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Random walk of antiferromagnetic skyrmions in granular films
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The impressive absence of the skyrmion Hall effect of antiferromagnetic (AFM) skyrmions in clean systems
has raised high expectations of AFM skyrmions as information carriers and the potential applications in data
storage technology. Here, we report an undesired behavior of current-driven AFM skyrmion dynamics in granular
thin films. Understanding the motion of AFM skyrmions in disordered systems is crucial because disorders are
inevitable in all materials. Micromagnetic simulations show that AFM skyrmions deviate from their trajectory in
the clean limit. Interestingly, the transverse (to the current direction) motion is diffusive, i.e., the mean square of
transverse displacement is proportional to the traveling time. The longitudinal (along with the current direction)
motion is always hindered by disorders. An effective theory based on the stochastic Thiele equation can account
for the observed phenomena. At a very strong disorder above a critical value that depends on the current density,
AFM skyrmions are pinned. Our findings should be important for future spintronic devices based on AFM
skyrmions.
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I. INTRODUCTION

Magnetic skyrmions [1–4] are a strong candidate for future
nonvolatile memory devices due to their small sizes, topo-
logical protection, and low driven currents [5–8]. Skyrmions,
stabilized by the Dzyaloshinskii-Moriya interaction (DMI)
[9,10], can appear in ferromagnets [11–16], ferrimagnets
[17–19], and antiferromagnets [20–23]; in bulk compounds,
surfaces, thin films, heterostructures, nanowires, and nan-
odots. Compared with their ferromagnetic counterpart, an-
tiferromagnetic (AFM) skyrmions are more promising due
to the absence of the skyrmion Hall effect [24,25], room-
temperature stability [21], high-speed responses [26–29], and
the absence of stray fields [30]. Motivated by these advan-
tages, there is increasing interest in AFM materials [31,32]
and AFM spintronics devices [33–36].

A good understanding of the current-driven AFM
skyrmions dynamics in disordered materials is vital since
impurities are inevitable in reality. The validity of those results
from pervasive theoretical works for clean systems [26,37–39]
(or with a single defect [40–42]) should be tested in the
presence of disorders. Disorders have essential effects on the
dynamics of many trivial and nontrivial topological magnetic
textures such as domain walls [43,44], vortices [43,45], and
ferromagnetic skyrmions [46–48]. The common wisdom is
that disorders do not affect an AFM skyrmion’s transverse
motion because the transverse motion comes from the Magnus
force that should be exactly canceled out due to the opposite
forces on the two sublattices. However, disorder-induced force
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is not the same as the Magnus force that has a skyrmion
number origin. A careful study of the transverse motion of
AFM skyrmions in disordered films is needed.

In this paper, we model an AFM granular thin film by
a Voronoi tessellation [see Fig. 1(a)]. We use micromag-
netic simulations to study the AFM skyrmion propagation
driven by spin-transfer torques. For weak disorders and strong
driven currents, AFM skyrmions propagate along the current
direction at constant averaged velocities, although disorders
always slow down their speeds, and skyrmions in this regime
are termed as the hindering phase. Meanwhile, disorder-
generated random forces cause the skyrmions undergoing a
Brownian motion in the transverse direction. This Brownian
motion can also be viewed as an effective temperature that
exerts a random field or force on an AFM skyrmion. A theory
that shows the equivalence of the randomness in model pa-
rameters and the effective temperature is developed within the
Thiele’s approach [49]. The theory can account for both longi-
tudinal and transverse skyrmion motions. At strong disorders
and weak driven currents, AFM skyrmions are pinned where
the concept of effective temperature is no longer valid. The
critical disorder strength above which skyrmions are pinned
and the phase diagram in the current-disorder plane are ana-
lytically obtained.

The paper is organized as follows. The model is presented
in Sec. II. Our numerical results are given in Sec. III. Namely,
there exists a critical disorder below (above) which an AFM
skyrmion is in the hindering (pinning) phase and the trans-
verse motion of the AFM skyrmion in the hindering phase
is diffusive. Sections IV A and IV B discuss a theory that
explains the skyrmion motion in the hindering phase and
the critical disorder separating the hindering phase and the
pinning phase. Section V concludes this work with some
discussions.
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II. MODEL

Our granular AFM thin film of size 1024a×256a×a is a
Hamiltonian on the square lattice in the xy plane similar to
that used in Ref. [47], but for a ferromagnetic granular film,

HAFM =
∑
〈i j〉

Ji jmi · mj +
∑
〈i j〉

Di j · (mi×mj )

−
∑

I

∑
i∈I

KI (mi · ẑ)2 +HDDI, (1)

where mi is the unit direction of the magnetization at
site i = (xi, yi ), a = 1 nm is the lattice constant, and Ms =
5.8×105 A/m is the saturation magnetization. 〈i j〉 denotes the
nearest-neighbor sites. The first term is the AFM exchange
interaction with the exchange stiffness Ji j > 0. An interfacial
DMI Di j = Di j r̂i j×ẑ stabilizes AFM skyrmions, where Di j is
the DMI constant and r̂i j is the unit vector from site i to j. The
third term is the easy-axis anisotropic energy with KI > 0,
while the final term represents the dipole-dipole interaction
(DDI). In principle, disorders can be introduced through the
AFM exchange interactions, the DMIs, and the anisotropic en-
ergies. We first consider random anisotropic energies and will
discuss more general situations with random anisotropic en-
ergies, exchange interactions, and DMIs later. The disordered
anisotropic energy KI in the Ith grain distributes randomly and
uniformly in the range of [K0 − λK0, K0 + λK0] with K0 =
5 meV. λ measures the disorder strength of the anisotropic en-
ergies. Exchange stiffness Ji j = 94 meV and DMI coefficient
Di j = 25 meV are constants. The model parameters used here
can host AFM skyrmions and mimic synthetic antiferromag-
nets of (Pt/Co/Ru)-based multilayers [21].

For a relatively weak disorder, say λ < 0.3, stable isolated
skyrmions of average radius Rs ≈ 10 nm can be created from
a small nucleation domain. The average size of the grains is
set to be comparable with the skyrmion radius, i.e., g = Rs =
10 nm, which should be the most interesting case because
of the following reasons: If the grain size is much larger
than the skyrmion radius, the AFM skyrmion is essentially
in a homogeneous film with boundaries. In the opposite limit
in which the grain size is much smaller than the skyrmion
radius, the disorder effect will be averaged out and become
less pronounced.

III. NUMERICAL RESULTS

The current-driven spin dynamics is govern by the Landau-
Lifshitz-Gilbert (LLG) equation [50],

ṁi = γ

Msa3
mi × ∂HAFM

∂mi
+ αmi × ṁi + τCIP. (2)

Here, γ is the gyromagnetic ratio, and α = 0.1 is the Gilbert
damping coefficient. τCIP = −(u · ∇ )mi + βmi×(u · ∇ )mi is
the spin-transfer torque of Zhang-Li form [51], with the veloc-
ity of electron u = μB je/[eMs(1 + β2)]. μB, e, and β = 0.3
are the Bohr magneton, the electron charge, and the nona-
diabatic coefficient, respectively. The motion of the AFM
skyrmion under τCIP is solved by the MUMAX3 package [52].

An AFM skyrmion initially centered at (0,0) starts to move
when a current je = ( jx, 0) is applied along the x direction.
In the absence of disorder, the trajectory of the skyrmion
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FIG. 1. (a),(b) Schematic illustration of (a) a granular film of
an average grain size g = 10 nm and (b) an AFM skyrmion. (c),
(d) AFM skyrmion trajectories driven by a current density of jx =
0.5×1012 A/m2 for (c) a clean film of λ = 0 and (d) a disordered
film of λ = 0.025. The dashed lines denote the trajectories. The solid
lines in (d) are the envelope of the AFM skyrmion trajectory. (e)
Enlargement of the AFM skyrmion. Colors encode mz.

center is exactly along the electron flow, as shown by the
straight line in Fig. 1(c). The skyrmion center is defined
as R = (Rx, Ry) = ∫∫

q1xdxdy/
∫∫

q1dxdy, where q1(2) =
m1(2) · (∂xm1(2)×∂ym1(2)) is the topological charge density on
sublattice 1 or 2, and m1(x, t ) and m2(x, t ) are, respectively,
magnetization unit vectors of the two sublattices. The total
Magnus force on the AFM skyrmion is zero because it is
proportional to the total topological charge of Q = ∫∫

(q1 +
q2)dxdy/(4π ) = 0 [26]. In the presence of finite disorders,
the AFM skyrmion deviates from y = 0; see one represen-
tative example shown in Fig. 1(d). The transverse motion
of the AFM skyrmion is diffusive since its mean squared
displacement increases with time t . Further micromagnetic
simulations, discussed later, demonstrate that this diffusive
behavior is very general and true when disorders are from
other model parameters.

Figure 2(a) is the time dependence of the ensemble av-
erage 〈Rx〉 (over more than 100 samples) for different λ.
One can clearly see that 〈Rx〉 increases linearly with t
and its slope decreases with λ for weak disorders of λ =
0.03, 0.09, 0.12. These results show that disorders always
hinder the longitudinal motion, i.e., the hindering phase. As
the disorder increases above a critical value of λc ≈ 0.15, 〈Rx〉

FIG. 2. (a) 〈Rx〉 as a function of t for λ = 0.03, 0.09, 0.12, 0.18,
and 0.24. The orange lines are the linear fits of 〈Rx〉 = 〈vx〉t for λ =
0.03, 0.09, and 0.12. (b) 〈vx〉 vs λ for the two different phases. The
solid line of the hindering phase is plotted by Eq. (5) without any
fitting parameter. Here, jx = 2×1012 A/m2.
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FIG. 3. (a) 〈(�Ry )2〉 and 〈Ry〉 (inset) as a function of t for
λ = 0.015, 0.02, 0.025 (from bottom to top) and T = 0. The green
solid lines are 〈(�Ry )2〉 = 2Defft with fitted diffusion coefficients.
(b) 2Deff as a function λ for T = 0. The solid line is Eq. (8). (c) Same
as (a), but for T = 4, 16, 24 K (from bottom to top) and λ = 0.
(d) 2Deff as a function of T for λ = 0. α̃ is obtained by the χ 2 fit
of log10〈(�Ry )2〉 = α̃ log10 t + log10(2Deff ), while Deff is obtained
by the linear fit of 〈(�Ry )2〉 = 2Defft , where we set α̃ = 1. Here,
jx = 0.5×1012 A/m2.

approaches a constant, indicating a pinning phase for the AFM
skyrmions. These are the cases of λ = 0.18, 0.24 > λc. A de-
tailed analysis of the ensemble-average longitudinal velocity
〈vx〉 obtained from the linear fit of the data above t0 ∼ 400 ps
in Fig. 2(a) is presented in Fig. 2(b).

Figure 3(a) is a typical time evolution of mean transverse
position 〈Ry〉 and mean square displacement 〈(�Ry)2〉 for
different disorders λ < λc. Through a χ2 fit of the numerical
data in t ∈ [80 ps, 6640 ps] to 〈(�Ry)2〉 = 2Defft α̃ with an
acceptable goodness of fit Q > 2×10−3, we obtained α̃ =
1.02 ± 0.02, 1.09 ± 0.02, 1.04 ± 0.01 for λ = 0.015 (black
symbols), 0.02 (red symbols), and 0.025 (blue symbols), re-
spectively. The green lines are linear fits to 〈(�Ry)2〉 = 2Defft .
The excellent agreement between the data and the linear fits
demonstrates that the transverse motion is a random walk with
a zero mean, 〈Ry〉 = 0, and the diffusion coefficient Deff . Ac-
cording to the orthodox theory, a stochastic motion with α̃ = 1
is a random walk, a superdiffusive (subdiffusive) motion with
α̃ > 1 (<1) [53]. The dependence of 2Deff on λ is plotted in
Fig. 3(b). A quadratic dependence, 2Deff ∼ λ2, can be clearly
seen.

The observed diffusion in transverse direction is strongly
reminiscent of skyrmion diffusion under the thermal agita-
tion [54,55]. This can be seen from the MUMAX3 simulations
of an AFM skyrmion in a homogeneous film and in the
presence of the finite temperature by setting λ = 0 and
adding an additional torque in the LLG equation that
characterizes the effect of thermal fluctuations, τ therm =
−[γ /(Msa3)]mi×Li with the random field Li of site i sat-
isfying 〈Li〉 = 0, and the fluctuation-dissipation theorem
〈Lμ

i (t )Lν
i′ (t

′)〉 = (2αkBTa3Ms/γ )δμ,νδi,i′δ(t − t ′), with kB be-
ing the Boltzmann constant [56]. Figure 3(c) shows the
transverse mean squared displacement 〈(�Ry)2〉 of the AFM
skyrmion at T = 4, 16, 24 K. It is hard to see differences

between Fig. 3(a) and Fig. 3(c). Figure 3(d) shows that the
thermal diffusion constant of an AFM skyrmion is propor-
tional to T . Interestingly, the fitted α̃ for the thermal diffusion
takes values of α̃ ∈ [0.95, 1.03]. The green lines in Fig. 3(c)
are the linear fits (α̃ = 1). This substantiates our assertion
that the transverse motions of current-driven AFM skyrmions
in a disordered film behave like a thermal diffusion with an
effective temperature Teff. In the next section, we would like to
determine this effective temperature Teff based on the Thiele’s
rigid-body assumption.

IV. THEORETICAL ANALYSIS

To understand AFM skyrmion motion, we develop an ef-
fective theory in the continuous limit of our model (1). It is
convenient to use the total magnetization M = M1 + M2 and
the Néel order l = M1 − M2, with n = l/|l | unit vector of l .
There is one constraint of n · M = 0 when |M1| = |M2|. The
total energy of the thin film is given by Etotal = a

∫∫
εtotaldxdy,

with εtotal = (AM |M|2)/2 + AN (∇n)2 + (D/a2)[nz(∇ · n) −
(n · ∇)nz] + (K/a3)(1 − n2

z ) [57]. The first two terms are ex-
change energies of the magnetization and the Néel order with
exchange constants AM and AN , respectively. The third term
is the DMI for the Néel order, and the final term is the
anisotropy with the random anisotropic constant K = K (x).
For the current-in-plane case, the dynamics of the Néel order
is governed by [58]

∂tt n = γ̃ AM[γ hn − αl∂t n − βl (u · ∇)n], (3)

with the effective field hn = −δEtotal/δn, γ̃ = γ /(1 + α2),
and l = |l | ∼ Ms. Hereafter, we take γ̃ ≈ γ since α 	 1.
The demagnetizing field of an ultrathin magnetic film just
modifies the anisotropy [59]. We have carried out numerical
simulations both with and without the DDI, and no signifi-
cant difference is observed; see one representative example in
Appendix A. Thus, the DDI is ignored below.

Recent studies show that the slow motion of an isolated
AFM skyrmion can be well described by the Thiele’s ap-
proach of the rigid-body approximation, i.e., n(x, t ) = n[x −
R(t )] [26,38]. Under the rigid-body assumption and after
some algebra, we obtain the following stochastic Thiele equa-
tion of the AFM skyrmion (see Appendix B):

↔
M · a + α

↔
D · v = β

↔
D · u + f . (4)

Here,
↔
M = ↔

D/(lγ AM ) is the effective mass tensor.
↔
Di j =∫∫

∂in · ∂ jndxdy is the dissipative dyadic. For a circu-

larly symmetric AFM skyrmion,
↔
Di j = Dδi j approximately.

v = Ṙ and a = R̈ are the velocity and the acceleration
of the AFM skyrmion, respectively. f = −γ∇REtotal/(la) ≈
Nγ∇K/(la3) with N = ∫∫

(1 − n2
z )dxdy is a stochastic force

coming from the random anisotropy. We estimate D and N
by assuming a linear profile of the Néel vector and a constant
shape of the AFM skyrmion [34,60]. In the clean system of
λ = 0, f = 0 and v = v0 = β(1 − e−t/τ )u/α with the char-
acteristic time τ = 1/(γ lαAM ). The time of our simulations
is much longer than τ such that the skyrmion is in its steady
state of v0 = βu/α.
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A. Motion in the hindering phase

We now study the AFM skyrmion motion in the hin-
dering phase where u = (ux, 0) and |βux/α| � | fx|/(αD)
and focus first on the longitudinal motion. The longitudi-
nal velocity at t � τ can be calculated by Eq. (4) (the
inertial term is irrelevant for the steady state). The re-
sult is vx(t ) = βux/α + fx(t )/(αD), indicating that the AFM
skyrmion is boosted (hindered) by disorders when fx(t ) >

0 ( fx(t ) < 0). If · · · denotes the time average, then the
time-average velocity is vx = βux/α + fx/(αD). For a long-
distance L motion, it is reasonable to assume that the
regimes of fx > 0 and fx < 0 appear with an equal pos-
sibility such that fx = [1/(t+ + t−)]

∫
[ fx(1/vx+ + 1/vx−)]dx

[47]. Here, vx± and t± = L/(2vx±) are the velocities and the
total traveling times of the AFM skyrmion in the boosting
and the hindering regimes, respectively. After some calcu-
lations, with details given in Appendix B, we obtain fx =
−2γ 2N2λ2K2

0 /(3βuxDl2g2a6) up to the order of λ2. As ex-
pected, fx behaves as a friction that always hinders skyrmion
motion: Although the distances for boosting and hindering
are equal, the time of hindering, t−, is always larger than
that of boosting t+ since vx+ > vx−. Hence, AFM skyrmions
are slowed down by disorders for long enough time. This
feature can be clearly seen from the time-average longitudinal
velocity vx obtained by Eq. (4),

vx = βux

α
− 2γ 2N2λ2K2

0

3αβuxD
2l2g2a6

. (5)

Indeed, Eq. (5) accords perfectly with the ensemble-average
velocity 〈vx〉 from simulations [red solid line in Fig. 2(b);
no fitting was performed]. Noticeably, vx approaches v0x =
βux/α in the limit of ux → ∞, indicating that the disorder
effect is negligible for high driven current. This conclusion is
further confirmed by numerical calculations; see Appendix C.

Next, we elucidate the diffusive motion in the trans-
verse direction and derive the effective temperature Teff. For
weak disorders, the AFM skyrmion moves linearly with
time along the x direction. The stochastic transverse force
fy is the y component of the gradient of skyrmion en-
ergy, or the gradient of K (x) at the skyrmion center. For
the granular system, let us consider two pairs of nearest-
neighbor grains at (x1, y1), (x1, y2), (x2, y1), and (x2, y2)
along the y direction. The magnetic anisotropy energies sat-
isfy 〈K (x, y)〉 = K0 and 〈[K (x1, y1) − K (x1, y2)][K (x2, y1) −
K (x2, y2)]〉 = 2g(λK0)2δ(x1 − x2)/3. For small disorders, we
assume that x1 − x2 ≈ βux(t1 − t2)/α such that fy(t ) = 0 and

fy(t1) fy(t2) = 2ζeffkBTeffγ

la
δ(t1 − t2), (6)

with the effective temperature being

Teff = αγ N2λ2K2
0

3ζeffkBglβuxa5
(7)

and the friction coefficient ζeff = αD (see Appendix B).
Then, the y component of Eq. (4) becomes the stan-
dard one-dimensional Langevin equation, i.e., Day/(l γ̃ AM ) =
−αDvy + fy(t ). It is seen that rather than moving straightly
along the x direction, the AFM skyrmion experiences a
free Brownian motion caused by random anisotropies in the

transverse direction. By solving the Langevin equation [61],
we obtain 〈(�Ry)2〉 = 2Deff[t − τ (1 − e−t/τ )] with the diffu-
sion coefficient reading

Deff = γ kBTeff

laζeff
. (8)

As mentioned before, the time of our simulation (∼1 ns) is,
in general, much larger than the relaxation time τ ≈ 2.2 ps
such that 〈(�Ry)2〉 � 2Defft , which explains the diffusive
motions shown in Fig. 3(a). We compare Eq. (8) with the
numerically obtained diffusion coefficients in Fig. 3(b) (pur-
ple line) and find a satisfactory agreement. Furthermore, we
find no skyrmion size dependence of the effective tempera-
ture Teff. The transverse diffusion of an AFM skyrmion due
to the disorders in the hindering phase is equivalent to the
skyrmion motion under the thermal agitation described by
the stochastic LLG equation at finite T . The meaning of our
effective temperature Teff is about this equivalence. However,
the equivalence between the spatial randomness of model
parameters and temporal randomness from an effective tem-
perature makes sense only when a skyrmion can experience
the spatial inhomogeneity. In other words, the equivalence
fails in the pinning phase where a skyrmion has no way to
know the spatial inhomogeneity.

In the examples considered so far, an AFM skyrmion
moves in either a random anisotropic field or a fluctuat-
ing thermal field. In reality, both types of fields appear
simultaneously. In the presence of both finite temperature
and disorders, our theory can be generalized and AFM
skyrmions still undergo a random walk in the transverse
direction, i.e., 〈(�Ry)2〉 = 2Defft , with the diffusion coef-
ficient given by Deff = (γ kBT̃ )/(laζeff ), similar to Eq. (8),
but with the temperature modified as T̃ = T + Teff = T +
(αγ N2λ2K2

0 )/(3ζeffkBglβuxa5) with T being the real temper-
ature and Teff being the effective temperature contributed by
disorders. We have justified our theory by performing simula-
tions with λ �= 0 and T �= 0 and the results are summarized in
Appendix D.

B. Critical disorder

Numerical simulations in Fig. 2(a) show the pinning of
AFM skyrmions by strong disorders. The critical disorder
λc separating the hindering phase from the pinning phase is
given by |βux/α| = max[| fx|/(αD)]. The force on an AFM
skyrmion due to the random magnetic anisotropy is |KI −
KJ |/g. The maximal random force should be larger than the
driven term βDux in order to pin the AFM skyrmions such
that vx in Eq. (4) becomes zero,

βDux = γ N |KI − KJ |
lga3

≈ 2λcK0γ N

lga3
. (9)

For a given driven current jx, the critical disorder strength
thus reads λc = βDlgμB jxa3/[2γ NK0eMs(1 + β2)], which
also accords well with numerical simulations as shown in
Fig. 4 that depict λc as a function of jx for the same other
parameters used in Fig. 2.
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FIG. 4. Phase diagram in the jx − λ plane. The phase boundary
(solid line) is plotted according to Eq. (8). The black squares are
determined through simulations.

V. DISCUSSION AND CONCLUSION

Before concluding, we would like to make a remark
about disorders. Although the diffusive transverse motion
of an AFM skyrmion in the hindering phase is obtained
with random magnetic anisotropy, the similar diffusive mo-
tion is generally true for other random model parameters.
In Appendix E, we generalize our theory by modeling the
granular film with random distributed exchange stiffness and
DMI constant in the range of [J0 − νJ0, J0 + νJ0] and [D0 −
ξD0, D0 + ξD0] of each grain, respectively. After some alge-
bra (see Appendix E), we find that the effective temperature
of the AFM skyrmion in the hindering phase is

Teff = αγ a

3ζeffkBglβux

(
C2

1 ν2J2
0

a2
+ N2λ2K2

0

a6
+ C2

2 ξ 2D2
0

a4

)
, (10)

with C1=
∫∫

(∇n)2dxdy=Dxx+Dyy and C2=
∫∫

[nz(∇ · n) −
(∇ · n)nz]dxdy depending on the profile of the AFM
skyrmion. It is seen that the contributions from random ex-
change interactions, anisotropy energies, and DMIs to the
effective temperature are the first, second, and third terms
of Eq. (10), respectively. Therefore, such diffusive transverse
motion should also be applicable for not only Hamiltonian
(1), but also a general granular film with different parameters
(exchange stiffness, DMI constants, and anisotropic energies)
in different grains. One can find numerical supports to this
argument in Appendix E.

In summary, we have revealed the disorder effects on
the current-driven AFM skyrmion dynamics. Weak disorders
always hinder the longitudinal motion and make an AFM
skyrmion undergo a random walk along the transverse di-
rection. The results can be well explained by the stochastic
Thiele equation. Strong disorders above a critical strength pin
AFM skyrmions. Our findings are important for future AFM
skyrmion devices.
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FIG. 5. 〈(�Ry )2〉 as a function of t for λ = 0.15 and T = 0.
The black and red squares are data with and without the DDIs,
respectively. The purple solid line is 〈(�Ry )2〉 = 2Defft , with the
diffusion coefficient determined by Eq. (7). Each point is the average
over more than 100 samples. Here, jx = 0.5×1012 A/m2.

APPENDIX A: EFFECT OF DDIs

We have carried out simulations with and without the DDI
and found no obvious difference between the two cases, just
like the general belief that the stray field in an AFM thin film is
negligible [38]. One representative example is shown in Fig. 5
that displays 〈(�Ry)2〉 as a function of time for λ = 0.15
and T = 0 with (black squares) and without (red squares) the
DDIs. It is seen that the two curves merge, indicating that the
DDI plays an insignificant role in the diffusive behavior of the
AFM skyrmion. In addition, the two curves accord well with
the analytical result (purple line).

We give a coherent explanation for the numerical results
shown in Fig. 5. The DDIs cause a demagnetization field
Hdemag with the contributions from both bulk charges and
surface charges. For the thin film of size Lxa×Lya×a studied
in this work (Lx, Ly � 1), it is shown that the contribution
of the bulk charge is negligible compared with that of the
surface charge based on the assumption that the magnetization
is uniform in the z direction [59]. Hence, the demagnetization
field can be written as

HA(B)
demag(r) ≈ Ms

4π

{∫
[ẑ · mA(B)(r′)]

r − r′

|r − r′|3 dS′
+

+
∫

[ẑ · mA(B)(r′)]
r − r′

|r − r′|3 dS′
−

}
, (A1)

with HA(B)
demag(r) being the demagnetization field of the A(B)

sublattices of a point r = (r‖, 0) in the thin film. S′
+ and S′

− are
the top and bottom surfaces of the thin film (the planes of z =
a/2 and z = −a/2), respectively. r′ = (r′

‖, 0) is the variable to
be integrated over the surfaces. For the in-plane components
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of the demagnetization field, we have

HA(B)
demag,‖ = Ms

4π

[∫ (ẑ · mA(B))(r‖ − r′
‖)

(|r‖ − r′
‖|2 + a2/4)3/2

dr′
‖

−
∫ (ẑ · mA(B))(r‖ − r′

‖)

(|r‖ − r′
‖|2 + a2/4)3/2

dr′
‖

]
= 0; (A2)

while for the z component,

HA(B)
demag,z = Ms

4π

[∫
ẑ · mA(B)(r

′)
−(a/2)

(|r‖ − r′
‖|2 + a2/4)3/2

dr′
‖

−
∫

ẑ · mA(B)(r
′)

(a/2)

(|r‖ − r′
‖|2 + a2/4)3/2

dr′
‖

]

= −Ms

4π

∫
ẑ · mA(B)

a

(|r‖ − r′
‖|2 + a2/4)3/2

dr′
‖.

(A3)

Equations (A2) and (A3) indicate that the demagnetization
field of the AFM thin film acts like an external magnetic
field in the z direction, i.e., Hdemag = (0, 0, Hdemag,z ) with
Hdemag,z = HA

demag,z + HB
demag,z. It is reasonable to assume that

the magnetizations are antiparallel in the thin film, i.e.,
mA(r) = −mB(r). Thus, Hdemag,z ≈ 0, i.e., HA

demag and HB
demag

cancel with each other.

APPENDIX B: STOCHASTIC THIELE EQUATION

In this Appendix, we derive the stochastic Thiele equation
for the AFM skyrmion in the granular film. Let us begin with
the effective field of the Néel vector in the continuous limit,

hn = −δEtotal

δn

= 2AN∇2n + (2K/a3)nzẑ

+ (2D/a2)(∂xnz, ∂ynz,−∂xnx − ∂yny). (B1)

We adapt the rigid-body assumption that n(x, t ) = n[x −
R(t )], with R(t ) being the position of the center of the AFM
skyrmion [49]. Under this assumption,

∂t n = −(v · ∇ )n, ∂tt n = −(a · ∇ )n, (B2)

with v = Ṙ and a = R̈ being the velocity and the accelera-
tion of the AFM skyrmion, respectively. Then, we write the
dynamics of the Néel vector [given by Eq. (3)] as

0 = 1

γ 2l
(a · ∇ )n + AM

l
hn

+ AM

γ
(v′ · ∇ )n = H1 + H2 + H3, (B3)

with v′ = αv − βu being a renormalized velocity. Here, we
use the fact that α 	 1 such that γ̃ = γ /(1 + α2) ≈ γ .
From Eq. (B3), we introduce the force density (in terms of

components) as

f1,i = −lH1, j
∂n j

∂xi
= − 1

γ 2
ak

∂n j

∂xk

∂n j

∂xi
, (B4)

f2,i = −lH2, j
∂n j

∂xi
= −AMhn, j

∂n j

∂xi
, (B5)

and

f3,i = −lH3, j
∂n j

∂xi
= − lAM

γ
v′

k

∂n j

∂xk

∂n j

∂xi
. (B6)

Equation (B3) can therefore be written as
∑3

i=1 f i = 0. Next,
we integrate this equation over the entire AFM skyrmion,

0 =
∫∫

( f 1 + f 2 + f 3)dxdy. (B7)

It is easy to find that the second term of Eq. (B7) reads∫∫
f 2dxdy = −AM

a
∇REtotal, (B8)

with Etotal = a
∫∫ {AN (∇n)2 + (K/a3)(1 − n2

z ) + (D/a2)
[nz(∇ · n) − (n · ∇ )nz]}dxdy. To evaluate the first term and
the third term in Eq. (B3), we introduce the dissipative density
tensor d

↔
with di j = ∂xi n · ∂x j n such that

f 1 = − 1

γ 2
d
↔ · a (B9)

and

f 3 = − lAM

γ
d
↔ · v′. (B10)

We then recast Eq. (B7) as

− 1

lγ AM

↔
D · a − γ

la
∇REtotal − ↔

D · v′ = 0, (B11)

with
↔
D = ∫∫

d
↔

dxdy being the dissipative dyadic. By defin-

ing the effective mass tensor
↔
M = ↔

D/(lγ AM ), we obtain the
dynamics equation of the AFM skyrmion,

↔
M · a + α

↔
D · v = β

↔
D · u + f , (B12)

with f = −γ∇REtotal/(la). Equation (B12) is Eq. (4) in
Sec. IV. Here, we just consider the cases of random
anisotropic energies while the exchange interactions and the
DMIs are constants such that

f = −γ∇REtotal

la
≈ Nγ∇K (x)

la3
, (B13)

with N = ∫∫
(1 − n2

z )dxdy. Here, we have assumed that the
profile of the skyrmion stays unchanged, whose validity is
confirmed by numerical calculations (not shown here).

First, let us evaluate the x component of f . For the AFM
skyrmion propagating a long distance L that is much larger
than the average grain size g, it is reasonable to assume
that the regimes of fx > 0 (boosting) and fx < 0 (hindering)
appear with an equal probability. The velocity of the AFM
skyrmion in the boosting and the hindering regimes can be
solved by Eq. (B12) (here we ignore the mass term since
we consider the long-time dynamics), say, vx,± = βux/α ±
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FIG. 6. Schematic plot of the origin of the transverse stochastic
force fy(t ). We assume that the AFM skyrmion (purple circle) moves
in a straight line (here it is y = 0). At t1 (t2), the stochastic force
acting on the AFM skyrmion in the transverse direction comes from
the differences of the magnetic anisotropic energies of the grains
(x1, y1) and (x1, y2) [(x2, y1) and (x2, y2)].

| fx|/(αD). The total times of the AFM skyrmion in the boost-
ing and the hindering regimes are thus t± = L/(2vx,±). Then,

fx = 1

t+ + t−

(∫ L/2

0

| fx|
vx,+

dx +
∫ L/2

0

−| fx|
vx,−

dx

)

≈ − 2

LβuxD

∫ L/2

0
| fx|2dx ≈ − γ 2N2

βuxDl2g2a6
〈(KI − KJ )2〉.

(B14)

Note that KI is a white noise and distributes randomly in
the range [K0 − λK0, K0 + λK0]. Therefore, 〈KI〉 = K0 and
〈(KI − K0)(KJ − K0)〉 = (λ2K2

0 /3)δIJ . We then have 〈KI −
KJ〉 = 0 and

〈(KI − KJ )2〉 = 2λ2K2
0

3
(B15)

[note that I �= J in Eq. (B15)]. Substituting Eq. (B15) to
Eq. (B14), we finally obtain the time-average velocity,

vx = β

α
ux − 2γ 2N2λ2K2

0

3αβuxD
2l2g2a6

. (B16)

Equation (B16) is Eq. (5) in Sec. IV A.
Second, we consider the y component of the stochastic

force which is contributed by the differences of magnetic
anisotropy energies along the y direction. For two pairs of
neighbor grains along the y direction at positions x1 and x2

(see Fig. 6), the magnetic anisotropic energy satisfies

〈[K (x1, y1) − K (x1, y2)][K (x2, y1) − K (x2, y2)]〉

= 2λ2K2
0

3
gδ(x1 − x2) (B17)

and 〈[K (x1, y1) − K (x1, y2)]〉=〈[K (x2, y1)−K (x2, y2)]〉 = 0.
The stochastic force in the y direction at x1 and x2 thus reads

fy(x1) = − γ

la

∂Etotal

∂Ry

∣∣∣∣
x=x1

≈ −γ N

la3

K (x1, y2) − K (x1, y1)

g
,

fy(x2) = − γ

la

∂Etotal

∂Ry

∣∣∣∣
x=x2

≈ −γ N

la3

K (x2, y2) − K (x2, y1)

g
.

(B18)

FIG. 7. vdis as a function of λ obtained by simulations. The solid
line is plotted by Eq. (C1).

Clearly, 〈 fy(x1)〉 = 〈 fy(x2)〉 = 0. We further assume that
x1 − x2 ≈ βux (t1 − t2)/α. Then,

fy(t1) fy(t2) = 2λ2K2
0 αγ 2N2

3l2gβuxa6
δ(t1 − t2). (B19)

We define an effective temperature Teff as

Teff = αγ N2λ2K2
0

3ζeffkBglβuxa5
, (B20)

with the friction coefficient ζeff = αD and recast Eq. (B19) as

fy(t1) fy(t2) = 2ζeffkBTeffγ

la
δ(t1 − t2). (B21)

Equations (B19) to (B21) are Eqs. (6) and (7) in Sec. IV B.

APPENDIX C: LARGE CURRENT CASES

From Eq. (5) in Sec. IV A, we can clearly see two contri-
butions to the longitudinal velocity of the AFM skyrmion vx:
The first term is due to the driven current, and the second term
is from the disorder that always hinders the AFM skyrmion
motion:

vdis = 2γ 2N2λ2K2
0

3αβuxD
2l2g2a6

. (C1)

Our theory shows that vdis decreases with the increasing of
ux, i.e., the effect of disorders is strongly suppressed by
applying a large current. To confirm this feature, we numer-
ically calculate vdis as a function of ux for λ = 0.09, α = 0.1.
Other material parameters are the same as those in Fig. 3.
As depicted in Fig. 7, the obtained vdis (from micromagnetic
simulations) decreases with the increasing of ux and accords
well with the analytical result given by Eq. (C1).

APPENDIX D: DISORDERED SYSTEMS
AT FINITE TEMPERATURE

In this Appendix, we generalize our theory by considering
the effect of both disorders and thermal fluctuations. To this
end, we add an additional torque in Eq. (3),

∂tt n = γ AM[γ (hn + l�) − αl∂t n − βl (u · ∇ )n], (D1)

with the stochastic field � satisfying the fluctuation-
dissipation theorem [56], i.e., � = 0 and

�i(x, t )� j (x′, t ) = 2αkBT

γ la
δi jδ(x − x′)δ(t − t ′). (D2)
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FIG. 8. (a) 〈Ry〉 and (b) 〈(�Ry )2〉 as a function of t for different λ

and T : λ = 0.015, T = 4 K (black), λ = 0.01, T = 16 K (red), and
λ = 0.01, T = 25 K (blue). Green solid lines in (b) are the fits of
〈(�Ry )2〉 = 2Defft . (c) Diffusion coefficient 2Deff as a function of T̃
obtained by simulations, with T̃ being calculated by Eq. (D8). Solid
line is Eq. (D9). Here, jx = 0.5×1012 A/m2.

This torque can be recast as a thermal force in Eq. (B7)
with the force density −(AMl� j∂xi n j )x̂i. Thus, there is an
additional force in Eq. (B12) contributed from the thermal
fluctuations,

↔
M · a + α

↔
D · v = β

↔
D · u + f + f therm. (D3)

By integrating the force density and rearranging the coef-
ficients, we obtain the pth component of the thermal force
f therm,

fp,therm = −γ

∫∫
� j

∂n j

∂xp
dxdy, (D4)

which satisfies the fluctuation-dissipation theorem,

fp,therm(t ) fq,therm(t ′) = 2αDγ kBT

la
δ(t − t ′)δp,q. (D5)

We are now interested in the transverse motion of the AFM
skyrmion, i.e.,

D

lγ AM

dvy

dt
= −αDvy + fy(t ) + fy,therm(t ). (D6)

Let us introduce a new quantity f̃y(t ) = fy(t ) + fy,therm(t ). It
is easy to find that

f̃y(t ) f̃y(t ′) = 2αDγ kBT̃

la
δ(t − t ′), (D7)

with a renormalized temperature being

T̃ = T + Teff = T + γ N2λ2K2
0

3lgβuxDkBa5
, (D8)

where T is the real temperature and Teff is the effective
temperature contributed by disorders. Therefore, our anal-
ysis shows that in the presence of disorders at the finite
temperature, the transverse motion of the AFM skyrmion is
still a random walk with the diffusion coefficient Deff be-
ing similar to Eq. (8) in Sec. IV A, but with a renormalized
temperature of

Deff = γ kBT̃

laζeff
. (D9)

To confirm our theory, we numerically calculate 〈Ry〉 and
〈(�Ry)2〉 for various λ and T (real temperature) and plot some
representative data in Figs. 8(a) and 8(b), respectively. By us-
ing the same numerical approach, we verify that 〈(�Ry)2〉 =
2Defft , a typical feature of a one-dimensional random walk,
and obtain the diffusion coefficients for different T̃ [calcu-
lated by Eq. (D8)] by performing a linear fit of the data.
The obtained diffusion coefficients 2Deff for different T̃ are
shown in Fig. 8(c), which accord well with our theory given
by Eq. (D9).

APPENDIX E: RANDOM EXCHANGE
INTERACTIONS AND DMIs

In Appendix B, we have analytically derived the effective
temperature of the AFM skyrmion in the hindering phase by
assuming the random anisotropic energies and the constant
exchange interactions and the DMIs. In this Appendix, we
generalize our theory by modeling the granular film with both
random anisotropic energies and random exchange interac-
tions and DMIs. In the continuous limit, we set the exchange
constants AN , the DMI constants D, and the anisotropic ener-
gies K distributed uniformly in the range of [J0 − νJ0, J0 +
νJ0]/a, [D0 − ξD0, D0 + ξD0], and [K0 − λK0, K0 + λK0],
respectively. Thus, the positive numbers ν, ξ , and λ measure
the degrees of randomness of the exchange interactions, the
DMIs, and the anisotropic energies, respectively. The stochas-
tic force due to disorders thus reads

f = −γ

l
∇R

(∫∫ {
AN (∇n)2 + (K/a3)

(
1 − n2

z

) + (D/a2)[nz(∇ · n) − (n · ∇ )nz]
}
dxdy

)
. (E1)

Under the rigid-body assumption, Eq. (E1) can be recast as

f = γ

l

(
C1∇AN + N

a3
∇K + C2

a2
∇D

)
, (E2)

with C1=
∫∫

(∇n)2dxdy=Dxx+Dyy and C2=
∫∫

[nz(∇·n) −
(n · ∇ )nz]dxdy that are determined by the profile of the AFM

skyrmion and stay nearly unchanged. Following the same
approach as in Appendix B, we obtain

fy(t1) fy(t2) = 2αγ 2

3l2gβux

(
C2

1 ν2J2
0

a2
+ N2λ2K2

0

a6
+ C2

2 ξ 2D2
0

a4

)

× δ(t1 − t2). (E3)
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FIG. 9. (a) 〈(�Ry )2〉 as a function for t for ξ = 0.01, 0.015, 0.02
(from bottom to top) and ν = λ = 0. Green lines are linear fits of
the data. (b) Teff as a function of ξ obtained by the data in (a).
Purple line is a quadratic fit of the data, i.e., Teff ∝ ξ 2. (c),(d) Same
as (a),(b), but for ν = 0.01, 0.015, 0.02 and ξ = λ = 0. Here,
jx = 0.5×1012 A/m2.

From Eq. (E3), it is straightforward to find the effective tem-
perature given by Eq. (10).

We also performed numerical simulations to support the
above analyses. First, we set the strength of the DMI
of each grain distributing randomly and uniformly in the
range of [D0 − ξD0, D0 + ξD0] with D0 = 25 meV, while the
anisotropic energy K0 = 5 meV and the exchange stiffness
J0 = 94 meV of each grain are the same. The transverse mo-
tion of the skyrmion is illustrated in Fig. 9(a), which displays
the transverse mean square displacement 〈(�Ry)2〉 as a func-
tion of time t . The transverse motion is also diffusive, i.e.,
〈(�Ry)2〉 = 2Defft ; see the linear fits of the numerical data
(solid lines). Furthermore, we find a quadratic dependence
between the effective temperature Teff and the randomness ξ

that agree qualitatively with Eq. (10); see Fig. 9(b). Very sim-
ilar pictures have been found if we set the exchange stiffness
Ji j distributing randomly in the range of [J0 − νJ0, J0 + νJ0]
while the DMI and the anisotropic energy are homogeneous,
as shown in Figs. 9(c) and 9(d).
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