in the anti-
Helmholtz configuration along the vertical axis, providing the
idealized AHC field at its center with vertical B-field gradients
of up to several 100 T/m. This assumption can easily be
achieved, even for a relatively large volume around the center
of the trap, hence, there is no need to consider deviations from
the linear field dependence. We use a relatively modest verti-
cal B-field gradient of 50 T/m throughout the calculations.

The levitating ring can, for example, be fabricated as a
niobium ring on a silicon chip. Using silicon-on-insulator
technology, the substrate can be made very thin, on the order
of 100 nm, contributing negligibly to the mass of the levitator.
The choice of the substrate thickness and shape still allows to
add ballast to the levitator if required (see Sec. VI). For this
example, we concentrate on the ease of fabrication and neglect
the fact that niobium is a Type-II superconductor. A critical
current density of Jc = 5 × 1010 A/m2 is assumed, which is
conservative for our parameters [23].
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FIG. 2. (a) Trapping frequency of a sphere (dashed blue line) vs
radius R compared to the trapping frequencies of superconducting
rings with constant wire width w of 10 μm (orange), constant aspect
ratio (w = R/20) (green) and constant system mass 10−10 kg (red).
The red dot marks the size of a sphere of the same mass. The inset
shows that the ratio �/Ic < 1 for the considered range. See the
text for further details. (b) Zero-point motion of the levitators. Line
coloring as in panel (a).

An important technical restriction is the achievable thick-
ness of the superconducting layer, which can be limited to
a few micrometers due to mechanical instabilities of the
deposited material. Depending on that layer thickness, the
width of the superconductor has to be chosen appropriately
to accommodate the induced current without exceeding the
critical current Ic. It is, therefore, important to note that it
might not always be possible to arbitrarily scale the rings’
size whereas maintaining its ratio of radius, thickness, and
width. Rather, the thickness of the layer will most likely be
fixed at the highest attainable value. For the niobium layer in
this example, we conservatively set this thickness to 1 μm.

The self-inductance of the ring is approximately given by
Eq. (1), even though the cross section of the wire is now a
rectangle and not a circle. For radius a in the equation, we
take the mean of the wire width and the thickness of the layer.
We set the current distribution parameter b = 2 [see Eq. (1)]
as the current is always close to the surface in such a thin layer.
We surmise that taking the rectangular shape into account for
the derivation of the self-inductance will have a negligible
influence on the calculated values for the aspect ratios of
interest in this paper. For the extreme case of a conductor
which is flat and wide (compared to the inner radius of the

ring), an approximate expression of the self-inductance can
be found in Ketchen et al. [24].

One of the main reasons behind the recent interest in super-
conducting levitation is the prospect of reaching significantly
higher masses in an essentially dissipation-free environment.
Using a ring instead of a sphere makes it possible to adjust
the mass, radius, and trap frequency somewhat freely. The
mass can be several orders of magnitude larger than typical
optically levitated particles, whereas still attaining trap fre-
quencies in the kilohertz range. This large trap frequency is
beneficial as it brings the oscillator dynamics far above the
regime of seismic noise, thereby enabling feedback cooling in
a low-noise environment.

We show the dependence of the trap frequency [Fig. 2(a)]
and zero-point motion [Fig. 2(b)], on the inner radius of Nb
rings with a thickness of 1 μm for three different constraints.
The red lines show the dependence for constant mass for
which only the outer radius is adjusted. The green and orange
lines display the dependence for a constant wire width of
10 μm and for a constant ratio of width to radius of 1/20,
respectively.

As can be seen in Fig. 2(a), the trap frequency for rings is
markedly higher than for comparable spheres, even when their
masses are equal. The figure also illustrates a key result of this
paper, namely, that higher trap frequencies can be achieved
simply by increasing the radius of the ring. The reduction
in mass, compared to a sphere of the same radius, leads to
a zero-point motion amplitude which is approximately one
order of magnitude larger than that of a sphere for ring radii
greater than 50 μm [Fig. 2(b)]. Additionally, since the ring
is only assumed to be 1-μm thick, the zero-point motion is
three orders of magnitude greater, relative to the size of the
object, compared to a sphere. Finally, the larger trap frequency
for rings is indicative of the fact that forced expansion of the
wave function by a repulsive potential will also occur on a
significantly shorter timescale, reducing the adverse effects of
decoherence [15].

For quantum magnetomechanical experiments, we are pri-
marily interested in very small displacements of the levitator.
However, the rings’ starting position might be at a significant
distance from the trap center. It is, therefore, important to
make sure that the force needed to overcome gravity and sur-
face adhesion at the starting position can be reached without
exceeding the critical current of the ring. It might be necessary
to gradually ramp up the magnetic-field gradient after lift-off.
Furthermore, the equilibrium position of the trap shifts due to
gravity, resulting in an induced current even at zero displace-
ment. This current is, however, negligible compared to Ic in
the parameter range considered here, even though we have
chosen a superconductor thickness of only 1 μm: As shown
in the inset of Fig. 2(a), the critical current is not reached,
even for displacements on the order of a whole ring radius for
the sizes chosen in these calculations.

IV. DIPOLE AND ZERO-FIELD-COOLED
SUPERCONDUCTOR

We now apply the theoretical framework to the case of a
ring levitating in the field of a magnetic dipole. We start here
with the ZFC case and treat the FC case in the next section.
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Consider a point dipole m = mẑ located at the origin of
coordinates and the superconducting ring axially symmetric
with the z axis, its center located at a position zẑ. In the ZFC
case, the cooling distance is very long so that the ring becomes
superconducting in the absence of any applied field and the
flux initially threading the SC ring is zero. This zero-flux value
is maintained when the SC is vertically descended towards the
point dipole. The current I that flows in the superconducting
ring in order to maintain this flux is found from the zero-flux
threading condition as in Eq. (4),

2πRAφ (R, z) + LI = 0. (13)

Here Aφ (R, z) is the φ component of the magnetic vector
potential created by the dipole and evaluated at position r =
R ρ̂ + z ẑ.

The vector potential created by the point dipole is

A(R, z) = Aφ (R, z)φ̂ = μ0

4π

mR

(z2 + R2)3/2
φ̂. (14)

Thus, the current flowing in the superconducting ring will
depend on the distance z from the dipole as

I = − μ0mR2

2L(z2 + R2)3/2
. (15)

The energy of the levitated ring can be evaluated from the
Lorentz force acting over the current in the ring due to the field
created by the dipole or, alternatively, from the interaction
between the field created by the superconducting ring BSC and
the dipole. Including the gravitational potential (set as zero on
the z = 0 plane), we obtain

E = Mgz + 2π2R2

L
(�Aφ )2 = Mgz − 1

2
m · BSC, (16)

where �Aφ represents the variation (with respect to the
cooling position—infinite in the present case) of the vector
potential generated by the dipole and evaluated at the ring
position. Note that the term 2π2R2

L (�Aφ )2 equals 1
2L (��)2,

where �� is the variation of the magnetic flux threading the
ring due to the field created by the dipole. In the present case,

E = Mgz + μ2
0m2R4

8L(z2 + R2)3
. (17)

Normalizing the positions to the radius of the ring ζ = z/R
and the energy to E0 = μ2

0m2/8LR2, one can describe the
above system with a normalized energy e = E/E0 as

e = αζ + 1

(1 + ζ 2)3
, (18)

where the dimensionless constant,

α = 8LMgR3

μ2
0m2

(19)

is a single positive parameter characterizing the system. E0

is the energy of the superconducting ring when moved from
infinity (ZFC) to the z = 0 position.

The energy e has a minimum as a function of ζ only if

α <
1029

√
7

2028
≡ αc � 1.329. (20)

FIG. 3. (a) Equilibrium position and (b) frequency of the
potential well for a superconducting ring levitating in the field of
a magnetic dipole as a function of the α parameter characterizing the
levitation (see the text). Normalization values are defined in the text.

This inequality sets a condition for the stable levitation
of ZFC rings with the considered dipole. If the radius of
the ring is fixed, the mass of the ring should be less than
�0.33m2μ2

0/(gLR3). If the levitating material is fixed (with
a given density), then, the above condition sets a maximum
radius for the levitated ring.

For a given α < αc, the normalized position of the stable
levitation point ζeq can be found as the larger of the two
solutions of the equation,

α = 6ζeq

(1 + ζ 2
eq)4

, (21)

which has to be solved numerically; the smaller solution of
Eq. (21) results in a maximum in energy [see Eq. (18) and
note that α is a positive parameter]. The vertical oscillation
spring constant in this potential well can be obtained from the
second derivative of the energy, evaluated at the equilibrium
position κz = (1/2) ∂2E

∂z2 |z=Rζeq
. With Eq. (17), the oscillation

frequency can be expressed as

ω = ω0

√√√√3(7ζ 2
eq − 1)(

1 + ζ 2
eq

)5 , (22)

being ω0 =
√

E0/2R2M = μ0m
4R2

√
1

ML [ζeq is the largest
solution of Eq. (21)].

In Fig. 3 we plot the equilibrium positions ζeq and the
frequency of the trap ω as a function of α. When α → 0, the
equilibrium position tends to infinity as ∼α−1/7. α → 0 could
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be interpreted as a massless object or as a very large-radius
ring. In addition, the frequency tends to zero as ∼α−4/7. When
α → αc the equilibrium position tends to ζeq → 1/

√
7 �

0.378, and the frequency of the trap goes to zero, correspond-
ing to the limit in which the levitation becomes unstable.
Interestingly, between these two limits there is a maximum
in the stability of the force as a function of the parameter
α. This maximum is achieved when the equilibrium position
is zeq = √

3/7 � 0.655, corresponding to αmax � 0.935 (after
Fig. 3). The maximum value for the trapping frequency is
ωmax = ω0(49

√
21)/(50

√
20) � 1.004ω0.

The fact that there exists an optimum frequency (maximum
stability) means that for a given superconducting material (a
given density), and for a given width of the superconductor,
there is an optimum radius that can be found from the def-
inition of α. Alternatively, if the geometry is also fixed, for
a mass less than that needed for achieving the optimum α, it
could be interesting in practice to apply a ballast to the ring in
order to increase the stability.

V. DIPOLE AND FIELD-COOLED SUPERCONDUCTOR

We consider now that the superconducting ring has been
cooled below Tc at a given position zFC ẑ. Now there is
a flux threading the ring �FC = 2πRAφ (zFC ) that will be
maintained after subsequent movement of the SC ring when
already cooled. The flux conservation equation becomes

2πRAφ (z) + LI = �FC, (23)

from which the current circulating in the ring is (defining
ζFC = zFC/R and I0 = μ0m/2LR)

I = I0

(
1(

1 + ζ 2
FC

)3/2 − 1

(1 + ζ 2)3/2

)
. (24)

Equation (16) also holds in this case. The energy of the
levitated ring can now be written in terms of the α parameter
and on the ζFC value. It is found that

e = αζ + 1

(1 + ζ 2)3
− 2

(1 + ζ 2)3/2(1 + ζ 2
FC )3/2

. (25)

Without loss of generality, we consider only positive field-
cooling positions (ζFC > 0). Now, depending on the values
of α and ζFC , the energy [Eq. (25)] can have one minimum
at ζ < 0, one minimum at ζ > 0, two minima (one at ζ > 0
and another at ζ < 0), or no minima at all. Actually, for each
ζFC , one can define a critical α for having positive equilibrium
positions, αc+ and another critical α for achieving equilibrium
positions at negative ζ ’s αc−. These values can be found
numerically. The functions αc+(ζFC ) and αc−(ζFC ) are plotted
in Fig. 4. We observe that for ζFC → ∞ we recover the ZFC
case where only equilibrium at positive ζ ’s is possible when
α < αc+(∞) = αc � 1.329. αc− → 0 in this limit. However,
when the cooling position is zero (that is, when the ring
is cooled with the dipole in its center), there can be only
one equilibrium position at negative ζ ’s. This is because the
current in the ring creates an attractive force to the dipole
after any movement. The equilibrium can be achieved only
when the movement is performed to negative positions where
the attraction to the dipole opposes gravity. Interestingly, for

FIG. 4. For a superconducting ring levitating in the field of a
magnetic dipole, critical values for the α parameter for achieving
positive equilibrium position (ζ > 0, red), and for a negative one
(ζ < 0, black). The shadowed area corresponds the (α, ζFC) values
that results in two equilibrium positions.

some values of ζFC and α (shadowed region in Fig. 4) one can
have two equilibrium positions, one at positive and the other
at negative ζ ’s. In Fig. 5 we show the numerically evaluated
equilibrium positions as a function of the α parameter for
different cooling distances ζFC . The shadowed area in Fig. 5
includes all possible equilibrium positions for all possible α’s
and ζFC’s.

To study the stability of such solutions one can follow the
same procedure as above. To simplify, we split the treatment
in two parts: for the positive and for the negative equi-
librium positions. In Fig. 6 we present the results for the
numerically evaluated frequency of the equilibrium position.
For each ζFC there is an optimum α such that the equilibrium
position is achieved with maximum trapping frequency. We

FIG. 5. For a superconducting ring levitating in the field of
a magnetic dipole, equilibrium positions as a function of α for
different cooling positions (indicated in the plot). The shadowed
regions correspond to all the possible equilibrium positions for any
ζFC value. Note that for some values of ζFC and α corresponding to
the shadowed region in Fig. 4 there are two equilibrium positions.
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FIG. 6. For a superconducting ring levitating in the field of
a magnetic dipole, frequency of the trap around the equilibrium
position as a function of the α parameter for different cooling posi-
tions (indicated in the plot). For simplicity, we show on the left (right)
side the frequencies for the negative (positive) equilibrium positions.
Note the decreasing scale in the left part (α is always positive).

also find that the maximum achievable frequency is obtained
in the ZFC case [ωopt (ζFC = ∞) � 1.004ω0], although for the
other cooling positions, the optimum value of the frequency
is above 0.85ω0. In other words, the field cooling of the
superconductor does not degrade substantially the stability of
the equilibrium whereas it adds a new parameter to control the
equilibrium position allowing a larger region for stabilizing
the levitated ring.

A possible realization of this configuration can be con-
structed by using a small ring as an effective dipole or a
micromagnet, around which a larger ring can be trapped.
However, it should be pointed out that this configuration is
not stable in the lateral direction, even for finite-sized super-
conducting rings [25]. Nonetheless, a ring on an additionally
clamped structure, such as a cantilever, can be described by
the relations given here. The symmetric nature of the dipole
presents a particularly interesting feature in that, in general,
two equilibrium positions ±zFC can be found in the FC case,
one above and one below the dipole, providing a double
well for the ring in the z direction. The smallest separation
between the wells is given by the quantized flux. Details of
the quantization of the vertical levitation have bee studied
by Haley [26].

VI. DISCUSSION

A. Lateral movements and rotational degrees of freedom

One of the main objectives of the present paper is to de-
scribe the forces resulting from the flux-conservation property
of a levitated superconductor. In this sense, we have focused
on the main characteristics and properties that can be de-
rived from this property and have concentrated on the vertical
movements and vertical stability, this being the direction of
the rings’ axis. Levitation is, however, only truly stable if it
is so in all degrees of freedom, aside from rotation around
the ring’s axis. In a real ring with finite width and thickness,
stability against rotation and lateral movements are provided

by the current distribution induced on the ring’s whole sur-
face. This setting has recently been described and calculated
numerically [27]. The effect of a finite size can be understood
by returning closer to the picture of a macroscopic supercon-
ductor in that any field variation will induce a change in the
surface currents of the ring, possibly in addition to a change
in the flux threading the ring. In the quadrupole trap, this
effect leads to a restoring force, giving positive stiffness in
all degrees of freedom, apart from rotation about the ring’s
principal axis.

Even though the finite thickness of the ring in any
actual implementation may lead to stable levitation, it is still
worthwhile studying the stability of the idealized case and
to explore further stabilizing mechanisms for levitation. This
matter is discussed in the two following subsections.

B. Stability in the idealized thin ring case

For the (idealized) example of an infinitely thin ring,
energy in a purely magnetic potential is minimized when the
circulating current is zero. This is equivalent to preservation
of the initial flux through the ring. In the ZFC case, the initial
flux (zero) can be obtained at every position in space by tilting
the ring until the local field is parallel to the surface. The
zero-flux condition can similarly be achieved in regions of
the trapping field with an arbitrary field gradient or curvature:
Rotation of a ring by 180◦ about an axis on its plane will lead
to a sign change in the flux in the ring’s coordinate system.
Since flux is a continuous quantity in free space, it follows
immediately that an angle exists at which the flux must be
zero. For field cooling, the entire volume in which the average
field is, at least, �FC/πR2 is accessible, again by adjusting the
orientation accordingly. The volume where the field is smaller
than this value cannot be reached without inducing a current.
This means that in either case, an idealized thin ring cannot
be trapped at the minimum of, for example, the field provided
by anti-Helmholtz coils. By extension, the above arguments
are equally valid for an infinitely thin SC forming an arbitrary
closed curve, no matter how intricate its shape.

One might conversely consider seeking trapping
configurations which rely on a maximum of the flux such
that it decreases for any displacement or rotation. It follows
from Earnshaw’s theorem for the magnetic field that such a
situation is impossible for static fields: Since there is no
maximum of the magnetic field in free space, there can also
be no maximum of the flux in a ring which is disconnected
from all field sources.

C. Stabilizing mechanisms

Beyond finite-thickness effects, trapping of the levitator in
the other degrees of freedom can be provided by other means,
such as gyroscopic effects, time-orbiting potentials, or more
complex topologies.

Spin-stabilized magnetic levitation is well known from the
physics of spinning devices, such as the Levitron [28]. We
expect that similar considerations apply to a rotating ring.

A further path towards stable levitation of thin rings is
the use of time-averaged potentials. The combination of three
nonorthogonal anti-Helmholtz coil pairs makes it possible to
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create a time-averaged trapping potential in which the flux
through the ring is proportional to the distance from the
trap center, regardless of its orientation. This configuration
is equivalent to a ring rotating around both its planar axes
in a static AHC field. The rich dynamics of such quasistatic
potentials presents fertile ground for future work and offer an
intriguing alternative outlook towards macroscopic superposi-
tions of these quantum systems [29,30].

In general, the idea of flux conservation makes the levi-
tation of a superconducting system “rigid,” in the sense that
any variation of the flux in any element would make the
superconductor react to counteract this variation. This idea
of rigid levitation has been exploited in several works of
macroscopic levitation of superconductors where the rigidity
comes from the hysteretic current penetration into the super-
conductor [31–33]. In a ring, it is the flux conservation which
yields this rigidity, albeit only along one axis. Although a
single ring cannot be trapped by the same mechanisms, the
behavior of a macroscopic superconductor can be approached
by a rigidly connected arrangement of rings. A planar ar-
rangement of electrically isolated loops will be pinned to its
initial vertical and lateral positions, albeit only in the FC case
since the zero-current condition can only be fulfilled there
for all loops. Lowering the symmetry of the trap potential by
applying different gradients in all directions can, furthermore,
provide rotational stability.

A minimal assembly of rings which allows stable levi-
tation is found by using two nonparallel rigidly connected
rings. In the ZFC case, the flux through both rings can only
be minimized when both are parallel to the local magnetic
field or both are on a plane in which the field components
cancel over their areas. The first condition can be met, for
example, by moving the rings along an axis until they reach
the zero-current condition. As an example, if the rings are
orthogonal to each other, their axes could lie along the lines
|x| = 2z in an AHC field. Once again, applying a different
field gradient along y could provide rotational stability around
the z axis, however, not against combinations of translation
and rotation. These would be suppressed by the addition of
gravity. The use of multiple rings in a similar arrangement,
e.g., placed on the three angled surfaces of a tetrahedron
or the four angled surfaces of a pyramid, would be fully
stable in an AHC-like field with different gradients along
all axes. Complex microscopic three-dimensional geometries
made of superconducting materials pose a major challenge for
fabrication, although recent work indicates that the creation of
such structures is within reach of cutting-edge nanoassembly
techniques [34].

Another simple way to provide stability against tilt is by
adding a keel-like structure to the ring’s supporting structure,
which would provide restoring torque with respect to rotations
on the x-y plane.

VII. CONCLUSION

We have introduced a theoretical framework for the levi-
tation of superconducting rings over magnetic-field sources,
considering the current flowing in the superconductor re-
sulting from the flux-conservation conditions (assumed as
a one-dimensional circuit) as the main parameter. These

conditions provide a novel set of properties with respect to
those arising from the induced currents in a single-connected
superconductor.

Our approach has been applied to both a quadrupolar
anti-Helmholtz field, a case recently proposed for quantum
magnetomechanics experiments, as well as to the case of a su-
perconducting ring levitating in the field of a magnetic dipole.
A complete set of analytical formulas are derived for describ-
ing these cases. For the force acting on a ring in the z direction,
we have found that, depending on the cooling position, a con-
tinuous range of equilibrium positions can be achieved. We
have also found the conditions that the system should satisfy
in order to have this equilibrium; an optimum for having the
largest possible vertical stability is obtained. This condition
is expressed in terms of a single parameter that combines
information from the levitating object (mass, radius, and cross
section) as well as from the field source (magnetic moment).
We have seen that even in the simple dipole-SC ring system,
there is the possibility of having one, two, or zero vertical
equilibrium positions. The stability of the ring with respect to
translation and rotation has been qualitatively discussed. Sev-
eral strategies are proposed to achieve full stability. We have
argued that although closed curved geometries are not trapped
in DC fields, rigidly connected arrangements of several rings
can be trapped, but only if they are three dimensional or
their symmetry is sufficiently low. In actual implementations,
the finite thickness of the superconducting rings will lead to
current distributions that result in stable levitation.

In quantum magnetomechanical experiments, the relevant
dynamics of the system are those along a single axis. Our
model takes the flux conservation through the ring into ac-
count and provides an analytical toolkit for the design and
optimization of levitating rings. The present paper will guide
future experiments of such levitation systems by incorporating
the degree of freedom provided by flux conservation condi-
tions as a key element for characterizing and enhancing the
magnetic levitation.

Finally, we note that a superconducting ring on a planar
surface can be used to levitate additional systems, such as
optical mirrors, nonlinear superconducting elements, crystals
containing spin centers, or even living organisms [35]. This
architecture, therefore, allows to combine the advantages of
superconducting magnetic levitation with a wide range of
physical mechanisms and will thereby constitute a veritable
platform for the exploration of quantum-mechanical effects
with massive objects of mesoscopic dimensions.
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