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Magnets with frustration often show accidental degeneracies, characterized by a large classical ground-state
space (CGSS). Quantum fluctuations may “select” one of these ground states—a phenomenon labeled “order
by (quantum) disorder” in literature. In this article, we examine the mechanism(s) by which such state selection
takes place. We argue that a magnet, at low energies, maps to a particle moving on the CGSS. State selection
corresponds to localization of the particle at a certain point on this space. We distinguish two mechanisms that can
bring about localization. In the first, quantum fluctuations generate a potential on the CGSS space. If the potential
has a deep enough minimum, then the particle localizes in its vicinity. We denote this as “order by potential”
(ObP). In the second scenario, the particle localizes at a self-intersection point due to bound-state formation—a
consequence of geometry and quantum interference. Following recent studies by the present authors, we denote
this scenario as “order by singularity” (ObS). In either case, localization leads to an energy gap between the
ground state(s) and higher-energy states. This pseudo-Goldstone gap behaves differently in the two mechanisms,
scaling differently with the spin length. We place our discussion within the context of the one-dimensional spin-S
Kitaev model. We map out its CGSS which grows systematically with increasing system size. It resembles
a network where the number of nodes increases exponentially. In addition, the number of wires that cross at
each node also grows exponentially. This self-intersecting structure leads to ObS, with the low-energy physics
determined by a small subset of the CGSS, consisting of “Cartesian” states. A contrasting picture emerges when
an additional XY antiferromagnetic coupling is introduced. The CGSS simplifies dramatically, taking the form
of a circle. Spin wave fluctuations generate a potential on this space, giving rise to state selection by ObP under
certain conditions. Apart from contrasting ObS and ObP, we discuss the possibility of ObS in macroscopic
magnets.
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I. INTRODUCTION

The rich physics of frustrated magnetism can often be
understood starting from the classical limit, where frustration
leads to large “accidental” degeneracies. Unlike a simple bi-
partite antiferromagnet, frustrated magnets typically allow for
a large number of spin configurations that minimize the en-
ergy. In such a system, quantum-mechanical fluctuations can
play a disproportionately large role in determining the ground
state [1–5]. A substantial body of literature has developed
around this idea, calling it “order by (quantum) disorder” [6].
It has also been invoked in materials [7–9]. The term “order
by disorder” is also used to denote selection by thermal fluctu-
ations. In this article, we restrict our attention to ground-state
selection by quantum fluctuations.

Our goal is to examine the mechanisms by which quantum
fluctuations effect ground-state selection. Previous studies
have followed a standard prescription which, in our opin-
ion, has not been adequately understood. This prescription is
stated as an expansion in powers of S [3,10]. The leading term
in the Hamiltonian is the O(S2) classical energy which may be
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minimized by multiple classical configurations. In frustrated
magnets, such degeneracy is typically “accidental,” i.e., it is
not related to any symmetry of the Hamiltonian. This allows
for selection by quantum effects that emerge at O(S). They are
described by linear spin-wave theory, a framework that a pri-
ori assumes ordering in a certain classical ground state. Spin
wave modes give rise to zero point energies, taking the form
of an O(S) energy correction. The classical ground state with
the lowest O(S) correction is deemed to have been “selected”
by quantum fluctuations. Although this prescription is widely
used, its underpinnings are not well understood. Why is there
ordering in a certain classical state in the first place? How
sharp is the ordering? What is the regime of validity of this
prescription? Does it require a threshold system size and/or
a threshold value of S? Below, we address such questions by
formulating suitable effective low-energy theories.

To briefly summarize our findings, we describe two distinct
selection mechanisms: order by potential (ObP) and order by
singularity (ObS). They are depicted as cartoon pictures in
Fig. 1. In general, the low-energy behavior of a magnet maps
to a single-particle problem, where the particle moves in the
abstract space of classical ground states (CGSS). Selection of
a particular ground state corresponds to localization of the
particle at some point on this space. In Fig. 1(a), we depict
localization due to ObP. The particle “sees” a potential that
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FIG. 1. The magnet at low energies maps to a particle moving on
the CGSS. State selection is marked by localization of the particle.
(a) Order by potential: Quantum fluctuations give rise to a potential
on the CGSS. The particle localizes at a minimum of the potential.
(b) Order by singularity: We have a nonmanifold CGSS, exemplified
by a figure-of-eight space. A particle moving on this space localizes
at the self-intersection point, even in the absence of a potential.

arises from the zero-point energies of quantum fluctuations.
If the potential has a sufficiently deep minimum, then the
particle localizes in its vicinity. This is a generic phenomenon
that comes into play wherever accidental degeneracies give
rise to a smooth manifold as the CGSS. In contrast, ObS comes
into play when the CGSS self-intersects as shown in Fig. 1(b).
Remarkably, in such systems, the particle may localize even
in the absence of a potential. It may form a bound state
at the self-intersection point, as a consequence of quantum
interference and local topology.

A parallel outcome of this article is to provide further
support for the notion of ObS. Previously, ObS has been
demonstrated in (i) the XY quadrumer [11], (ii) the Kitaev
square [12], and (iii) the Kitaev tetrahedron [12]. These are
all clusters with four spins. However, ObS may also operate
in macroscopic magnets with self-intersecting ground-state
spaces. A prominent example is the family of pyrochlore
magnets [13,14]. Previous studies on ObS focused on small
sizes for practical reasons. Small system size makes it easier
to explicitly map out the CGSS and to characterize self-
intersections. It also allows for direct evaluation of energy
spectra, bringing out features of localization in the low-energy
eigenstates. In this article, we explore ObS in one-dimensional
spin-S Kitaev chains—a family of models where the system
size can be systematically increased. This provides a tunable
handle to modify the complexity of self-intersections and the
strength of bound-state formation.

II. THE ONE-DIMENSIONAL SPIN-S KITAEV MODEL

We consider the one-dimensional spin-S Kitaev model, first
studied by Baskaran, Sen and Shankar (BSS) [15]. It can
also be viewed as a higher spin generalization of the orbital-
compass model [16]. It describes a chain of spin-S moments
with alternating x-x and y-y couplings, as shown in Fig. 2(a).
It is described by the Hamiltonian,

HK = K
∑

i

[
Sx

2iS
x
2i+1 + Sy

2i+1Sy
2i+2

]
. (1)

Without loss of generality, we assume K > 0. In a system with
K < 0, its sign can be reversed by a set of local spin rotations
at every other site, where the spins are rotated by π about the
spin-z axis. This model is henceforth referred to as the Kitaev
spin chain.

We first consider this model in the S → ∞ limit, where
the spins can be viewed as classical three-component vectors.
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FIG. 2. The one-dimensional spin-S Kitaev model and its Carte-
sian states. (a) The one-dimensional chain with alternating x-x and
y-y couplings. (b) The two possible dimer covers of this system. One
consists of dimers placed on the x-x bonds while the other consists of
dimers on the y-y bonds. (c) The two possible ways to orient spins on
each x-x dimer to obtain a Cartesian state. One spin is aligned along
the +x direction while the other is aligned along −x. We label these
two configurations on a given dimer as (0) and (1). (d) Two possible
ways to orient spins on a y-y bond to obtain a Cartesian state.

The ground states can be found by minimizing the energy
with respect to each spin component, using Lagrange multi-
pliers to fix the length of each spin. This approach was first
demonstrated by BSS; we recapitulate their arguments in Ap-
pendix A for completeness. The minimization procedure leads
to the following set of conditions: Each pair of neighboring
spins must satisfy

Sα
i = −Sα

i+1, (2)

where α = x if (i, i + 1) are coupled by an x-x bond or α = y
if they are coupled by a y-y bond. It is a nontrivial task to find
the set of all configurations that satisfy these conditions. BSS
proposed an elegant approach by defining “Cartesian” states
and then identifying pathways connecting them.

Cartesian states are special states that can be immediately
seen to satisfy the ground-state conditions. To define a Carte-
sian state, we start from a dimer cover of the underlying
lattice. On each bond that hosts a dimer, we orient the spins so
as to minimize the bond energy. In our one-dimensional chain,
we have two possible dimer covers as shown in Fig. 2(b).
Starting with the dimer cover with dimers on x-x bonds, we
antialign the spins at the ends of each x-x bond. That is, we
orient one spin along x̂ and the other along −x̂. This gives
rise to two possible configurations on a given x-x bond as
shown in Fig. 2(c). These two configurations can be viewed
as two states, 0 and 1, of an Ising variable that lives on the
bond. Proceeding in this manner, we obtain a Cartesian state
by independently assigning an Ising variable to each x-x bond.
The resulting state immediately satisfies the energy minimiza-
tion conditions: On each x-x bond, we have Si,x = −Si+1,x

by construction. On each y-y bond, Si,y = −Si+1,y is trivially
satisfied as Si,y = Si+1,y = 0. Note that the number of such
Cartesian states is exponentially large, corresponding to an
extensive number of free Ising spins. The same construction
can be carried out starting with the y-y dimer cover. This leads
to a family of Cartesian states with spins pointing along ±ŷ.
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FIG. 3. The Kitaev spin chain and its CGSS with increasing system size. (a) The Kitaev square, i.e., the chain with N = 4 spins and periodic
boundary conditions. The two possible dimer covers on the square are shown. (b) The CGSS of the N = 4 problem. We have eight nodes that
are divided into two families of four, denoted by X and Y . They correspond to Cartesian states derived from the two dimer covers. The
subscripts encode spin orientations on each dimer (see text). A node in one family is connected to every node in the other by a one-dimensional
path. This represents a smooth one-parameter transformation that connects the two Cartesian states at the end points. (c) The Kitaev hexagon
corresponding to the chain with N = 6 spins and periodic boundary conditions. The two possible dimer covers are shown. (d) The CGSS of
the hexagon with 16 nodes, divided into two families of eight. We have one-dimensional paths connecting each node to every member of the
opposite family. (e) The Kitaev octagon corresponding to the chain with N = 8 spins and periodic boundary conditions. The two possible
dimer covers are shown. (d) The CGSS of the octagon with thirty two nodes, divided into two families of 16. We have one-dimensional paths
connecting each node to every member of the opposite family.

BSS next showed that the CGSS contains valleys that
connect Cartesian states. Given a pair of Cartesian states that
derive from distinct dimer covers, there exists a one-parameter
family of ground states that smoothly interpolates between
them. To visualize this, consider a pair of Cartesian states,
one constructed from the x-x dimer cover and the other from
the y-y dimer cover. Any such pair of states is smoothly
connected by local rotations that are parametrized by a single
angle variable, φ ∈ [0, π/2]. For intermediate values of φ,
every spin is oriented such that both x and y components
take nonzero values, i.e., intermediate states are not Carte-
sian. Nevertheless, they are also ground states as the energy
remains fixed on tuning φ. Thus, the CGSS can be viewed
as a network where the nodes are Cartesian states. The nodes
can be grouped into two families: one constructed from the
x-x dimer cover and one from the y-y dimer cover. Every node
of the x-family connects with every node of the y-family via
a one-dimensional pathway. These considerations exhaust all
possible ground states, as we argue in Appendix A.

We depict the CGSS pictorially in Fig. 3. For concreteness,
we take the Kitaev spin chain to consist of an even number
of spins, N , with periodic boundary conditions. The limit of

the infinite chain can be realized by extrapolating to N → ∞.
Figure 3 depicts the CGSS for N = 4, 6, 8: the Kitaev square,
hexagon, and octagon, respectively. In each case, we have
two families of nodes, X and Y , that derive from the x-x and
y-y dimer covers, respectively. Within each family, we label
every node by a subscript that encodes the Cartesian state as
a configuration of Ising moments, following the description
given above.

A node in one family is connected to every node in the
other via a one-dimensional pathway. The resulting structure
of the CGSS is reminiscent of the Lieb-Mattis model for
spontaneous symmetry breaking in antiferromagnets [17]. It
describes spins that are grouped into two families. A spin
in one family is coupled to every spin in the other. In the
same manner, the CGSS here has two families of nodes with
pathways connecting all inter-family pairs.

We note that the CGSS is one-dimensional at generic
points. However, it does not have well-defined dimensionality
at the nodes which can be viewed as singularities. This indi-
cates that the CGSS is a nonmanifold. For example, a gradient
operator cannot be defined on this space. The nonmanifold
character increases systematically with system size. For a
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FIG. 4. A nonmanifold space with M wires intersecting at a
point. The space is discretized to allow for a tight binding descrip-
tion. The sites on the legs have two neighbors. The central site is
common to all wires and therefore has M neighbors.

given N , the number of nodes is given by the number of
Cartesian states, Nc = 2 × 2N/2 = 2N/2+1. We have a factor of
2 for the two possible dimer covers. As each dimer cover has
N/2 dimers, we have N/2 free Ising moments that give rise to
2N/2 configurations. We also note that the number of “wires”
that emanate from a given node is Nc/2 = 2N/2, increasing
exponentially with system size. This increasing complexity
can be seen in Fig. 3 for the cases of N = 4, 6, 8.

III. STATE SELECTION IN THE KITAEV SPIN CHAIN:
BOUND-STATE FORMATION

We now discuss state selection in the Kitaev spin chain.
We have demonstrated that its CGSS is a nonmanifold with
networklike structure as shown in Fig. 3. Here we present
an effective theory for its low-energy physics. In previous
work by some of us [11], we argued that any magnet, at
low energies, maps to the problem of a single particle that is
constrained to move on the CGSS. We outlined a proof of this
mapping for systems where the CGSS is a smooth manifold,
using the spin path integral formalism. We conjectured that
the mapping holds for nonmanifold cases as well, based on
numerical evidence from a few examples [11,12]. On the same
lines, we argue that the Kitaev spin chain maps to a particle
moving on the networklike CGSS. To model its dynamics, we
follow Refs. [11,12] to build a tight binding description.

A. Low-energy physics at self-intersections

The essential aspect of the problem is the self-intersecting
nature of the space at each node. To capture this, we model
the vicinity of a single node as a discretized space, shown in
Fig. 4. We have a central node from which M wires emanate.
We label the points as ( j, γ ), where γ = 1, . . . , M represents

the M wires and j = 1, 2, 3, . . ., is the site index. We label the
central node that is common to all wires as j = 0. We arrive
at a tight binding Hamiltonian given by

H = −t
M∑

γ=1

∞∑
j=1

(c†
j,γ c j+1,γ + c†

j+1,γ c j,γ )

− t
M∑

γ=1

(c†
0c1,γ + c†

1,γ c0). (3)

This model describes a particle moving on a space of inter-
secting wires. A traditional Schrödinger equation cannot be
written down for this problem due to the singular nature of
the node. For instance, a kinetic energy operator cannot be
defined at the node.

Remarkably, the lowest-energy eigenstate in this system
is qualitatively different from others. It represents a bound
state that is localized at the singular intersection point. It is
described by a simple analytic form, given by

ψ j,γ = A exp{−αM j}, (4)

where αM represents a decay constant and A is a normalization
constant. The wave function takes the same form on every
wire. To determine the decay constant, we consider a generic
site ( j, γ ) that is situated on one of the wires. As it has two
neighbors, the eigenvalue equation takes the form,

EMe−αM j = −t[e−αM ( j+1) + e−αM ( j−1)], (5)

where EM is the energy eigenvalue. In contrast, at the central
node, we have

EM = −Mte−αM . (6)

From these two equations, we obtain

αM = 1
2 ln{M − 1}, (7)

EM = −Mt/
√

M − 1. (8)

This solution represents a bound state for any M > 2. We first
note that αM > 0 for M > 2, indicating that the wave-function
decays as we move away from the node. We next consider a
neighborhood far from the node, where the system resembles
a smooth one-dimensional space. Eigenfunctions that are sup-
ported in this region resemble that of a one-dimensional tight
binding problem. It follows that their eigenenergies form a
continuum between [−2t, 2t]. The state constructed in Eq. (4)
lies below this continuum as EM < −2t for any M > 2. The
bound character of the state can be quantified by defining a
binding energy,

Eb,M = −2t − EM . (9)

We now make an interesting observation regarding this low-
energy state and the complexity of the underlying space. If
we consider M to be a tunable parameter, then we see that
the state becomes progressively more bound on increasing M.
This can be seen in two quantities that increase monotonically
with M: the decay constant, αM , and the binding energy, Eb,M .
The parameter M, the number of wires that emanates from
each node, is a measure of the nonmanifold character of the
space.
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B. Bound states from quantum interference

In the preceding paragraphs, we have discussed bound-
state formation at a node. We now rationalize this phe-
nomenon at the level of wave functions. It is well known that
a free particle in one dimension behaves like a wave. This can
be seen from the wavelike solutions of the Schrödinger equa-
tion, with ψ ∼ eikx. However, the Schrödinger equation also
allows for exponential solutions, ψ ∼ e±kx. Such solutions are
usually ignored due to considerations of normalizability or
smoothness. For example, in an infinite wire, such solutions
are not normalizable. In a finite wire with periodic conditions,
they invariably lead to nonsmooth wave functions. In the case
of an open wire with an edge, an exponential solution can
be normalizable and smooth. However, it violates the usual
boundary condition which demands the wave function must
vanish at the edge. Unlike these traditional cases, a nodelike
space as shown in Fig. 4 provides a rare opportunity. The
singular nature of the space at the node removes the need for
smoothness. Each wire can host an exponential mode, with
the wave function decaying with distance from the node. At
the node, the wave functions on all wires interfere construc-
tively to form a peak. This naturally leads to a localized wave
function even though there is no potential in the problem.

The formation of a bound state here bears close similar-
ities with the one-dimensional Schrödinger equation with a
δ-function potential [18]. The presence of the δ-function (at
the origin, let us say) removes the need for smoothness. This
allows for a bound state that decays exponentially on either
side. This can be viewed as two wires that meet at the origin.
They host exponentially decaying modes which interfere con-
structively to form a peak at the origin. This leads to energy
gain from the potential (assumed to be attractive). Effectively,
the attractive potential gives rise to a localized ground state. In
contrast, at a node where three or more wires meet, the ground
state is a bound state even when no potential is involved. The
wave function can be pictured as follows. The particle sits
at the node and simultaneously explores paths that protrude
into each of the wires. This allows for enough kinetic energy
gain to make this the lowest-energy state. There is no need
for an additional potential, unlike the case of a particle in a
δ-function potential.

C. Relevance to the spin-S Kitaev chain

We now relate this tight binding analysis to the one-
dimensional spin-S Kitaev model. We argue that its low-
energy physics is described by a particle moving on its
nonmanifold CGSS. As described in Sec. II, the CGSS con-
sists of nodes and connecting pathways. In the vicinity of each
node, the space resembles the tight binding setup pictured in
Fig. 4. Indeed, there are many such nodes with their number
increasing exponentially with system size. The analysis in
Sec. II clearly brings out the value of M, the number of wires
emanating from each node. It is given by M = 2N/2, where
N is the system size. This suggests the following picture.
The low-energy spectrum of the Kitaev spin chain consists of
bound states whose number grows exponentially with system
size. Each of these represents a Cartesian state and small
fluctuations in its vicinity. These low-lying states are well sep-
arated from other higher-energy states by a “binding energy.”

Naively, the binding energy grows with increasing system
size, scaling as ∼√

M ∼ 2N/4 for large N [see Eq. (8)]. This
suggests that the binding energy grows without bound as we
approach the thermodynamic limit. However, we expect to
have an energy cutoff beyond which the particle-on-CGSS
picture ceases to describe the magnet. This scale will serve
as a natural cutoff for the binding energy.

We recapitulate that each one-dimensional pathway in the
CGSS connects one node to another. These wires allow for
hybridization among the separate bound states, leading to a
spread in the energies of low-lying set. However, the hy-
bridization weakens with increasing system size as the bound
states become more tightly bound (as αM increases with M).
In the thermodynamic limit, the low-energy physics of the
Kitaev spin chain is controlled by a set of bound states that
is exponentially large and energetically degenerate.

IV. OBS IN EXACT DIAGONALIZATION SPECTRA

In Sec. III, we have presented an effective description for
state selection in the model of Eq. (1). We have argued that the
low-energy physics is determined by bound states at the nodes
of the CGSS. We now support this assertion with evidence
from exact diagonalization spectra.

A. Methodology

We take the Kitaev spin chain to consist of N sites with
periodic boundaries. We present results for the cases of N =
4, 6, 8, 10 and for various values of S, the spin length. The
Hilbert space is given by (2S + 1)N , growing rapidly with sys-
tem size. In order to study the spectrum, we use the following
two symmetries of the problem: (a) The system is invariant
under a global spin rotation by π about the spin-z axis. This
symmetry allows us to divide the Hilbert space into odd and
even magnetization sectors. (b) The Hamiltonian is invariant
under a combination of unit translation and a π/2 rotation
about the spin-z axis. This allows us to define quasimomen-
tum blocks that are independent. These two symmetries were
used to study the N = 4 problem in Ref. [12]. For N > 4,
despite these symmetries, block sizes are prohibitively large
for full diagonalization. We use Lanczos diagonalization im-
plemented using the ARPACKPP package [19], focusing on
the lowest few eigenstates. We take advantage of the sparse
nature of the matrices, which in turn is a consequence of the
local nature of terms in the Hamiltonian.

B. Bound states in the spectra

A detailed study of the Kitaev spin chain with N = 4
has been presented in Ref. [12]. Before moving on to larger
system sizes, we recapitulate the key features of the N = 4
case. Its low-energy spectrum is characterized by eight bound
states. Note that this is precisely the number of CGSS nodes
or Cartesian states (Nc = 2N/2+1 = 8 for N = 4). These states
have strong overlaps with (quantum analogs of the) Cartesian
states. Energetically, they are separated from higher-energy
states by a “binding energy” that increases linearly with S.

We now present numerical spectra for N > 4 which also
show clear evidence of bound-state formation. In Fig. 5, we
show the spectra for N = 6 and S = 3, 4, 5. We indicate the
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FIG. 5. Low-energy spectrum of the Kitaev spin chain with N = 6.

lowest 16 states using a different color to show that they are
energetically separated from other states. From the analysis in
Sec. III, we indeed expect Nc = 2N/2+1 = 16 bound states for
N = 6. We next show the low-energy spectra for N = 8 and
S = 2, 3 in Fig. 6. Here we see 32 bound states—in agreement
with the number of Cartesian states for N = 8.

As seen for N = 6 in Fig. 5, the energy gap that separates
bound states from others increases with increasing S. To quan-
tify this, we define Ē1−16 as the mean of the energies of the
lowest 16 states. We define the binding energy as Eb,N=6 =
E17 − Ē1−16, where E17 is the energy of the 17th state, i.e.,
the lowest unbound state. In the same manner, we define the
binding energy for N = 8 as Eb,N=8 = E33 − Ē1−32. In Fig. 7,
we show the variation of binding energy with S. We have
included data from Ref. [12] for N = 4. Note that for N = 8,
we only have data for S = 2 and 3. We are unable to access
higher values of S as the Hilbert space dimension is too large.
We have also added the binding energy for N = 10 where the
binding energy is defined as Eb,N=10 = E65 − Ē1−64. We only
have binding energy for S = 2 as higher spin values are not
accessible. For all N , we only show the binding energy for
S � 2 as we do not find clear energy separation with S = 1.

Figure 7 shows a clear linear rise in the binding energy
with S. This indicates that the binding energy grows linearly
with S for any value of N . This scaling relation is potentially
a signature of ObS, indicating strengthening of selection with
increasing S. We will contrast this relation with the case of
ObP in Sec. VI below.

C. Approaching the thermodynamic limit

We now try to extrapolate the observed physics to the infi-
nite Kitaev spin chain. Does bound-state formation occur even
as N → ∞? To examine this issue, we first consider Fig. 7.
This plot presents the variation of binding energy with S when
N is held fixed. We find a linear increase, with the binding
energies falling along a straight line. In addition, the slope of
the binding energy vs. S curve increases with increasing N .

To further explore whether ObS survives in the thermody-
namic limit, we focus on the behavior of the binding energy as
N → ∞. In Fig. 8, we plot the binding energies for all cases
that are accessible within our numerical constraints. For all
cases shown here, we find the correct number of bound states.
That is, we find a gap that separates the lowest 2N/2+1 states
from the higher states. We define the binding energy in the
same manner as for N = 6, 8 described above. We only have
binding energy data for a limited range of (N, S) values where
the Hilbert space size remains manageable. This data range is
not sufficient to deduce the functional dependence of binding
energy on system size. Nevertheless, we list some observa-
tions that are consistent with the data. When S is kept fixed
at a small value, binding energy decreases with increasing N .
Instead, if S is kept fixed at a large value, then binding energy
increases with N . This suggests that binding energy changes
nonmonotonically outside the accessible region. For instance,
it is possible that for large S values, binding energy may even-
tually decrease beyond a threshold system size. To rationalize
this nonmonotonic behavior, we argue that the behavior of

FIG. 6. Low-energy spectrum of the Kitaev spin chain with N = 8.
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FIG. 7. Binding energy vs. S for N = 4, 6, 8, and 10.

binding energy vs. N is determined by two conflicting effects.
At low energies, the system maps to the particle-on-CGSS
picture. Within this picture, binding energy increases rapidly
with N as given by Eq. (8). However, the mapping to the
particle-on-CGSS picture is valid at low energies—below a
certain cutoff energy scale. In Ref. [11], for the case of a
smooth manifold CGSS, it was shown that the particle-on-
CGSS picture emerges on integrating out “hard” modes. This
suggests that the particle-on-CGSS picture generally holds
below the energy of the lowest hard mode. In the case of the
Kitaev spin chain, on general grounds, we expect the energy
of the lowest hard mode to decrease with increasing system
size. This suggests that the cutoff decreases with increasing
N . The increasing “bare” binding energy and the decreasing
cutoff together determine the observed binding energy.

A precise understanding of the ObS binding energy in the
thermodynamic limit requires a careful analysis on the lines
of Ref. [20]. Our limited numerical results do not lead to a
definite conclusion. We content ourselves with the following
observation based on our data. The binding energy scales
linearly with S, providing a hallmark of ObS. This holds
true for N = 4, 6, 8 and possibly beyond. Notably, the slope
increases with increasing N , indicating that ObS strengthens
as N → ∞.

FIG. 8. Binding energy for various system sizes and S. We in-
clude data for all systems that are accessible within our numerical
limitations. For S � 3.5, we can only access N = 4 and 6. For large
S values, we see that the binding energies increase with system size.
However, for S < 3.5, the binding energy decreases with system size.
The dashed lines are guides to the eye.

FIG. 9. Top: Classical ground state of the K-J model,
parametrized by an angle φ. Bottom: The CGSS forming a circle.
We indicate four points on the circle that correspond to Cartesian
states as described in the context of the Kitaev spin chain.

V. REGULARIZING THE CGSS TO REMOVE
SINGULARITIES: THE K-J MODEL

We have established that the model of Eq. (1) has a
nonmanifold CGSS. This allows for ObS as we have demon-
strated in Secs. III and IV. We now introduce a second system
where ObS cannot arise, but ObP can. To do this, we introduce
an additional coupling that “regularizes” the CGSS of the
Kitaev spin chain,

HK−J = HK + J
∑

i

[
Sx

i Sx
i+1 + Sy

i Sy
i+1

]
. (10)

We have introduced an XY antiferromagnetic coupling with
strength J (J > 0). This coupling selects a particularly sim-
ple subset of the Kitaev CGSS, consisting of states of the
form �Si = (−1)i{cos φ x̂ + sin φ ŷ}. These states are immedi-
ately seen to minimize the antiferromagnetic (J) part of the
Hamiltonian. At the same time, they satisfy the conditions
encoded in Eq. (2) for minimizing the Kitaev term. As this
family of states is parametrized by a single angle variable, the
CGSS of HK−J is equivalent to a circle. We depict the CGSS
pictorially in Fig. 9. The CGSS here represents accidental
degeneracy, as there is no Hamiltonian symmetry that relates
states corresponding to different values of φ. In the figure, we
indicate four special points on the CGSS that correspond to
φ = 0, π/2, π, 3π/2. These four states are Cartesian states
as defined in the context of the Kitaev spin chain in Sec. II.
Thus, the CGSS of the K-J model can be viewed as consisting
of four “nodes” that are connected by one-dimensional path-
ways. This further illustrates that the CGSS of the K-J model
is a subset of that of the Kitaev spin chain.

Crucially, this new CGSS is a smooth manifold with no
singularities. The physics of the Kitaev spin chain is recovered
in the limit of J → 0. Conversely, this model reduces to the
standard XY antiferromagnet as J → ∞. In the latter limit,
we recover rotational symmetry that protects the degeneracy.
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FIG. 10. Zero point energy in units of (2J + K )S vs. φ for vari-
ous values of J/K . We find four minima, with the minima becoming
deeper with decreasing J/K .

For any finite value of J , the degeneracy is accidental, allow-
ing for the possibility of state selection.

VI. STATE SELECTION IN THE K-J MODEL

As the CGSS of the K-J model is a smooth manifold,
it does not allow for bound-state formation of the form de-
scribed in Sec. III above. State selection here requires a
different mechanism—that of a potential superimposed on this
space. The ObP paradigm proposes that such a potential is
generated by quantum fluctuations. We discuss this scenario
here.

We present a standard order-by-quantum-disorder calcu-
lation, valid in the semiclassical large-S limit. We invoke
quantum fluctuations in the form of spin waves using the
Holstein-Primakoff prescription [21]. They give rise to a zero
point energy contribution that modifies the ground-state en-
ergy. This contribution breaks the accidental degeneracy to
“select” certain ground states. Details regarding the spin-wave
calculation are given in Appendix B. In Fig. 10, we plot the
zero point energy contribution along the CGSS, i.e., zero point
energy vs. φ. As expected, this correction to the energy breaks
the degeneracy of the CGSS. It has minima at four distinct
values of φ. These four correspond to alternating spins along
the x or y directions. In fact, they are Cartesian states in the
language of the pure Kitaev spin chain.

A physical picture for ObP emerges from the analyis of
Rau et al. in Ref. [20]. We present this picture in somewhat
different language here. The low-energy physics of the K-J
model can be understood by constructing a nonlinear σ model
using the following parametrization,

Si(φ, m) =
{

S{n̂φ + mẑ}, i = 2n

S{−n̂φ + mẑ}, i = 2n + 1
, (11)

where n̂φ = {cos φ, sin φ, 0}. To preserve normalization, we
assume m � 1. We have ignored other independent contribu-
tions that can enter in the spin configuration (e.g., a staggered
magnetization along ẑ) as these degrees of freedom can be
integrated out safely. In other words, we have retained the
“soft” degree of freedom and its conjugate mode. The angle φ

is “soft” as it does not change the energy. The magnetization
m is canonically conjugate to φ. This can be seen from the

form of the Lagrangian in the path-integral partition function,

L(m, φ, φ̇) = −iNSmφ̇ + (aNS2)m2 + NSg(φ)

= −i(NSm)φ̇ + (NSm)2

(N/a)
+ NSg(φ). (12)

It is written following the imaginary-time convention. Here
−iNSmφ̇ represents the Berry phase. This is a geometric
contribution that arises from the area swept out by each spin
vector. The other terms in the action constitute the Hamilto-
nian or the energy. Along the m direction, the energy increases
quadratically with a stiffness coefficient denoted as a. This
contribution is proportional to S2, as m takes us away from
the classical ground-state space. It is also proportional to N
as the energy cost scales linearly with system size. In the
soft direction, we assume a potential, g(φ). This term is al-
lowed on symmetry grounds since φ represents an accidental
degeneracy.

Rau et al. provides a simple prescription to obtain the form
of g(φ) to O(S). This prescription has also been used in earlier
studies as a heuristic to understand state selection [1,22]. The
prescription dictates that the potential at each point on the
CGSS, g(φ), should be taken to be the sum of zero point
energies of all spin-wave modes,

g(φ) ≡ 1

N

∑
k,α

εφ (k, α). (13)

Here εφ (k, α) represents the eigenenergies or frequencies of
spin-wave modes (see Appendix B for explicit expressions).
Each spin-wave mode is characterized by two quantum num-
bers: momentum k and an internal index (or a band index) α.
We divide the zero point energies by system size N in order
to obtain the intensive energy. The spin-wave energies scale
linearly in S; we have taken this factor of S out in Eq. (12).

From the form of the action in Eq. (12), we draw an
analogy to single-particle quantum mechanics. We identify

φ ↔ q, (NSm) ↔ p,

{NSg(φ)} ↔ V (q), (N/a) ↔ 2μ. (14)

With this identification, the Lagrangian resembles that of a
particle moving in one dimension with L ∼ −ipq̇ + p2

2μ
+

V (q). The position and momentum coordinates are given by q
and p respectively, with the potential given by V (q). The mass
of the particle is denoted as μ.

A. Localization in a potential well

We now follow Eq. (13) to interpret the zero point energy
contribution plotted in Fig. 10 as the potential seen by the par-
ticle. Clearly, the potential has four minima at φ = 0, π/2, π,

and 3π/2. In the vicinity of these points, the potential resem-
bles a harmonic well (as long as J �= 0). If this well is deep
enough, then it will localize the particle and lead to state selec-
tion. The lowest energy states of the system will then resemble
the eigenstates of a harmonic oscillator as shown in Fig. 11.
The analysis of Rau et al. assumes this scenario and evaluates
the gap to the first excited state. It arrives at a scaling relation
where the gap scales as S1/2. Here, we restrict our attention
to type-I systems in the language of Rau et al. as our K-J
model falls in this class. Below, we expand their arguments
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FIG. 11. ObP as localization due to potential. The potential stems
from zero point energy, shown here for J/K = 0.2. Here g(φ) has
been taken in units of (2J + K )S. At low energies, the particle stays
in the vicinity of a minimum where the potential resembles that of a
harmonic oscillator. The particle localizes by settling in the ground
state. The gap to the first excited state is the pseudo-Goldstone gap.

to examine when localization occurs. For example, is there a
threshold system size below which there is no localization?

Can the potential localize the particle? This is a question
of competition between kinetic energy (in a delocalized state)
and potential energy (in a localized state). We quantify this
notion by comparing two suitably defined energy scales. To
quantify the potential energy gain due to localization, we
first define an energy E1 as follows. We assume that the
potential has a deep minimum at φ = φ0. In its vicinity, the
potential takes the form V (φ0 + δφ) ∼ V0 + NSγ (δφ)2 where
γ is a proportionality constant. Here, the problem resembles
a simple harmonic oscillator. If the particle is restricted to
this region, then it resides in eigenstates of the harmonic
oscillator problem. The lowest-energy state is a Gaussian
localized around φ0. Higher-energy states are progressively
broader. They are separated by a characteristic energy spacing,
E1 ≡ h̄ω ∼ √

NSγ /(N/a) ∼ √
aγ S. This scale quantifies the

gain in potential energy when the particle localizes in the
ground state rather than in excited states. In fact, it is precisely
this scale that sets the pseudo-Goldstone gap in the analysis of
Rau et al.

We next define E2 to quantify the kinetic energy of a delo-
calized state. To do so, we ignore the potential for the moment,
assuming that the system corresponds to a free particle. The
particle lives on a ring as the position coordinate satisfies pe-
riodic boundary conditions with φ ≡ φ ± 2π . The stationary
states of this particle are given by plane waves, ψ ∼ eipφ , with
energies εp = p2

2μ
≡ a

N p2, where p is the momentum eigen-
value. Periodic boundaries constrain the allowed momentum
values to p = 0,±1,±2, . . .. The resulting energies are char-
acterized by a scale E2 ≡ a

N .
We now argue that localization requires E1 � E2, i.e., the

energy scale of the potential energy must exceed that of the
kinetic energy. This leads to

√
aγ S � a

N
⇒ N

√
S �

√
a

γ
. (15)

This serves as a criterion for state selection by ObP. We
require sufficiently large values of the system size, N , and the

FIG. 12. Low-energy spectrum for the K-J model with N = 6,
K = 1, and J = 0.05. We show the spectrum for S = 1, 3, 5.

spin quantum number, S so that (N
√

S) exceeds a threshold
value. As an application of these ideas, we present exact diag-
onalization results on the K-J model in the following section.

We make one final observation here regarding state selec-
tion in the J → 0 limit. The physics of the K-J model with
J > 0 does not connect smoothly to the pure Kitaev limit.
As long as J > 0, the potential in Fig. 10 has four harmonic
wells. We can understand localization by considering (N

√
S),

the quantity in Eq. (15), as a tuning parameter. When this
quantity is small, the physics corresponds to that of a free
particle. The potential g(φ) in Eq. (12) remains insignificant.
However, as this quantity increases, the effect of the potential
becomes stronger. We approach the case of a particle localized
in a harmonic well. We now consider the effect of decreasing
J as shown in Fig. 10. The curvature of each well increases
steadily. At J = 0, the potential becomes singular, resembling
the |x| function rather than a harmonic well. However, a
bigger change occurs at this point. As argued in Sec. II, the
underlying space (the CGSS) becomes larger with multiple
additional pathways. In this limit, the free-particle problem
already shows localization due to bound-state formation as
described in Sec. III. Quantum fluctuations can generate an
additional potential which will take the same form on all
pathways. We may surmise that this potential is of the |x| type.
Even if the potential is strong, it only serves to make the bound
states even more bound. This sets ObS at J = 0 apart from
ObP at J > 0. While ObP can be made weaker by changing a
tuning parameter, ObS cannot.

VII. OBP IN EXACT DIAGONALIZATION SPECTRA

We have established that the K-J model of Eq. (10) has
a circle as its CGSS. We have argued that at low energies,
the model maps to a particle moving on a circle. We have
further argued for a symmetry-allowed potential that localizes
the particle as long as N

√
S is sufficiently large. We now

present evidence for these statements in the form of exact
diagonalization results. We follow the methodology described
in Sec. IV A in the context of the pure Kitaev spin chain. The
symmetries described there hold for the K-J model as well.

In Fig. 12, we present the low-energy spectrum of the
Kitaev-XY hexagon (N = 6) for three different values of
S. We show the lowest four eigenvalues using a different
color to highlight incipient localization. As S increases, the
system moves toward a fourfold degenerate ground state.
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FIG. 13. Low-energy spectrum for the K-J model with S = 2,
K = 1, and J = 0.05. We show the spectrum for N = 4, 6, 8.

The lowest four states becomes progressively separated from
higher-energy states. We interpret this as localization due to
ObP. As the fluctuation-generated potential has four distinct
minima, we have four harmonic wells at low energies. The
fourfold ground state represents distinct localized states at
each minimum.

For finite S values, the degeneracy of the fourfold ground
state is lost due to tunneling processes. To see this, we ex-
pand on the arguments in Sec. VI A above in the context
of the energy scale E1. Assuming that we have four deep
harmonic wells, we obtain four Gaussian ground states—one
for each well. These states have an inherent length scale given

by ξ ∼
√

h̄
μω

∼
√

1
N

√
S
. For small values of N and S, this

length scale can be large enough to give rise to substantial
overlaps between neighboring wells. This breaks the fourfold
degeneracy of the ground state. This is consistent with Fig. 12
where the spread in the low-energy fourfold set decreases with
increasing S.

In Fig. 13, we show the low-energy spectrum with increas-
ing system size. Keeping S fixed at 2, we consider N = 4, 6, 8.
The low-energy spectrum shows a clear approach to localiza-
tion with increasing N . We have a fourfold set of low-energy
states, corresponding to the four minima in the potential. Their
spread decreases with increasing N . This is consistent with the
criterion for ObP given in Eq. (15).

We present a further test of the ObP paradigm in Fig. 14.
As shown in Fig. 10, the potential wells become deeper with
decreasing J/K . The curvature of the potential about each
minimum (γ as defined in Sec. VI A) increases. This enhances
the tendency of the particle to localize. This is reflected in
the criterion set out in Eq. (15), as

√
a/γ decreases with

decreasing J/K . Figure 14 shows the change in the low-energy
spectrum with J/K . As J/K decreases, we approach a fourfold
degenerate ground state.

VIII. DISTINGUISHING OBP AND OBS

In the K-J model, as long as J > 0, the potential in Fig. 10
has four harmonic wells. We can understand localization by
considering (N

√
S), the quantity in Eq. (15), as a tuning pa-

rameter. When this quantity is large, the particle is localized in
one of the harmonic wells. As N

√
S is decreased, the potential

g(φ) in Eq. (12) loses significance. The physics approaches
that of a free particle. This can be stated as follows: State

FIG. 14. Low-energy spectrum for the K-J model with N = 10,
S = 1, and K = 1. We show the low-energy spectrum for three values
of J .

selection by ObP can be weakened by decreasing S or system
size.

We compare this with state selection as J → 0. In this
limit, the potential becomes singular, resembling the |x| func-
tion rather than a harmonic well. In addition, the underlying
space (the CGSS) becomes larger with multiple additional
pathways. Here, the free-particle problem already shows
localization due to bound-state formation as described in
Sec. III. Even if the potential is made weaker by decreasing N
or S, localization persists. In other words, we have preformed
bound states due to ObS. The potential generated by quantum
fluctuations merely makes them even more bound. As an
aside, if the potential becomes very strong, then it may induce
additional bound states. However, in our numerics, we do not
see any evidence of such extra bound states.

We have argued that ObS selection cannot be weakened
by changing system size or S. This comes with a caveat. At
very low S, the mapping to the single-particle problem fails,
leaving no room for ObS. The action in Eq. (12) is based
on the spin path integral approach, which is justified in the
large-S limit. For very small S values, the action may not serve
as a good effective description. This can be stated in terms of
an energy cutoff. The magnet maps to a particle on the CGSS
for energies below a certain threshold. If bound states are
to be relevant, then their energies must lie below the energy
threshold. At the same time, we have seen that hybridization
leads to a spread in the bound-state energies. If this spread is
greater than the cutoff, then ObS no longer provides a reliable
low-energy description.

These arguments are consistent with our numerical results.
With J > 0, ObP weakens when N or S is decreased as shown
in Figs. 12 and 13. When J = 0, we find strong ObS even for
N = 4. For all N , we find well-separated bound states only for
S > 2. For S = 1, we do not find a clear set of bound states as
other states seem to intervene at low energies.

An interesting regime emerges in the K-J model when J/K
is small, with ObS and ObP competing with each other. As
long as J is nonzero, the CGSS is a circle—a smooth mani-
fold. Naively, this forbids ObS as there is no self-intersection.
State selection must then occur due to ObP which will “select”
precisely four states as discussed in Sec. VI above. However,
at the classical level, we have a large number of low-energy
states with an energy cost that scales as ∼J/K . These form
pathways that are self-intersecting and capable of hosting
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FIG. 15. Low-energy spectra of the K-J model for small values of J/K . In all panels, we fix N = 8, S = 2, and K = 1. The lowest 32 (the
number of Cartesian states for N = 8) states are shown using blue markers, while higher states are shown in magenta. Within the low-lying set
of 32, the lowest four states are shown using empty markers and states 5–32 are shown using filled markers.

ObS-induced bound states. If ObS dominates, then it may
“select” these bound states even though they do not lie on the
actual CGSS. In this case, we will have 2N/2+1 low-lying states
at the bottom of the spectrum. In Fig. 15, we show numerically
obtained low-energy spectra for small values of J/K . When
J = 0.025, ObP seems to play a dominant role as we have
four well-separated states at the bottom. For lower values of
J , these four states appear to mix with others. At the same
time, a gap emerges that separates the lowest 32 states (2N/2+1

for N = 8) from other higher states. This indicates that ObP
ceases to operate while ObS sets in, even though the CGSS
is technically a smooth manifold. This suggests that ObS is a
stronger mechanism for localization, atleast in this case. More
broadly, ObS may operate in many materials and models that
have smooth CGSS provided there is a self-intersecting space
of configurations with low energy-cost.

IX. DISCUSSION

We have described two mechanisms for state selection in
magnets with accidental degeneracy. In each case, our analysis
brings out a qualitative picture in analogy with localization.
It also offers a framework to understand whether state se-
lection will occur at all. This bears relevance to studies on
spin liquids in general [23,24], and on spiral liquids [25,26] in
particular. Our entire discussion is at zero temperature where
fluctuations are of quantum-mechanical origin. An interesting
future direction is to explore whether two distinct mechanisms
exist in the case of thermal fluctuations. It is well known
that thermal fluctuations can give rise to selection; in fact,
“order by thermal disorder” [27] predates “order by quantum
disorder” [1]. We note that results by Moessner and Chalker
suggest that singularities play a strong role in systems with
purely thermal fluctuations [28].

Previous studies on order by disorder have used a standard
prescription, selecting the ordered state with the lowest zero
point energy contribution. The mechanisms discussed in this
article put this prescription on firm ground. In cases where
the ground-state space is a smooth manifold, the prescription
simply picks the deepest minimum of a fluctuation-generated
potential. If the space self-intersects, then the prescription typ-
ically picks the singular point as it has additional soft modes
that lower the zero point energy. An interesting future direc-
tion is to find systems where the mechanisms can compete,

e.g., in the presence of multiple singularities with different
codimensionalities.

Our results clarify the role of quantum fluctuations at large
S. Naively, we may expect quantum effects such as ObP and
ObS to weaken and disappear with increasing S. However, our
analysis shows that the opposite is true. The gap associated
with state selection increases with S in both ObP [20] (∼S1/2)
as well as in ObS (∼S). Note that these scaling relations are
relevant for models studied in this article. The scaling may
differ in other systems, e.g., if there are singularities with
higher codimensionality. In order to rationalize the increase
in the gap with S, we first define the approach to the classical
limit as follows: We take S to infinity while the system size
and the coupling constants (K and J) are held fixed. Note that
this definition leads to a systematic increase in the bandwidth
of the full problem. Nevertheless, it provides a sharp definition
of the classical limit. We now consider the energy of a state as
an expansion in S as given by standard spin-wave theory. We
have E (S) ≈ Ecl.(K, J )S2 + Equ.(K, J )S + O(S1/2). Here the
O(S2) contribution is the classical energy while the quantum
correction is O(S). This energy can be rewritten as E (S) ≈
S2{Ecl.(K, J ) + Equ.(K, J )/S}, where quantum effects take the
form of a 1/S correction. The latter form suggests that with
increasing S, quantum effects become weaker vis-à-vis the
classical energy. However, this is not relevant in the context of
state selection. As we have multiple states that have precisely
the same classical energy, it is more appropriate to view quan-
tum fluctuations as an O(S) effect. This view is in consonance
with the state selection gap increasing with S.

Our work builds on several earlier studies that suggest that
quantum fluctuations generate a localizing potential [1,20,22].
In Eq. (15) above, we formulate a rule of thumb to deter-
mine when ObP becomes effective. This can be particulary
useful for finite-sized systems such as magnetic flakes and
molecular magnets [29–34]. It can also provide insight into
numerical studies which are necessarily limited to finite sizes
and finite spin lengths (S values). The criterion in Eq. (15)
also provides an interesting contrast between ObP and ObS,
as ObP requires large system sizes in order to bring about
localization. In contrast, ObS does not seem to place strong
constraints on system size. This suggests that ObS is much
more effective than ObP in small systems such as molecular
magnets. This is consistent with results presented in Ref. [11]
contrasting the symmetric XY quadrumer and the asymmetric
XY quadrumer. The former allows for ObS and in fact, shows
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strong state selection. In contrast, the latter has a smooth
manifold as its CGSS. Despite the possibility of ObP, it does
not show state selection even as S is tuned to large values.

In the one-dimensional spin-S Kitaev model, we have
shown that a networklike structure emerges at low energies.
Intriguingly, the size of the Kitaev spin chain tunes the com-
plexity of the network. In particular, increasing the system size
increases the number of wires that cross at each node. This
is of interest to the theory of quantum graphs that discusses
solutions of Schrödinger-like equations on networks [35–40].
The Kitaev spin chain offers an interesting test case with
tunable complexity.

A crucial question is whether ObS survives in the thermo-
dynamic limit. We are unable to definitively demonstrate this
numerically. We hope further studies will clarify this question.
The phenomenon of ObS will add a new dimension to stud-
ies of Kitaev-like models that have hitherto used traditional
spin-wave-based methods [41]. Many studies have focused on
the spin-1/2 Kitaev model [16,42–44], using a mapping to
Majorana fermions. Such fermionization approaches do not
generalize to S > 1/2. Our results motivate a deeper look
into suitable effective pictures for S > 1/2, given that larger
values of S are conducive to ObS due to bound-state forma-
tion. This question may soon acquire experimental relevance
with several proposals for realizing Kitaev systems with S >

1/2 [45–49]. Our discussion of ObS may have relevance be-
yond the one-dimensional spin-S Kitaev model. For example,
Ref. [50] contains hints that the spin-S Kitaev model on the
honeycomb lattice may have a self-intersecting CGSS.
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APPENDIX A: ENERGY MINIMIZATION AND THE CGSS

We follow the approach of BSS [15] to minimize energy in
the one-dimensional spin-S Kitaev model of Eq. (1). Treating
spins as classical vectors, we have three components per spin.
On a chain with N sites, we have 3N independent variables.
However, they are constrained to maintain the length of each
spin fixed at S. We use the method of Lagrange multipliers to
enforce these constraints, defining

Hλ = K

2

N−1∑
j=0

λ j
[(

Sx
j

)2 + (
Sy

j

)2 + (
Sz

j

)2 − S2
]
. (A1)

We minimize the energy using the conditions, ∂ (HK −
Hλ)/∂Sα

i = 0, where Sα
i is the α component (α = x, y, z) of

the spin at site i. A detailed discussion, specialized to the case
of a four-site chain, can be found in Appendix A of Ref. [12].
These arguments readily generalize to a chain of arbitrary
length. They lead to the conclusion that λ j = −1 for every j.
This further leads to the following two conditions. On every
site, the z component of the spin must vanish, i.e., Sz

i = 0 for
every i. Second, if sites i and i + 1 are connected by an x-x
bond, then we must have Sx

i = −Sx
i+1. However, if sites i and

i + 1 are connected by a y-y bond, then we have Sy
i = −Sy

i+1.
With these conditions, we arrive at the ground-state energy,
Emin = −NKS2/2.

As described in the main text, Cartesian states immedi-
ately satisfy these conditions. However, they are not the only
ground states. To show this, we first consider an arbitrary
Cartesian state of the x family. We describe this state by
specifying the spin vector at each site, labeling the sites as
i = 0, 1, 2 . . . , N − 1 where i = 0 and i = N are taken to be
identical on account of periodic boundary conditions.

Xσ1σ2··· ≡ {S0 = (Sσ1, 0), S1 = (−Sσ1, 0), S2 = (Sσ2, 0), S3 = (−Sσ2, 0), S4 = (Sσ3, 0), S5 = (−Sσ3, 0), · · · }. (A2)

We only specify the x and y components of each spin as the z component is always zero. Here, σ1, σ2, . . . , σN/2 are Ising
variables that define the X -Cartesian state, with each σ being ±1. To understand the energy content of this state, we define
“bond energy,” Ei,i+1, as the energy contribution from the bond connecting sites i and i + 1. We have

E01 = −KS2, E12 = 0, E23 = −KS2, E34 = 0, E45 = −KS2, . . . . (A3)

We see that each x-x bond offers the same negative contribution to the ground-state energy. The y-y bonds do not contribute.
This is consistent with the expression for ground-state energy (Emin) given above. We next consider a generic Cartesian state of
the y family,

Yμ1μ2··· ≡ {S0 = (0,−SμN/2), S1 = (0, Sμ1), S2 = (0,−Sμ1), S3 = (0, Sμ2), S4 = (0,−Sμ2), S5 = (0, Sμ3), · · · }. (A4)

We denote the Ising moments here as μ1, μ2, . . . , μN/2, with each μ being ±1. The bond energies in this state are given by

E01 = 0, E12 = −KS2, E23 = 0, E34 = −KS2, E45 = 0, . . . . (A5)

Here every y-y bond offers the same negative contribution to the ground-state energy while the x-x bonds do not contribute.
We now present a smooth energy-preserving transformation that connects these two Cartesian states. We use a single parameter
φ ∈ [0, π/2] to define a configuration,

{S0 = S(σ1cφ,−μN/2sφ ), S1 = S(−σ1cφ, μ1sφ ), S2 = S(σ2cφ,−μ1sφ ), S3 = S(−σ2cφ, μ2sφ ),

S4 = S(σ3cφ,−μ2sφ ), S5 = S(−σ3cφ, μ3sφ ), · · · }, (A6)
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where cφ ≡ cos φ, sφ ≡ sin φ. This configuration is designed such that it reduces to Xσ1σ2··· when φ = 0 and to Yμ1μ2··· at φ =
π/2. In the above expressions, we have explicitly written out the forms of the first few spins. Indeed, all spins can be written in
an analogous fashion. We note that at intermediate values of φ, the spins have nonzero components along both x and y axes. We
now examine the bond energies in this configuration,

E01 = −KS2c2
φ, E12 = −KS2s2

φ, E23 = −KS2c2
φ, E34 = −KS2s2

φ, E45 = −KS2c2
φ, . . . . (A7)

All bonds contribute to the ground-state energy. Each pair of adjacent bonds contributes −KS2(c2
φ + s2

φ ) = −KS2. The overall
ground-state energy remains constant as φ is varied.

We have demonstrated that any pair of Cartesian states of
the form (Xσ1σ2···,Yμ1μ2···) is smoothly connected by a one-
parameter family of states. Note that no such transformation
exists for two Cartesian states that belong to the same family
(i.e., two states constructed from the same underlying dimer
cover). However, they are connected indirectly. That is, we
can smoothly go from one X -Cartesian state to another via
an intermediate Y -Cartesian state. This picture leads to the
networklike CGSS depicted in Fig. 3.

We have argued that Cartesian states readily satisfy the
ground-state conditions. We have also demonstrated that
each interfamily pair of Cartesian states is connected by a
one-parameter family of states. We next argue that these con-
siderations exhaust all possible ground states. While a general
proof is not possible, we will show below that the CGSS, as
described, is a closed space. That is, in the vicinity of any
point on our networklike CGSS, the only states that satisfy
the energy minimization conditions are those on the network
itself. We show this in two steps: (i) We first consider a
generic element of the CGSS, corresponding to an intermedi-
ate point on a segment that connects two nodes. We consider
all possible small deviations from this state. If we are to
satisfy the energy minimization conditions, then we may only
allow changes in one coordinate, i.e., we have only one soft
mode. (ii) We next consider a node and enumerate all possible
small deviations about the corresponding Cartesian state. We
find precisely Nc/2 soft modes, where Nc is as defined in
Sec. II of the main text. This can be interpreted as Nc line
segments emanating from the node—precisely as conceived
in our description. These arguments show that our networklike
description of the CGSS is consistent.

We consider a generic element of our CGSS as given in
Eq. (A6), with φ being neither zero nor a multiple of π/2. We
consider all possible (small) deformations about this state. As
we have three-component spins with fixed lengths, we have
2N degrees of freedom where N is the number of sites. As
energy minimization requires the z component of each spin to
be zero, we may simply neglect fluctuations that take the spins
out of the plane. This leaves us with N degrees of freedom.
Accordingly, we introduce one angle variable, δi, for each site,

{
S0 = S

(
σ1cφ+δ0 ,−μN/2sφ+δ0

)
,

S1 = S
( − σ1cφ+δ1 , μ1sφ+δ1

)
,

S2 = S
(
σ2cφ+δ2 ,−μ1sφ+δ2

)
,

S3 = S
( − σ2cφ+δ3 , μ2sφ+δ3

)
, . . .

}
. (A8)

As we are interested in small deviations, we assume that the
δi’s are small. We now demand that the fluctuations must

satisfy the energy minimization conditions. This leads to

cφ+δ0 = cφ+δ1 , sφ+δ1 = sφ+δ2 , cφ+δ2 = cφ+δ3 , . . . . (A9)

In order to satisfy these equations, all δ’s must be equal. We
are left with a one-parameter deformation that preserves the
ground-state energy. All other deviations take us out of the
CGSS. This can be restated as follows: In the vicinity of a
generic point, the CGSS is one dimensional.

We next consider a Cartesian state. For concreteness, we
take a generic state of the x-family as given in Eq. (A2). The
arguments extend to Cartesian states of y-family as well. We
are interested in deformations about this state that preserve the
ground-state energy. As the minimization conditions require
all spins to lie in the XY plane, we neglect out-of-plane
deformations to write

{
S0 = S

(
σ1cδ0 , sδ0

)
, S1 = S

( − σ1cδ1 , sδ1

)
,

S2 = S
(
σ2cδ2 , sδ2

)
, S3 = S

( − σ2cδ3 , sδ3

)
,

S4 = S
(
σ3cδ4 , sδ4

)
, S5 = S

( − σ3cδ5 , sδ5

)
, . . .

}
. (A10)

We have introduced an angle variable, δi, for every site i. We
denote cδi ≡ cos δi and sδi ≡ sin δi. As we are only interested
in small deviations from the Cartesian state, we assume that
the δ’s are small. We now demand that the deformed state must
satisfy the mnimization conditions set out above, leading to

cδ0 = cδ1 ; cδ2 = cδ3 ; . . . , sδ1 = −sδ2 ; sδ3 = −sδ4 ; . . . .

(A11)

To satisfy the constraints in the second line, we must have
δ1 = −δ2, δ3 = −δ4, etc. This halves the number of degrees
of freedom. We next consider the constraints given in the first
line. They give rise to δ0 = ±δ1, δ2 = ±δ3, etc. Put together,
they constrain all δ’s to have the same amplitude. However,
they may differ in sign. We arrive at

{δ1, δ2, δ3, δ4, . . .} = {ξ1δ,−ξ1δ, ξ2δ,−ξ2δ, . . .}. (A12)

We have introduced Ising-like variables with each ξ taking
the value ±1. With N/2 free Ising variables, we have 2N/2 de-
formations that preserve the ground-state energy. This reveals
the geometry of the CGSS within configuration space. Each
Cartesian state is a node that has 2N/2 wires emanating from
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it. This is consistent with the picture of the CGSS described
in Sec. II and depicted in Fig. 3.

APPENDIX B: THE CGSS OF THE K-J MODEL
AND THE ROLE OF QUANTUM FLUCUATIONS

We rewrite the K-J Hamiltonian of Eq. (10) as

HK−J =
N/2∑
j=1

[
J
(
Sx

j,ASx
j,B + Sy

j,ASy
j,B + Sx

j,BSx
j+1,A

+ Sy
j,BSy

j+1,A

) + K
(
Sx

j,ASx
j,B + Sy

j,BSy
j+1,A

)]
. (B1)

We have assumed a two-site unit cell, with sublattices labeled
as A and B. As described in Sec. VI of the main text, the CGSS
is a circle parametrized by an angle variable, φ. We define an
element of the CGSS using

�S j,A = Sn̂, �S j,B = −Sn̂, n̂ = cos φ x̂ + sin φ ŷ. (B2)

Following BSS, we perform a Holstein-Primakoff analysis by
defining

�S j,A = S

(
1 − q2

j,A + p2
j,A

2S

)
n̂ +

√
S(q j,Aê + p j,Aẑ),

�S j,B = −S

(
1 − q2

j,B + p2
j,B

2S

)
n̂ −

√
S(q j,Bê + p j,Bẑ),

(B3)

where ê = − sin φ x̂ + cos φ ŷ is the vector orthonormal to
n̂ in the XY plane. The p and q variables are canonically
conjugate with [qj,α, pl,β ] = iδ jlδαβ , where α, β = A, B. In
terms of these coordinates, the spin-wave Hamiltonian takes

the following form in momentum space:

Hsw(φ) = (2J + K )S
π∑

k=0

[
(p−k,A p−k,B)

(
1 0
0 1

)(
pk,A

pk,B

)

+(q−k,A q−k,B)

(
1 fk (φ)

f ∗
k (φ) 1

)(
qk,A

qk,B

)]
,

(B4)

where fk (φ) = − 1
2J+K (J + K sin2 φ + (J + K cos2 φ)eik ).

Diagonalizing this Hamiltonian, we obtain the spin-wave
energies as Sεφ (k, α) where

εφ (k, α) = (2J + K )
√

1 + α| fk (φ)|. (B5)

Here we have two bands indicated by an index α = ±1. The
total zero point energy is given by

Esw(φ) = (2J + K )S
π∑

k=0

(
√

1 + | fk (φ)| +
√

1 − | fk (φ)|).

(B6)

This is precisely the quantity defined as g(φ) in Eq. (13) of the
main text and plotted in Fig. 10. To minimize this quantity, we
first note that f (x) = √

1 + |x| + √
1 − |x| is a monotonically

decreasing function of |x|. The zero point energy depends on
the ground-state parameter φ via fk (φ). To see this, we write

| fk (φ)|2 = 1

(2J + K )2

{
4J (J + K ) cos2(k/2)

+ K2[1 − sin2(k/2) sin2(2φ)]
}
. (B7)

For any given k, we see that this quantity is maximum when
sin2(2φ) = 0, i.e., when φ = 0, π/2, π, 3π/2. Note that these
choices correspond to Cartesian states. It follows that, at each
k, the zero point energy contribution is minimum when | fk (φ)|
is maximum, i.e., when φ takes one of the four values given
above.
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