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Divergence of the Grüneisen ratio at symmetry-enhanced first-order quantum phase transitions
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Studies of the Grüneisen ratio, i.e., the ratio between thermal expansion and specific heat, have become a
powerful tool in the context of quantum criticality since it was shown theoretically that the Grüneisen ratio
displays characteristic power-law divergencies upon approaching the transition point of a continuous quantum
phase transition. Here we show that the Grüneisen ratio also diverges at a symmetry-enhanced first-order
quantum phase transition, albeit with mean-field exponents, as the enhanced symmetry implies the vanishing of
a mode gap which is finite away from the transition. We provide explicit results for simple pseudospin models,
both with and without Goldstone modes in the stable phases, and discuss implications.
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I. INTRODUCTION

Quantum phase transitions (QPTs) constitute an important
topic in condensed-matter research [1–3]: A QPT is associated
with qualitative changes of the ground state of a many-body
system, for instance, its entanglement properties. Moreover,
the quantum critical regime of continuous QPTs displays phe-
nomenology very different from that of stable phases and is
often the source for novel physics. A number of signatures and
tools have been identified to diagnose QPTs, such as critical
power laws as a function of absolute temperature T , with
associated exponents, and universal scaling behavior.

Among the thermodynamic diagnostics for continuous
QPTs, the Grüneisen ratio (sometimes called the Grüneisen
parameter), defined as the ratio between thermal expansion
α and specific heat cp, � = α/cp, is particularly revealing:
In Ref. [4] it was theoretically shown that it diverges upon
approaching a pressure-driven quantum critical point (QCP)
in a characteristic power-law manner and also displays sign
changes near a quantum critical point [5]. For magnetic-field-
driven transitions, the role of � is taken by the magnetic
Grüneisen ratio, �H = −(∂M/∂T )H/cH , which can be de-
termined from the magnetocaloric effect. Beyond standard
quantum critical points, the Grüneisen ratio has also been
considered for disorder-dominated quantum Griffiths phases
and has been found to display a much weaker logarithmic
divergence as a function of temperature [6].

On the experimental side, measurements of the Grüneisen
ratio have frequently been used to detect and character-
ize quantum phase transition. Prominent examples are the
heavy-fermion compounds CeNi2Ge2 [7], YbRh2Si2 [7],
CeCu6−xAgx [8], and CeIn3−xSnx [9], in which a divergence
of � was found which could be attributed to a quantum
phase transition. Interestingly, divergencies of the magnetic
Grüneisen ratio have also been found in a number of com-
pounds for which no obvious quantum critical point exists,
and we refer the reader to Ref. [10] for a review. At present, a
consistent explanation for these observations is lacking [11].

In the field of QPTs, a particularly interesting develop-
ment concerns the emergence of enhanced symmetries at the
transition point. These are symmetries not present in the un-
derlying Hamiltonian but emergent at long times and distances
in the critical regime. Such symmetries have been discussed
in particular in the context of deconfined quantum critical
points [12]. For instance, the transition between a Néel an-
tiferromagnet and a columnar valence-bond solid [13] has
been argued to display an emergent SO(5) symmetry [14],
and a number of field-theoretic dualities have been invoked
to rationalize enlarged symmetries [15]. Likewise, enlarged
symmetries have been detected in numerical simulations of
Z2 gauge theories coupled to Dirac fermions [16] and also at
the ordering transition of a classical dimer model [17].

Symmetry enhancement is also possible at first-order
QPTs. It refers to situations where the system discontinuously
switches between two types of order, with the transition point
displaying an emergent higher symmetry, leading to a family
of stable states. Such behavior was recently detected in nu-
merical simulations of a SU(2)-symmetric spin model on the
two-dimensional Shastry-Sutherland lattice where an emer-
gent O(4) symmetry appeared at the transition between an
antiferromagnet and a plaquette singlet state [18]. In a related
spin model on a square lattice, such a first-order transition
was found to display emergent SO(5) symmetry [19]. Other
examples of enhanced symmetries at first-order transitions
appeared in Refs. [20,21]. Together, these findings motivate us
to consider the phenomenology of symmetry-enhanced first-
order QPTs in more detail, not the least to provide guidance
for experiments.

In this paper we argue that the Grüneisen ratio diverges
not only at quantum critical points but generically also at
symmetry-enhanced first-order QPTs. The reason is that the
enhanced symmetry implies the existence of an excitation
mode which is gapless only at the transition point but gapped
away from it. We provide explicit results for simple effective
pseudospin models for which we determine the full crossover
behavior of the Grüneisen ratio. We demonstrate that the
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Grüneisen ratio displays not only a jump accompanied by
a sign change upon crossing the transition at finite temper-
ature but also characteristic divergencies upon approaching
the zero-temperature transition point. The type of divergencies
depends on the presence or absence of Goldstone modes in the
stable phases; the presence of Goldstone modes may lead to
further sign changes of the Grüneisen ratio. We also comment
on further experimental implications.

The remainder of this paper is organized as follows: In
Sec. II we summarize properties of the Grüneisen ratio and ar-
gue why a divergence can be expected at symmetry-enhanced
first-order QPTs. Section III introduces the two spin mod-
els which we use to exemplify this divergence, with explicit
results shown in Secs. IV and V for Ising-Ising and XY-
Ising transitions, respectively. A general discussion in Sec. VI
concludes the paper. Technical details are relegated to the
Appendix.

II. GRÜNEISEN RATIO: GENERAL CONSIDERATIONS

A QPT occurs at T = 0 as a function of a nonthermal con-
trol parameter such as pressure, magnetic field, or chemical
substitution. In the pressure-driven case, with the transition
located at pc, one may define a dimensionless control param-
eter r = (p − pc)/pc. At a continuous QPT, the free-energy
density contains a critical contribution which can be probed
via the volume thermal expansion

α = 1

V

∂V

∂T

∣∣∣∣
p

= − 1

V

∂S

∂ p

∣∣∣∣
T

(1)

and the specific heat capacity
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N

∂S
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, (2)

where S is the entropy, V is the sample volume, and N is the
particle number. The Grüneisen ratio is commonly defined as
[22]

� = α

cp
= − 1

VnT

(∂S/∂ p)T

(∂S/∂T )p
, (3)

where Vn = V/N is the volume per particle. For field-
driven transitions, the dimensionless control parameter is
r = (H − Hc)/Hc, such that one can define a quantity �H =
(1/T )(∂S/∂H )T /(∂S/∂T )H , also known as the magnetic
Grüneisen ratio, which takes the role of �.

Using thermodynamic hyperscaling arguments, Ref. [4]
showed that the Grüneisen ratio diverges in the quantum crit-
ical regime of a continuous QPT according to

�cr (T, r = 0) ∝ T −1/(νz), (4)

where ν and z are the correlation-length and dynamic expo-
nents, respectively. Likewise, approaching the QCP at low
temperatures yields the divergence

�cr (T = 0, r) ∝ |r|−1. (5)

More precisely, Eqs. (4) and (5) are obeyed in the regimes
T � |r|νz and T � |r|νz, respectively. Reference [4] also
showed that these divergencies also hold (up to possible loga-
rithmic corrections) for systems where hyperscaling does not
apply, i.e., above the upper critical dimension.

Importantly, � does not diverge upon approaching a finite-
T phase transition (although it can be enhanced near finite-
temperature critical end points [23–25]); thus, a divergence
of � is usually considered a unique signature of a continuous
QPT. Notably, for self-dual QCPs it can be shown that the
Grüneisen ratio remains finite, as the prefactor of the leading
divergence vanishes [5,26]; this applies, for instance, to the
transverse-field Ising model in one space dimension.

The scaling arguments put forward in Ref. [4] describe
the vicinity of a QCP but, more generally, are valid if an
excitation mode becomes soft as a function of a nonthermal
control parameter. This is precisely what also happens at a
symmetry-enhanced first-order QPT: The enhanced symmetry
implies a larger number of soft modes at the transition point
(compared to away from it); hence, we expect a divergent
Grüneisen ratio. This will be demonstrated explicitly in the
remainder of the paper.

III. EFFECTIVE SPIN MODELS

The microscopic models for which nontrivial symmetry-
enhanced first-order QPTs have been established are compli-
cated and not amendable to simple approximate solutions. We
will therefore analyze toy models in which the enhanced sym-
metry is explicit instead of emergent; these models should be
understood as effective models describing the relevant degrees
of freedom near a symmetry-enhanced first-order QPT.

Specifically, we will consider spin models with tunable
magnetic anisotropy. In the context of the first-order QPTs
of interest, the models’ degrees of freedom are to be inter-
preted as effective (pseudo)spins, and the models’ anisotropy,
encoded in a tuning parameter λ, can be tuned by hydrostatic
pressure (or a similar control parameter). Thus, the enhanced
symmetry at the transition point does not correspond to an en-
hanced explicit symmetry of the original system. This aspect
will become relevant when interpreting the results for thermal
expansion, and we will get back to it below.

A. Models

We will study the thermodynamics of two simple
nearest-neighbor lattice spin models which display symmetry-
enhanced first-order transitions. The first, which we dub the
XZ model, is defined as

HXZ =
∑
〈i j〉

(
JxSx

i Sx
j + JzS

z
i Sz

j

)
, (6)

and the second is the XXZ model, with

HXXZ =
∑
〈i j〉

[
Jx

(
Sx

i Sx
j + Sy

i Sy
j

) + JzS
z
i Sz

j

]
, (7)

where �Si are spins of size s located on sites i of a regular
lattice. For simplicity, we will work on a d-dimensional hy-
percubic lattice and consider d = 3 unless noted otherwise.

In both models, we use Jx ≡ J > 0 as the unit of en-
ergy and parametrize the exchange anisotropy by Jz = λJx,
with λ > 0. At low temperatures, both models display an-
tiferromagnetic long-range order: For λ > 1 Ising order is
realized with spins along the z direction. For λ < 1 the XZ
model displays Ising order along the x direction, whereas the
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FIG. 1. Schematic phase diagrams of the (a) XZ and (b) XXZ
models in space dimension d > 2. A symmetry-enhanced first-order
QPT occurs upon tuning λ through λ=1.

XXZ model shows planar (XY-type) order. The XZ model is
obviously symmetric (or self-dual) under the transformation
λ → 1/λ, J → λJ , which exchanges the role of the x and z
directions in spin space. The key thermodynamic difference
between both models is the existence of a Goldstone mode in
the XXZ model for λ < 1, whereas the XZ model is gapped
for any λ 
= 1.

The point λ = 1 displays enhanced U(1) [SU(2)] sym-
metry in the XZ (XXZ) model, and varying λ through 1
constitutes a symmetry-enhanced first-order transition. This
implies that the order parameters of the phases realized for
λ ≷ 1 jump discontinuously if λ is varied through 1. For
instance, for the XZ model at T = 0 and in the classical
limit s → ∞, the staggered magnetizations along the x and
z directions follow mx = s�(1 − λ) and mz = s�(λ − 1), re-
spectively, where � is the Heaviside function. Importantly,
there is no simple phase coexistence or hysteresis associated
with the transition at λ = 1. Instead, the system displays order
which spontaneously breaks a symmetry higher than in the
adjacent λ ≷ 1 phases. Specifically, at λ = 1 the XZ (XXZ)
model features one (two) Goldstone modes, respectively. We
recall that phase coexistence near conventional first-order
transitions arises from the local stability of both phases on
both sides of the transition. The absence of phase coexistence
is therefore a common property of symmetry-enhanced first-
order transitions, as both phases do become locally unstable
upon approaching the transition because they give way to the
symmetry-enhanced manifold of states.

The finite-temperature phase diagrams are schematically
shown in Fig. 1. The QPT continues as a vertical line of first-
order transitions; in general such a line can be curved but must
display infinite slope as T → 0 because the low-T entropies
on both sides of the transition are equal due to symmetry
enhancement, limT →0 limλ→1− S = limT →0 limλ→1+ S.

We assume that the anisotropy parameter λ can be tuned by
pressure: A change in external pressure p changes the sample
volume V , and the resulting changes in bond lengths lead to a
change in λ; in other words, a volume change leads to a change
in the effective anisotropy. Hence, ∂S/∂ p = (∂S/∂λ)(∂λ/∂ p),
and the factor (∂λ/∂ p) is a system-specific constant. We recall

that the models are effective models; hence, the higher sym-
metry at λ = 1 should not be confused with a higher explicit
symmetry of the original system.

B. Calculation of thermodynamics

In d = 3 space dimensions, the ordering temperature TN

is finite [27] at (and near) the transition point λ = 1 (see
Fig. 1). We work at temperatures below TN , such that an-
tiferromagnetic order is well established, and compute the
thermodynamic quantities using standard linear spin-wave
theory. Using the Holstein-Primakoff representation of the
spins, the bilinear piece of the Hamiltonian can be diagonal-
ized using Fourier and Bogoliubov transformations to yield a
system of noninteracting magnon modes,

HSW =
∑
�k,i

ω�k,iα
†
�k,i

α�k,i + const, (8)

where the momentum summation
∑

�k runs over the antiferro-
magnetic Brillouin zone of the ordered state and i is a mode
index (for details see the Appendix). The mode energies ω�k,i
characterize a free Bose gas, and one can compute the specific
heat from the entropy according to

cv = T −2 1

Ns

∑
�k,i

ω2
�k,i

4 sinh2 ω�k,i/(2T )
, (9)

where Ns is the number of lattice sites and we have set Boltz-
mann’s constant kB = 1. Note that we compute the specific
heat at constant volume and neglect the difference between cv

and cp (which is small in solids [28]). Similarly, the thermal
expansion follows from

α = T −2 1

Ns

∑
�k,i

ω�k,i ∂ω�k,i/∂λ

4 sinh2 ω�k,i/(2T )
. (10)

As explained above, we have replaced the pressure derivative
∂/∂ p with a λ derivative ∂/∂λ, assuming that ∂λ/∂ p = const.
Given that, due to the gap closing, at least one mode energy
varies in a nonanalytic fashion with λ upon crossing the QPT,
we can expect that both cv and α are nonanalytic as a function
of λ at λ = 1.

In three space dimensions and in the absence of frustration,
the linear spin-wave approximation provides reliable results at
T = 0 even for small spin size s, including s = 1/2. This re-
mains true at finite temperature as long as thermal occupations
remain small, i.e., for T � TN , with the mean-field estimate
for the Néel temperature TN being 2dJs2. In particular, the
qualitative low-energy behavior of the modes near the QPT
is dictated by Goldstone’s theorem and will thus not change
upon including interactions beyond linear spin-wave theory.
We note that, in the leading order of the spin-wave expan-
sion, the excitation energies scale as (Js), which thus sets the
natural unit for temperature. In the following we restrict our
attention to the regime T/(Js) < 1.

IV. TRANSITION BETWEEN TWO GAPPED PHASES

We start by analyzing the XZ model (6), which displays
a symmetry-enhanced transition between two gapped Ising
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phases. The qualitative behavior of specific heat, thermal ex-
pansion, and the Grüneisen ratio can be derived analytically
in the regime T � Js. Here we summarize the results, with
details given in the Appendix.

At the transition point, λ = 1, the system is an antiferro-
magnet which spontaneously breaks U(1) symmetry, with a
single gapless magnon mode with linear dispersion. In the
Ising phases realized for λ 
= 1 the mode gap scales as 	 ∝
|λ − 1|1/2.

We first focus on the high-temperature regime, T � 	.
This includes λ = 1, where a scaling analysis of Eq. (9) yields
cv ∝ T d , which also holds for λ 
= 1 as long as T � 	. The
behavior of the thermal expansion is determined by the mode
evolution with λ. For λ 
= 1 we have ∂	/∂λ ∝ ±|λ − 1|−1/2,
with the two signs applying to λ ≷ 1, respectively. A scaling
analysis of the relevant integral (10) in the limit T � 	 then
yields α ∝ ±T d−2. As a result, we obtain � ∝ ±1/T 2. Re-
markably, this power-law divergence agrees with the scaling
result [4] at a quantum critical point � ∝ 1/T 1/νz if we assume
mean-field exponents ν = 1/2 and z = 1. This underlines the
common origin of the Grüneisen divergence, namely, a mode
gap closing as 	 ∝ |r|νz, where r = λ − 1 in the present case.
We note that the divergence of the Grüneisen ratio is not
in conflict with the results of Ref. [26]: A divergent � is
forbidden for self-dual continuous quantum phase transitions,
but not in the first-order case.

In the low-temperature regime, T � 	, both cv and α

are exponentially small, and their ratio to leading order is
given by � = (1/	)∂	/∂λ, which results in a divergence
� ∝ 1/(λ − 1). Again, this agrees with the scaling result at
a quantum critical point [4]. We note that the exponents of
the Grüneisen divergence are not expected to change upon
inclusion of corrections to linear spin-wave theory because the
low-energy structure of the theory, and hence the character of
the gap closing, is protected by Goldstone’s theorem.

The self-duality of the model implies [29] �(λ, T ) =
−�(1/λ, λT ) for small |λ − 1| and low T . This is consistent
with � ≷ 0 for λ ≷ 1; that is, � jumps from negative to
positive values upon crossing the transition at any T . This is
different from the behavior in the quantum critical regime of a
continuous QPT, where � varies analytically at finite T , which
implies that � displays a characteristic zero crossing within
the quantum critical regime [5].

The analytical considerations are well borne out by our
numerical calculations. Numerical results for the Grüneisen
ratio �, obtained from a lattice evaluation of Eqs. (9) and (10),
are displayed in Figs. 2 and 3. They show the full crossover
behavior in the vicinity of the first-order QPT.

We finally comment on the behavior at λ = 1. Here both
thermal expansion and the Grüneisen ratio jump and change
sign, i.e., are not well defined. This is a result of the assump-
tion that a volume change controls the tuning parameter λ,
which implies that a system placed at λ = 1 will change its λ

value if heated or cooled at fixed p. In other words, changing
T at fixed p, starting at λ = 1, drives the system in one of
the stable phases. Again, we recall that the enhanced U(1)
symmetry of our model at λ = 1 is an emergent symmetry of
the original system, being realized only on a particular line in
p-T parameter space.

FIG. 2. Grüneisen ratio � calculated for the XZ model (6) as
a function of tuning parameter λ and temperature T . � jumps and
changes sign at the symmetry-enhanced first-order transition at λ =
1 and diverges as T → 0 both for λ → 1+ and λ → 1−. Note that the
λ axis is logarithmic, emphasizing the self-duality [29] of the model
with respect to λ ↔ 1/λ.

V. TRANSITION BETWEEN GAPLESS
AND GAPPED PHASES

We now turn to the XXZ model whose main difference
from the XZ model is the Goldstone mode existing for λ < 1
due to the spontaneously broken U(1) symmetry. As above,
we use simple analytical considerations to determine the
asymptotic thermodynamic behavior in the various regimes.

We start with the Ising ordered phase: For λ � 1 the
behavior of the XZ and XXZ model are very similar, i.e.,
gapless linearly dispersing modes at λ = 1 and a gap scaling

FIG. 3. Grüneisen ratio � calculated for the XZ model (6) as in
Fig. 2, here plotted (a) as a function of T for various λ > 1 and (b) as
a function of λ for various T . The insets show the data in a log-log
fashion to illustrate the power laws.
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FIG. 4. Grüneisen ratio � calculated for the XXZ model (7) as
a function of the tuning parameter λ and temperature T . While �

diverges as T → 0 for λ → 1+, the behavior for λ → 1− is more
complicated due to the presence of a Goldstone mode for λ < 1; for
details see text.

as 	 ∝ (λ − 1)1/2 for λ > 1, but the number of low-energy
modes is doubled in the XXZ model. Hence, for λ > 1 we
recover the results � ∝ 1/T 2 for T � 	 and � ∝ 1/(λ − 1)
for T � 	.

The situation is different for λ < 1. Here we have one
Goldstone mode, corresponding to spin fluctuations in the XY
plane, and one out-of-plane mode, which develops a gap 	 ∝
(1 − λ)1/2. Within linear spin-wave theory, the mode contri-
butions are strictly additive both for specific heat and thermal
expansion, c = c	 + cgs and α = α	 + αgs. The regime T �
	 has contributions from both modes. In this limit we find
αgs ∝ T d and α	 ∝ −T d−2; hence, |αgs| � |α	| at low T
because the gapped mode displays a stronger λ dependence.
Moreover, both c	 and cgs scale as T d . This results in a
divergence � ∝ −1/T 2, as in Sec. IV.

The thermodynamics of the low-T regime, T � 	, re-
quires a more careful discussion. If the contributions of the
gapped out-of-plane mode are negligible compared to that of
the Goldstone mode, we have to consider only the latter. As
noted above, its contributions to both specific heat and thermal
expansion scale as T d , with the prefactors both being nonsin-
gular as λ → 1− (see the Appendix for details). Therefore,
� approaches a finite value in this case which, moreover, is
positive, since the Goldstone-mode velocity increases with λ.
However, the condition T � 	 does not automatically imply
that the out-of-plane mode can be neglected because in this
regime we have α	 ∝ −T d/2−2e−	/T while αgs ∝ T d . As a
result, the Grüneisen ratio changes sign for λ < 1 along a line
in the T -λ phase diagram which ends at the T = 0 transition
point. The location of this line, given by αgs + α	 = 0, can be
estimated as 	 = (2 + d/2)T | ln T/(Js)| up to additive cor-
rections, equivalently, 1 − λ ∝ [T/(Js)]2 ln2 T/(Js). Below
this line, the Goldstone-mode contribution to α dominates,
and the Grüneisen ratio is positive and finite, such that the
behavior upon approaching the zero-temperature transition
point is characterized by noncommuting limits,

lim
λ→1−

lim
T →0

�(T, λ) 
= lim
T →0

lim
λ→1−

�(T, λ). (11)

The full numerical result for � is displayed in Fig. 4, with
cv and α shown individually in Fig. 5. As anticipated, α and �

FIG. 5. (a) Specific heat cv and (b) thermal expansion α calcu-
lated for the XXZ model (7) as a function of λ for different T . cv is
a continuous function of λ, while α jumps and changes sign at λ = 1
as a result of the gap closing. A further sign change occurs for λ < 1;
for details see text.

change sign twice. Further details of � are in Figs. 6 and 7. Its
nontrivial behavior for λ < 1, shown in Fig. 7, becomes clear
if one approaches the QPT along different trajectories. For
square-root trajectories, i.e., fixed κ = T/	, the Grüneisen
ratio diverges, �(κ	(λ), λ) → −T −2 at sufficiently low T , as
analytically shown in the Appendix. In contrast, along straight
trajectories with fixed κ ′ = T/[Js(1 − λ)] the Grüneisen ratio
approaches a constant value, �(κ ′(1 − λ)Js, λ) → const, as
this trajectory is located below the line with � = 0 sufficiently
close to the QPT.

VI. CONCLUSIONS

In this paper we have shown that the Grüneisen ratio �,
i.e., the ratio between thermal expansion and specific heat,
generically diverges upon approaching a symmetry-enhanced
first-order QPT, provided that it can be driven by pressure.
Such a divergence, previously discussed and analyzed for
continuous QPTs, occurs here because the enhanced symme-
try is accompanied by a vanishing mode gap. Remarkably,
the power laws characterizing the divergence of � have the
same form as that found at continuous QPTs, for instance,
� ∝ ±T −1/(νz) asymptotically close to the transition, but with
exponents locked to their mean-field values. This exponent
locking is a result of the spontaneous symmetry breaking at
the transition point, such that Goldstone’s theorem protects
the low-energy structure of the theory.

Our explicit results, obtained for ordered antiferromag-
nets, also demonstrate an interesting interplay of the soft
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FIG. 6. Grüneisen ratio � calculated for the XXZ model (7) as
in Fig. 4, here plotted (a) as a function of T for various λ > 1 and
(b) as a function of λ > 1 for various T . The insets show the data
in a log-log fashion to illustrate the power laws. In this gapped Ising
phase, the behavior is very similar to that of the XZ model in Fig. 3.
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FIG. 7. Grüneisen ratio � calculated for the XXZ model (7) as
in Fig. 6, but now for the XY phase at λ < 1. � is shown (a) as a
function of T for various λ < 1 and (b1) and (b2) as a function of λ

for various T .

mode(s) arising from symmetry enhancement with the Gold-
stone modes of the stable phases, leading to additional sign
changes of �. Ordered phases with other symmetry-breaking
patterns can lead to different exponents for the Grüneisen
divergence; for example, a ferromagnetic version of the XZ
model displays a divergence � ∝ ±1/T because z=2 in this
case. It would be interesting to extend the present analysis
to symmetry-enhanced first-order transitions without finite-
temperature order where then non-mean-field exponents may
be expected; this is beyond the scope of this paper.

The phenomenology outlined in this paper may be appli-
cable to a number of correlated-electron materials in which
unconventional first-order-like transitions have been detected.
One case in point is Ce3Pd20Si6, where a field-driven switch-
ing between two magnetic phases, accompanied by a mode
softening, has been observed in neutron scattering experi-
ments [30]. In this context we note that symmetry-enhanced
first-order transitions in metals will induce deviations from
Fermi-liquid behavior. The details of this will be investigated
in future work. Finally, we note that the closing of a mode
gap may also occur in different first-order transition settings
[31,32], and it would be interesting to extend the thermody-
namic analysis presented here to those cases.
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APPENDIX: DETAILS OF SPIN-WAVE EXPANSION

To determine the thermodynamics of the spin models (6)
and (7), we employ standard linear spin-wave theory [27]. In
all phases, we expand about a two-sublattice Néel state and
introduce two types of Holstein-Primakoff bosons a and b
for the A and B sublattices, respectively. As a result, Fourier
transformations are performed with momenta �k from the mag-
netic Brillouin zone, with Ns/2 momentum points, where Ns

is the total number of lattice sites.

1. XZ model

For the λ � 1 Ising phase of XZ model (6), the spin-wave
Hamiltonian reads HSW = H0 + H2, with H0 = −2dλJNss2

being the classical ground-state energy and

H2 = 2dJs
∑

�k

[
λa†

�ka�k + λb†
�kb�k

+ γk

2
(a†

�kb�k + a�kb−�k + H.c.)

]
(A1)

being the bilinear fluctuation piece, with the form factor

γk = 1

d

d∑
j=1

cos k j, (A2)
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where we have set the lattice constant to unity. Note that
γk � 0 in the magnetic Brillouin zone. H2 is diagonalized by a
standard 4 × 4 Bogoliubov transformation [33], yielding two
sets of eigenmodes α�k,i with mode energies

ω�k,1 = 2dJs
√

λ2 − λγk,

ω�k,2 = 2dJs
√

λ2 + λγk. (A3)

At the U(1)-symmetric point, λ = 1, ω�k,1 represents the Gold-

stone mode of the system, with linear dispersion around �k =
0. In contrast, ω�k,2 is always gapped.

We proceed with an analytical calculation of the Grüneisen
ratio at low temperatures and near the transition point. In this
regime, contributions of the mode ω�k,1 are exponentially sup-
pressed and can be neglected. For small k and small (λ − 1),
ω�k,1 can be expanded as

ω�k,1 ≈
√

	2
1 + c2

1|�k|2, (A4)

with the gap 	1 ≡ 	 given by

	1(λ) = 2dJs
√

λ(λ − 1) (A5)

and the velocity

c1(λ) = Js
√

2dλ. (A6)

To evaluate the thermal expansion, we need the λ derivatives
of gap and velocity,

∂	1(λ)

∂λ
= 2Jsd

2λ − 1

2
√

λ(λ − 1)

⇒ 	1
∂	1(λ)

∂λ
= (2Jsd )2

(
λ − 1

2

)
(A7)

and

∂c1(λ)

∂λ
= c0

1

2
√

λ
⇒ 1

c1(λ)

∂c1(λ)

∂λ
= 1

2λ
, (A8)

with c0 = c1(1).
Expressions (9) and (10) can now be evaluated in the con-

tinuum limit, making use of the spherical symmetry of the
dispersion (A4). We start with the regime T � 	, reached,
e.g., by taking the limit λ → 1+ at finite T . Using the substi-
tution x = βc1(λ)k, where β = 1/T , we obtain

lim
λ→1+

cv = C1(1)
∫ ∞

0
dx

xd+1

4 sinh2(x/2)
(A9)

and

lim
λ→1+

α = C1(1)
∫ ∞

0
dx

β2(2dJs)2xd−1 + xd+1

8 sinh2(x/2)
, (A10)

with the prefactor

C1(λ) = 
d
T d

c1(λ)d
, (A11)

where 
d is defined as the d-dimensional solid angle of the
hypersphere. The leading low-T behavior is thus cv ∝ T d and
α ∝ T d−2, with the dominant term in α arising from the λ de-
pendence of the gap. The integrals can be evaluated, resulting

in

lim
λ→1+

� = 2dζ (d−1)

(d+1)ζ (d+1)

(
T

Js

)−2

, (A12)

where ζ (x) is the Riemann zeta function. Expression (A12)
matches the numerical result in Fig. 3(a) for d = 3, where
the prefactor evaluates to 2.28. Corrections to the leading
power law (A12) take the form of a standard high-temperature
expansion, � ∝ [T/(Js)]−2[1 + O(	/T )].

In the opposite limit T � 	, both specific heat and thermal
expansion are exponentially suppressed. For λ > 1, we have

lim
T →0

cv (λ) = C1(λ) β2	2
1e−β	1

×
∫ ∞

0
dx xd−1e−x2/(2β	1 ) (A13)

and

lim
T →0

α(λ) = C1(λ) β2	1
∂	1

∂λ
e−β	1

×
∫ ∞

0
dx xd−1e−x2/(2β	1 ). (A14)

The leading low-T behavior of their ratio is thus found as

lim
T →0

�(λ) =
∂	1(λ)

∂λ

	1(λ)
= 2λ − 1

2λ(λ − 1)
→

λ→1+

1/2

λ − 1
, (A15)

in agreement with the numerical result in Fig. 3(b).

2. XXZ model

In the XXZ model (7) the low-temperature phase for λ > 1
(λ < 1) breaks Z2 [U(1)] symmetry. Therefore, two different
calculations are required.

a. Ising phase

For λ � 1 the expansion is performed about a Néel state
polarized along ẑ. The bilinear piece of the spin-wave Hamil-
tonian now reads

H2 = 2dJs
∑

�k
[λa†

�ka�k + λb†
�kb�k + γk (a�kb−�k + H.c.)], (A16)

with γk defined in Eq. (A2), and the summation runs over
the magnetic Brillouin zone as before. A 2 × 2 Bogoliubov
transformation yields two degenerate magnon modes with
dispersion

ω�k,1,2,
= 2dJs

√
λ2 − γ 2

�k . (A17)

At the SU(2)-symmetric point at λ = 1, these modes are
gapless at �k = 0. For small k and small (λ − 1), the mode
energy can be expanded as in Eq. (A4), but with a gap 	2 ≡ 	

given by

	2(λ) = 2Jsd
√

λ2 − 1 (A18)

and a velocity

c2(λ) = 2Js
√

2d. (A19)
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As above, we evaluate expressions (9) and (10) in the
continuum limit. For T � 	 we find

lim
λ→1+

� = 4dζ (d−1)

(d+1)ζ (d+1)

(
T

Js

)−2

, (A20)

which is identical to the corresponding result in the XZ model
up to a factor of 2 arising from the different 	 dependences of
the gap, Eq. (A5) vs Eq. (A18). For T � 	 we find

lim
T →0

�(λ) = λ

λ2 − 1
→

λ→1+

1/2

λ − 1
, (A21)

which agrees with the XZ-model result.

b. XY phase

For λ � 1 the expansion is performed about a Néel state
in the XY plane. The linear spin-wave Hamiltonian takes the
form

H2 = 2dJs
∑

�k
[a†

�ka�k + b†
�kb�k + γk (1 − λ)(a†

�kb�k + H.c.)

+ γk (1 + λ)(a�kb−�k + H.c.)]. (A22)

A 4 × 4 Bogoliubov transformation now yields two modes
with dispersion,

ω�k,1 = 2dJs
√

1 + γ�k[1 − λ(1 + γ�k )],

ω�k,2 = 2dJs
√

1 − γ�k[1 − λ(1 − γ�k )], (A23)

which are nondegenerate except for λ = 1, where ω�k,1 = ω�k,2.
For λ < 1 the second mode represents the (in-plane) Gold-
stone mode of the XY phase, whereas the first (out-of-plane)
mode develops a gap, 	3 ≡ 	. For small k and small (1 − λ)
a Taylor expansion of the mode energies yields

ω1 ≈
√

	2
3 + c2

3|�k|2,
ω2 ≈ c4(λ)|�k|,

(A24)

with

	3(λ) = 2dJs
√

2(1 − λ),

c3(λ) = Js
√

2d (3λ − 1),

c4(λ) = Js
√

2d (1 + λ). (A25)

Both specific heat and thermal expansion acquire contribu-
tions from both modes, such that the Grüneisen ratio becomes

� = αgs + α	

cgs + c	

. (A26)

In the regime T � 	 we recover the power laws cgs, c	 ∝
T d ; moreover, we have αgs ∝ T d and α	 ∝ −T d−2. Evaluat-
ing the integrals yields

lim
λ→1−

� = − 2dζ (d − 1)

(d + 1)ζ (d + 1)

(
T

Js

)−2

, (A27)

with the sign being reversed compared to Eq. (A20). The
opposite regime T � 	 contains a region where the contri-
butions to cv and α from the gapped out-of-plane mode are
negligible compared to those from the Goldstone mode. The
latter scale as T d and are nonsingular as λ → 1− because
c3(λ) is nonsingular. This results in a positive and nondiver-
gent Grüneisen ratio

lim
T →0

�(λ) = 1

2(1 + λ)
→

λ→1−
1/4 (A28)

in the region where the gapped mode can be neglected—this
does not apply to the entire regime T � 	, as will become
clear shortly.

To understand the crossover from the nondivergent behav-
ior (A28) to the divergent behavior (A27), we evaluate the
gapped-mode contributions in the regime T � 	. By expand-
ing the argument of sinh in Eqs. (9) and (10) we find

c	 = C3(λ)(β	)2+d/2e−β	, (A29)

α	 = −C3(λ)(2d )2(βJs)2(β	)d/2e−β	, (A30)

with the prefactor

C3(λ) = 2d/2−1�̃(d/2)
d
T d

c3(λ)d
, (A31)

where �̃(x) is the gamma function. Hence, we can write c	 =
T d f (β	) and α	 = −T d−2g(β	), where both functions f (x)
and g(x) are exponentially suppressed with x. Recalling that
αgs ∝ T d , we conclude that at fixed β	 the gapped mode will
dominate the thermal expansion at sufficiently low T , such
that � ∝ −1/T 2 upon approaching the QPT along trajectories
of 	/T = const even if T � 	. The line separating nondi-
vergent from divergent behavior of � upon approaching the
QPT has the form 	/T ∝ | ln T/(Js)|, obtained from solving
αgs = α	, as noted in the main text. Along this line the ratio
	/T grows upon approaching the transition point.
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