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Tuning resonance energy transfer with magneto-optical properties of graphene
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We investigate the resonance energy transfer (RET) rate between two quantum emitters near a suspended
graphene sheet in vacuum under the influence of an external magnetic field. We perform the analysis for low and
room temperatures and show that, due to the extraordinary magneto-optical response of graphene, it allows for
an active control and tunability of the RET even in the case of room temperature. We also demonstrate that the
RET rate is extremely sensitive to small variations of the applied magnetic field and can be tuned up to a striking
six orders of magnitude for quite realistic values of magnetic field. Moreover, we highlight the fundamental role
played by the magnetoplasmon polaritons supported by the graphene monolayer as the dominant channel for the
RET within a certain distance range. Our results suggest that magneto-optical media may take the manipulation
of energy transfer between quantum emitters to a whole new level and broaden even more its great spectrum of
applications.
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I. INTRODUCTION

Resonance energy transfer (RET) [1–3] constitutes an im-
portant mechanism through which an excited quantum emitter
(donor) may transfer its energy to a neighboring one in the
ground state (acceptor). Amid the several situations in which
RET plays a relevant role, a remarkable example is the light-
harvesting process in plants, in which chlorophyll molecules
are excited by the absorption of light and can efficiently trans-
fer this excitation energy to their neighboring molecules [4,5].

Different energy transfer mechanisms have been exten-
sively discussed not only in physics but also in several areas
like chemistry, biology, and engineering. An efficient en-
ergy transfer allows for a variety of applications, such as
photovoltaics [6], luminescence [7,8], sensing [9], quantum
information [10,11], and many others. Due to these numer-
ous applications and to advances in different areas combined
with the great development of new technologies, controlled
modification of the RET rate has also become a topic of huge
interest. In this context, substantial theoretical and experimen-
tal efforts have been dedicated to investigate the influence of
different geometries and materials, such as planar geometries
[12–14], cavities [15,16], nanoparticles [17–22], cylinders
[23,24], and waveguides [11,12,25–27].

Among the progress in so many areas, the field of plas-
monics stands out with intense growth in recent decades. Plas-
monics consists of the study of the science and applications of
surface plasmon polaritons, which are electromagnetic surface

*patricia@pos.if.ufrj.br
†gbstravassos@gmail.com
‡daniela@if.ufrj.br
§farina@if.ufrj.br
‖frosa@if.ufrj.br

waves coupled to the conduction electrons to form collective
charge excitations that propagate at the interface between a
dielectric and a conductor [28,29]. In particular, surface plas-
mons supported by graphene are confined much more strongly
and present longer propagation lengths when compared to
those in conventional noble metals [29–31]. Another impor-
tant advantage is their chemical potential tunability, which can
be achieved by gating and doping [29,32,33]. In this sense,
graphene provides a suitable platform for manipulation of
light-matter interaction, and the influence on the RET rate
between two emitters has already been analyzed both for the
case of a monolayer [34–36] and for a nanodisk [37].

However, when exposed to an external magnetic field,
plasmons and cyclotron excitations hybridize, originating
new modes in graphene, named magnetoplasmon polaritons
(MPPs) [29,38]. The MPPs in graphene were already explored
in other light-matter interaction phenomena, such as the Pur-
cell effect [39], Faraday rotation [40], and nonreciprocal
couplers [41], among others. In that vein, we propose a setup
that takes advantage of graphene’s magneto-optical response
and pushes the degree of RET manipulation to unprecedented
levels: two emitters placed in the vicinity of a suspended
graphene monolayer in vacuum, submitted to an external
magnetic field applied perpendicularly to the monolayer. We
demonstrate that the RET rate may change dramatically with
respect to the result in free space even for small modulations
of the magnetic field. Furthermore, this giant effect may be
obtained even for somewhat modest values of the field. In-
terestingly, our results suggest that magnetoactive materials
could act as a logic gate in some practical circumstances,
meaning that they could be turned on and off without the
need of physical contact, especially at room temperature. Our
findings show that a magnetic field applied to the graphene
monolayer can be used as an external agent for tuning contin-
uously RET rates.
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FIG. 1. A pair of two-level emitters separated by a distance r,
both at a distance z from a suspended graphene sheet. An external
magnetic field B = Bẑ is applied perpendicularly to the sheet.

This paper is organized as follows. In Sec. II we introduce
the system under investigation, the Green’s tensor formalism
used in the calculation of the RET rate between two emitters in
the presence of an arbitrary environment, and some important
features related to graphene’s response to the external applied
magnetic field. In particular, we provide an analysis of how
graphene’s conductivities vary as a function of the magnetic
field, exploring their behavior for distinct values of the chem-
ical potential and temperature. Section III comprises our main
results on the resonance energy transfer between the emitters.
For example, we highlight the understanding of the MPPs as
the fundamental agents to achieve intense variations of the
RET rate. Section IV is left for final comments and conclu-
sions. Additionally, we also include a comparison between the
RET and the spontaneous emission rates close to the graphene
monolayer in the Appendix.

II. RESONANCE ENERGY TRANSFER CLOSE TO A
GRAPHENE SHEET IN A MAGNETIC FIELD

In this work we are concerned with the RET rate between
a pair of two-level quantum emitters, A (in the excited state)
and B (in the ground state), separated by a distance r, both
at the same distance z from a suspended graphene sheet in
vacuum in thermal equilibrium at temperature T . Moreover,
the graphene sheet is subjected to a uniform and static ex-
ternal magnetic field B = Bẑ applied perpendicularly to it, as
sketched in Fig. 1.

In the following sections, we briefly introduce the Green’s
function approach commonly used to calculate the modified
RET rate between two quantum emitters when placed in the
vicinity of any medium. Then, we move on to the description
of graphene’s response to the applied magnetic field, present-
ing the main equations needed to determine the new RET rate
in this particular case.

A. Methodology

In the presence of an arbitrary environment, the RET rate
� between two quantum emitters in vacuum located at rA and
rB, such that r = |rB − rA|, normalized by the RET rate in free
space �(0) can be written as [23]

�

�(0)
= |dB · G(rB, rA, ω0) · dA|2

|dB · G(0)(rB, rA, ω0) · dA|2 , (1)

where ω0 is the transition frequency of the emitters, dA and
dB are their transition electric dipole moments, and G and
G(0) are the electromagnetic Green’s dyadics of the full setup
and in free space, respectively. The electromagnetic Green’s
dyadic satisfies[

∇×∇× −ε(ω, r)
ω2

c2

]
G(r, r′, ω) = −δ(r − r′) I (2)

with the appropriate boundary conditions [42], where c is the
light velocity in vacuum and ε(ω, r) stands for the electric
permittivity of the medium. In our case, we take ε(ω, r) =
ε0, where ε0 is the electric permittivity of vacuum. It will be
convenient to separate the Green’s dyadic as a sum of two
contributions, namely,

G(rB, rA, ω0) = G(0)(rB, rA, ω0) + G(S)(rB, rA, ω0). (3)

In this expression G(0)(rB, rA, ω0) is the solution to Eq. (2) in
the absence of any object, and G(S)(rB, rA, ω0) represents the
scattered part of the Green’s function and must obey the elec-
tromagnetic field boundary conditions [42] at the graphene
sheet. The procedure to evaluate the scattered part of the total
Green’s function follows from the equation [42]

G(S) = i

2

∫
d2k‖
(2π )2 R

ei[k‖·(rB−rA )+k0z (zB+zA )]

k0z
, (4)

where

R =
∑

p,q={TE,TM}
rp,q ε+

p ⊗ ε−
q (5)

denotes the reflection matrix, with rp,q corresponding to the
reflection coefficient for an incoming q-polarized wave that is
reflected as a p-polarized one [42]. In addition, the TE- and
TM-polarization unitary vectors are defined as

ε+
TE = ε−

TE = −kyx̂ + kx ŷ
k‖

, (6)

ε±
TM = ±k0z(kxx̂ + kyŷ) − k2

‖ ẑ

k‖(ω0/c)
, (7)

with k‖ = kxx̂ + kyŷ and k0z =
√

(ω0/c)2 − k2
‖ .

For the sake of simplicity, we analyze emitters with both
transition dipole moments being oriented along the z axis (and
perpendicular to the graphene sheet), such that Eq. (1) reduces
to

�

�(0)
= |Gzz(rB, rA, ω0)|2

|G(0)
zz (rB, rA, ω0)|2 . (8)

More explicitly, we can write [42]

G(0)
zz = eiω0r/c

4πr

[
1 −

(
c

ω0r

)2

+ ic

ω0r

]
, (9)

and G(S)
zz = ẑ · G(S) · ẑ is the only contribution of the scattered

Green’s function that needs to be considered, given by

G(S)
zz = ic2

8π2ω2
0

∫
dk‖

k2
‖ rTM,TM ei[k‖·(rB−rA )+k0z (zB+zA )]

k0z
. (10)

Writing this equation in polar coordinates, performing the
angular integration, and identifying zA = zB = z, we get

G(S)
zz = ic2

4πω2
0

∫ ∞

0
dk‖

k3
‖ J0(k‖r) rTM,TM e2ik0zz

k0z
, (11)
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where J0 is the cylindrical Bessel function of zeroth order. It
is worth mentioning that all information about the influence of
the environment is encoded only in rTM,TM, which denotes the
reflection coefficient of an incoming TM-polarized wave that
is reflected with the same TM polarization [42]. This arises
as a direct consequence of our choice for the direction of
the transition dipole moments as being perpendicular to the
medium, so they do not couple to TE waves.

B. Reflection coefficient and conductivities of graphene
in a magnetic field

According to Eq. (11), in order to evaluate the scattered
Green’s function, the reflection coefficient rTM,TM is required.
It is well known that graphene is a magneto-optical material in
the sense that, under the influence of a perpendicular external
magnetic field, its conductivity becomes a tensor with nonzero
diagonal and nondiagonal elements, and we need to take into
account transverse conductivity σxy, in addition to the standard

longitudinal one σxx. The existence of the former contribution
makes the TM reflection coefficient slightly more complicated
than usual, to wit [43,44],

rTM,TM = 2ZEσxx + η2
0

(
σ 2

xx + σ 2
xy

)
(2 + ZHσxx )(2 + ZEσxx ) + η2

0σ
2
xy

, (12)

where ZE = k0z/(ω0ε0), ZH = ω0μ0/k0z, η2
0 = μ0/ε0, and μ0

is the magnetic permeability of vacuum. Although graphene’s
conductivities include nonlocality effects that can play im-
portant roles in certain situations [45], here we judiciously
choose our parameters so that they lie comfortably in the
regime in which it will be possible to neglect spatial dispersion
[36,46,47]. Thus, the expressions for the longitudinal and
transverse conductivities were obtained in Ref. [48] from an
approach in the quantum context applying the Kubo formula,
yielding

σxx(ω, B) = e3v2
F Bh̄(ω + iτ−1)

iπ

∞∑
n=0

{
nF (Mn) − nF (Mn+1) + nF (−Mn+1) − nF (−Mn)

(Mn+1 − Mn)
[
(Mn+1 − Mn)2 − h̄2(ω + iτ−1)2

]
+ nF (−Mn) − nF (Mn+1) + nF (−Mn+1) − nF (Mn)

(Mn+1 + Mn)
[
(Mn+1 + Mn)2 − h̄2(ω + iτ−1)2

] }
, (13)

σxy(ω, B) = −e3v2
F B

π

∞∑
n=0

[nF (Mn) − nF (Mn+1) − nF (−Mn+1) + nF (−Mn)]

×
[

1

(Mn+1 − Mn)2 − h̄2(ω + iτ−1)2
+ 1

(Mn+1 + Mn)2 − h̄2(ω + iτ−1)2

]
. (14)

Due to the magnetic field, the graphene energy spec-
trum is quantized into nonequidistant Landau levels (LLs),
with energies given by Mn = sgn(n)

√
2|n|h̄v2

F eB, where n =
0,±1,±2, . . . , vF = 106 m/s is the Fermi velocity, and −e is
the electron charge [48]. Also, nF (E ) = [1 + e(E−μc )/kBT ]−1

is the Fermi-Dirac distribution, μc is the chemical potential,
and τ−1 is a phenomenological scattering rate which causes a
small broadening in the LLs (throughout this paper we shall
take τ = 1 ps [36]).

From Eqs. (13) and (14), one can see that these conductiv-
ities are quite sensitive to variations in some parameters. In
particular, the density of the charge carriers depends heavily
on the temperature of the medium, so that, in order to explore
its effect on the RET rate, we analyze the conductivities at low
and room temperatures. Figure 2 portrays the real and imagi-
nary parts of the longitudinal and transverse conductivities as
functions of the external magnetic field B. Each row shows
the behavior for a different value of chemical potential μc (0,
0.1, and 0.2 eV, respectively). Figures 2(a)–2(c) illustrate the
behavior for temperature T = 4 K, whereas Figs. 2(d)–2(f)
are results for T = 300 K. In all of them, we consider ω0 =
6π × 1013 rad/s (λ0 = 2πc/ω0 = 10 μm) and intensities of
B < 16 T. The dependence on B is not simple, so let us begin
with Fig. 2(a). The sharp peaks appear whenever h̄ω0 equals
the difference in energy between two LLs whose intraband
or interband transition is allowed by selection rules and the
Fermi-Dirac distribution (which, in this case of low tempera-

ture, resembles a step function). For instance, the largest peak
around B ≈ 11.6 T is due to the resonance of h̄ω0 with the
first intraband transition (0 → 1), while the others are due to
interband transitions (−n → n + 1, −n − 1 → n). We plotted
the transverse conductivity for μc = 0 eV, despite it being
vanishingly small, as expected from Eq. (14), for consistency.
In Figs. 2(b) and 2(c), we have μc 	= 0, and a feature that
stands out is the discontinuities in the plots. As B increases,
the LLs also increase in energy, and these discontinuities show
up each time a given LL crosses the chemical potential value.
They occur whenever Mn = μc, so that the corresponding
value of the magnetic field is obtained from

B = μ2
c

2nh̄ev2
F

, (15)

valid for n > 0. In the case of Fig. 2(b) (μc = 0.1 eV), the
crossing of the last LL (n = 1) occurs for B ≈ 7.6 T. This
explains why we can still see the sharp peak around B ≈
11.6 T that is generated from the resonance of h̄ω0 with the
intraband transition 0 → 1 since M0 < μc < M1 for such a
region of field intensities. On the other hand, resonances with
smaller B do not appear in this plot because these interband
transitions are never allowed by the Fermi-Dirac distribution.
The most extreme case is seen in Fig. 2(c), in which no tran-
sition between LLs contributes and only discontinuities take
place.
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Real and imaginary parts of the longitudinal and transverse conductivities of graphene as functions of the external magnetic field
for ω0 = 6π × 1013 rad/s, vF = 106 m/s, and τ = 1 ps. The first, second, and third rows were obtained using μc = 0 eV, μc = 0.1 eV, and
μc = 0.2 eV, respectively. Also, the first column was evaluated with T = 4 K, while the second one was evaluated with T = 300 K.

We now switch to the results at room temperature (the
second column in Fig. 2). In short, the mathematical outcome
of increasing the temperature is to provide longer decay tails
to the Fermi-Dirac distribution of graphene. As an immediate
consequence, more LLs are allowed to have a nonzero occupa-
tion probability, and hence, new contributions from multiple
transitions between LLs can emerge because of the thermal
fluctuations. So where there were solely effects of the dis-
continuities, we now notice the two intertwined key features
previously reported: (i) the sharp peaks due to the resonances
of h̄ω0 and (ii) the discontinuities arising from the crossings,
but smoothed by the higher temperature and appearing as
small steps, as shown in the bottom inset of Fig. 2(f). They

can also be seen in the curves of Fig. 2(e) if we zoom in
enough. However, they do not exist in Fig. 2(d), as it shows the
case of zero chemical potential and, consequently, there are
no crossings of the LLs [this result is very similar to the one
obtained in Fig. 2(a)]. The positions of the peaks mentioned
in feature (i) are independent of μc and T , so they always
manifest at the same values of B in all the curves in Fig. 2. In
the case of larger values of the chemical potential, combined
with the smooth profile of the Fermi-Dirac distribution at
T = 300 K, even higher peaks for a few of the subsequent
intraband transitions (1 → 2, 2 → 3) are allowed, but they
happen at somewhat unrealistic values of the magnetic field
around 68.2 and 115.8 T and therefore are not shown in the
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(a)

(e)

(f)

(b)

(c)

(d)

FIG. 3. Normalized RET rate as a function of the external magnetic field. Each color represents a separation r between the emitters with
dominant transition wavelength λ0 = 10 μm, both at a distance z = 50 nm from the graphene sheet. The first, second, and third rows were
obtained using μc = 0 eV, μc = 0.1 eV, and μc = 0.2 eV, respectively. Also, the first column was evaluated with T = 4 K, while the second
shows results for T = 300 K.

plots. Incidentally, this explains why the curves in Fig. 2(f) do
not go to zero after the peak; that is, the effect of the 1 → 2
transition kicks in.

III. RESULTS AND DISCUSSION

The results for the resonance energy transfer were evalu-
ated using the same parameters presented in the analysis of
the conductivities. Figure 3 depicts the normalized RET rate
calculated according to Eq. (8) as a function of the applied
magnetic field for four different configurations of distance r
between the emitters. Figures 3(a)–3(c) and 3(d)–3(f) refer
to temperatures T = 4 K and T = 300 K, respectively, and

each row refers to a chemical potential value exactly as in
Fig. 2. We chose to work in the near-field region (z = 50 nm

 λ0) in order to explore the interaction of the emitters with
graphene’s surface MPPs, which we shall elaborate later on.
One could expect a Zeeman splitting for the values of B
considered here, as well as a z-dependent Casimir shift of
the emitters’ transition energy. However, in the unlikely event
that such effects do significantly shift the “bare” frequency ω0

(the electric and/or magnetic polarizabilities of the emitters
would have to be abnormally large), it would be just a matter
of replacing the shifted frequency in our calculations.

It should be noticed that the results for the normalized RET
rate in Fig. 3 are naturally correlated with the response of
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graphene to the external field, expressed in terms of its longi-
tudinal and transverse conductivities. In this sense, when the
magnetic field gets close to a value for which the conductivi-
ties present a discontinuity (whose explanation was discussed
in Sec. II B), this effect is directly reflected in the RET rate.
Analogously, whenever there is a contribution coming from
permitted transitions between LLs, the normalized RET rate
is drastically reduced and then increases again while there are
still magnetic field values to which other permitted transitions
may contribute.

From the plots in Fig. 3, a key fact that stands out is a strik-
ing nonmonotonic dependence on r. When the emitters are
very close to each other, the excitation transfer is dominated
by the free-space channel, and the graphene impact is not very
significant. By increasing r (and keeping z fixed), the envi-
ronment starts to play a more important role, and the relative
RET rate shoots up by orders of magnitude. At this point it
is important to stress that such enhancement is robust against
energy transfer to graphene, as we discuss in the Appendix.

Finally, by increasing r even more, the maximum of �/�(0)

shrinks about 2 orders of magnitude for μc = 0, 0.1 eV and
drops about a factor of 10 for μc = 0.2 eV. Such an effect
occurs in a similar way for both temperatures studied.

In order to explain such an impressive variation of the
RET rate, it is necessary to make a small digression about
the graphene mode structure and, in particular, of its MPPs.
The MPPs are surface waves allowed by Maxwell equations
under certain boundary conditions. Such surface waves are
characterized by the decaying behavior in the z direction on
both sides of the graphene sheet, and they must be associated
with a pole in the reflection coefficients [29]. Therefore, from
Eq. (12) we have

(2 + ZHσxx )(2 + ZEσxx ) + η2
0σ

2
xy = 0, (16)

enforcing a relation between k‖ and ω0. Equation (16) is
the general dispersion relation for the MPPs [29], and a
straightforward manipulation shows that it is a biquadratic in
k‖,

k4
‖ + 4ω2

0

c2

{
1

η2
0σ

2
xx

[
1 + η2

0

4

(
σ 2

xx + σ 2
xy

)]2

− 1

}
k2
‖ − 4ω4

0

c4

{
1

η2
0σ

2
xx

[
1 + η2

0

4

(
σ 2

xx + σ 2
xy

)]2

− 1

}
= 0, (17)

leading to

k2
‖ = 2ω2

0

c2

{
1 − 1

η2
0σ

2
xx

[
1 + η2

0

4

(
σ 2

xx + σ 2
xy

)]2
}⎡

⎢⎢⎣1 ∓
√√√√√1 + η2

0σ
2
xx

1 − η2
0

2

(
σ 2

xx − σ 2
xy

) + η4
0

16

(
σ 2

xx + σ 2
xy

)2

⎤
⎥⎥⎦. (18)

The solutions that interest us are those whose real part of
k‖ is positive [29]. In order to handle the previous relation, we
can use the fact that, away from the intense variation around
B = 11.6 T, we have η2

0σ
2
xx 
 1 and also η2

0σ
2
xy 
 1. Hence,

it is reasonable to expand this formula and retain only its first
terms, yielding

k(+)
‖ = kMPP ≈ 2iε0ω0

σxx
, (19)

k(−)
‖ = kQTE ≈ ω0

c

√
1 − η4

0

4

(
σ 2

xx − σ 2
xy

)2
. (20)

The so-called quasi-transverse-electric (QTE) modes [38]
given by (20) play virtually no role in the RET, while the MPP
branch (19) is the main focus of this work. The fact that kMPP

is not purely real indicates that such surface modes have a
dissipative character and therefore a finite propagation length
parallel to graphene’s surface [29], given roughly by

LMPP ≈ 1

Im(kMPP)
= 1

2ε0ω0

|σxx|2
Re σxx

. (21)

In Fig. 4, the propagation length of the MPPs is plotted as
a function of the external magnetic field for the three values
of chemical potential considered before. Figures 4(a) and 4(b)
correspond to calculations using T = 4 K and T = 300 K,
respectively, and in broad strokes, their main features can be
traced back to the longitudinal conductivity. For μc = 0.2
eV, the role of the magnetoplasmons is quite evident: we
see that the two emitters are within the MPP range for r �

5 μm ≈ 0.5λ0, which explains the consistent dominance of
the green curve in Figs. 3(c) and 3(f). It also explains the
characteristic discontinuities for temperature T = 4 K and
why there are such precipitous drops at the resonances in the
case of T = 300 K (both clearly correlated with the results
for LMPP). Similar reasoning can be extended to the set of
parameters μc = 0.1 eV and T = 4 K, especially for low
fields, where we can also note that the two emitters are within
the MPP range for r � 1 μm ≈ 0.1λ0, in agreement with the
enhanced normalized RET rate obtained in Fig. 3 in this same
configuration. This explanation is less evident for the other
results of Fig. 4, but it is clear that, at least in the B = 3–11 T
range, the steady rise in the LMPP corresponds to the “great
hill” profile in the RET plots centered in B ≈ 8 T. In addition,
let us note that the lower LMPP values for μc = 0, 0.1 eV also
explain the fact that the maximum relative RET occurs for
shorter distances in these cases [the green hill is well below
the red one in Figs. 3(a), 3(b) 3(d), and 3(e)]. Finally, as
the distance between the emitters gets too large, they evade
the propagation range of the MPPs, explaining the downward
trend for r � LMPP in all curves in Fig. 3.

A remarkable feature present in Fig. 3 that still needs to
be discussed is the extreme sensitivity of the normalized RET
rate with respect to variations in the magnetic field. Indeed,
we see that for T = 300 K, μc = 0.2 eV, and r = λ0, the
relative RET rate can change by an impressive 5 to 6 orders of
magnitude, even for tiny variations of magnetic field around
1 T. We see that, by using the magnetic field as a “dial” to tune
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FIG. 4. MPP propagation length as a function of the magnetic
field for different values of the chemical potential and (a) T = 4 K
and (b) T = 300 K. The same parameters used in the analysis of the
conductivities were also employed here.

the transition frequency to a possible LL transition, one could
essentially “turn off” the graphene sheet, at least with respect
to the RET process. Such incredible sensitivity may be also
traced to fact that the MPPs depend critically upon Re σxx, so
small variations in the conductivity can generate big effects
in the LMPP and huge modifications in the RET rate. As an
aside, we should point out that the normalized RET inherits
the small steps that are present in the conductivities, as shown
in the inset of Fig. 3(f).

Another interesting feature of the normalized RET
rate is the oscillatory character—quite intense for some
parameters—as a function of the magnetic field. Although the
previous formulas hold in all distance regimes, from now on
we shall be concerned with the analysis solely in the near-
field region (ω0z/c 
 1) in order to understand this intriguing
behavior. Splitting the contribution of the propagating and
evanescent modes in (11), we can write

G(S)
zz = ic2

4πω2
0

{∫ ω0/c

0
dk‖

k3
‖ J0(k‖r) rTM,TM e2ik0zz

k0z

+
∫ ∞

ω0/c
dk‖

k3
‖ J0(k‖r) rTM,TM e−2κ0zz

iκ0z

}
, (22)

FIG. 5. Normalized RET rate as a function of the magnetic field
for the case previously shown with T = 300 K, μc = 0.1 eV, and
r = 0.02λ0. The plots are comparisons between results obtained
with G(S)

zz calculated using Eqs. (26) (blue curve) and (27) (red
curve).

with κ0z = ik0z =
√

k2
‖ − ω2

0/c2 . The evanescent part largely
dominates the propagating one in the near-field regime, so
Eq. (22) can be approximated to

G(S)
zz ≈ c2

4πω2
0

∫ ∞

0
dk‖k2

‖ J0(k‖r) rTM,TM e−2k‖z, (23)

where we used κ0z ≈ k‖. Applying the same considerations to
the reflection coefficient (12), we get

rTM,TM ≈
k‖ − iη0σxx

2

[
1 + σ 2

xy

σ 2
xx

]
ω0
c

k‖ − i
{ 2ε0ω0

σxx
+ η0σxx

2

[
1 + σ 2

xy

σ 2
xx

]
ω0
c

} . (24)

Moreover, away from B ≈ 11.6 T we may retain only the
very first contribution in η0σxx, yielding

rTM,TM ≈ k‖

k‖ − 2iε0ω0

σxx

, (25)

from which one immediately identifies the magnetoplasmon
polariton at the pole kMPP = 2iε0ω0/σxx, in accordance with
the result obtained in Eq. (19). The substitution of Eq. (25)
in Eq. (23) leads us to a simpler expression for the scattering
Green’s function, to wit,

G(S)
zz ≈ c2

4πω2
0

∫ ∞

0
dk‖

k3
‖ J0(k‖r)

k‖ − 2iε0ω0

σxx

e−2k‖z. (26)

Despite its relative simplicity, we could not solve (26) in
terms of well-known functions. We are, however, particularly
interested in the |2iε0ω0/σxx| � 1/z regime, corresponding to
low magnetic fields (away from the abrupt changes at the LL
transitions). Then, an analytical solution for Eq. (26) is avail-
able, and also taking into account that Im(σxx ) � Re(σxx ), we
get

G(S)
zz ≈ c2 Im(σxx )

4πε0ω
3
0

3z(3r2 − 8z2)

(r2 + 4z2)7/2
. (27)

In Fig. 5 we depict the comparison of the RET rate
using (26) and (27). It is clearly seen that the low-field
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approximation captures a sort of average behavior but fails
to show the marked oscillations present in (26). At this point,
we remember that the denominator in Eq. (26) comes from
rTM,TM, whose pole provides us with the dispersion relation of
the MPPs. To derive Eq. (27) we effectively disregarded this
pole and, consequently, the information on the contribution
of the interaction with the surface plasmons. That led us to
a result with a clear interpretation in terms of images—as√

r2 + (2z)2 is the distance between an emitter and the image
of the other—but it should be recalled that such an inter-
pretation was not to be obviously expected: we are in the
low-conductivity regime, so these dressed images probably
owe their appearance more to the plane symmetry than to the
(short) distance regime.

IV. FINAL REMARKS AND CONCLUSIONS

In summary, we have investigated the resonance energy
transfer between two emitters near a graphene sheet in the
presence of a constant, uniform, and perpendicular magnetic
field. The fundamental motivation was to take advantage of
the remarkable magneto-optical properties of graphene in or-
der to tailor and control the RET rate between the emitters.
From our findings, we conclude that, in addition to providing
us with a promising platform to manipulate atomic interaction
through an external agent, the RET is particularly suitable
to active manipulation due to its extreme sensitivity to vari-
ations of the magnetic field. We have demonstrated that the
strongly confined magnetoplasmon polaritons supported by
the graphene monolayer play a key role in the excitation
transfer between the emitters. We stress that the RET rate
can be enormously altered, suffering abrupt variations up to
6 orders of magnitude with respect to the free-space value.
Moreover, especially in the case of room temperature, these
huge variations occur for feasible values of the magnetic field
(of the order of 1 T for appropriate choices of the system pa-
rameters), being within the scope of experimental realization.
As a matter of fact, the RET modulation is so large and so
sharp that magnetoactive materials could be thought of as an
energy transfer switch that can be turned on and off with no
physical contact. Altogether, we expect that these results will
not only allow for an alternative way to control the resonance
energy transfer but also pave the way for the development of
new devices in plasmonics and nanophotonics.
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APPENDIX: RESONANCE ENERGY TRANSFER VERSUS
SPONTANEOUS EMISSION

We discussed throughout this work the use of graphene
under an external magnetic field as a promising tool for con-

trolling the RET rate. However, the relaxation of the excited
emitter (the donor) to its ground state may not always be
accompanied by an excitation of the other emitter: the donor
could emit a propagating photon into the free space, or it
might transfer its excitation energy to the graphene sheet
through the decay into a magnetoplasmon polariton. In this
Appendix, we compare the RET and spontaneous emission
(SE) rates within the same setup in order to understand the
relative relevance of the RET compared to a simple SE as one
varies the magnetic field. To this end, we define the ratio R,
given by

R = �/�B=1T

γ /γ B=1T
, (A1)

where � is the RET rate defined in Eq. (8) and γ is the SE rate
of the donor in the presence of graphene subject to an external
magnetic field [39]. For the same configuration of an emitter
whose transition dipole moment is oriented along the z axis,
the SE rate can be written as [39,42]

γ

γ (0)
= 6πc

ω0
Im[Gzz(rA, rA, ω0)], (A2)

with γ (0) = |dA|2ω3
0/(3πε0 h̄c3) denoting the SE rate of emit-

ter A in free space (assuming that A corresponds to the donor).

(a)

(b)

FIG. 6. Ratio R as a function of the external magnetic field. Each
color refers to a separation r between the emitters with dominant
transition wavelength λ0 = 10 μm, at a distance z = 50 nm from the
graphene sheet. In addition, we set μc = 0.1 eV and (a) T = 4 K and
(b) T = 300 K.
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The ratio R provides us with information on how much RET
is favored over SE as we modulate the magnetic field applied
to graphene. The choice to normalize both rates in Eq. (A1)
by their values calculated at B = 1 T is merely a matter of
numerical convenience since the main goal here is to notice
the sensitivities of these rates against the magnetic field. Nev-
ertheless, this value was carefully chosen to be in a region
where graphene conductivity curves are flat.

Figure 6 shows the ratio R as a function of the applied
magnetic field for different distances r. In addition, we set
z = 50 nm, μc = 0.1 eV and explore the cases of low and
room temperatures [Figs. 6(a) and 6(b), respectively], i.e., the
same values used in the main text. In fact, the outcome reveals
that RET is quite favored over SE for several intervals of the
magnetic field intensity and for distances r in which the RET
rate is significantly greater than its result in free space (see
Fig. 3). Additionally, as in the RET, the ratio R also presents
a nonmonotonic behavior with r. Once again, this suggests a

correlation with the magnetoplasmons and their propagation
length LMPP, displayed in Fig. 4 and discussed in Sec. III.
For distances between the emitters in the LMPP range, the
RET rate is greatly increased compared to the SE rate as B
changes. Besides that, as the distance between the emitters
continues to rise, they start to escape the LMPP range, and the
ratio R decreases, although the RET rate still remains substan-
tially higher than that of the SE in some cases. One should
note that R also retains the characteristic discontinuities for
low temperature, the precipitous drops at the resonances for
room temperature, and the intense oscillatory behavior. Fi-
nally, Fig. 6 also shows the great hill profile centered around
B ≈ 8 T associated with the increasing behavior of LMPP in
this region.

This analysis asserts the robust character of the results
for active control of the RET rate in the presence of
graphene shown in this work even when compared to the
SE rate.
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