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Mixed-order transition in the antiferromagnetic quantum Ising chain in a field
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The antiferromagnetic quantum Ising chain has a quantum critical point which belongs to the universality
class of the transverse Ising model (TIM). When a longitudinal field (h) is switched on, the phase transition is
preserved, which turns to first order for h/� → ∞, � being the strength of the transverse field. Here we will
re-examine the critical properties along the phase transition line. During a quantum block renormalization group
calculation, the TIM fixed point for h/� > 0 is found to be unstable. Using DMRG techniques, we calculated
the entanglement entropy and the spin-spin correlation function, both of which signaled a divergent correlation
length at the transition point with the TIM exponents. At the same time, the bulk correlation function has a jump
and the end-to-end correlation function has a discontinuous derivative at the transition point. Consequently for
finite h/� the transition is of mixed order.
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I. INTRODUCTION

Quantum phase transitions are among the fundamental
problems of modern physics, the properties of which are stud-
ied in different disciplines: solid state physics, quantum field
theory, quantum information, and statistical mechanics [1].
Quantum phase transitions take place at T = 0 temperature
and these are indicated by singularities in the ground-state
expectation values of some observables by varying a control
parameter, such as the strength of a transverse field. There
are several model systems which have been experimentally
realized by ultracold atoms in an optical lattice [2]. One of
such basic problems is the antiferromagnetic Ising chain in a
mixed transverse and longitudinal field. The Hamiltonian of
the model is defined as

Ĥ =
L∑

i=1

Jσ z
i σ z

i+1 −
L∑

i=1

�σ x
i − h

L∑
i=1

σ z
i , (1)

in terms of the σ x,z
i Pauli matrices at site i. In the experimental

setup the longitudinal fields are not too strong [3].
Theoretically, the quantum phase transition in this model

has been studied by different methods: finite-size exact di-
agonalization by the Lánczos method [4], density matrix
renormalisation (DMRG) [5,6], quantum Monte Carlo sim-
ulations [7], and the fidelity susceptibility method [8]. The
limiting case h/J → 2 and � → 0 is studied in Ref. [9] and
a generalization with an m-spin product term, i.e., replacing
σ z

i σ z
i+1 by

∏m−1
j=0 σ z

i+ j is studied in Refs. [10–12]. Recently,
the model with quenched disorder, in which Ji > 0 and �i are
i.i.d. random numbers, but the hi = h are nonrandom, has also
been studied [6,7].
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The phase diagram of the clean system in Eq. (1) is cal-
culated through the extrapolated position of the maximum
of the entanglement entropy, as described in Sec. III A 1. It
is shown in Fig. 1 in terms of J/� vs h/�. This has two
exactly solved points, which are denoted by TIM and CEP,
respectively. In the absence of longitudinal field, h = 0, there
is an antiferromagnetic (AFM) ordered phase, for J/� > 1,
which is separated from the paramagnetic (PM) phase by a
continuous phase transition point, at Jc/� = 1 which belongs
to the universality class of the transverse Ising model (TIM)
[13]. In the vicinity of the transition point the excitation en-
ergy (inverse correlation length) ε ∼ 1/ξ vanishes as

ε ∼ J − Jc, J � Jc, (2)

thus the gap (correlation length) exponent is ν = 1. The AFM
order is characterized by the spin-spin correlation function:

C(r) = (−1)r
〈
σ z

i σ z
i+r

〉
, (3)

which is translational invariant for periodic chains. At the
phase-transition point C(r) has a power-law decay:

C(r) ∼ r−η, (4)

with η = 1/4. The second exactly solved point is at J/� →
∞ and h/� → ∞, in which quantum fluctuations are neg-
ligible. Here the phase transition takes place at the classical
endpoint (CEP), at h/J = 2 between an AFM phase and a fer-
romagnetic (FM) phase and the transition is of first order. At
the CEP the ground state is infinitely degenerate; the entropy
per site is finite [14].

Our interest in this work is the behavior of the system
between the two exactly solved points, for 0 < h/� < ∞.
Here the phase diagram contains an AFM ordered phase for
strong enough couplings, J/� > Jc/�. At the other side of the
phase-transition line, for J/� < Jc/� there is a ferromagnetic
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(FM) order in the system, which is maintained by the longi-
tudinal field. This is evident at J = 0, in which case C(r) =
(−1)r[(�/h)2 + 1]−1. In previous studies [5,9] the excitation
spectrum of the system has been investigated and a vanishing
gap is found at the phase-transition line, J = Jc, signaling a
divergent correlation length. According to precise numerical
results the gap vanishes in the same way as for the TIM in
Eq. (2). Due to this result it is generally believed that the phase
transition for 0 < h/� < ∞ belongs to the TIM universality
class.

With this claim, however, there are still some unclear
points. It was not investigated how the correlation function
behaves when passing the phase transition line from the AFM-
ordered phase. At h/� = 0 it stays zero in the complete PM
phase, but for h/� > 0 it should become ferromagnetic at
some point. It is of interest how this transition from AFM to
FM orders occurs. A further question is how this transition is
connected with the first-order one at the CEP in the transition
line. It is also interesting, whether this transition is symmetric
or not, at least in terms of the critical exponents at the two
sides of the transition. Another open question concerns the
scaling behavior of the entanglement entropy in the vicinity
of the phase transition point.

Our aim in this article is to examine and clarify the above
issues. First, we studied the stability of the TIM fixed point
in relation to switching on the longitudinal field. For this we
used an approximate quantum block renormalization group
(RG) method and let vary the size of the block. More precise
numerical results are obtained from a DMRG calculation.
We investigated the scaling properties of the entanglement
entropy in the phase-transition region and studied the diver-
gency of the related correlation length. In extensive numerical
work the spin-spin correlation function is calculated and its
properties are analyzed, both for bulk spins and for end-to-end
correlations.

The rest of the paper is organized in the following way. In
Sec. II we introduce and apply the quantum block RG method
to test the stability of the fixed point of the TIM. The DMRG
results are presented in Sec. III, first about the scaling behavior
of the entanglement entropy in Sec. III A and afterwards about
the correlation function in Sec. III B. Our paper is closed with
a discussion in Sec. IV.

II. QUANTUM RG TREATMENT

Renormalization of quantum systems started with the cel-
ebrated paper by Wilson about the Kondo problem [15]. For
lattice models a real space version, the so-called block trans-
formation method has been introduced [16] and applied for a
set of (mainly one-dimensional) problems [17]. In this method
the system is divided into blocks and the parameters of the
Hamiltonian are separated to intra- and interblock terms. Solv-
ing the block Hamiltonian exactly by numerical methods the
lowest states are retained and identified as states of the block-
spin variable, while the renormalized values of the interblock
parameters are obtained by (first-order) perturbation calcula-
tion. Due to the used approximations the block RG method
generally provides rather poor results with the smallest block
size (n = 2), however, using larger blocks the results can be
improved. This has been shown for the TIM [18,19] among
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FIG. 1. The zero-temperature phase diagram of the Ising chain
with antiferromagnetic coupling J , in transverse (�) and longitudinal
(h) magnetic fields calculated by the DMRG method. In the absence
of longitudinal field, h = 0, the transition between a quantum antifer-
romagnetic (AFM) phase and a quantum paramagnetic (PM) phase
(indicated by thick green line) is controlled by the fixed point of
the transverse Ising model (TIM) at (J/� = 1, h/� = 0). For finite
value of h > 0 the AFM phase survives and at the other side of the
phase boundary there is a quantum ferromagnetic (FM) phase. In
the classical limit, � = 0, thus J/� → ∞ and h/� → ∞ there is a
classical endpoint (CEP) at (h/J = 2) having a first-order transition.

others, i.e., with the Hamiltonian in Eq. (1) in the absence of
a longitudinal field, h = 0.

Here in our treatment we include the longitudinal field,
both in the Hamiltonian and in the RG transformations. In
particular we are interested in the stability of the TIM fixed
point by switching on the longitudinal field. Since at the
CEP there are no quantum fluctuations our quantum RG can’t
describe the behavior of the system around that classical point.
In this procedure the length of the blocks n is an odd number
in order to preserve the antiferromagnetic order in the system.
During renormalization the block of spins is replaced by a
single renormalized Ising spin variable, which is illustrated
in Fig. 2. For this the block Hamiltonian is solved exactly and
from its spectrum the two lowest eigenstates are retained. The
renormalized values of the parameters are obtained from the
condition that the matrix elements are equal in the original and
in the renormalized basis.

In the actual calculation first we perform a gauge transfor-
mation, σ z

i → (−1)iσ z
i , and make a rotation x ↔ z, thus the

intrablock Hamiltonian of n spins is written as

ĤB = −
n−1∑
i=1

Jσ x
i σ x

i+1

−
n∑

i=1

�σ z
i − h

n∑
i=1

(−1)iσ x
i . (5)

We solve the ground state (|0〉) and the first excited state (|1〉)
of ĤB with energies ε0 and ε1, respectively. We also calculate
the matrix elements: mx(i) = 〈0|σ x

i |1〉 and mz(i) = 〈0|σ z
i |0〉,
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FIG. 2. Illustration of the block renormalization for n = 3.

which are called x and z magnetizations, respectively. For the
block the total magnetizations are Mx = ∑n

i=1 mx(i) and Mz =∑n
i=1 mz(i).
The renormalized value of the coupling follows from

J ′ = Jmx(1)mx(n). (6)

The renormalized values of the transverse (�′) and the longi-
tudinal fields (h′) are related with the value of the gap:

√
(�′)2 + (h′)2 = ε1 − ε0

2
. (7)

In addition we require that the ratio of the total x and z mag-
netizations Mx/Mz remains the same after the transformation.
This leads to the relation:

�′

h′ = Mx

Mz
. (8)

We have iterated the RG equations in Eqs. (6), (7), and
(8), which has two trivial fixed points. The one at (J/� =
0, h/� = 0) controls the disordered phase, while the other at
(J/� = ∞, h/� = 0) is for the ordered phase. The transition
between these phases are controlled by two nontrivial fixed
points. The first, denoted by FP1 is located at (J/�)1 > 0
and (h/�)1 = 0 is the TIM fixed point. Without longitudinal
field (h = 0) its properties have been studied earlier in details
[18,19]. Here we are interested in its stability with respect
to switching on the longitudinal field. The second nontrivial
fixed point FP2 is located at (J/�)2 > 0 and (h/�)2 > 0.
At the nontrivial fixed points we have calculated the eigen-
values of the linearized transformation, λ1 > λ2 from which
the scaling exponents follows as y1,2 = ln λ1,2

ln n . As usual, for
y > 0 (y < 0) the fixed point is repulsive (attractive). For FP2
we found λ2 < 0, which means rotation of the trajectory in
the vicinity of the fixed point. This behavior is related to the
quantum nature of the RG, which cannot describe a first-order
transition between classical states at CEP. We have also calcu-
lated the dynamical exponent z from the scaling of the energy
at the fixed point: �′ = n−z�. For different values of the size
of the block, n = 3, 5, 7, 9, 11, and 13 the calculated critical
parameters are collected in Tables I and II. Regarding FP1
the critical parameters (except y2) agree with the previous

TABLE I. Critical parameters at the FP1 fixed point calculated
with different sizes of the block n.

n (J/�)1 (h/�)1 y1 y2 z

3 0.8660 0. 0.763 0.011 0.631
5 0.9262 0. 0.833 0.119 0.704
7 0.9496 0. 0.863 0.169 0.741
9 0.9619 0. 0.879 0.198 0.763
11 0.9694 0. 0.890 0.217 0.779
13 0.9745 0. 0.898 0.230 0.791
∞ 1. 0. 1. − 1.

calculations in Refs. [18,19]. The exact results, which are
obtained for n → ∞ and presented in the last row of Table I
are approached logarithmically, having a correction ∼1/ ln n.
The new feature of this calculation is the second exponent y2,
due to the presence of the longitudinal field. Since y2 > 0,
according to our RG approach h > 0 is a relevant perturba-
tion, thus the critical properties of the complete model should
be different from the TIM. Having a look at the block-size
dependence of y2 it smoothly increases with n; for small sizes
this grows approximately as ∼0.09 ln n.

As seen in Table II for the position of FP2, that (J/�)2 ≈
(J/�)1, while (h/�)2 decreases with n. For small block sizes
we have an approximate relation (h/�)2 ∼ 1.15/ ln n. The
leading critical index y1 slowly decreases with n and it is
approximately the same at both fixed points. We can conclude
the results of this approximate investigation, that the critical
behavior of the model for h > 0 is probably not controlled by
the TIM fixed point, but some critical indices are still very
close to the quantum Ising values. We expect more accurate
information from DMRG studies.

III. DMRG RESULTS

The complete phase diagram of the model has been studied
numerically by the DMRG method. In this investigation we
used finite samples of length up to L = 1024; their ground
state and the first few excited states are calculated. Here the
original version of the finite system DMRG scheme was uti-
lized with periodic and open boundary conditions [20,21]. For
the correlations it was systematically and carefully checked
that their values are vastly independent of the basis size m
within the error bars. The accuracy of the ground-state energy
calculations was in the range of 10−6–10−8 and this was in

TABLE II. Critical parameters at the FP2 fixed point calculated
with different sizes of the block n.

n (J/�)2 (h/�)2 y1 λ2 z

3 1.1052 0.8998 1.052 0.114 0.640
5 1.0079 0.6830 0.955 −0.042 0.657
7 0.9791 0.5852 0.939 −0.140 0.667
9 0.9672 0.5243 0.916 −0.216 0.673
11 0.9617 0.4808 0.899 −0.279 0.677
13 0.9591 0.4473 0.887 −0.333 0.681
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FIG. 3. (a) The J dependence of the entanglement entropy at
h = 40.0 and � = 1.5 for different lengths of periodic chains. The
position of the maximum is shifted by ∼ ln L/L2 from the phase
transition point; see in (b). The value at the maximum scales as
≈0.17 ln L; see in (c).

full agreement with the truncation error, the largest basis size
being m = 140–260 for the different systems.

In general we have fixed the value of the transverse field to
� = 1.5 and used different values of the longitudinal field:
h = 0.0, 0.4, 0.8, 2.0, 10.0, 20.0, and 40.0. By varying the
strength of the coupling we have studied the behavior of the
correlation function, C(L/2 − 1) = −〈σ z

1σ z
L/2−1〉, as well as

the entanglement entropy S calculated between the two halves
of the chain. Particular attention is paid to the properties of the
system in the vicinity of the phase transition point.

A. Entanglement entropy

If we divide the chain into two parts of lengths 	 and L − 	,
then the entanglement between the two parts is quantified by
the von Neumann entropy:

S	 = −Tr(ρ	 ln ρ	) = −Tr(ρL−	 ln ρL−	) = SL−	. (9)

Here ρ	 = TrL−	ρ and ρL−	 = Tr	ρ is the reduced density
matrix with ρ = |φ〉〈φ| and |φ〉 being a pure state of the
closed quantum system. In our calculation we have 	 = L/2
and periodic boundary conditions are used, when the two parts
have b = 2 contact points. For brevity in the following we use
the notation: S	=L/2 = S .

1. Finite-size scaling of the maximum

The J dependence of the entanglement entropy at h = 40.0
is shown in Fig. 3(a) for different lengths of the chain. S (J )
has a maximum, the position of which Jmax(L) can be used as
a finite-size, pseudo-phase-transition point [22]. It approaches
the true transition point, Jc as Jmax(L) − Jc ∼ ln L/L2. The
logarithmic correction term has been detected at h = 0 and
it seems to be present for h > 0 as well, which is illustrated
in Fig. 3(b). Using this correction term the phase-transition
point can be accurately determined. We obtained the follow-
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FIG. 4. The correlation length, extracted from the entropy
through Eq. (11) as a function of the difference from the transition
point J < Jc in log-log scale for different values of h at � = 1.5.
In the inset the local slope of the curves, approaching the critical
exponent −ν is shown. For the case h = 0 the slope is taken from the
analytical result in Ref. [23].

ing shift of the critical point close to h = 0 as Jc/� − 1 ≈
0.19(h/�)2, in agreement with Ref. [7]. The value of the
maximum Smax(L), which is very close to S (Jc, L) is found
to scale logarithmically:

Smax(L) 
 b
c

6
ln L, (10)

which is illustrated in Fig. 3(c). At a second-order transition
point for conformally invariant systems c is the central charge
of the Virasoro algebra [24–26]. In Fig. 3(c) we obtained an
estimate: bc/6 ≈ 0.17. Repeating the same analysis at h =
0.4 a more accurate estimate is found: bc/6 ≈ 0.167, whereas
at h = 0 the exact value is bc/6 = 1/6, thus c = 1/2. Our
numerical results about the entanglement entropy indicate that
its finite-size scaling is compatible with the central charge of
the Ising model not only at h = 0, but also for h > 0.

2. The correlation length

The correlation length ξ is extracted from the entanglement
entropy, using the property, that in the vicinity of the critical
point S , behaves as

S 
 b
c

6
ln ξ . (11)

In the region with J < Jc fixing c = 1/2 and b = 2 we have
calculated ln ξ from Eq. (11), which are shown in Fig. 4 as
a function of ln(Jc − J ) for different values of h. It is seen
that the curves for different h are very close to each other and
therefore the same type of asymptotic scaling is expected, as
for h = 0. We have also calculated the slope of the curves,
shown in the inset of Fig. 4, which is expected to approach
−ν = −1, as known analytically at h = 0. We conclude that
the correlation length critical exponent in the region with J <

Jc for all values of h > 0 is compatible with the Ising value
ν = 1. Expecting that this relation holds for large h, where
h/Jc ≈ 2 the asymptotic region of the numerical points is in
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FIG. 5. Correlation function (a) at � = 1.5, h = 0 and (b) at � =
1.5, h = 0.4 as a function of the coupling for different lengths. In the
insets the scaling plots u = C(J, L)L1/4 vs (J − Jc )L are shown.

accordance with the relation:

ξ (h) ∼ �

Jc − J
∼

( Jc

Jc − J

) �

Jc
∼ �−1 �

hc
∼ �

h − hc
, (12)

with � = (Jc − J )/Jc = (h − hc)/hc being the reduced con-
trol parameter at the transition point. Now taking � ∼ �c

we notice that the correlation length at the CEP tends to a
finite value, since �c ∼ (2 − h). In this way we have a smooth
behavior of ξ around the CEP.

B. Correlation function

The order in the ground state is characterized by the corre-
lation function in Eq. (3). In general, we consider correlations
between distant points, fix r = L/2 − 1 and for brevity we use
the notation C(L/2 − 1) = C, which is the function of J, �

and h.
If there is no interaction, J = 0, then the correlation func-

tion is ferromagnetic, C(J = 0) = −[(�/h)2 + 1]−1 < 0. By
switching on the coupling, J > 0, the correlation function
increases and for J > Jc it becomes antiferromagnetic, C > 0.
Numerical results of the DMRG calculations are shown in
Fig. 5 for h = 0 in (a) and for h = 0.4 in (b). The curves
can be scaled to a master curve by using the combination
C(J, L)L1/4 see Eq. (4) and (J − Jc)L according to Eq. (2),
which are shown in the insets. This scaling collapse is perfect
for h = 0, but for h = 0.4 the correlation function goes below
zero for sufficiently small value of J and here a more complex
scenario takes place. To check this behavior we magnified the
correlation function near the transition point, which is shown
in Fig. 6(a) for h = 0.4, 0.8, and 1.2.

It is seen in this figure that depending on the distance
from the critical point Jc (which is calculated through the
location of the maximum of the entanglement entropy; see
in Sec. III A 1), there are two regimes below Jc. In these
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FIG. 6. (a) Correlation function at h = 0.4 (denoted by ◦), h =
0.8 (denoted by �), and 1.2 (denoted by �) for � = 1.5 as a func-
tion of the antiferromagnetic coupling, J > 0, close to the transition
point, calculated by DMRG at different lengths: L = 256 ◦, L = 512
◦, L = 1024 ◦. The expected form of the correlation function in
the thermodynamic limit is indicated by green lines, as defined in
Eq. (13); its endpoint is shown by an ∗. The limiting values C−(h)
as a function of 1/h are plotted in (b). In (c) a scaling plot of
u = C(J, L)L1/4 vs (J − Jc )L is shown for h = 0.4; here points for
a length L = 128 are indicated by ◦. The point indicated by an arrow
is the critical endpoint, which separates the critical and the linear
regions; see text.

regimes, the size dependence of the correlation function is
different, which leads to different limiting values for L → ∞.
For sufficiently weak couplings, Jc − J > �J (L), we are in
the linear regime, where C(L, J ) has an approximately linear
increase with J and there is no noticeable size dependence, at
least for L � 128. The other regime, which we call as critical
regime, is located in the vicinity of the transition point for
Jc − J < �J (L), where C(L, J ) grows very fast with J and
there is a strong size dependence. The extent of the critical
regime scales as �J (L) ∼ 1/L [see later in Fig. 6(c)] and in
the thermodynamic limit the linear regime persists up to Jc, so
that we expect

lim
L→∞

C(L, J, h) ≈ C−(h) + a(h)(J − Jc), for J � Jc, (13)

which is indicated by dashed green lines in Fig. 6(a). The lim-
iting value at the transition point, C−(h) < 0, is ferromagnetic
and its value is shown as a function of h in Fig. 6(b). For small
h we notice a quadratic behavior: |C−(h)| ≈ 0.019(h/�)2.
The slope of the linear part a(h) is found approximately
proportional to C−(h): a(h)/C−(h) ∼ −6.5 and this propor-
tionality factor depends only weakly on h.

In the critical regime the points in Fig. 6(a) can be put
to a master curve in terms of the scaling variables: u =
C(J, L)L1/4 vs (J − Jc)L, which is shown in Fig. 6(c). The
scaling collapse fails in the linear regime for Jc − J > �J (L),
which sets the border of the critical region: �J (L) ∼ 16/L,
where u ∼ −0.008. Consequently in the thermodynamic limit
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(denoted by ◦), as a function of L in log-log scale; see text.

limL→∞ C(L, J, h) = 0, if we stay in the critical regime: Jc −
�J (L) < J � Jc. Evidently this limiting value of the corre-
lation function at the transition point is different from that
extrapolated from the linear regime; see in Eq. (13).

We can conclude our numerical results in the following
way. The correlation function in the thermodynamic limit is
antiferromagnetic, C(J ) < 0 for J > Jc which goes to zero
as C(J ) ∼ [J − Jc)1/4, both at h = 0 and for h > 0. Also the
correlation length is divergent with the Ising exponent, ν = 1.
For h > 0 the correlation function is discontinuous at Jc, it has
a jump C−(h), as defined in Eq. (13). Consequently the phase
transition is mixed order in this case.

C. End-to-end correlations

We have also studied the behavior of the end-to-end corre-
lation function, Cee = −〈σ z

1σ z
L〉, which is calculated for open

chains. Here we should note that the end spins are loosely
connected to the chain. For example, in the classical limit,
� = 0, Cee changes sign at h = J , so that for 1 < h/J < 2
we have Cee = −1, while the bulk correlations are C = 1.
To avoid such an independent surface transition we keep in
the following h < J even for � > 0. As an example we con-
sider � = 1.5 and h = 0.4 and plot Cee for different values
of the antiferromagnetic coupling in Fig. 7. For a compari-
son we show in this figure also the end-to-bulk correlations,
Ceb = −〈σ z

1σ z
L/2〉, which is defined now with open boundary

conditions. It is seen in this figure that for both types of
correlations a singularity develops around the phase-transition
point at Jc = 1.52. The end-to-end correlations show a mini-
mum, and the value at the minimum, Cee(Jc, L), approaches
an asymptotic value, Cee(Jc, L = ∞) ≈ −0.193 as a power:
∼L−η′

s with an exponent η′
s ≈ 0.5. This is illustrated in the

inset of Fig. 7, in which Cee(Jc, L) + 0.193 is plotted vs L in
log-log scale. In this inset we have also studied the radius of
curvature at the minimum R(J ), which is found to scale as

R(J ) ∼ 1/L. We can interpret R(J ) as the distance from the
critical point in a finite system, having a correlation length
ξ ∼ L. Consequently at the transition point for the end-to-end
correlations there is a diverging length, which scales with the
Ising exponent ν = 1, but at the same time its derivative is
discontinuous in the thermodynamic limit.

For the end-to-bulk correlation function the analysis of the
numerical data is more difficult. For the largest finite systems,
L = 512 and 1024, we notice the appearance of a minimum
near the phase-transition point and we expect a similar type of
behavior, as found for the end-to-end correlation function.

IV. DISCUSSION

In this paper we have re-examined the properties of the
phase transition of the antiferromagnetic quantum Ising chain
in the presence of a longitudinal field. Previous studies have
focused on the excitation spectrum of the system and vanish-
ing gaps are observed at the phase-transition line. Finite-size
scaling of the low-energy excitations at the transition line are
found to have the same behavior for h/� > 0 as for h/� = 0,
i.e., at the TIM point. Therefore it was generally accepted that
the phase transition for h/� > 0 is controlled by the TIM
fixed point. Here we have studied other physical quantities
of the model, entanglement entropy and spin-spin correlation
function, and have clarified this issue further.

First we have introduced and applied a quantum block RG
method which is known to correctly describe the properties of
the TIM fixed point in the large block-size limit. Introducing
a nonzero longitudinal field to the RG transformation the
TIM fixed point is found unstable, signaling the possibility
that the phase transition for h/� > 0 belongs to a different
universality class. Quantitative results about the properties
of the phase transition have been calculated by the DMRG
method. The location of the phase-transition line is obtained
as the extrapolated value of the position of the maximum of
the entanglement entropy. Finite-size scaling of the entangle-
ment entropy at the transition line is found compatible with
the behavior at the TIM point, thus having a central charge
c = 1/2. The correlation length is extracted from the scaling
of the entanglement entropy and for J < Jc it is found to
scale as in the TIM. We have also checked (not shown here)
that the transverse magnetization 〈σ x〉 has the same type of
singular behavior at the transition point: 〈σ x〉 ≈ c1 + c2(Jc −
J ) ln |Jc − J|, for h/� > 0, as at the TIM.

The AFM or FM order in the system is characterized by
the spin-spin correlation function, what we have calculated
for large periodic chains with different lengths. Starting from
the AFM phase, J > Jc, the correlation function is found to
vanish at the phase-transition point in the same form, as at the
TIM, thus having the same critical exponents. Surprisingly,
by passing the phase-transition line, the correlation function
shows a discontinuity with a limiting finite FM value. Repeat-
ing the same calculations for the end-to-end correlations in
open chains a minimum is observed at the phase-transition
point having a discontinuity in the derivative. The behavior of
the correlation functions around the phase-transition point is
illustrated in Fig. 8 for h = 0 and in the inset for h > 0.

These findings can be interpreted that the phase transition
in the antiferromagnetic quantum Ising chain in the presence
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FIG. 8. Illustration of the coupling dependence of the spin-spin
correlation function in the bulk (C) and between end spins (Cee) at
h = 0 (main panel) and at h > 0 (inset).

of a longitudinal field is of mixed order. The length scale ξ is
divergent according to Eq. (2) at both sides of the transition
point. Also the spin-spin correlation function shows AFM
quasi-long-range order at the transition point having the TIM
exponent below Eq. (4). But coming from the FM side the FM
order vanishes discontinuously at the transition point.

A similar type of discontinuity occurs near the CEP point
which can be evaluated by two points of view. On the one
hand, being in the classical limit, J/� → ∞ the correlation
function has a jump from C = −1 to C = 1 at h/J = 2 by
increasing J . On the other hand, one can observe a jump
between the low-temperature limit and the small quantum
fluctuation limit of the correlations at the CEP. To discuss in
more detail, at the CEP point the ground state infinitely
degenerate, these are denoted by |ψ (0)

k 〉, with k =
1, 2, . . . , K (L). The entropy per site is given by

limL→∞ ln K (L)/L = ln τ , with τ = (1 + √
(5))/2 being

the golden mean ratio [9]. One can find a finite FM
order by calculating the spin-spin correlation function
in the low-temperature limit, when the degenerate states
have equal weights, |� therm〉 = K (L)−1/2 ∑

k |ψ (0)
k 〉. In the

thermodynamic limit it is Ctherm
CEP = −0.2. By switching

on quantum fluctuations 1 � J/� < ∞ the ground state
becomes nondegenerate through an order through disorder
phenomena [27] when the ground state is given as a
combination of the degenerate states with well-defined
weights: |�quant〉 = ∑

k ck|ψ (0)
k 〉. Also in this limit the

correlation function maintains finite FM value Cquant
CEP < 0.

Comparing its value with Ctherm
CEP we notice a jump, since

Cquant
CEP − Ctherm

CEP ≈ −0.16.
Mixed-order transitions have already been observed in

different systems: in classical spin chains with long-range in-
teractions [28–35], in models of depinning transition [36–39],
in percolation models with glass and jamming transition
[40–49], in models at a multiple-junction or k-booklet geom-
etry [50–53], in modular networks [54], and in experiments
[55]; for a recent review see in Ref. [56]. In our model
the mixed-order transition is probably the consequence of
competing AFM interactions and longitudinal fields in the
presence of quantum fluctuations. In an analogy we might
expect that mixed-order transition takes place in the multispin
version of the model [10] for m = 3, or in the q-state FM
quantum Potts chain [57] in the presence of a q-periodic
longitudinal field.
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