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We consider localized topologically nontrivial magnetic textures (skyrmions, antiskyrmions, and bimerons)
in a thin magnetic film with anisotropic interfacial Dzyaloshinskii-Moriya interaction (iDMI). We use micro-
magnetic simulations and analytical consideration for studying the internal magnetic structure and stability of
these textures. Skyrmion and antiskyrmion become elliptic and orient along the main axes of the iDMI tensor
even for small anisotropy. In contrast, bimeron (antibimeron) orientation changes fluently with varying the iDMI
anisotropy. Depending on the iDMI anisotropy the bimeron may consist of a vortex and antivortex pair or of
“hedgehog” state and antivortex. In experiment the considered iDMI anisotropy can be induced by a strain
applied to a magnetic film. We develop a phenomenological approach to establish the strain-iDMI relation.
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I. INTRODUCTION

Recently, topologically nontrivial magnetization distribu-
tions have attracted a lot of attention due to their unique
physical properties and promising applications [1–12]. These
spin textures may appear either in a crystal with broken
inversion symmetry or in an artificial multilayer structure
consisting usually of ferromagnet (FM) and heavy metal
(HM) films [13]. To date, several types of topological mag-
netic solitons are known. The most studied is the skyrmion
(Sk) appearing in HM/FM multilayers with perpendicular
magnetic anisotropy [13–18]. In the absence of an external
magnetic field the skyrmion is stabilized by the interfacial
Dzyaloshinskii-Moriya interaction (iDMI). The counterpart-
ner of the skyrmion is the antiskyrmion (aSk). While Sk can
appear in systems with isotropic iDMI, the aSk requires the
anisotropic iDMI. They were predicted [19,20] and observed
[21,22] in several crystals (and epitaxial films) with certain
symmetry. In artificial HM/FM structures, aSk can appear
only if the iDMI has opposite sign along different directions
[23,24]. So far, the fabrication of such films has not been
reported and aSk has not been observed in artificial systems.
A topological analog of magnetic Sk in easy-plane films is
magnetic bimerons. Their possible existence in the films with
iDMI was recently theoretically predicted [25–32].

Using magnetic solitons in applications requires an effec-
tive way of creating, annihilating, and moving these textures
in thin films. This is still a challenging task nowadays and
many groups are currently working on the issue. The approach
based on spin-polarized currents [29,30,33–40] requires a
huge current density of about 107 A/cm2 making it not rel-
evant for applications. This motivates people to develop strain
and charge mediated approaches [41–46].

Recently, it was experimentally shown that the iDMI can be
controlled in a wide range with a strain in artificial magnetic

multilayer films [47,48]. Since the iDMI is responsible for
stabilization of topological texture, the strain can be used to
manipulate them. Interestingly, the strain induces not only the
iDMI strength variation but also the iDMI anisotropy. More-
over, under certain strain the iDMI can have a different sign
along different directions. An isotropic film where Sk may ex-
ist can be transformed to the film with strong anisotropic iDMI
favoring aSk formation. Therefore it is interesting to study the
behavior of Sk and aSk as a function of iDMI anisotropy. Note
that the anisotropic strain can be induced with electric field in
the FM-ferroelectric (FE) hybrid system as shown in Fig. 1.
A FM film hosts topological magnetic structure and serves

FM/FE structure with bimeron

FM multilyaer

Hybrid structure FM/FE with a bimeron

VFE

FM multilayer

FIG. 1. Sketch of a ferromagnetic/ferroelectric hybrid structure.
A bimeron is situated in the FM film. A voltage V is applied across
the ferroelectric layer inducing a strain in the ferromagnetic film
affecting the iDMI.
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as an electrode. Applying a voltage to the FE substrate one
can create a deformation using the piezoelectric effect. These
deformations are transferred into FM film and induce the DMI
anisotropy.

A skyrmion is stabilized by the iDMI in artificial mul-
tilayers. In films with isotropic iDMI a Sk represents a
cylindrically symmetric magnetization distribution. The size
of the skyrmion depends on the iDMI strength [49]. For small
iDMI (D < Dcol) the skyrmion collapses. The critical value
of iDMI (Dcol) is usually found numerically. When the iDMI
exceeds the energy of the domain wall (DW), D > Dcr ≈
WDW/π = 4

√
AK/π , a separate skyrmion experiences runout

instability (here A is the exchange stiffness and K is the film
anisotropy constant). For intermediate region Dcol < D < Dcr

a separate skyrmion can exist.
Skyrmions in the magnetic film with anisotropic iDMI

were discussed in Ref. [50] where the stability of a single Sk
depending on the applied magnetic field and iDMI anisotropy
was studied for zero magnetic anisotropy. In the absence
of magnetic anisotropy a Sk is unstable without an external
magnetic field. It was shown that iDMI anisotropy leads to
less stable skyrmions. In addition, the long-range magne-
todipole (MD) interaction was not taken into account.

A magnetic aSk in an artificial film is less studied theo-
retically. In Ref. [24] the case of magnetic film with iDMI of
opposite sign along the x and y directions (Dx = −Dy, where
Dx,y are the iDMI coefficients along two orthogonal directions
in the film plane) was discussed. It was shown that the aSk
is cylindrically symmetric for zero (or weak) dipole-dipole
interaction in this case. The stability criterion for an aSk as
a function of iDMI anisotropy was not studied.

Bimerons (Bi) may appear due to competing exchanges
without the iDMI interaction as shown in Ref. [27]. The
occurrence of a Bi lattice in thin film with in-plane anisotropy
and iDMI was shown in Ref. [26]. Stabilization of a single Bi
due to iDMI in a thin film with in-plane magnetic anisotropy
was discussed in Refs. [30,31]. A stability diagram for a Bi
in the isotropic FM layer was obtained using micromagnetic
simulation. Similarly to Sk and aSk, the Bi exists in a narrow
range of iDMI values. When the domain wall energy becomes
negative a single bimeron disappears transforming to stripe
domains or a magnetic helix. This defines the upper bound for
the iDMI strength. At small enough iDMI the Bi collapses.
Due to isotropy of the film the bimeron consists of a pair
of “hedgehog” states (with positive winding number) and
antivortex (with negative winding number).

In this work we investigate the stability and magnetic
structure of localized topologically nontrivial states in the
thin magnetic films as a function of iDMI anisotropy. We
consider skyrmion, antiskyrmion, and bimeron using micro-
magnetic simulations and semianalytical approaches. In our
model we take into account all interactions relevant to realistic
experimental systems such as perpendicular anisotropy and
long-range MD interaction.

The paper is organized as follows. First, we present the
results of micromagnetic simulations of the stability of Sk,
aSk, and Bi in a magnetic film with anisotropic iDMI in
Sec. II. Then, we discuss the main peculiarities of the sta-
bility diagrams using analytical models in Sec. III. Finally,
we discuss a possibility to create the anisotropic iDMI with

electric field and provide a phenomenological consideration
of the iDMI-strain relation in Sec. IV.

II. MICROMAGNETIC SIMULATIONS
OF TOPOLOGICALLY NONTRIVIAL MAGNETIC

TEXTURES IN FILMS

A. The model and micromagnetic simulations procedure

We consider a thin uniform ferromagnetic film with satu-
ration magnetization Ms, thickness t , and exchange stiffness
A. The film has a perpendicular (interfacial or magnetocrys-
talline) magnetic anisotropy with volume energy density
Wan = −K (mz0)2, where m is the unit vector along the film
magnetization, z0 is the film normal, and K is the mag-
netic anisotropy constant, K > 0. Note that the effective
magnetic anisotropy including the shape contribution Keff =
K − μ0M2

s /2 (μ0 is the vacuum permeability, Keff units are
energy/length3) can be either positive or negative. If Keff > 0
the energy of the state with uniform out-of-plane magnetiza-
tion (“OOP” state) is less than the energy of the state with
uniform in-plane magnetization (“IP” state). There is also
iDMI in the film. Its energy is

WDMI = Dx

(
mx

∂mz

∂x
− mz

∂mx

∂x

)
+Dy

(
my

∂mz

∂y
− mz

∂my

∂y

)
.

(1)

Here Dx, Dy are iDMI coefficients along the x and y axes.
There is no magnetic anisotropy axis in the film plane. How-
ever, the film can be anisotropic due to anisotropic iDMI
(Dx �= Dy). We study localized nonuniform states, shown in
Fig. 2. Here we denote them as Sk, aSk, Bi, and antibimeron
(aBi). The Sk and Bi states have the same topology and carry
the same topological charge [51],

Nch = 1

4π

∫
m · ∂m

∂x
× ∂m

∂y
= 1. (2)

The Bi can be obtained from Sk by rotating the magnetiza-
tion by 90◦ around the y axis (see Fig. 2). Such rotation does
not change the topological charge of the system. Antibimeron
and aSk have a topological charge equal to −1. The aBi can
be obtained from the aSk by rotating magnetization by 90◦.

Below we use the following definitions for (a)Sk and (a)Bi.
By Sk (Fig. 2) we mean a localized magnetic state with a
topological charge +1 and vorticity +1 in a film magnetized
in negative z direction. The localized state with a topological
charge of −1 and vorticity of −1 is considered as aSk. The
localized topologically charged states with +1 and −1 charges
in the easy-plane films are considered as Bi and aBi, respec-
tively. The Bi consists of closely spaced center and saddle
points (Fig. 2, Bi). In the aBi the magnetization direction mz

is opposite at these points (Fig. 2, aBi).
Micromagnetic simulations are performed utilizing the

OOMMF code [52] to solve the problem of Sk and Bi stability.
This code is based on a numerical solution of the system
of Landau-Lifshitz-Gilbert equations for the magnetization of
the system.

∂ �M
∂t

= −γ ( �M × �Heff ) − γα0

Ms
[ �M × ( �M × �Heff )], (3)
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FIG. 2. Localized topological states: Sk and aSk stand for
skyrmion and antiskyrmion, respectively; Bi and aBi stand for
bimeron and antibimeron, respectively. The blue and red colors de-
note positive and negative values of Mz, respectively.

where M is the magnetization, γ is the gyromagnetic ratio, α0

is the dimensionless damping parameter, and Ms is the satu-
ration magnetization. The effective field �Heff = −δE/δ �M is a
variation derivative of the energy function. The total energy of
the system is defined by

E = Eex + EK + Em + EDM. (4)

The first term Eex is the energy of the exchange interaction.
The second term EK is the energy of the uniaxial anisotropy,
and Em is the demagnetization energy. Expressions for these
terms and corresponding effective fields have conventional
form and can be found in Refs. [53–55].

The simulated system is a rectangular plate with a width of
762 nm and a thickness of t = 1 nm, which is a typical value
for the Co/Pt bilayers. Periodic boundary conditions in the
plane of the film are used. The mesh element size 1.5 × 1.5 ×
1 nm3 is much smaller than the DW width.

In our calculations we use typical material parameters for
ferromagnetic films with a perpendicular anisotropy. The stiff-
ness constant is chosen as A = 1.6 × 10−11 J/m and Ms =
1300 kA/m. We initialize our film introducing one of the
topologically nontrivial configurations as a nucleon and let
the system evolve to equilibrium. Depending on the system
parameters, the initial state may disappear (collapse) leading
to a uniform magnetized state. Another scenario is when the
initial localized magnetic state experiences runout instability
and the system turns into some globally inhomogeneous state

FIG. 3. Stability diagram of localized topological states. Right
panel is for isotropic iDMI. Left panel is for anisotropic iDMI with
Dx = −Dy. OOP stands for out-of-plane magnetization. IP stands
for in-plane magnetization. GIS stands for globally inhomogeneous
state.

(GIS). In both these cases we consider the topological texture
as unstable. If at the end of the magnetization evolution the
localized magnetic texture survives, we consider it as stable.

B. Phase diagram in coordinates (K, D) for isotropic film

The stability diagram of magnetic film with isotropic iDMI
(Dx = Dy) is shown in the right panel in Fig. 3. There are
several regions in the diagram. A Sk exists only in a small
sector in the upper right quadrant. This quadrant corresponds
to the out-of-plane effective magnetic anisotropy. For fixed
magnetic anisotropy there is a narrow range of iDMI values
where a Sk is stable. This is in agreement with previous stud-
ies. The Sk collapses (Sk → OOP transition) with increasing
anisotropy K or decreasing Dx. The collapse is accompanied
by a change in the topological charge. Therefore, this phase
boundary can be accurately defined. The collapse is not re-
versible. Changing K or Dx cannot transform the uniform state
to a topologically charged one.

A Sk experiences runout instability and turns into GIS with
decreasing K or increasing of Dx. This is due to a decrease
of the DW energy in this case. The Sk → GIS transition
conserves the value of topological charge. Therefore, this
transformation is reversible. The opposite change of K or D
values transforms the GIS to a localized Sk. We define this
boundary when a significant Sk expansion occurs.

The upper quadrant of the left panel in Fig. 3 shows the
stability region for an aSk at Dx = −Dy. The region resembles
that for a Sk. Note that there is no intersection of Sk and
aSk stability regions and they cannot coexist in the same
film.

Bi and aBi exist only in the bottom part of the diagram for
Keff < 0. In contrast to Sk and aSk, the Bi and aBi may coexist
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FIG. 4. Stability diagram for a single Sk and aSk in film with
anisotropic iDMI. Single Sk is stable for DxDy > 0. An aSk exists
in the second and fourth quadrants (DxDy < 0) only. Closed circles
and crosses show the boundary points where Sk or aSk is stable.
Open diamonds and stars show the first points outside of the stability
region. OOP stands for out-of-plane magnetization. GIS stands for
globally inhomogeneous state. Dcr = 4

√
AKeff/π ≈ 1.6 mJ/m2.

in the same film and in both limits Dx = Dy and Dx = −Dy.
When Bi (aBi) collapses, it irreversibly transforms into the
state with uniform IP magnetization. The transformation to
GIS is reversible.

Note that there is an essential difference between the pairs
Sk-aSk and Bi-aBi. The Bi and aBi can be transformed one
into another using the system rotation by the angle π around
the x axis. Therefore, the energy of Bi and aBi is the same.
This is not the case for Sk and aSk: the system rotation cannot
transform Sk to aSk.

C. Stability diagram of skyrmions and antiskyrmions
in films with anisotropic iDMI

To study the influence of the iDMI anisotropy we fix the
K constant and vary iDMI constants Dx and Dy indepen-
dently. The stability diagram of skyrmions and antiskyrmions
in coordinates (Dx, Dy) is shown in Fig. 4 for K = 1.16 × 106

J/m3 (Keff = 1.03 × 105 J/m3). All other material parameters
were defined before. The stability diagram is symmetric with
respect to the line Dx = Dy. This is because the replace-
ment Dx,y → Dy,x is equivalent to rotation of the system by
90◦, which does not affect the skyrmions stability conditions.
Similarly, the diagram is symmetric with respect to the line
Dx = −Dy.

A single Sk can be stable only in the region DxDy > 0
within a narrow “triangle” around the point Dx = Dy = 1
mJ/m2. The case of isotropic film (considered in previous
works) corresponds to the diagonal Dx = Dy. As we discussed
in the Introduction, there is an upper and lower bound for
iDMI magnitude in this case. If the iDMI is higher than the
upper bound, a Sk expands and transforms into some GIS.
Such a GIS can be a labyrinth domain structure or lattice of

magnetic bubbles. Below the lower bound a Sk collapses and
the film becomes uniformly magnetized.

We introduce the average iDMI strength as D =
√

D2
x + D2

y

and the anisotropy as ξan = |Dx|/|Dy|. Using this defi-
nition the case Dx = −Dy is isotropic. When iDMI is
anisotropic (ξan �= 1) the range of average iDMI values D in
which skyrmions can exist shrinks. For high enough iDMI
anisotropy (ξan > 10 or ξan < 0.1) there are no iDMI values
giving Sk stabilization. However, in the film with anisotropic
iDMI the upper bound for iDMI along one of the directions is
higher than for the isotropic case. So, a single Sk can survive
at a higher iDMI value. One can see that the line for the
Sk-OOP boundary is practically straight and has a slope of
−1. As for the Sk-GIS boundary, its slope is −1/2 and −3/2.
So, the upper bound for Dx at Dy ≈ 0 is about 1.5 times higher
than critical Dx along the line Dx = Dy.

A single aSk can exist only in the second and fourth quad-
rants (DxDy < 0) when the iDMI has different sign along
different directions. So, a Sk and an aSk cannot coexist in
a thin film according to our simulations. The region of pa-
rameters where an aSk survives also resembles a triangle. The
upper bound for iDMI strength is lower for aSk than for Sk.
This is related to the difference of their internal structure. The
DW in the Sk is of Néel type. In the aSk the DW changes
its type from Bloch to Néel type as one moves around the
aSk. This makes the MD energy of the DW different for Sk
and aSk. The latter is smaller leading to faster transformation
of the aSk into GIS as we increase the iDMI strength. The
stability of the aSk and Sk is discussed on the basis of the
simplified model in Sec. III.

D. Stability diagram of Bi and aBi in films
with anisotropic iDMI

Similarly to Sk and aSk, we study the stability of single
Bi and aBi in the film with anisotropic iDMI. We simulate
a magnetic film with in-plane effective magnetic anisotropy
K = 1.001 × 106 J/m3 (Keff = −6.1 × 104 J/m3). Other pa-
rameters are the same as in the previous section. Figure 5
shows such a diagram in coordinates (Dx, Dy). A single Bi is
stable between the lines resembling ellipses. Similar to Sk and
aSk there are upper and lower critical values of iDMI strength
D for Bi stability. In contrast to Sk, a single Bi can be stable
in all quadrants DxDy > 0 and DxDy < 0. The stability region
in the first (third) quadrant is different from that in the fourth
(second) quadrant. The average iDMI D is lower in region
DxDy < 0. This is due to the different internal structure of
the DW in Bi in these two cases. The DWs for DxDy < 0
have lower energy since both iDMI and MD energies are
minimized. We discuss this in more detail in Sec. III G. The
magnetization distribution in Bi for different iDMI anisotropy
is shown in Fig. 6. In all cases the Bi represents a pair of
“saddle” point and “center” point. The saddle point (which
is an antivortex) keeps its structure for any ratios of Dx and
Dy values. Contrarily, the helicity (angle θ between the mag-
netization and a radius vector from the center point) of the
center point depends on this ratio. For DxDy > 0 there is a
hedgehog structure with θ = 0 [Figs. 6(a)–6(c)], while for
Dx = −Dy there is a vortex with θ = ±π/2 [Fig. 6(e)]. For
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FIG. 5. Stability diagram for bimerons (Bi) in film with
anisotropic iDMI. Points show coordinates at which the magnetiza-
tion distributions are simulated in Fig. 6. Closed circles and stars
show the Bi to uniform state transition (collapse). Open diamonds
and closed circles show the transition of Bi to the globally inho-
mogeneous state (GIS). IP stands for in-plane magnetization. Dcr =
4
√

A|Keff |/π ≈ 1.25 mJ/m2.

intermediate values of Dx and Dy there is a canted structure
[0 < |θ | < π/2; Fig. 6(d)]. The ratio of Dx and Dy determines
also the orientation of the Bi. The orientation is characterized
by the vector q which connects the saddle and center points. It
is oriented by the angle φq with respect to the x axis. Another
important angle characterizing the Bi (φM) is the orientation
of magnetization far from the Bi. Angles φq and φM seem to be
related as φq = −φM . For Dx = Dy the system is isotropic and
Bi can have any orientation. For Dx > 0 and Dy > 0 the Bi is
oriented along the direction of strongest iDMI. For Dx and Dy

of different signs the vector q begins to tilt reaching the value
φq = ±π/4 at Dx = −Dy. In this case, the Bloch DWs appear
in the Bi lowering both MD and iDMI energies. Importantly,
there is no crystallographic anisotropy in the film plane in
the considered system. Therefore, the uniform magnetization
surrounding a Bi can be oriented in either direction and does
not force the Bi to be directed in a certain way. Due to the
rotational degeneracy of the uniform state, the orientation
of the Bi is defined by its DW structure. So, the uniform
magnetization surrounding a Bi adjusts to the Bi orientation.
In real samples there is always some in-plane anisotropy and
DW pinning sites preventing this behavior. It is interesting
to note that the correlation between Bi orientation and its
internal structure in the film with anisotropic iDMI resembles
the correlation between the orientation and internal structure
of the equilibrium DW in a similar system [56].

The difference between aBi and Bi is due to the magne-
tization direction in the cores of the nodes only. Therefore,
the Bi and aBi have the same energy (for the same system
parameters). Thus, the stability diagram for a single aBi is the
same as for a single Bi and we do not show it here. The Bi and
aBi can coexist in the same film in contrast to Sk and aSk.

III. ANALYTICAL CONSIDERATION OF TOPOLOGICAL
STATES IN FILMS WITH ANISOTROPIC iDMI

A. The model

Here we consider the influence of iDMI anisotropy on
the shape, internal structure, and stability of topologically
nontrivial magnetic textures in a bilayer structure FM/HM.
The properties of these textures are defined by the competi-
tion of several energy contributions: (1) exchange interaction,
(2) magnetic anisotropy, (3) MD interaction, and (4) iDMI.
We consider a thin (thinner than the exchange correlation
length) magnetic film with thickness t and saturation mag-
netization Ms. The film plane is perpendicular to the z
axis. The magnetization is uniform along the z direction.
The system has a uniaxial magnetic anisotropy along the
z axis, which may occur due to the interfacial effects (as
in Co/Pt films). The anisotropy energy is the same as in
Sec. II A. The exchange energy density is given by Wex =
A[(∂m/∂x)2 + (∂m/∂y)2 + (∂m/∂z)2]. The iDMI is defined
by Eq. (1). Besides the demagnetizing factor, the MD interac-
tion leads to two additional contributions to the soliton energy
(i) due to charges in the DW of the soliton and (ii) due to the
interaction of the core of the topological structure (bounded
by the DW) with the surrounding magnetic film (the region
outside the DW).

B. Skyrmion model

A single Sk in isotropic film has a circularly symmet-
ric magnetization distribution. For the anisotropic iDMI we
consider a Sk as an ellipse with two radii, a and b, and
the orientation angle α (see Fig. 7). Following Ref. [49],
we consider a Sk with a size larger than the characteristic
DW width a, b � 
 = √

A/Keff . In this case, the Sk can be
represented as a DW of an elliptical shape. The DW with
the width 
 is bounded by the dashed lines in Fig. 7, with
the center shown by the blue solid line. Inside the ellipse the
magnetization is uniform and directed perpendicular to the
film plane. Outside of the ellipse the magnetization looks in
the opposite direction.

Consider a small part of the Sk DW shown in Fig. 7(c).
The DW is oriented along the local ellipse normal, n. Note
that this normal is not codirected with the radius vector r
connecting the Sk center and the considered local point. We
introduce the angle γ between n and r [see Fig. 7(b)]. The
angle between the main ellipse axis and the considered local
point is ϕ. Finally, one can see that the domain wall is oriented
by the angle γ + ϕ + α with respect to the x axis. One can find
the angle γ as follows:

γ = arccot[b2/a2ctg(ϕ)] − ϕ. (5)

The length of the considered segment is given by

dl = rdϕ

cos(γ )
, (6)

where the radius of the ellipse in the considered point is
defined by

r = ab√
b2 cos2(ϕ) + a2 sin2(ϕ)

. (7)
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FIG. 6. The structure and orientation of a bimeron state for different ratios of Dx and Dy. The specific values of iDMI constants
corresponding to (a)–(e) are denoted by red dots in Fig. 5. Bottom row shows the orientation of magnetization far from the Bi (M∞) and
the vector connecting “center” and “saddle” points of the Bi (q).

The internal structure of the DW for anisotropic iDMI was
considered in Ref. [56], where it was shown that anisotropic
iDMI leads to the formation of a mixed type of DW (interme-
diate between Bloch and Néel types). The energy of the DW
per unit length is given by

WDW = t

(
2A



+ 2Keff − πD+ cos(θ ) − πD−

× cos [2(α + ϕ + γ ) − θ ] + 1

2
k� cos2(θ )

)
, (8)

where the first two terms describe the exchange energy and
the magnetic anisotropy energy. The third and fourth terms

FIG. 7. Sketch of a Sk. The solid blue line corresponds to zero
out-of-plane magnetization. The dashed blue lines show the DW
size 
. a and b are the ellipse dimensions. The red arrows show
magnetization in the Sk. The vector n is the normal to the Sk surface
(blue line). r is the distance between the Sk center and the DW. α

is the Sk orientation angle. γ is the angle between the Sk normal n
and radius vector r. Rc is the Sk local curvature radius. (c) shows
the internal structure of the DW of the Sk. θ is the orientation of the
magnetization rotation plane.

are the iDMI contribution with

D+ = Dx + Dy

2
, D− = Dx − Dy

2
. (9)

The angle θ defines the orientation of the magnetization rota-
tion plane [see Fig. 7(c)]. For θ = 0, π one has the Néel DW,
while for θ = ±π/2 the DW becomes of the Bloch type. The
last term in Eq. (8) describes the contribution from the MD
energy of magnetic charges in the DW with � = μ0M2

s t and
k ≈ 0.44.

For isotropic film we have D+ = Dx = Dy and D− = 0 and
the DW becomes of the Néel type with θ = 0 (when the iDMI
is stronger than the MD interaction). The iDMI anisotropy
makes the DW of mixed Bloch-Néel type.

For the given Sk shape the DW orientation (γ + ϕ + α)
is fixed, therefore we need to minimize the energy in Eq. (8)
with respect to θ only.

∂WDW

∂θ
= 0, (10)

giving θmin(ϕ) the orientation of the magnetization rotation
plane in a local DW as a function of the position of the DW in
the Sk. For negligible MD contribution the angle is given by

θmin = atan

(
2D− sin [2(γ + α + ϕ)]

D+ + 2D− cos [2(γ + α + ϕ)]

)
. (11)

For nonzero MD interaction (� > 0) the analytical solution
for θmin is not possible and the angle should be found numeri-
cally.

The total energy of the DW in the whole Sk is found by the
integration over the angle ϕ:

W tot
DW = t

∫ 2π

0
dϕ

abWDW(θmin)

cos(γ )
√

b2 cos2(ϕ) + a2 sin2(ϕ)
. (12)

Since the DW in the Sk is bent, an additional term appears
in the energy due to the DW curvature. It is produced by the
exchange interaction and is due to magnetization derivatives
with respect to the angle ϕ. Using the approach of Ref. [49]
for a cylindrically symmetric Sk, we can write for the elliptic
Sk

W tot
c = 2tA


∫ 2π

0
dϕ

(∂γ /∂ϕ + 1)r

R2
c cos(γ )

, (13)
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where Rc is the curvature radius [see Fig. 7(d)] given by

Rc =
[
a2 sin2(ω) + b2 cos2(ω)

]3

ab
, (14)

with ω being

ω = arctan
(a

b
tan(ϕ)

)
. (15)

The last contribution to Sk energy is due to the long-range
part of the MD interaction. The Sk can be represented as a
domain with opposite magnetization. The domain presence re-
duces the MS interaction compared to a uniformly magnetized
film. For a cylindrically symmetric “bubble” domain with the
radius r the energy gain is given by [57]

W round
MD = −π�t2I (d ), (16)

where d = 2r/t and

I (d ) = 2

3π
d

(
d2 + (1 − d2)

E (v2)

v
− K (v2)

v

)
. (17)

The functions E and K are the complete elliptical integrals
and v2 = d2/(1 + d2). For elliptic Sk the energy in Eq. (16)
is transformed to that obtained in Ref. [57]:

W tot
MD = 1

2π

∫ 2π

0
W round

MD [d (ϕ)]. (18)

The total Sk energy is

WSk(a, b, α) = W tot
c + W tot

DW + W tot
MD. (19)

Minimizing the energy over parameters a, b, and α one can
find the Sk size and orientation.

C. Critical iDMI for cylindrical skyrmion

For circularly symmetric Sk (a = b) one can analytically
estimate the upper bound for iDMI at which a single Sk
experiences a runout instability. The DW energy is given by
W tot

DW = 2πa(4
√

AKeff − πD + k�/2) (we assume that Dx >

k�/π ). The energy of the DW curvature is given by W tot
c =

4πA
/a. While the long-range MD contribution cannot be
presented with a simple function, the derivative of the MD en-
ergy with respect to the Sk radius a can be calculated using an
approximate expression ∂W tot

MD/∂a ≈ −8π�t (a/t )Nα/3 valid
for a � t , Ref. [58]. In this reference, for the parameter region
they consider N = 0 and α = 1. In our parameter region a
better approximation is given by N = 2/15 and α = 0.92.
Finally, we obtain an equation for equilibrium Sk radius

aSk =
√

2A


4
√

AKeff − πD + k�/2 − 4�κ/3
, (20)

where

κ = α

(
3A


α�N

)N/(2+N )

. (21)

The Sk radius diverges when the iDMI coefficients tend to the
critical value

DSk
cr = 4(

√
AKeff + k�/8 − �κ/3)/π. (22)

Divergence of the Sk radius means that the Sk is unstable and
transforms into a GIS. One can see that the short-range part

of MD energy of the Sk domain wall increases the Sk stability
range while the long-range MD interaction decreases it. The
contribution of the long-range MD interaction is larger than
that of the short-range one. Eventually, the MD interaction
reduces the upper bound of the Sk stability, since the MD
interaction favors a multidomain state in a film with perpen-
dicular anisotropy.

D. Critical iDMI coefficients for anisotropic film

For the anisotropic iDMI the simulations show that the Sk
shape is circularly symmetric and the ratio a/b ≈ 1. There-
fore, we find the criterion for Sk stability with circular shape
in a film with anisotropic iDMI. Equations (13) and (12)
are simpler for this case. The energy of the DW curvature
transforms to W tot

c = 4πaA
. The long-range MD interaction
is defined by Eq. (16). Eventually, we arrive at the following
criterion for the Sk stability:

−δWDW < 4(
√

AKeff − �κ/3), (23)

where the energy δWDW is the iDMI and local MD energy
averaged over the Sk domain wall

δWDW = −1

2

∫ 2π

0
dϕ

×
[

D+cos(θ ) + D− cos(2ϕ − θ ) − k�

2π
cos2(θ )

]
.

(24)

Here θ depends on ϕ and is defined by minimization of ex-
pression in the integral.

For typical parameters of magnetic multilayers the critical
value of the iDMI coefficient is larger than � and we can
neglect the last term in Eq. (24). In this case

tan(θ ) = D− sin(2ϕ)

D+ + D− cos(2ϕ)
. (25)

For isotropic iDMI we obtain Eq. (22). We can also calcu-
late the critical Dx for the strongly anisotropic case of Dx �= 0
and Dy = 0. In this case θ = ϕ and we get the following
critical iDMI:

Dan
cr = 4(

√
AKeff − �κ/3 + k�/8)/2. (26)

One can see that Dx for the strongly anisotropic iDMI is
approximately 1.5 times larger than the critical Dx for the
isotropic case. This is in agreement with our simulations in
Fig. 4.

E. Analytical phase diagram of a single skyrmion in films with
anisotropic iDMI

For arbitrary shape Sk we minimize Eq. (19) over angle α

and sizes a and b numerically to find out whether the skyrmion
is stable or not. The Sk is unstable if energy WSk does not have
a minimum as a function of a and b. The stability diagram
obtained by minimizing Eq. (19) is shown in Fig. 8. It is
calculated for A = 1.6 × 10−11 J/m, Ms = 1300 kA/m, K =
1.2 × 106 J/m3, and film thickness t = 1 nm. The parameters
are similar to those used in micromagnetic simulations.
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FIG. 8. Ellipticity (upper part) and energy of a single Sk (in
arbitrary units, bottom part) as a function of iDMI constants along the
x and y directions. Since the substitution Dx,y → Dy,x does not affect
the Sk energy we plot the ellipticity in the upper part and the energy
in the bottom part. In the blue region a Sk is not stable. The line
splitting the blue region and the multicolor region is the upper bound
for the iDMI strength. As discussed in the text the bottom boundary
for Dx,y cannot be defined from the analytical model. So, the data
for small Dx,y are irrelevant for real systems. Dcr = 4

√
AKeff/π . The

green dashed line shows the upper bound for iDMI strength given by
Eq. (23).

First, we minimize over the angle α and find that α = 0,
meaning that the Sk main axes are codirected with the main
axes of the strain. At that, the short axis is oriented along the
direction with higher iDMI. So, only two parameters, a and b,
depend on Dx and Dy. Therefore, the stability diagram shows
the dependence of equilibrium Sk ellipticity a/b and the Sk
energy, WSk, as a function of Dx and Dy. The blue area shows
the region where Sk is unstable. The line between the blue and
the multicolor region corresponds to the upper bound for the
iDMI constants. The lower bound cannot be obtained using
the continuum model considered above and occurs only in a
discrete model.

Note that replacement Dx,y → Dy,x leads to the transforma-
tions a → b, b → a, and WSk → WSk. Therefore, we plot the
ratio a/b only in the upper half of the figure and use the lower
part to show the dependence of Sk energy on iDMI constants.

One can see that the ellipticity is small (a/b ≈ 1) in almost
all areas of the Sk stability. It only increases in a very close
vicinity to the stability line, meaning that the iDMI can be
strongly anisotropic while the skyrmion is still cylindrically
symmetric. Therefore, our assumption about the Sk shape in
Sec. III C is valid. The dashed green line shows the threshold
for iDMI constants obtained using Eq. (23) for cylindrical Sk.
One can see that the model of circular Sk leads to a slightly
larger threshold for the iDMI coefficient.

Comparing Fig. 4 and Fig. 8, one sees that the stability
boundaries obtained with the analytical model and the micro-
magnetic simulations are in qualitative agreement. Note that
the value of anisotropy constant K is close to the transition

between the in-plane and out-of-plane magnetization orienta-
tions. In this region the critical iDMI is very sensitive to the
system parameters. So, small changes in K or Ms lead to a
wide range of values of parameter Dcr. This could be a reason
for the discrepancy between the analytical stability diagram
and that obtained using micromagnetic simulations.

As was discussed in Sec. II C, the upper bound curve in the
(Dx, Dy) coordinates resembles a straight line with the slope
−3/2 (or −1/2). We plot a (dashed red) line with the slope
−3/2 starting from the upper bound point for the isotropic
case. At Dy = 0 this line gets exactly to the upper bound of
Sk stability. So, we can conclude that the analytical model
leads to a qualitatively similar stability diagram.

Note that while the shape of a Sk is almost circularly
symmetric, the orientation of the magnetization rotation plane
in a Sk domain wall is not circularly symmetric. This is due
to the anisotropic iDMI and partially due to the magnetostatic
interaction. For the isotropic case the DW is the same in all
directions. For large enough Dx,y, it is of Néel type. For strong
anisotropy (Dx �= 0 and Dy ≈ 0) the DW along the x direction
is of Néel type and is of Bloch type along the y direction. So,
while the shape of a Sk is not affected by the iDMI anisotropy,
the internal structure is modified.

The Sk energy is also shown as a function of Dx and Dy.
The energy decays with increasing the iDMI strength. This
is because the Sk energy depends on the DW energy which
decreases with increasing the iDMI. One can see that it decays
as a function of the average iDMI strength, D.

While the analytical approach cannot describe the collapse
of a Sk, we can still give an explanation of the Sk-OOP
boundary shape. As we mentioned, the ratio a/b ≈ 1 means
that Sk is practically cylindrically symmetric. In this case the
iDMI and MD energy are reduced to Eq. (24). In this equation,
however, the orientation of the magnetization rotation plane
is defined by the competition of the MD and iDMI energies.
This is valid for large Sk with large curvature radius (the case
of skyrmion → GIS transition). The collapse happens in the
opposite limit when the curvature radius is very small. In
this limit the exchange interaction dominates. It defines the
DW internal structure. Due to the exchange interaction the
angle θ becomes fixed in the whole domain wall lowering
the exchange interaction. In this case Eq. (24) simplifies even
more leading to δWDW = −πD+ cos(θ )/2 + k� cos2(θ )/2.
This means that the Sk-OOP boundary in the (Dx, Dy) plane
is defined by D+ and happens at some line Dx + Dy = const.
This is what we have in numerical simulations in Fig. 4.

F. Antiskyrmion with anisotropic iDMI interaction

An aSk exists in the system with iDMI of different sign
along the x and y directions. As shown in Ref. [24] for
Dx = −Dy the aSk has a circularly symmetric shape. One
can expect that the shape is slightly distorted for Dx �= −Dy

(similarly to the case of Sk). Therefore, to study the case of
the arbitrary iDMI coefficient we consider an elliptical aSk.
The aSk energy (WaSk) has the same contributions as the Sk
one. The aSk DW energy is given by Eq. (12). The angle θ

is found using energy minimization. Due to different signs
of DMI along different directions the orientation of magne-
tization rotation plane θ behaves differently compared to a
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FIG. 9. Ellipticity (lower part) and energy (in arbitrary units,
upper part) of a single aSk as a function of iDMI along the x and
y directions. Since the Dx,y → Dy,x change does not affect the aSk
energy, we plot the ellipticity in the lower part and the energy in the
upper part. In the blue region the aSk is unstable. The line splitting
the blue region and the multicolor region is the upper bound for
the aSk stability. As discussed in the text, the bottom boundary for
Dx,y cannot be defined from the analytical model. So, the data for
small Dx,y are not relevant for real systems. Dcr = 4

√
AKeff/π . The

green dashed line shows the upper bound of iDMI strength given by
Eq. (23).

Sk. Angle θ makes a turn counterclockwise when ϕ makes
a clockwise rotation. The DW curvature energy is given by
Eq. (13). The long-range MD energy is also similar to the
Sk case and is given by Eq. (16). This term describes the
energy of interaction of the internal part of an aSk with the
magnetic film surrounding the aSk. However, in contrast to Sk
there is an additional contribution to the aSk long-range MD
energy. Due to the opposite rotation direction of the angle θ ,
magnetic charges in the aSk DW form a quadrupole magnetic
moment. In the present consideration we neglect this term.
Performing the same minimization procedure for parameter
regions Dx > 0 and Dy < 0 we find the stability of an aSk.

Figure 9 shows the stability diagram for an aSk similar to
Fig. 8 for Sk. All parameters are the same as in the previ-
ous section for Sk. One can see that the upper threshold is
lower compared to the Sk case. This is in agreement with
the micromagnetic simulations (Fig. 4). To understand this
we first consider the case of Dx = −Dy. We also assume
that πDx � k�/2, which is correct for the iDMI value close
to the aSs-GIS transition. In this case θ ≈ 2ϕ. Introducing
this solution into the DW energy of an aSk we find W aSk

DW =
4
√

AKeff − πDx − k�/4. Comparing this expression to the
energy of the Sk DW (Sec. III C), one can see that the aSk
DW energy is lower than that of Sk by k�/4. This is because
the magnetic charges produced by the aSk varies with angle ϕ

and give lower MD energy. In Sk the charge is the same along
the whole DW. The contribution to the aSk energy due to the
DW curvature and long-range MD interaction is the same as
for Sk. Therefore, the critical iDMI value for aSk is lower. For

(a) (b)

FIG. 10. Sketch of a Bi. (a) Dx = Dy. (b) Dx = −Dy.

Dx = −Dy it is given by

DaSk
cr = 4(

√
AKeff + k�/16 − �κ/3)/π. (27)

One can see that the ellipticity of aSk is very small. So, we
can use the circular symmetry to estimate the upper boundary
for iDMI coefficients and Eqs. (23) and (24) can be used to
calculate the critical iDMI for aSk. The green dashed line in
Fig. 9 shows the critical iDMI obtained using Eqs. (23) and
(24) for aSk.

G. Bimerons in films with anisotropic iDMI

While analytical consideration of Bi is more difficult than
for Sk and aSk, the main features of the Bi stability diagram
(obtained in micromagnetic simulations) can be understood
using simplified arguments.

The first peculiarity of the stability diagram (Fig. 5) is that
Bi can exist for both cases DxDy > 0 and DxDy < 0. This
is in contrast to a Sk existing only for the DxDy > 0 region
(or aSk existing only for the DxDy < 0 region). This can be
understood as follows.

Figure 10(a) shows a Bi sketch. To bridge bimerons shown
in Fig. 6 and in the presented sketch, we mention that the
“center” and “saddle” points in Fig. 6 correspond to the seg-
ments with magnetization looking in the positive and negative
z directions in Fig. 10. The Bi can be represented as two
crossed 360◦ DWs. The first DW [along the −45◦ direction
in Fig. 10(a)] has an out-of-plane magnetization component
and contributes to iDMI energy. Let us call it OOP DW. The
second DW [directed by 45◦ with respect to the x axis in
Fig. 10(a)] is in-plane. Let us call it IP DW. It has zero iDMI
energy. This is due to the fact that the iDMI in thin films
includes spatial derivatives of mz [Eq. (1)], and magnetization
rotation in the film plane gives zero average iDMI. Thus, only
OOP DW defines the Bi stability. The Bi can orient in a way
that the OOP DW has negative iDMI energy. At Dx = Dy

the Néel DW is favorable [56] leading to the formation of
the hedgehog state in one of the Bi nodes [Fig. 10(a)]. For
Dx = −Dy the iDMI favors the Bloch DW oriented by 45◦
to the x axis [56]. Therefore, the Bi has a vortex node and
is oriented by 45◦. At that the iDMI contribution is negative
and of the same order as for the case Dx = Dy. So, in both
quadrants the iDMI can stabilize the Bi.
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For Sk both DWs in orthogonal directions have an out-of-
plane magnetization component giving nonzero iDMI energy.
In the case of DxDy > 0 both DWs have negative iDMI lead-
ing to Sk stabilization. But for films with DxDy < 0, the DWs
in perpendicular directions have iDMI energy of opposite
sign “cancelling” each other. Therefore, the iDMI does not
stabilize a Sk in the DxDy < 0 region. Similarly, aSk cannot
be stabilized by iDMI in the DxDy > 0 region.

The second peculiarity of the Bi stability diagram is that the
stability region in the DxDy > 0 quarter is different compared
to the DxDy < 0 region. In particular, the upper bound for the
iDMI coefficients is lower in the DxDy < 0 quadrant. The Bi
in the fourth quadrant (DxDy < 0) consists of the Bloch DWs.
These DWs minimize the iDMI energy as well as the MD
energy. At that in the DxDy > 0 region, the DWs are of the
Néel type minimizing only the iDMI energy but not the MD
energy. So, the energy of the DWs of a Bi in the DxDy < 0
quadrant is lower leading to an earlier occurrence of instability
as we increase the iDMI average strength.

IV. DISCUSSION

A. Control of topologically protected textures with strain

According to recent experiment [47], the iDMI anisotropy
can be induced with anisotropic mechanical strain in the FM
film. The strain can be created with an electric field in hybrid
structures FM/FE as shown in Fig. 1. A voltage (applied to
the FE) induces a deformation of the FE transferred to the
FM film through the interface. The induced strain in the FM
film in the hybrid structure can be as high as 0.3% [59]. This
is a high enough value for essential variation of the iDMI
[47]. Using FE [Pb(Mg1/3Nb2/3)O3]0.66[PbTiO3]0.34 with a
certain cut ([011]) one can induce the anisotropic strain in
the FM film which induces the anisotropic iDMI. Thus, one
can control the iDMI (and therefore topologically nontrivial
magnetic textures) with an electric field.

B. Phenomenological description of the strain-dependent iDMI

In our model we assume that iDMI has a particular symme-
try, C2v . In this section we show using symmetry arguments
that this particular type of iDMI appears in the strained FM
film.

We use an assumption about the system that the spatial
inversion is broken at the FM/HM interface (which is the
symmetry reason for iDMI existence). The magnitude of mag-
netization m(r) in the FM film has a fixed value and we
consider m(r) as a unit vector. The FM film is thin and m(r) is
uniform along the z direction (perpendicular to the film plane).

In the most general form the iDMI is described using
Lifshitz invariants

Li jk = mi
∂mj

∂xk
− mj

∂mi

∂xk
. (28)

For uniform magnetization along the z axis the Lifshitz invari-
ant Li jz is absent. Although there is no spatial inversion in the
system, other symmetries may exist. For zero strain we have
reflection planes (xz) and (yz). In this case only two invariants
are nonzero, Lxzx and Lyzy. For isotropic film the coefficients

in front of these invariants are the same and we get

W (0)
DMI = D0(Lxzz + Lyzy)

= D0

(
mx

∂mz

∂x
− mz

∂mx

∂x
+ my

∂mz

∂y
− mz

∂my

∂y

)
, (29)

where D0 is the iDMI strength.
The strain applied to the film adds corrections to Eq. (29),

W (1)
DMI. The strain is described by the second-order tensor u.

We convolute it with the Lifshitz invariants and get

W (1)
DMI = αi jklmui jLklm. (30)

Here αi jklm is the fifth-order tensor describing the coupling
between strain and iDMI. We consider the isotropic film with
reflection planes perpendicular to the film plane. In this case
many components of the tensor αi jklm are zero. Using the film
symmetry we obtain

W (1)
DMI = κ1uzz(Lxzx + Lyzy) + κ2(uxxLxzx + uyyLyzy)

+ κ3(uxxLyzy + uyyLxzx ) + κ4uxy(Lxzy + Lyzx )

+ κ5(uxzLxyy − uyzLxyx ). (31)

It is hard to induce uzx or uzy strain components in thin films.
The coordinate system can be always chosen in a way that
uxy = 0. Therefore, below we consider the case with only
uxx and uyy components being finite. In this case the iDMI
interaction is anisotropic and we find

WDMI = W (0)
DMI + W (1)

DMI = DxLxzz + DyLyzy

= Dx

(
mx

∂mz

∂x
− mz

∂mx

∂x

)
+ Dy

(
my

∂mz

∂y
− mz

∂my

∂y

)
,

(32)

where

Dx = D0 + κ1uzz + κ2uxx + κ3uyy,

Dy = D0 + κ1uzz + κ2uyy + κ3uxx. (33)

V. CONCLUSION

We considered topologically nontrivial magnetic textures
such as skyrmions, antiskyrmions, and bimerons in thin
magnetic films with anisotropic iDMI. Using micromagnetic
simulations and analytical consideration we showed that iDMI
anisotropy strongly affects the stability, shape, and internal
structure of these textures. We obtain a stability diagram of
a single Sk and aSk in coordinates (Dx, Dy). A Sk can be
stable when DxDy > 0, and an aSk when DxDy < 0. The
iDMI anisotropy reduces the range of iDMI strength in which
these textures can exist. The iDMI anisotropy also makes
Sk and aSk elliptic; however, the ellipticity (ratio of main
ellipse dimensions) is not big. Elliptic Sk and aSk are ori-
ented along the main axes of the iDMI anisotropy. Due
to the iDMI anisotropy, the DW of a Sk and an aSk is
reconfigured.

We also defined the stability diagram for a single Bi and
aBi. Both these magnetic textures have the same stability
conditions. In contrast to Sk and aSk, the iDMI anisotropy
does not reduce the range of iDMI strength where a Bi can
exist. Therefore, a Bi exists in both regions DxDy > 0 and
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DxDy < 0. A Bi orientation and internal structure is also
strongly affected by the iDMI anisotropy. In contrast to Sk
and aSk, the Bi (aBi) orientation changes as we change the
iDMI anisotropy. Depending on the iDMI anisotropy, the Bi
can consist of vortex and antivortex or of hedgehog state and
antivortex.

The iDMI anisotropy can be induced and tuned using
strain. We developed a phenomenological theory of iDMI-
strain coupling. In thin films the strain mostly induces the
iDMI anisotropy. However, in specific conditions a new con-

tribution to iDMI energy can be induced by strain. We will
consider these effects in the future.
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