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Ordered ground states of kagome magnets with generic exchange anisotropy
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There is a growing family of rare-earth kagome materials with dominant nearest-neighbor interactions and
strong spin-orbit coupling. The low symmetry of these materials makes theoretical description complicated,
with six distinct nearest-neighbor coupling parameters allowed. In this article, we ask what kinds of classical,
ordered, ground states can be expected to occur in these materials, assuming generic (i.e., non-fine-tuned) sets
of exchange parameters. We use symmetry analysis to show that there are only five distinct classical ground
state phases occurring for generic parameters. The five phases are: (i) a coplanar, twofold degenerate state with
vanishing magnetization (A1), (ii) a noncoplanar, twofold degenerate state with magnetization perpendicular to
the kagome plane (A2), (iii) a coplanar, sixfold degenerate state with magnetization lying within the kagome
plane (E-coplanar), (iv) a noncoplanar, sixfold degenerate state with magnetization lying within a mirror plane
of the lattice (E-noncoplanar6), (v) a noncoplanar, twelvefold degenerate state with magnetization in an arbitrary
direction (E-noncoplanar12). All five are translation invariant (q = 0) states. Having found the set of possible
ground states, the ground state phase diagram is obtained by comparing numerically optimized energies for each
possibility as a function of the coupling parameters. The state E-noncoplanar12 is extremely rare, occupying
<1% of the full phase diagram, so for practical purposes there are four main ordered states likely to occur in
anisotropic kagome magnets with dominant nearest neighbor interactions. These results can aid in interpreting
recent experiments on “tripod kagome” systems R3A2Sb3O14, as well as materials closer to the isotropic limit
such as Cr and Fe jarosites.
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I. INTRODUCTION

Frustration can come from various sources. This is cer-
tainly true of the frustration exhibited by many magnetic
materials, which may be generated by the geometry of the
lattice [1,2], by competition between interactions of different
kinds [3,4], or by bond-dependent anisotropies [5,6]. Some-
times, all of these sources of frustration are present at once,
making the problem of determining a ground state both more
challenging and more rich [7–9].

Kagome lattice rare-earth materials [10–20] provide a re-
alization of this scenario. The kagome lattice [Fig. 1(a)]
is paradigmatic of geometrical frustration while the strong
spin-orbit coupling inherent to many rare-earth ions produces
complicated anisotropic exchange interactions with distinct,
competing contributions and bond dependence.

In this paper we study a model of anisotropic exchange
on the kagome lattice, including all possible nearest neighbor
interactions consistent with the lattice symmetries [8]. This
model has six independent coupling parameters, once one
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allows for the absence of reflection symmetry in the kagome
plane, as is appropriate for many materials.

Several previous works have investigated different types
of allowed anisotropic nearest-neighbor interaction on the
kagome lattice [8,21–30], but none has treated all possible
interactions at once, in the absence of reflection symmetry in
the plane. Thus, in some sense, these previous works can be
viewed as higher-symmetry limits of the generic case studied
here. Our goal in this work is to identify the ordered, clas-
sical ground states which are stable over a finite fraction of
the six-dimensional parameter space of the full model. We
will not address the physics at the phase boundaries between
different states or limits featuring high symmetry beyond
time reversal and lattice symmetries, or cases of accidental
degeneracy, although these can be of interest. In this sense,
we are studying those ground states stable in the presence of
“generic” exchange anisotropy.

We find that in the full six-dimensional parameter space
there are only five such distinct ground states. They are
all translationally invariant and may be classified by how
they transform under the C3v point group symmetries of the
kagome lattice. Example spin configurations for each are
shown in Figs. 2–6.

In addition to materials with strong exchange anisotropy,
our approach is also useful for understanding materials where
anisotropy is weak but nevertheless plays a key role in select-
ing the ground state due to the frustrated nature of Heisenberg
interactions on the kagome lattice. Our results can be viewed
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FIG. 1. (a) The kagome lattice, a network of corner sharing tri-
angles. The labels 0,1,2 indicate the convention used to label the
three sublattices of the kagome lattice in this work. t1 and t2 are the
basic translations under which the lattice is symmetric (b) The C3v

point group, composed of three reflection symmetries and a threefold
rotation axis through the center of the triangle.

as illuminating the spectrum of possible ground states which
can be obtained by perturbing an isotropic kagome magnet
with various allowed forms of nearest-neighbor exchange
anisotropy. This may be of use in understanding the ordered
ground states of materials including the Cr and Fe jarosites
[31–35] and Cd kapellasite [36].

The remainder of this paper is organized as follows:
(i) In Sec. II we review the most general symmetry al-

lowed nearest neighbor exchange Hamiltonian for the kagome
lattice [8,35]. We then analyze it in terms of the irreducible
representations of the point group C3v .

(ii) Building on this symmetry analysis, in Sec. III, we
demonstrate the five forms of magnetic order which may arise
from the generic Hamiltonian.

(iii) In Sec. IV we use numerical calculations to calculate
the ground state phase diagram of the generic Hamiltonian,
delineating the regions of parameter space covered by each of
the five ordered phases.

(iv) In Sec. V we discuss experimental results on kagome
materials in light of our calculations.

(v) In Sec. VI we close with a brief summary and discus-
sion of open directions for future work.

FIG. 2. A1 ordered state, occurring as the ground state of Eq. (1)
when λA1 < ωA20, ωE0 [Eq. (24)]. All spins lie in the kagome plane
at an angle of 2π

3 to one another and perpendicular to the line joining
the spin to the centers of the two neighboring triangles. The spin
configuration has vanishing total magnetization, twofold degeneracy,
and preserves the lattice symmetries of Eq. (1) while breaking time
reversal.

FIG. 3. A2 ordered state, occurring as the ground state of Eq. (1)
when ωA20 < λA1 , ωE0 [Eq. (24)]. The spin configuration has magne-
tization perpendicular to the kagome plane, twofold degeneracy, and
breaks the reflection and time reversal symmetries of Eq. (1).

II. HAMILTONIAN AND SYMMETRY ANALYSIS

We consider generalized bilinear anisotropic exchange in-
teractions on a kagome lattice [Fig. 1(a)],

H =
∑
〈i j〉

Si · Ji j · S j . (1)

We require that the interactions respect the following symme-
tries:

(i) Time reversal
(ii) Lattice translations, t1, t2, indicated in Fig. 1(a)
(iii) Spatial inversion through lattice sites
(iv) C3 rotations around the center of each kagome triangle

[Fig. 1(b)]
(v) Reflections in the mirror planes indicated in Fig. 1(b)
We do not assume any reflection symmetry in the plane of

the lattice itself.
We assume that the spins Si transform like magnetic mo-

ments, i.e., as axial vectors, odd under time reversal symmetry.

FIG. 4. E-coplanar ordered state. This occurs as a ground state
of Eq. (1) in part of the region where ωE0 < λA1 , ωA20 [Eq. (24)].
There is one spin lying in the kagome plane and two canted out of it
in such a way that the three spins remain coplanar, with the plane of
coplanarity being tilted with respect to the kagome plane. The plane
of coplanarity is indicated by the translucent red planes. There is a
net magnetization within the kagome plane. This state breaks time
reversal and all of the point group symmetries of the Hamiltonian,
apart from a single reflection symmetry which is preserved. It is
sixfold degenerate.
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FIG. 5. E-noncoplanar6 ordered state. This occurs as a ground
state of Eq. (1) in part of the region where ωE0 < λA1 , ωA20

[Eq. (24)]. All spins are canted out of the kagome plane and there is a
net magnetization lying within one of the mirror planes of the lattice.
This state is noncoplanar and thus has nonzero scalar spin chirality.
This state breaks time reversal and all of the point group symmetries
of the Hamiltonian but is symmetric under the combination of time
reversal and one reflection symmetry. It is sixfold degenerate.

This will apply not only when Si is a true magnetic moment
but also when it is a pseudospin-1/2 degree of freedom de-
scribing the twofold degenerate crystal electric field (CEF)
ground states of a Kramers ion. In this case the actual mag-
netic moment is related to the pseudospin via the g tensor

mi = gi · Si. (2)

An alternative case is possible in which Si is a pseudospin
describing the low energy CEF states of a non-Kramers ion,
which will generally be nondegenerate due to a lack of protec-
tion from time reversal symmetry. In the non-Kramers case,
the pseudospin operators Si will transform differently under
time reversal and the discussion in this section will not apply
[37,38].

We now proceed to constrain the form of the exchange
matrices Ji j using the symmetries listed above. Time reversal
symmetry T

T Si = −Si (3)

FIG. 6. E-noncoplanar12 ordered state. This occurs as a ground
state of Eq. (1) in part of the region where ωE0 < λA1 , ωA20

[Eq. (24)]. This state is generally noncoplanar and breaks time re-
versal symmetry, all point group symmetries, and all combinations
of time reversal with point group symmetries. It is twelvefold degen-
erate. This very low symmetry configuration is rare on the ground
state phase diagram, occupying <1% of the full parameter space of
the Hamiltonian (Fig. 11).

is guaranteed by the bilinear form of Eq. (1).
There are three spins in the unit cell, which we label

S0, S1, S2 according to the convention in Fig. 1(b). Transla-
tional symmetry imposes that the coupling matrices Ji j may
only depend on which sublattices i and j belong to and
whether the bond i j is on an ‘up’ or ‘down’ triangle [red or
blue triangles in Fig. 1(a)]. Inversion symmetry then guaran-
tees that ‘up’ and ‘down’ triangles have the same coupling
matrices. There are thus three different coupling matrices
J01, J12, J20 entering Eq. (1) which define the interactions
between nearest neighbor spins on each pair of sublattices.

The form of the matrices Ji j is constrained by the C3v point
group symmetry at the center of each triangle [Fig. 1(b)] and
was given in Refs. [8,35]:

J01 =
⎛
⎝ Jx Dz −Dy

−Dz Jy K
Dy K Jz

⎞
⎠ (4)

J12 =

⎛
⎜⎜⎜⎝

1
4 (Jx + 3Jy) Dz +

√
3

4 (Jx − Jy) 1
2 (Dy + √

3K )

−Dz +
√

3
4 (Jx − Jy) 1

4 (3Jx + Jy) 1
2 (

√
3Dy − K )

1
2 (−Dy + √

3K ) 1
2 (−√

3Dy − K ) Jz

⎞
⎟⎟⎟⎠ (5)

J20 =

⎛
⎜⎜⎝

1
4 (Jx + 3Jy) Dz +

√
3

4 (Jy − Jx ) 1
2 (Dy − √

3K )

−Dz +
√

3
4 (Jy − Jx ) 1

4 (3Jx + Jy) 1
2 (−√

3Dy − K )
1
2 (−Dy − √

3K ) 1
2 (

√
3Dy − K ) Jz

⎞
⎟⎟⎠. (6)

There are six independent parameters in these exchange matri-
ces: Three diagonal exchanges Jx, Jy, Jz, two Dzyaloshinskii-
Moriya (DM) interactions Dy, Dz, and one symmetric off-
diagonal exchange K .

An additional symmetry which could, in principle, be
present is reflection symmetry in the plane of the kagome lat-
tice. The presence of such a symmetry would reduce the set of
allowed exchange parameters to four, by setting Dy = K = 0.
This case was discussed in detail in Ref. [8]. In this work, we

will continue to assume that there is no reflection symmetry
in the kagome plane, as is appropriate for many rare-earth
kagome materials [17]. Therefore, we shall take both Dy and
K to be nonzero.

To begin in determining the phase diagram it is helpful
to rewrite the Hamiltonian in terms of objects mγ ,k trans-
forming according to the irreducible representations (irreps)
of the point group. mγ ,k are defined for each triangle of the
lattice, which we index using k. This approach is discussed
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for the kagome lattice in Ref. [8] and the pyrochlore lattice in
Ref. [7].

These objects can function as local order parameters for
the different kinds of three-sublattice order which we will
encounter on the phase diagram of the anisotropic exchange
model. They also aid in the determination of the phase dia-
gram itself. The appropriate objects are defined in Ref. [8]
but we reintroduce them here since they are essential to our
discussion.

Firstly, there is one scalar object transforming according to
the trivial A1 representation of C3v . A nonzero average value
of this field breaks none of the point-group symmetries, only
breaking time-reversal symmetry.

mA1,k = 1

3

(
1

2
Sx

0,k +
√

3

2
Sy

0,k + 1

2
Sx

1,k −
√

3

2
Sy

1,k − Sx
2,k

)
(7)

Here Sα
i,k is the α component of the spin belonging to sublat-

tice i and triangle k.
There are then two linearly independent scalars, which

transform according to the A2 representation. A nonzero av-
erage value of these fields breaks time reversal symmetry and
all three mirror symmetries of C3v but preserves the threefold
rotational symmetry.

mA2a,k = 1
3

(
Sz

0,k + Sz
1,k + Sz

2,k

)
(8)

mA2b,k = 1

3

(
−

√
3

2
Sx

0,k + 1

2
Sy

0,k +
√

3

2
Sx

1,k + 1

2
Sy

1,k − Sy
2,k

)
(9)

Finally, there are three two-component vectors, transforming
according to the two-dimensional E-irrep of C3v

mEa,k = 1

3

(
Sx

0,k + Sx
1,k + Sx

2,k

Sy
0,k + Sy

1,k + Sy
2,k

)
(10)

mEb,k = 1

3

(
1
2 Sx

0,k −
√

3
2 Sy

0,k + 1
2 Sx

1,k +
√

3
2 Sy

1,k − Sx
2,k

−
√

3
2 Sx

0,k − 1
2 Sy

0,k +
√

3
2 Sx

1,k − 1
2 Sy

1,k + Sy
2,k

)

(11)

mEc,k = 1

3

⎛
⎝

√
3
2

(
Sz

0,k − Sz
1,k

)
√

2
(− 1

2 Sz
0,k − 1

2 Sz
1,k + Sz

2,k

)
⎞
⎠ (12)

In terms of these objects the Hamiltonian may be written

H = 3

2

∑
k

[
λA1 m2

A1,k + (mA2a,k, mA2b,k )

(
λA2,aa

λA2 ,ab

2
λA2 ,ab

2 λA2,bb

)(
mA2a,k

mA2b,k

)

+ (mEa,k, mEb,k, mEc,k )

⎛
⎜⎜⎝

λE,aa
λE,ab

2
λE,ac

2
λE,ab

2 λE,bb
λE,bc

2
λE,ac

2
λE,bc

2 λE,cc

⎞
⎟⎟⎠

⎛
⎜⎝

mEa,k

mEb,k

mEc,k

⎞
⎟⎠

⎤
⎥⎥⎦

= 3

2

∑
k

⎡
⎢⎣λA1 m2

A1,k + (mA2a,k, mA2b,k )�A2

(
mA2a,k

mA2b,k

)
+ (mEa,k, mEb,k, mEc,k )�E

⎛
⎜⎝

mEa,k

mEb,k

mEc,k

⎞
⎟⎠

⎤
⎥⎦ (13)

where k indexes the triangles of the lattice and the final term in
Eq. (13) should be interpreted as a sum of nine scalar products
between the vectors mEi,k . The coefficients λγ are.

λA1 = 1
2 (−2

√
3Dz + Jx − 3Jy) (14)

λA2,aa = 2Jz (15)

λA2,bb = 1
2 (−2

√
3Dz − 3Jx + Jy) (16)

λA2,ab = 2(
√

3Dy + K ) (17)

λE,aa = Jx + Jy (18)

λE,bb =
√

3Dz − Jx

2
− Jy

2
(19)

λE,cc = −Jz (20)

λE,ab = Jx − Jy (21)
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λE,ac =
√

6Dy −
√

2K (22)

λE,bc =
√

8K. (23)

It is then useful to write Eq. (13) in a new basis chosen to
diagonalize the matrices �A2 and �E.

H = 3

2

∑
k

(
λA1 m2

A1,k + ωA20m2
A20,k + ωA21m2

A21,k

+ωE0m2
E0,k + ωE1m2

E1,k + ωE2m2
E2,k

)
(24)

Here ωA2i(i = 0, 1) are the eigenvalues of �A2 and mA2i are
linear combinations of mA2a and mA2b corresponding to the
associated eigenvector of �A2 [(Eq. 13)]. Similarly, ωEi(i =
0, 1, 2) are the eigenvalues of �E and mEi are linear combina-
tions of mEa, mEb, and mEc corresponding to the associated
eigenvector of �E. We define, without loss of generality,

ωA20 � ωA21, ωE0 � ωE1 � ωE2. (25)

In this work we will treat the spins as classical vectors
of fixed length |Si| = 1. Due to this condition, the following
constraint applies to fields mγ defined in Eqs. (7)–(12):∑

γ

|mγ ,k|2 = 1,∀ k. (26)

Equation (26) is a necessary but not sufficient condition for
the proper normalization of the spins.

It should be emphasized that the reformulation of the prob-
lem in terms of variables mγ ,k does not require any further
assumptions beyond the nearest-neighbor bilinear nature of
the interactions and the symmetries enumerated at the begin-
ning of this section. In what follows we will seek to find the
classical ground states of Eq. (1).

III. WHAT KINDS OF CLASSICAL GROUND
STATE ARE POSSIBLE?

In this section we seek to establish the possible classical
ordered phases which may occur on the ground state phase
diagram of Eq. (1). Our focus is on classical ground states
which are stable over finite regions of the full six-dimensional
parameter space. So, although there may be additional ground
states which become relevant in particular high symmetry
limits of Eq. (1), these are not the subject of our present
discussion as they rely on fine tuning of parameters.

Our conclusions may be summarized as follows:
(1) A translation invariant (q = 0) ground state exists for

all values of exchange parameters.
(2) If

λA1 < ωA20, ωE0 (27)

the ground state is the antiferromagnetic state shown in Fig. 2
and discussed in Sec. III B.

(3) If

ωA20 < λA1 , ωE0 (28)

the ground state is the noncoplanar state, with magnetization
perpendicular to the plane, shown in Fig. 3 and discussed in
Sec. III C.

(4) If

ωE0 < λA2 , ωA1 (29)

the ground state may be one of three states (E-coplanar,
E-noncoplanar6, E-noncoplanar12) shown in Figs. 4–6 and
discussed in Sec. III D.

A summary of the five phases in terms of the values of local
order parameters mγ [Eqs. (7)–(12)] is given in Table I.

In what follows we will demonstrate these results.

A. Existence of q = 0 classical ground
state for all parameter sets

Here, for completeness, we give the proof that Eq. (1)
possesses a q = 0 classical ground state for all values of
exchange parameters, following arguments previously given
in Refs. [7,8]. We follow a strategy of building up the global
ground state from the ground states of corner sharing units, as
is frequently done for models on lattices with a corner-sharing
structure [7,8,29,30,39].

As we have shown above, the nearest-neighbor exchange
Hamiltonian Eq. (1) can be rewritten as a sum over triangles:

H =
∑
�

H� (30)

with H� being the same on every triangle of the lattice, as
a consequence of inversion and translation symmetries. This
formulation makes it clear that any configuration which min-
imizes the energy of each individual triangle also minimizes
the energy of the system as a whole.

Such a configuration may readily be obtained by minimiz-
ing the energy on a single “up-pointing” triangle [red triangles
in Fig. 1(a)] and then tiling the solution over all “up-pointing”
triangles of the lattice. The “up-pointing” triangles will then
all be in a ground state by construction, and the “down-
pointing” triangles will be too, because they have the same
exchange matrices as “up-pointing” triangles and the same
spin orientation on each sublattice.

This naturally results in a translation invariant (q = 0)
state, which is guaranteed to be a ground state. Moreover,
it means that the ground state problem on the whole lattice
can be reduced to finding the ground state of three spins on a
triangle.

In Secs. III B–III D we examine the various possible so-
lutions to this problem that occur in different regions of
parameter space. The argument above does not rule out the
existence of additional, q �= 0, ground states, degenerate with
the q = 0 ones. We regard it, however, as unlikely that
such accidental degeneracies are present over finite regions
of the six-dimensional parameter space. Such a robust acci-
dental degeneracy would require a pair of states not related
by any symmetry to be degenerate with respect to each of
the six independent terms of the Hamiltonian individually,
which would seem to require a rather large coincidence. The
Heisenberg-Kitaev model on the kagome lattice [29,30] ex-
hibits an extended, accidental degeneracy, in the classical
limit, but since that model only has two symmetry distinct
terms the required coincidence is not so large.

From now on, we assume translationally invariant ground
states built by tiling the ground states of a single triangle
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TABLE I. Description of the five possible classical ground states in terms of the local order parameters defined for a triangle in Eqs. (7)–
(12). E order parameters mEα

are expressed in polar form, with mEα
and ψα as defined in Eqs. (39)–(41). n is an integer, with different choices

of n corresponding to different degenerate ground states in E-coplanar and E-noncoplanar6 phases.

Phase mA1 mA2a mA2b mEa ψa mEb ψb mEc ψc

A1 �= 0 0 0 0 0 0
A2 0 �= 0 �= 0 0 0 0
E-coplanar �= 0 0 0 �= 0 nπ

3 �= 0 nπ

3 �= 0 nπ

3
E-noncoplanar6 0 �= 0 �= 0 �= 0 (2n+1)π

6 �= 0 (2n+1)π
6 �= 0 (2n+1)π

6
E-noncoplanar12 �= 0 �= 0 �= 0 �= 0 [0, π ) �= 0 [0, π ) �= 0 [0, π )

and therefore drop the triangle index k from the fields mγ ,k

and spins Si,k . We can use the solutions of the single triangle
problem to check the validity of the assumption that there are
only q = 0 ground states. We do this by checking whether
two distinct single triangle ground states can be placed on
neighboring triangles without causing an inconsistency at the
shared site. If they cannot, then only q = 0 ground states are
possible. This is explicitly checked for each single triangle
ground state below, and in each case we find that q �= 0 states
are only possible with fine tuning.

B. A1 order

We first consider the parameter regime defined by inequal-
ity (27) where λA1 is the lowest coefficient in Eq. (24). We can
use Eq. (26) to write:

m2
A1

= 1 −
∑
γ �=A1

m2
γ (31)

and so eliminate mA1 from the Hamiltonian [Eq. (24)]:

H = 3

2

∑
�

(
λA1 + (

ωA20 − λA1

)
m2

A20 + (
ωA21 − λA1

)
m2

A21

+ (
ωE0 − λA1

)
m2

E0 + (
ωE1 − λA1

)
m2

E1

+ (
ωE2 − λA1

)
m2

E2

)
. (32)

All the remaining fields mA2i, mEi now appear as quadratic
forms with positive coefficients, due to inequalities (25) and
(27).

Therefore any spin configuration where all these fields
vanish is necessarily a ground state, for all parameter sets
fulfilling the inequality (27). There are exactly two such con-
figurations, related to each other by time reversal symmetry:

S0 = ±
(

1

2
,

√
3

2
, 0

)
,

S1 = ±
(

1

2
,−

√
3

2
, 0

)
,

S2 = ±(−1, 0, 0). (33)

These are the ground state spin configurations of the A1 phase.
The only remaining degree of freedom on a triangle is the
choice of the + or − sign in Eq. (33). Once this sign is
chosen for one triangle, consistency at the shared spin requires
that the same sign is chosen on the neighboring triangles.
Propagating this throughout the lattice we see that only q = 0
tilings are possible.

This phase preserves all lattice symmetries of the original
Hamiltonian but breaks time reversal symmetry. One of the
ground states is illustrated in Fig. 2.

C. A2 order

Next we consider parameter sets falling in the regime
described by inequality (28), such that ωA20 is the lowest
coefficient in Eq. (24). Under these conditions we can use
Eq. (26) to remove mA20 from the Hamiltonian [Eq. (24)] in a
similar manner to the analysis in Sec. III B. By this means one
can show that the ground states for parameter sets obeying the
inequality (28) are of the form

S0 = ±
(

−
√

3

2
cos(η),

1

2
cos(η),− sin(η)

)

S1 = ±
(√

3

2
cos(η),

1

2
cos(η),− sin(η)

)
S2 = ±(0,− cos(η),− sin(η)). (34)

With the out-of-plane canting angle η being determined by the
content of the lowest eigenvector of �A2 [Eq. (13)]. In terms
of the coupling parameters, η obeys the relation:

tan(2η) = 4(
√

3Dy + K )

2
√

3Dz + 3Jx − Jy + 4Jz

. (35)

With η fixed by Eq. (35), the only remaining degree of free-
dom on a single triangle is the choice of sign in Eq. (34). Once
this sign is chosen for one triangle, consistency at the shared
spin requires that the same sign is chosen on the neighboring
triangles. Propagating this throughout the lattice we see that
only q = 0 tilings are possible.

The A2 configurations have nonzero scalar chirality on the
triangle:

χ = (S0 × S1) · S2 = ±3
√

3

2
cos(η)2 sin(η) (36)

This phase breaks the reflection and time reversal symmetry
of H but preserves the C3 rotational symmetry. An example
ground state in this phase is illustrated in Fig. 3.

D. E orders

We then come to the case

ωE0 < λA1 , ωA20. (37)

Applying the same type of arguments as in Secs. III B and
III C, we might expect to find a ground state with mA1 =
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mA2a = mA2b = 0 and with the values of mEa,b,c being deter-
mined by the lowest eigenvector of �E. However, for typical
eigenvectors of �E this is incompatible with the spin length
constraints

S2
0 = S2

1 = S2
2 = 1. (38)

The resolution of this is that the system must mix small values
of mA1 , mA2a, mA2b into the ground state, so as to respect the
spin length constraints while retaining a large value of |mE0|
as favored by the Hamiltonian.

We can distinguish the different ways that this can happen
by further consideration of the symmetries of the problem.
Specifically, we can ask what symmetries of the Hamilto-
nian can be preserved in the presence of nonzero values of
mEa, mEb, mEc.

There are three possibilities consistent with nonzero values
of mEα .

(1) One of the reflection symmetries of C3v is preserved.
This corresponds to the E-coplanar phase discussed below in
Sec. III D 1.

(2) The combination of one of the reflection symmetries
of C3v with time reversal is preserved. This corresponds to the
E-noncoplanar6 phase discussed below in Sec. III D 2.

(3) None of the point group symmetries nor any of their
combinations with time reversal symmetry are preserved. This
corresponds to the E-noncoplanar12 phase discussed below in
Sec. III D 3.

1. E-coplanar

In the E-coplanar phase one of the reflection symmetries
of C3v is preserved. For concreteness, let us suppose that
the preserved symmetry is reflection in the yz plane, i.e., the
mirror plane that runs through site 2 in Fig. 1(b). We write
mEa, mEb, mEc in polar form

mEa = mEa

(
cos(ψEa)
sin(ψEa)

)
(39)

mEb = mEb

(
cos(ψEb)
sin(ψEb)

)
(40)

mEc = mEc

(
cos(ψEc)
sin(ψEc)

)
(41)

defining the angles ψEi to lie in the interval [0, π ), and
allowing the scalars mEi to take either sign ±. Imposing
preservation of reflection symmetry in the yz plane constrains
ψEα

ψEα = 0 ∀ α. (42)

More generally, if we had chosen one of the other mirror
planes [Fig. 1(b)] to be preserved, we would have ψEα =
nπ
3 , n ∈ {0, 1, 2}. If the preserved reflection plane passes

through site 2 of the unit cell [see Fig. 1(a)] then n = 0, if
through site 0 then n = 1 and if through site 1 then n = 2.

The symmetry further implies that

mA2a = mA2b = 0 (43)

but a nonzero value of mA1 is allowed

mA1 �= 0 (44)

and will be mixed into the ground state in such a way as
to satisfy the spin length constraints. The magnitudes and
relative signs of mEi, mA1 are fixed by minimizing the energy.

An example spin configuration on the three sublattices in
this phase has the form (taking n = 0)

S0 = (cos(φ) sin(θ ), sin(φ) sin(θ ), cos(θ ))

S1 = (cos(φ) sin(θ ),− sin(φ) sin(θ ),− cos(θ ))

S2 = (1, 0, 0), (45)

where φ and θ are functions of the exchange parameters,
which must be determined by minimizing the energy. Degen-
erate spin configurations can be obtained by applying time
reversal and lattice symmetries to Eq. (45) and there is a total
degeneracy of six.

The spins are in a common plane, which is generally not
the plane of the kagome lattice. The total magnetization of
the configuration is normal to the unbroken mirror plane. An
example configuration is shown in Fig. 4.

Minimizing the energy with respect to θ and φ gives a pair
of equations which relate the ground state canting angles to
the coupling parameters.

∂E

∂θ
= 0

⇒ 1
2 cos(θ )(cos(φ) + 4 cos(φ)2 sin(θ ) −

√
3 sin(φ))Jx

+ 1
2 cos(θ )(3 cos(φ)+ sin(φ)(

√
3−4 sin(θ ) sin(φ)))Jy

+ sin(2θ )Jz + (2 cos(2θ ) cos(φ) − sin(θ ))Dy

+ 2 cos(θ )(1 − 2 cos(φ) sin(θ )) sin(φ)Dz

+ (
√

3 sin(θ ) − 2 cos(2θ ) sin(φ))K = 0 (46)

∂E

∂φ
= 0

⇒ − 1
2 sin(θ )(

√
3 cos(φ) + sin(φ) + 2 sin(θ ) sin(2φ))Jx

+ 1
2 sin(θ )(

√
3 cos(φ)−3 sin(φ)−2 sin(θ ) sin(2φ))Jy

− 2 cos(θ ) sin(θ ) sin(φ)Dy

+ 2 sin(θ )(cos(φ) − cos(2φ) sin(θ ))Dz

− 2 cos(θ ) cos(φ) sin(θ )K = 0 (47)

If the angles θ and φ are measured for a given material (e.g.,
from refinement of Bragg peaks), then Eqs. (46) and (47) can
be used to give constraints on the coupling parameters, at least
at the level of a classical description.

Unless the angles φ, θ are fine tuned to special values
(which requires fine tuning of exchange parameters), there is
no way to place different members of the set of six single-
triangle ground states on neighboring triangles. This implies
that only q = 0 configurations are possible within this phase,
for generic parameters.

2. E-noncoplanar6

In the E-noncoplanar6 phase the combination of time
reversal with one of the reflection symmetries of C3v is
preserved. For concreteness, let us suppose the preserved sym-
metry is the combination of time reversal with the mirror plane
that runs through site 2 in Fig. 1(b).
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This symmetry constrains the angles ψEα [Eqs. (39)–(41)],
remembering that ψEα is defined to lie in the interval [0, π ):

ψEα = π/2 ∀ α. (48)

More generally, if we had chosen one of the other mirror
planes [Fig. 1(b)] to be preserved when in combination with
T , we would have ψEα = (2n+1)π

6 , n ∈ {0, 1, 2}. If the mirror
plane preserved in combination with T runs through site 2 of
the unit cell [see Fig. 1(a)] then n = 1, if through site 0 then
n = 2, if through site 1 then n = 0.

The symmetry implies that

mA1 = 0 (49)

but nonzero values of mA2a and mA2b appear in the ground
state as a way to satisfy the spin length constraints

mA2 , mA2b �= 0. (50)

An example spin configuration for this phase is

S0 = (cos(ν) sin(μ), sin(ν) sin(μ), cos(μ))

S1 = (− cos(ν) sin(μ), sin(ν) sin(μ), cos(μ))

S2 = (0, cos(κ ), sin(κ )). (51)

The parameters ν, μ, and κ are functions of the exchange
parameters and must be determined by minimizing the en-
ergy. The E-noncoplanar6 configurations have nonzero scalar
chirality on the triangle:

χ = (S0 × S1) · S2

= ±2 cos(ν) sin(μ)(− cos(κ ) cos(μ)

+ sin(κ ) sin(μ) sin(ν)). (52)

The magnetization of the configuration lies within the mirror
plane which is unbroken when combined with time reversal.

Degenerate spin configurations can be obtained by apply-
ing time reversal and lattice symmetries to Eq. (51) and there
is a total degeneracy of six. Minimizing the ground state
energy with respect to ν, μ, κ gives three constraints relating
the canting angles to the coupling parameters

∂E

∂ν
= 0 ⇒ sin(μ)

2
(cos(κ )(3 cos(ν) +

√
3 sin(ν)) + 2 sin(μ) sin(2ν))Jx

+ sin(μ)

2
(cos(κ )(cos(ν) −

√
3 sin(ν)) + 2 sin(μ) sin(2ν))Jy

+ sin(μ)(
√

3 cos(ν) sin(κ ) + (2 cos(μ) + sin(κ )) sin(ν))Dy + 2 sin(μ)(cos(2ν) sin(μ) + cos(κ ) sin(ν))Dz

+ sin(μ)(2 cos(μ) cos(ν) + sin(κ )(− cos(ν) +
√

3 sin(ν)))K = 0 (53)

∂E

∂μ
= 0 ⇒ − cos(μ)

2
(4 cos(ν)2 sin(μ) + cos(κ )(

√
3 cos(ν) − 3 sin(ν)))Jx

+ cos(μ)

2

(
4 sin(ν)2 sin(μ) + cos(κ )(

√
3 cos(ν) + sin(ν))

)
Jy − 2(cos(μ) + sin(κ )) sin(μ)Jz

− (cos(ν)(2 cos(2μ) + cos(μ) sin(κ )) −
√

3(cos(κ ) sin(μ) + cos(μ) sin(κ ) sin(ν)))Dy

− (2 cos(κ ) cos(μ) cos(ν) − sin(2μ) sin(2ν))Dz + (cos(κ ) sin(μ)

+ 2 cos(2μ) sin(ν) − cos(μ) sin(κ )(
√

3 cos(ν) + sin(ν)))K = 0 (54)

∂E

∂κ
= 0 ⇒ 1

2 sin(κ ) sin(μ)(
√

3 cos(ν) − 3 sin(ν))Jx − 1
2 sin(κ ) sin(μ)(

√
3 cos(ν) + sin(ν))Jy

+ 2 cos(κ ) cos(μ)Jz + (
√

3 cos(μ) sin(κ ) + cos(κ ) sin(μ)(
√

3 sin(ν) − cos(ν)))Dy

+ 2 cos(ν) sin(κ ) sin(μ)Dz + (cos(μ) sin(κ ) − cos(κ ) sin(μ)(
√

3 cos(ν) + sin(ν)))K = 0 (55)

If ν, μ, and κ are known for a system in the E-noncoplanar6
phase, Eqs. (53)–(55) give three constraints on the possible
coupling parameters, within the classical description.

Different members of the set of six ground states cannot
be placed on neighboring triangles without causing an incon-
sistency, unless the angles μ, ν, κ are fine tuned to special
values, via fine tuning of exchange parameters. This confirms
that only q = 0 configurations are possible within this phase,
for generic parameter sets.

3. E-noncoplanar12

Finally, there is the possibility that time reversal, all point
group symmetries and all combinations of the two are broken
in the ground state, leaving only translation and inversion
symmetries intact. In this case the angles ψEα [Eqs. (39)–(41)]
can take arbitrary values, and symmetry does not fix any
relationship between them

ψEa �= ψEb �= ψEc. (56)

174425-8



ORDERED GROUND STATES OF KAGOME MAGNETS WITH … PHYSICAL REVIEW B 103, 174425 (2021)

Moreover mA1 , mA2a, mA2b may all be present by symmetry

mA1 �= 0, mA2a �= 0, mA2b �= 0. (57)

The spin directions of the three sites on the triangle have
no fixed relationship enforced by symmetry, so there are six
parameters in the ground state that can only be determined
energetically:

S0 = (cos(ζ0) sin(υ0), sin(ζ0) sin(υ0), cos(υ0))

S1 = (cos(ζ1) sin(υ1), sin(ζ1) sin(υ1), cos(υ1))

S2 = (cos(ζ2) sin(υ2), sin(ζ2) sin(υ2), cos(υ2)). (58)

An example configuration is shown in Fig. 6. The state
will generally have nonzero chirality and magnetization in
an arbitrary direction. Degenerate spin configurations can
be obtained by applying time reversal and lattice symme-
tries to Eq. (58), giving a total degeneracy of twelve—the
maximum possible for a state with translation and inversion
symmetries.

As shall be shown using numerics in Sec. IV, this low
symmetry state does appear on the ground state phase diagram
but only in a very small region of parameter space. Minimiz-
ing the energy with respect to ζi, υi (i = 0, 1, 2) gives a total
of six equations relating the canting angles to the coupling
parameters.
dE

dζi
= 0

⇒
∑
j �=i

⎛
⎝− sin(ζi ) sin(υi )

cos(ζi ) sin(υi )
0

⎞
⎠ · Ji j ·

⎛
⎝cos(ζ j ) sin(υ j )

sin(ζ j ) sin(υ j )
cos(υ j )

⎞
⎠ = 0

(59)

dE

dυi
= 0

⇒
∑
j �=i

⎛
⎝cos(ζi ) cos(υi )

sin(ζi ) cos(υi )
− sin(υi )

⎞
⎠ · Ji j ·

⎛
⎝cos(ζ j ) sin(υ j )

sin(ζ j ) sin(υ j )
cos(υ j )

⎞
⎠ = 0

(60)

Thus, if for a system in the E-noncoplanar12 phase all six
angles are known, it should be possible to use Eqs. (59) and
(60) to uniquely determine the six exchange parameters.

IV. PHASE DIAGRAM

In this section we calculate the ground state phase diagram
of Eq. (1) numerically, by comparing optimized energies for
the five phases described in Sec. III. The numerical optimiza-
tion of the energy was done by a combination of random
search, simulated annealing, and iterative minimization [40].
Details of the numerics are given in the Appendix.

Figures 7–10 show slices of the phase diagram as a func-
tion of Jx/|Jz| and Jy/|Jz| with K/|Jz| = {−0.5, 0.5} for both
positive (Figs. 7 and 8) and negative (Figs. 9 and 10) Jz.
Each panel in a given figure corresponds to different values of
DM interactions Dy/|Jz| and Dz/|Jz|. Dy/|Jz| increases from
left to right within each figure and Dz/|Jz| from bottom to
top. Taken together, Figs. 7–10 give a broad view of the

competition between different magnetic orders as anisotropic
exchange parameters are varied. Further phase diagrams for a
greater range and variety of parameter sets are shown in the
Supplemental Material [41].

The boundaries of the A1 and A2 phases can also be cal-
culated analytically using conditions (27) and (28). These
analytic boundaries are shown as white lines in Figs. 7–10
and agree with the results of the numerics. The boundaries be-
tween the different E phases are only calculated numerically.

One notable feature of Figs. 7–10 is that the E-coplanar
phase is generally found bordering the A1 phase, whereas
the E-noncoplanar6 phase is generally found bordering
the A2 phase. This is natural since the E-coplanar phase
mixes in a finite value of the A1 order parameter and
likewise the E-noncoplanar6 includes a finite A2 order
parameter.

Another striking feature of the phase diagram is the rarity
of the E-noncoplanar12 phase. This low-symmetry configura-
tion occupies only small portions of the phase diagrams in
Figs. 7–10, with its stability generally being increased by a
strong negative value of Dz.

To investigate the relative frequency of the different
phases in the overall parameter space we have calculated the
ground state for 100 000 different parameter sets, randomly
chosen from a uniform distribution on the surface of the six-
dimensional hypersphere defined by

J2
x + J2

y + J2
z + D2

y + D2
z + K2 = 1. (61)

The pie chart in Fig. 11(a) shows the relative frequency
of each of the five phases obtained from this procedure. It
confirms that E-noncoplanar12 is indeed a rare phase, found
as the ground state for only ∼0.5% of randomly gener-
ated parameter sets. The four other phases are comparatively
common.

This leads us to conclude although the E-noncoplanar12
state does not require perfect fine tuning to be realized in a
kagome material (i.e., it occupies a finite fraction of parameter
space), it is unlikely to be realized serendipitously. The other
four phases should constitute the classical ground states for
the vast majority of kagome materials to which the theory in
this paper can be applied (i.e., those with nearest-neighbor,
anisotropic interactions).

The above assumes a probability distribution of param-
eter sets which is isotropic in the six-dimensional space
(Jx, Jy, Jz, Dy, Dz, K ). This may not be the case physically,
and indeed it is frequently assumed that the off-diagonal
components of the exchange tensor Dy, Dz, K should be
smaller than the diagonal ones Jx, Jy, Jz. We have investi-
gated the distribution of ground states under this assumption,
by generating 100 000 random parameter sets by choosing
Jx, Jy, Jz from a uniform distribution on the surface of the unit
sphere:

J2
x + J2

y + J2
z = 1 (62)

and independently choosing Dy, Dz, K from a uniform distri-
bution on the surface of a smaller sphere:

D2
y + D2

z + K2 = 0.1. (63)

The resulting distribution of ground states is shown in
Fig. 11(b). The relative frequency of different phases is very
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FIG. 7. T = 0 phase diagram with Jz > 0 and K = −0.5|Jz|. Each panel shows a slice of the phase diagram as a function of Jx and Jy for
different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from bottom to top. The phase diagram
is obtained by comparing numerically optimized energies for the five phases described in Sec. III. The numerical optimization procedure
is described in the Appendix. The white lines show analytic calculations of the boundaries of the A1 and A2 phases, using conditions (27)
and (28).

similar to that with an isotropic distribution of parameters, al-
though the prevalence of the E-noncoplanar12 phase increases
from ∼0.5/% to ∼2/%.

A. Phase diagram in the vicinity of the
antiferromagnetic Heisenberg limit

The limit Jx = Jy = Jz = J > 0, Dy = K = Dz = 0, gives
the well studied nearest neighbor antiferromagnetic Heisen-
berg model, which is known to have a highly degenerate
ground state [39]. Generic perturbations away from this limit
lift the degeneracy, stabilizing a ground state which is unique
up to global symmetry operations.

Figure 12 shows the effect of perturbing the Heisenberg
model with finite off-diagonal couplings Dy, Dz, K . Dz > 0
strongly favors A2 order, while Dz < 0 favors ordering into
the E-coplanar or E-noncoplanar6 phases depending on
which of Dy or K is the more dominant perturbation. Our
results are in agreement with those of Elhajal et al. [21], who
considered the case of perturbing the Heisenberg model

with Dzyaloshinskii-Moriya interactions Dy, Dz, fixing
K = 0.

When comparing the results here with those of Ref. [21]
one should note that the ground state configurations of the
E-noncoplanar6 phase become coplanar in the limit of strong
positive J and K = 0. This agrees with the labeling of the
same phase as coplanar in Ref. [21]. Once all symmetry
allowed couplings (particularly K) are present, this phase
becomes noncoplanar, as identified here.

It is notable that the A1 phase does not appear at all in
Fig. 12. This can be readily understood from the couplings in
Eqs. (14)–(20) when Jx = Jy, λA1 = λA2,bb. This then implies
that ωA20 � λA1 [cf. Eqs. (25) and (27)] with the equality only
applying when λA2,ab = 2(

√
3Dy + K ) = 0.

Thus, when Jx = Jy the A2 phase will quite generally have
a lower energy than the A1 phase. A necessary (but not suffi-
cient) condition for the A1 configurations to be the sole ground
states is that λA1 < λA2bb ⇒ Jx < Jy.

The effect of allowing small anisotropy in the trans-
verse exchanges Jx, Jy is illustrated in Fig. 13. Here we
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FIG. 8. T = 0 phase diagram with Jz > 0 and K = 0.5|Jz|. Each panel shows a slice of the phase diagram as a function of Jx and Jy for
different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from bottom to top. The phase diagram
is obtained by comparing numerically optimized energies for the five phases described in Sec. III. The numerical optimization procedure is
described in the Appendix. The white lines show analytic calculations of the boundaries of the A1 and A2 phases, using conditions (27) and
(28).

set

Dz = 0, Jz = J > 0, Jx = J + δJ⊥
2

, Jy = J − δJ⊥
2

and vary Dy/J and K/J . As implied by the discussion
above, δJ⊥ < 0 favors A1 order, becoming unstable to the E-
coplanar phase on increasing K . Conversely, δJ⊥ > 0 favors
A2 order, which gives way to the E-noncoplanar6 phase for
strong K .

V. RELEVANCE TO KAGOME MATERIALS

In this section we discuss the application of our results
to real kagome materials. We divide our discussion into
two areas: Firstly, rare-earth magnets belonging to the fam-
ily R3A2Sb3O14 [13–20] (sometimes referred to as “tripod
kagome” materials [15,17]), and secondly Cu, Fe, and Cr
based magnets where exchange anisotropy should be weaker
but nevertheless plays a role in ground state selection. Aside
from the systems mentioned below, we anticipate that ongoing

work in synthesizing frustrated magnets with strong spin-orbit
coupling will reveal new kagome systems to which our results
can be applied in the coming years.

A. R3A2Sb3O14 family

In the last few years several rare-earth kagome materials
with the general formula R3A2Sb3O14 have been synthesized.
This includes materials with A = Mg, Zn and R = Pr, Nd, Sm,
Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb [13,14,17,19].

Where R is a non-Kramers ion (Pr, Eu, Tb, Ho, Tm), the
crystal electric field (CEF) will generally have a nonmagnetic
singlet ground state, due to the low symmetry of the rare-earth
environment. If the gap between this singlet and higher CEF
states is smaller than or comparable to the energy scale of
interactions, interesting physics may ensue. If the CEF gap
is large, the overall ground state of the system will be a trivial
singlet driven by the onsite physics. Either way, Eq. (1) cannot
describe such physics without being augmented by additional
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FIG. 9. T = 0 phase diagram with Jz < 0 and K = −0.5|Jz|. Each panel shows a slice of the phase diagram as a function of Jx and Jy for
different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from bottom to top. The phase diagram
is obtained by comparing numerically optimized energies for the five phases described in Sec. III. The numerical optimization procedure
is described in the Appendix. The white lines show analytic calculations of the boundaries of the A1 and A2 phases, using conditions (27)
and (28).

terms, so we will not discuss non-Kramers materials further
here.

Where R is a Kramers ion, the CEF will split the
2J + 1 multiplet into a series of doublets. At energy and
temperature scales below the gap between the lowest and
first excited doublet, the magnetism may be represented by
pseudospin-1/2 operators Si. Si does not correspond precisely
to the magnetic moment, but relates to it via the g tensor
[Eq. (2)]. The important thing for our purposes is that Si

transforms like a magnetic moment with respect to time-
reversal and lattice symmetries, in which case Eqs. (1)–(6)
describe the exchange interactions. Below we briefly dis-
cuss the various members of the R3A2Sb3O14 family, with
Kramers ions R, in the light of the predictions made in this
paper.

The scalar chiral order observed in Nd3Mg2Sb3O14 [16,20]
corresponds precisely to the A2 phase predicted in this work.
The magnetic order of the sister compound Nd3Zn2Sb3O14

has not yet been characterized, but given its essentially
similar thermodynamic properties [17] and crystal field en-

vironment [18] it seems likely to fall in the same phase as
Nd3Mg2Sb3O14.

Er3Mg2Sb3O14 was reported in Ref. [17] to avoid long
range order down to very low temperatures. It thus appears to
be a candidate spin liquid material. The regions near the phase
boundaries of the classical phase diagram presented here are
likely to be particularly fertile ground for the formation of spin
liquid states, and this will be an interesting direction for future
research. Er3Zn2Sb3O14 exhibits strong structural disorder
and associated glassy behavior of the magnetic properties
[17], which is beyond the scope of our present discussion.

Yb3Mg2Sb3O14 exhibits long range order at TN ≈ 0.88 K
[17]. The form of this magnetic order has yet to be reported
in the literature. Based on the expectation that, as a rare earth
magnet with moderate magnetic moment, the theory in this
paper should be applicable to Yb3Mg2Sb3O14, we expect that
the order will be one of the states discussed in this work. Like
Er3Zn2Sb3O14, Yb3Zn2Sb3O14 has strong structural disorder,
although unlike the Er compound it does not show clear signs
of spin freezing [17].
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FIG. 10. T = 0 phase diagram with Jz < 0 and K = 0.5|Jz|. Each panel shows a slice of the phase diagram as a function of Jx and Jy for
different, fixed, values of the DM directions Dy and Dz, with Dy increasing from left to right and Dz from bottom to top. The phase diagram
is obtained by comparing numerically optimized energies for the five phases described in Sec. III. The numerical optimization procedure
is described in the Appendix. The white lines show analytic calculations of the boundaries of the A1 and A2 phases, using conditions (27)
and (28).

Sm3Mg2Sb3O14 [13] and Sm3Zn2Sb3O14 [14] have both
been synthesized but their low temperature magnetism has yet
to be characterized in detail. This may be challenging due
to the small magnetic moment of the Sm3+ ion, but recent
experiments on the pyrochlores Sm2Ti2O7 and Sm2Sn2O7

indicate that this is possible [42]. There is some evidence
of hysteresis in the low temperature magnetization curve
for Sm3Zn2Sb3O14 [14] but not for Sm3Mg2Sb3O14 [13],
which may provide some clue as to the low temperature
state.

Materials with R=Gd present a somewhat different case,
because Hund’s rules imply vanishing orbital angular momen-
tum L = 0 for the Gd3+ ion. The magnetism on the Gd sites
thus comes from a pure S = 7/2 spin and anisotropies in the
interactions should be much weaker. Some understanding of
this case can be gained from considering a model with nearest
neighbor Heisenberg exchange and the nearest-neighbor part
of the dipolar interaction:

H = J
∑
〈i j〉

Si · S j + D̃nn

∑
〈i j〉

(Si · S j − 3Si · r̂i jS j · r̂i j ). (64)

In terms of the symmetry-allowed interaction matrices
[Eqs. (4)–(6)] this Hamiltonian corresponds to setting

Jx = J − 2D̃nn, Jy = Jz = J + D̃nn,

Dy = Dz = K = 0. (65)

Inserting Eq. (65) into Eqs. (14)–(23) leads us to the conclu-
sion that for J, D̃nn > 0, the A1 configuration is favored out
of the forms of order considered in this paper. This agrees
with the conclusions of Maksymenko et al. [43], who studied
the phase diagram incorporating isotropic nearest neighbor
exchange J with the full long ranged dipolar interaction D
and found the A1 configuration as the ground state for weak
to moderate D and antiferromagnetic J . It also agrees with
previous predictions about the ground state of Gd3Mg2Sb3O14

[15] and with the observed antiferromagnetic transition at
TN ≈ 1.7K [15,44], although differences between the field
cooled and zero-field cooled susceptibility [44] remain to be
understood.

For R = Dy the ionic magnetic moment is very large and
the long range component of the dipolar interaction cannot

174425-13



OWEN BENTON PHYSICAL REVIEW B 103, 174425 (2021)

FIG. 11. Relative frequency of different phases within the full
parameter space of the Hamiltonian [Eq. (1)], with exchange
parameters generated randomly from two different distributions.
(a) Exchange parameters are generated randomly according to a uni-
form distribution on the surface of the six-dimensional hypersphere
defined by Eq. (61). (b) Diagonal exchange parameters Jx, Jy, Jz

are generated according to a uniform distribution on the surface
of a sphere with unit radius, and off-diagonal Dy, Dz, K exchange
parameters are generated independently from a uniform distribution
on the surface of a sphere with radius = 0.1 [Eqs. (62) and (63)].
This models the effect of the assumption that the scale of off-diagonal
couplings is lower. The effect on the distribution of phases is minor
overall, although assuming weaker off-diagonal exchange expands
the size of the rare E-noncoplanar12 from ∼0.5% to ∼2%. In each
case, frequencies are determined by numerically finding the ground
state for 100 000 random parameter sets generated according to the
stated distributions.

be ignored. Dy3Mg2Sb3O14 exhibits an unusual “fragmented”
[45] phase where there is an ordering of emergent “charge”
degrees of freedom while spins remain partially disordered
[46]. The long-range dipole-dipole interaction plays a crucial
role in this phenomenon [47,48] and thus it is beyond the
scope of the theory presented in this paper.

B. Nearly isotropic systems

While the most obvious application of the results in this pa-
per is found in systems where exchange anisotropy is strong,
our results can also be applied to understand cases where

isotropic Heisenberg exchange is weakly perturbed by short
ranged anisotropic interactions. This is the case in the Fe
and Cr jarosites AM3(OH)6(SO4)2 where M= {Fe, Cr} and
A={K, Rb, NH4, Na} [31–35]. These are found to order
in the A2 phase—the most prevalent of our phase diagram.
This is generally understood to be a consequence of antiferro-
magnetic Heisenberg exchange perturbed by a weak Dy. This
interpretation fully agrees with the results presented here: It
can readily be checked that inserting

Jx = Jy = Jz = J > 0
(66)

Dz = K = 0, |Dy|  J

into Eqs. (14)–(23) gives an outcome obeying condition (28)
and hence a ground state in the A2 phase [cf. Fig. 12]. What
this work adds to the discussion is a simple and systematic
approach to finding the preferred ground state for general
kinds of anisotropic nearest neighbor perturbation.

An example where weak anisotropic perturbations away
from a Heisenberg model lead to something other than A2
order is given by Cd kapellasite [36]. The weak ferromagnetic
moment confined within the kagome planes in that material is
only consistent with the E-coplanar phase, out of the phases
in this paper.

VI. SUMMARY AND DISCUSSION

In this paper we have developed a theory of the mag-
netic orders induced by nearest-neighbor exchange anisotropy
in kagome magnets. Our theory reveals that five distinct
magnetic orders can be expected from such interactions, all
retaining the translational symmetry of the lattice, but be-
ing distinguished from one another by their transformations
under time-reversal and point group symmetries. The five
phases are: A1 (Fig. 2), A2 (Fig. 3), E-coplanar (Fig. 4),
E-noncoplanar6 (Fig. 5), E-noncoplanar12 (Fig. 6). They are
labeled according to the irreducible representation of the point
group C3v with which the primary order parameter transforms,
their coplanar or noncoplanar nature and their degeneracy.
Equations (27) and (28) give exact conditions for the A1 and
A2 configurations to be classical ground states.

We have used numerical calculations to determine the
full zero temperature phase diagram of the most general
anisotropic nearest-neighbor exchange model, showing the
extent of these five phases (Figs. 7–10). One of the five phases
(E-noncoplanar12) is found to be exceedingly rare in the pa-
rameter space (Fig. 11).

We have discussed how this theory relates to various
real kagome materials (Sec. V), with both strong and weak
exchange anisotropy. The dominance of noncollinear (A1,
E-coplanar) and noncoplanar (A2, E-noncoplanar6,12) states
on the phase diagram suggests a high possibility of spin ex-
citations with topological band structures in many kagome
materials [49–51]. It is likely that the five phases identified
here from analysis of broken symmetries can be subdivided
further by the topology of the excitation bands. The possibility
of coupling to itinerant electrons is an interesting area for fu-
ture research with a view to investigating topological transport
phenomena.
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FIG. 12. Ground state phase diagram obtained from perturbing the antiferromagnetic Heisenberg model (Jx = Jy = Jz = J > 0) with off-
diagonal couplings Dy, Dz, K . Phase diagrams are shown as a function of Dy/J, K/J at fixed values of Dz/J = −0.25 (a), Dz/J = 0 (b),
Dz/J = 0.25 (c). The phase diagram is obtained by comparing numerically optimized energies for the five phases described in Sec. III. The
numerical optimization procedure is described in the Appendix. The A1 phase does not appear on these phase diagrams, as it can only be
stabilized as a unique ground state when Jx < Jy, whereas Jx = Jy here. The white lines show analytic calculations of the boundaries of the A2

phase, using condition (28).

The approach used in this work relies on the ability to
decompose the Hamiltonian into a sum over blocks, such that
the ground state is obtained by finding the ground state on
each block and tiling it over the lattice. This would seem to
limit the usefulness of the approach for systems with further
neighbor interactions, since such a decomposition may either
not be possible or may require such large blocks that the
decomposition is no longer a useful simplification. Applying
the method from this work to quantum systems will also not be
possible in general—even for nearest neighbor interactions—
because the Hamiltonians on neighboring blocks will usually
not commute. There are, however, some specific, fine-tuned,
cases where the exact ground state of a quantum system can
be built up by such a block-by-block approach [28,52].

While we have restricted ourselves here to phases which
are stable over finite regions of the classical phase diagram,
a study of the phase boundaries may also be interesting. As

has been studied elsewhere [7,8] phase boundaries between
competing classical phases can host nontrivial enlarged mani-
folds of zero-energy states, which in some cases are associated
with new forms of spin liquid [53]. In general, the greater
the degree of degeneracy around the phase boundary, the
more favorable the situation becomes towards the formation
of spin liquids. Different phase boundaries will have different
amounts of additional degeneracy and so some will be more
favorable for spin liquid formation than others. Boundaries
where 3 (rather than just 2) phases meet may host particularly
interesting physics as seen in, e.g., Ref. [53]. An analysis of
each possible phase boundary would be an interesting under-
taking, which we leave open for future work.
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APPENDIX: NUMERICAL OPTIMIZATION
OF ENERGIES

Here we describe the numerical optimization used to obtain
the phase diagrams in Figs. 7–10 and the estimates of the
relative frequency of phases in Fig. 11. For a given parameter
set, the energy is optimized separately for each of the five
phases described in Sec. III and then the optimized energies
are compared to determine which is the lowest. Due to the
argument in Sec. III A, we need only optimize the configura-
tion on a single triangle, since we know that a ground state on
the full lattice can be obtained by tiling the ground state of a
single triangle everywhere.

The optimization for each phase is done by either ran-
dom search or simulated annealing combined with iterative
minimization [40], apart from the A1 phase where the spin
configuration is fixed [Eq. (33)] and thus the corresponding
energy can directly be calculated without any optimization
being necessary:

EA1 = 3
4 (−2

√
3Dz + Jx − 3Jy). (A1)

For the other four phases (A2, E-coplanar, E-noncoplanar6,
E-noncoplanar12), the optimization procedure is as described
below.

1. Optimizing A2 configuration

The form for the A2 configurations is given in Eq. (34).
This can be written as

S0 =
(

−
√

3

2
sa, sa/2, sb

)
(A2)

S1 =
(√

3

2
sa, sa/2, sb

)
(A3)

S2 = (0,−sa, sb) (A4)

with (sa, sb) on the unit circle

s2
a + s2

b = 1. (A5)

Initially, we calculate the energy for 105 randomly generated
values of (sa, sb) on the unit circle. The lowest energy config-
uration obtained from this random search is then used as input
for the iterative minimization step.

In the iterative minimization step (sa, sb) are updated as

sa → sa − c ∂E
∂sa∣∣(sa − c ∂E

∂sa
, sb − c ∂E

∂sb

)∣∣
sb → sb − c ∂E

∂sb∣∣(sa − c ∂E
∂sa

, sb − c ∂E
∂sb

)∣∣ . (A6)

For sufficiently small, positive c this update is guaranteed to
reduce the energy, unless the system is already in a locally
optimal configuration before the update.

The parameter c is initially set to 0.1. If the update (A6)
does not reduce the energy then c is reduced by a factor of 2
and the update is attempted again. This procedure is repeated
until the configuration converges.

2. Optimizing E-coplanar configuration

The form for an E-coplanar configuration is given in
Eq. (45). This can be rewritten as

S0 = (σx, σy, σz ) (A7)

S1 = (σx,−σy,−σz ) (A8)

S2 = (1, 0, 0) (A9)

with (σx, σy, σz ) on the unit sphere

σ 2
x + σ 2

y + σ 2
z = 1. (A10)

Initially, we calculate the energy for 105 randomly gen-
erated values of (σx, σy, σz ) on the unit sphere. The lowest
energy configuration obtained from this random search is then
used as input for the iterative minimization step.

In the iterative minimization step (σx, σy, σz ) are
updated as

σα →
σα − c ∂E

∂σα∣∣(σx − c ∂E
∂σx

, σy − c ∂E
∂σy

, σz − c ∂E
∂σz

)∣∣ . (A11)

The parameter c is initially set to 0.1. If the update (A11) does
not reduce the energy then c is reduced by a factor of 2 and
the update is attempted again. This procedure is repeated until
the configuration converges.

The set of configurations covered by the E-coplanar ansatz
(45) includes the A1 configurations (when φ = 4π

3 , θ = π
2 ).

Because of this, if the E-coplanar optimization is found to give
the lowest energy of the five possibilities we must check that
the obtained configuration has a nonzero value of at least one
of the order parameters mEα . In practice we check that

|mEa|2 + |mEb|2 + |mEc|2 > 10−5. (A12)

If the E-coplanar optimization obtains the lowest energy but
the inequality (A12) is not fulfilled, the ground state is as-
signed to the A1 phase.

3. Optimizing E-noncoplanar6 configuration

The form for an E-noncoplanar6 configuration is given in
Eq. (45). This can be rewritten as

S0 = (τx, τy, τz ) (A13)

S1 = (−τx, τy, τz ) (A14)

S2 = (0, ta, tb) (A15)

with (τx, τy, τz ) on the unit sphere and (ta, tb) on the unit circle

τ 2
x + τ 2

y + τ 2
z = 1 (A16)

t2
a + t2

b = 1. (A17)
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Initially, we calculate the energy for 105 randomly gen-
erated values of (τx, τy, τz ) and (ta, tb) obeying Eqs. (A16)
and (A17). The lowest energy configuration obtained from
this random search is then used as input for the iterative
minimization step.

In the iterative minimization step, we update the parame-
ters according to the following:

τα →
τα − c ∂E

∂τα∣∣(τx − c ∂E
∂τx

, τy − c ∂E
∂τy

, τz − c ∂E
∂τz

)∣∣
tα →

tα − c ∂E
∂tα∣∣(ta − c ∂E

∂ta
, tb − c ∂E

∂tb

)∣∣ . (A18)

The parameter c is initially set to 0.1. If the update (A18) does
not reduce the energy then c is reduced by a factor of 2 and
the update is attempted again. This procedure is repeated until
the configuration converges.

The set of configurations covered by the E-noncoplanar6
ansatz (51) includes the A2 configurations (when μ = −(κ −
π
2 ), ν = −π

6 ). Because of this, if the E-noncoplanar6 op-
timization is found to give the lowest energy of the five
possibilities we must check that the obtained configuration
has a nonzero value of at least one of the order parame-
ters mEα . Numerically, we check the condition (A12). If the
E-noncoplanar6 optimization obtains the lowest energy but
the inequality (A12) is not fulfilled, the ground state is as-
signed to the A2 phase.

4. Optimizing E-noncoplanar12 configuration

Because the E-noncoplanar12 state allows for any config-
uration of three spins on a single triangle, the configuration
space of states is larger and we use simulated annealing
rather than a purely random search for the initial optimiza-
tion, before the iterative minimization step. In the simulated
annealing the three spins on a triangle are initialized in a
random configuration. Updates are attempted one spin at
a time, being certainly accepted if they reduce the energy

and accepted with probability exp(−δE/T ) if they increase
the energy by an amount δE . Initially, the “temperature,”
T = 0.2 in units where |Jz| = 1 (for Figs. 7–10) or where
J2

x + J2
y + J2

z + D2
y + D2

z + K2 = 1 [for Fig. 11(a)]or where
J2

x + J2
y + J2

z = 1 [for Fig. 11(b)]. The triangle is swept 105

times at a given temperature, and the temperature is then
reduced by a factor of 0.9. This procedure is repeated 200
times. There are more than 105 sweeps of the triangle with
T = 0, i.e., only accepting energy reducing updates.

The whole annealing procedure is performed from the start
three times for each parameter set with the final output be-
ing the lowest energy configuration obtained over all three
sweeps. To converge the configuration further, there is then
an iterative minimization step where each spin component is
updated as:

Sα
i →

Sα
i − c ∂E

∂Sα
i∣∣(Sx

i − c ∂E
∂Sx

i
, Sy

i − c ∂E
∂Sy

i
, Sz

i − c ∂E
∂Sz

i

)∣∣ . (A19)

The parameter c is initially set to 0.1. If the update (A19) does
not reduce the energy then c is reduced by a factor of 2 and
the update is attempted again. This procedure is repeated until
the configuration converges.

If the energy produced from this procedure is lower than
the energy produced from optimizing within the A1, A2, E -
coplanar, or E -noncoplanar6 phases, then the ground state
may be within the E -noncoplanar12 phase. Because the con-
figuration on the triangle is completely general, to confirm that
the configuration has not converged to one of the other phases
we check that the inequality (A12) is satisfied and also check
that:

m2
A1

> 10−5 (A20)

m2
A2a + m2

A2b > 10−5. (A21)

If inequalities (A12), (A20), and (A21) are not satisfied, the
ground state is assigned to one of the other phases depending
on the values of the various mγ (Table I).
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