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Thermal transport in topologically-ordered phases of matter provides valuable insights as it can detect the
charge-neutral quasiparticles that would not directly couple to electromagnetic probes. An important example
is the edge heat transport of the Majorana fermions in a chiral spin liquid, which leads to a half-quantized
thermal Hall conductivity. This signature is precisely what has recently been measured in α-RuCl3 under external
magnetic fields. The plateau-like behavior of the half-quantized thermal Hall conductivity as a function of
external magnetic field, and the peculiar sign change depending on the magnetic field orientations, have been
proposed to be strong evidence for the non-Abelian Kitaev spin liquid. On the other hand, for in-plane magnetic
fields, it has been theoretically shown that such a sign structure can also arise from topological magnons in the
field-polarized state. In this paper, we investigate the full implications of topological magnons as heat carriers
on thermal transport measurements. We first prove analytically that for any commensurate order with a finite
magnetic unit cell, reversing the field direction leads to a sign change in the magnon thermal Hall conductivity in
two-dimensional systems. We corroborate this proof numerically with nontrivial magnetic orders as well as the
field-polarized state in Kitaev magnets subjected to an in-plane field. In the case of the tilted magnetic field, in
which there exists both finite in-plane and out-of-plane field components, we find that the plateau-like behavior of
the thermal Hall conductivity and the sign change upon the reversal of the in-plane component of the magnetic
field arises in the partially polarized state, as long as the in-plane field contribution to the Zeeman energy is
significant. While these results are consistent with the experimental observations, we comment on other aspects
that require further investigation in future studies.
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I. INTRODUCTION

The search for quantum spin liquid (QSL) states [1–4]
with long-range entanglement and emergent quasiparticle ex-
citations is of both practical and fundamental interests. One
avenue to achieve a QSL state is via magnetic frustrations
from bond-dependent interactions, which has motivated the
study of 4d/5d materials with strong spin-orbit coupling
[5–16]. These materials naturally possess bond-dependent
interactions and have the potential to realize the S = 1/2
Kitaev model on a honeycomb lattice [17], and has garnered
much intrigue due to it being exactly solvable and having a
spin liquid ground state [18–24]. A great leap forward was
achieved in the search for the Kitaev spin liquid (KSL) when
a half-quantized thermal Hall conductivity was measured in
the material α-RuCl3 under external magnetic fields [25]. The
half-quantization is a signature of Majorana fermions—the
fractionalized excitations of the KSL [17,26–29]. Their pres-
ence in a real material, once confirmed, would be a major
breakthrough in spin liquid physics [30–38].

The half-quantized thermal Hall conductivity is observed
in α-RuCl3 not only under tilted fields, but also under com-
pletely in-plane fields [39,40]. This is unlike in ordinary
metals, in which the electronic Hall effect only occurs when
the field has a finite out-of-plane component. Such an anoma-
lous Hall effect in α-RuCl3 is postulated to originate from
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Majorana fermions in the non-Abelian KSL. For in-plane
fields, a sign change in the thermal Hall conductivity was
measured when the field was flipped from the a to −a direc-
tion, while no appreciable signals were measured when the
field was applied along the b direction (see Fig. 1). Although
this peculiar sign structure of the thermal Hall conductivity
[41] is consistent with the non-Abelian KSL scenario [33,42],
a recent theoretical study [43] demonstrated that it can also
arise from topological magnons [44–48] in the polarized state
in Kitaev magnets. In the case of tilted fields in the ac
plane, experiments have measured a similar sign change in
the thermal Hall conductivity when the tilting angle from the
c axis was switched from −60◦ to +60◦ in the suspected
spin liquid regime [39]. Determining whether these signals are
uniquely caused by the non-Abelian QSL state is crucial, thus
there is a pressing need to critically examine other possible
mechanisms.

In this paper, we investigate the possibility of magnons as
the heat carriers responsible for the thermal transport observed
in experiments. First, we theoretically demonstrate that a sign
change in the magnon thermal Hall conductivity follows from
reversing the field direction. This generic property holds for
any magnetic order with a finite unit cell, and for any field di-
rection, in a bilinear spin model. A concise proof is presented
in the main text. In a previous paper, the magnon thermal Hall
effect in the polarized state was explored for fields parallel to
the a and b directions [43]. As an extension to this study, we
consider the K��′ model and determine the classical phase
diagram in the presence of all possible in-plane magnetic field
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FIG. 1. The x, y, and z bonds in K��′ model are coloured in
blue, green, and red, respectively. The crystallographic a (in-plane), b
(in-plane), and c (out-of-plane) directions are indicated. In the cubic
basis according to which the spin components in the K��′ model
are defined, the a, b, and c directions are given by [112̄], [1̄10], and
[111], respectively.

directions. We then show that the general sign-change prop-
erty indeed holds for various magnetic orders and polarized
phases appearing in the phase diagram.

Furthermore, we explicitly compute the thermal Hall con-
ductivities for the K��′ model under tilted fields. As the
field increases, the system does not immediately polarize,
but enters a ferromagnetic phase with a dominant in-plane
magnetization [49]. Therefore, right above the ferromagnetic
phase transition, a sign change in the thermal Hall conductiv-
ity under the reversal of the in-plane field component can still
be observed, as in the case of completely in-plane fields. For
the two-dimensional zig-zag ordered state [50,51] below the
critical field, the sign-change behavior can also be observed.
We show that certain aspects of magnon heat transport in
the K��′ model are consistent with experimental results, and
highlight others that require further investigations.

The rest of the paper is organized as follows. In Sec. II, we
provide a proof for the sign structure of the magnon thermal
Hall conductivity on a bilinear spin Hamiltonian. Section III
presents a classical phase diagram with magnetic fields in
the ab plane as well as numerical results of the thermal Hall
conductivities. Section IV explores the thermal Hall effect
under tilted magnetic fields. We discuss the dependence of the
overall sign of the thermal Hall conductivity on the model pa-
rameters in Sec. V. Lastly, Sec. VI discusses the key findings
of this work and provides a future outlook.

II. THERMAL HALL SIGN STRUCTURE

Consider a general bilinear spin Hamiltonian with a Zee-
man field,

H =
∑

i j

ST
i Hi jS j − hT

∑
i

Si, (1)

where Hi j is a real symmetric matrix that encodes the in-
teraction between the spins at sites i and j. Suppose that
we have obtained the ground-state spin configuration {Si} of
the classical model in (1). To construct the linear spin-wave
Hamiltonian [52,53] for this ground state, the spins are first
passively rotated on each site of the lattice such that the z
direction of the local coordinate system is parallel to the spin
orientation. We define the following rotation matrix

Ri =
⎡
⎣cos θi cos φi − sin φi sin θi cos φi

cos θi sin φi cos φi sin θi sin φi

− sin θi 0 cos θi

⎤
⎦, (2)

where θi and φi are polar angles in the original cubic xyz coor-
dinates, and (Sx

i , Sy
i , Sz

i ) = S(sin θi cos φi, sin θi sin φi, cos θi ),
such that

Si = RiS̃i, (3)

where, classically, S̃i = (0, 0, S) is the spin at i measured in
the local coordinate system.

The rotated, site-dependent Hamiltonian is then given by

H =
∑

i j

S̃T
i H̃i j S̃ j −

∑
i

h̃T
i S̃i, (4)

where H̃i j = RT
i Hi jR j and h̃i = RT

i h. Note that all the ele-
ments of H̃i j are real.

In the rotated basis, we perform a Holstein-Primakoff ex-
pansion [52],

S̃z
i = S − b†

i bi = S − ni,

S̃x
i =

√
2S − nibi + b†

i

√
2S − ni

2
≈

√
S

2
(bi + b†

i ),

S̃y
i =

√
2S − nibi − b†

i

√
2S − ni

2
≈ −i

√
S

2
(bi − b†

i ).

Keeping only terms that contribute up to quadratic order in the Hamiltonian, we get

H =
∑
〈i, j〉

S

2
[bi b†

i ]

[
1 −i
1 i

][
H̃11

i j H̃12
i j

H̃21
i j H̃22

i j

][
1 1
−i i

][
b j

b†
j

]
−

∑
〈i, j〉

SH̃33
i j (b†

i bi + b†
jb j ) +

∑
i

(h̃i )3b†
i bi.

Expanding out the first term, we obtain

H =
∑
〈i, j〉

S

2
[bi b†

i ] ×
[

H̃11
i j − H̃22

i j − i
(
H̃12

i j + H̃21
i j

)
H̃11

i j + H̃22
i j + i

(
H̃12

i j − H̃21
i j

)
H̃11

i j + H̃22
i j − i

(
H̃12

i j − H̃21
i j

)
H̃11

i j − H̃22
i j + i

(
H̃12

i j + H̃21
i j

)
][

b j

b†
j

]

−
∑
〈i, j〉

SH̃33
i j (b†

i bi + b†
jb j ) +

∑
i

(h̃i )3b†
i bi. (5)
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We assume that the ground-state spin configuration is a magnetic order with a finite unit cell of N sublattices, so that it has a
real space periodicity that allows us to perform the Fourier transform, which yields

H = S

4

∑
s∈Xs
t∈Xt

∑
k

((
H̃11

st − H̃22
st − i

(
H̃12

st + H̃21
st

))
eik·(Rs−Rt )bk,sb−k,t + c.c.

)

+ S

4

∑
s∈Xs
t∈Xt

∑
k

((
H̃11

st + H̃22
st + i

(
H̃12

i j − H̃21
i j

))
eik·(Rs−Rt )bk,sb

†
k,t + c.c.

)

− S

2

∑
s∈Xs
t∈Xt

∑
k

H̃33
st (b†

k,sbk,s + b†
k,t bk,t ) +

∑
s∈Xs,k

(h̃s)3b†
k,sbk,s, (6)

where s and t label the sublattices of an interacting pair of
spins, which belong to the magnetic unit cells Xs and Xt ,
respectively. Factors of 1/2 are inserted to avoid double count-
ing. Then, we can write the spin-wave Hamiltonian in the form
of

H/S =
∑

k

�
†
kDk�k, (7)

where the spinor �k = (bk,1, . . . , bk,N , b†
−k,1, . . . , b†

−k,N ),
and Dk is a 2N × 2N matrix of the form

Dk =
[

Ak Bk

B∗
−k AT

−k

]
, (8)

with Ak and Bk being N dimensional matrices. Using this
linear spin-wave formalism, we present the following theo-
rem.

Theorem 1. When the direction of the external magnetic
field h in (1) is reversed, there is a sign change in the magnon
thermal Hall conductivity κxy for any magnetic order with a
finite unit cell.

Proof. For the Hamiltonian (1), when the Zeeman field
transforms as h 
→ −h, the spins in the ground state undergo
a transformation of

Si 
→ −Si,

or equivalently {θi, φi} 
→ {π − θi, φi + π}, such that the
ground-state energy remains unchanged. In other words, if
{Si} is the ground-state spin configuration under the field h,
then {−Si} is the ground-state spin configuration under the
field −h.

Therefore, when h 
→ −h, the rotation matrix (2) under-
goes a transformation from

Rh
i =

⎡
⎣cos θi cos φi − sin φi sin θi cos φi

cos θi sin φi cos φi sin θi sin φi

− sin θi 0 cos θi

⎤
⎦ (9)

to

Rh̄
i =

⎡
⎣cos θi cos φi sin φi − sin θi cos φi

cos θi sin φi − cos φi − sin θi sin φi

− sin θi 0 − cos θi

⎤
⎦. (10)

The rotated spin Hamiltonians under the fields h and −h
are given by

H̃h
i j = (

Rh
i

)T
Hi jR

h
j =

⎡
⎢⎣

H̃11
i j H̃12

i j H̃13
i j

H̃21
i j H̃22

i j H̃23
i j

H̃31
i j H̃32

i j H̃33
i j

⎤
⎥⎦,

H̃ h̄
i j = (

Rh̄
i

)T
Hi jR

h̄
j =

⎡
⎢⎣

H̃11
i j −H̃12

i j −H̃13
i j

−H̃21
i j H̃22

i j H̃23
i j

−̃H
31
i j H̃32

i j H̃33
i j

⎤
⎥⎦.

Therefore, when the field direction is reversed, the only
components of the rotated Hamiltonian relevant to linear spin-
wave theory that pick up a sign change are H̃12

i j and H̃21
i j . For

the rotated field, the Zeeman term contribution to the linear
spin-wave theory remains unchanged. From Eqs. (6) and (8),
we find that Dh̄

k = (Dh
−k )

∗
. If the system is two dimensional,

we can show that κxy changes sign, and the details of the proof
can be found in a previous paper [43]. �

Theorem 1 holds for any magnetic order with a finite unit
cell on the underlying Bravais lattice, and for any field direc-
tion. It is independent of the details of the spin interactions
Hi j as long as it is bilinear. In particular, the theorem holds
for any order of nearest neighbor interaction, including the
first- and third-nearest neighbor Heisenberg interactions, J
and J3; we only require the ground state to exhibit a trans-
lational symmetry (defined by the magnetic unit cell), such
that we are able to define the linear spin-wave Hamiltonian in
the momentum space (6). A situation in which this theorem
breaks down is a magnetic order that is incommensurate with
the lattice and thus devoid of translational symmetry. In the
following sections, we will be exploring this general sign
change property in the K��′ model.

III. CLASSICAL PHASE DIAGRAM WITH MAGNETIC
FIELD IN THE ab PLANE AND THERMAL HALL

CONDUCTIVITY

We consider the K��′ model under a magnetic field
as a model for α-RuCl3, which is given by H =
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∑
〈i j〉∈λ ST

i HλS j − hT
∑

i Si where

Hx =
⎡
⎣K �′ �′

�′ 0 �

�′ � 0

⎤
⎦, Hy =

⎡
⎣ 0 �′ �

�′ K �′
� �′ 0

⎤
⎦,

Hz =
⎡
⎣ 0 � �′

� 0 �′
�′ �′ K

⎤
⎦. (11)

First, we chose a model with K = −1, � = 0.5, and �′ =
−0.02, and we numerically explored the classical ground
states using simulated annealing [35,54] with in-plane mag-
netic fields h = h(cos θ [112̄] + sin θ [1̄10]), with h ∈ [0, 0.3]
and θ ∈ [0, 2π ). These computations resulted in a rich phase
diagram shown in Fig. 2(a), which notably includes nontrivial
intermediate phases between zig-zag orders and the polarized
state—the largest of which contains 10 sites per magnetic unit
cell. Neutron scattering experiments have been performed to
obtain the phase diagram for a field applied parallel to the a
axis, but not the b axis [55]. Thus, a potential application of
this in-plane phase diagram is to serve as an initial predictor
for future experiments.

There are three distinct configurations for each of the ZZ,
6-site [56], and 10-site orders, examples of which are shown
in the Supplemental Materials [57]. Note that when the field
is along the c direction [35], the three configurations of each
order are degenerate and related by the C3 symmetry of the
system. For in-plane fields, the C3 symmetry is broken, such
that the three configurations of each order in general differ
in energy. However, when the in-plane field is applied along
high-symmetry directions that are equivalent to the a or b
direction, two configurations of the same order may be degen-
erate. For example, 6a and 6b are degenerate under magnetic
fields along the a and b directions [see Fig. 2(b)].

To calculate κxy due to magnons, we first obtained the
linear spin-wave dispersion εnk by diagonalizing (8) using a
Bogoliubov transformation [58]. We then computed the Berry
curvature �nk using the Bogoliubov transformation matrices
Tk. κxy is given by [59–61]

κxy = −k2
BT

h̄V

∑
n

∑
k∈FBZ

{
c2[g(εnk )] − π2

3

}
�nk, (12)

where FBZ is the crystal first Brillouin zone, c2(x) = (1 +
x){ln[(1 + x)/x]}2 − ( ln(x))

2 − 2Li2(−x), Li2 is the diloga-
rithm, and g is the Bose-Einstein distribution. To ensure the
convergence of κxy at system size L, we also checked that the
Chern number

Cn = 1

2π

∑
k

(2π )2

A
�nk, (13)

where A is the total area of the system, converged to an integer
for each magnon band. Topological magnons are indicated by
finite Chern numbers. For example, when the field was applied
along the a direction, we found that the two magnon bands
of the polarized state carried the Chern numbers ±1, while
the six magnon bands of the 6-site order carried the Chern
numbers 0, 0, 0, 1,−1, 0.

We set the spin magnitude to be S = 1/2 in the linear
spin-wave theory and calculated the magnon thermal Hall

(a)

(b)

FIG. 2. (a) Classical phase diagram of the K��′ model under a
magnetic field h in the honeycomb plane. The interaction parameters
are fixed to be (K, �, �′) = (−1, 0.5, −0.02). The polarized state is
indicated by grey, the zig-zag (ZZ) order by shades of green, the
6-site order by shades of blue, and the 10-site order by shades of
red. The a, b, and c configurations (not to be confused with the a,
b, and c crystallographic directions) of each order are shown with
different shadings of the same color. (b) Classical phase diagrams
under magnetic fields along the [112̄] (upper) and [1̄10] (lower)
directions, which are extracted from (a). For the [112̄] field, ZZa and
ZZb orders are degenerate. The 6a and 6b orders are degenerate in
both cases.

conductivity. We assumed the strength of the Kitaev interac-
tion to be |K| = 80 K [62,63], and set the interlayer distance
to be d = 5.72 Å for α-RuCl3 [25,39,51,63]. We present the
thermal Hall conductivities for the 6-site order and the polar-
ized state as a function of temperature in Figs. 3(a) and 3(b),
and as a function of field strength across the phase boundary
in Fig. 4, when the field was applied along the a direction.
The field strengths h in each plot were chosen to be close
to the critical field separating the two magnetic orders. We
make some observations from these results. First, large unit
cell orders like the 6-site order can give rise to a finite thermal
Hall effect. Additionally, the thermal Hall conductivity of the
polarized state is much larger than that of the 6-site order for
the parametrization we chose; a similar pattern can be seen
in the experimental results. Furthermore, the thermal Hall

174402-4



TOPOLOGICAL MAGNONS FOR THERMAL HALL … PHYSICAL REVIEW B 103, 174402 (2021)

FIG. 3. Thermal Hall conductivity κxy/T as a function of temper-
ature T due to magnons in (a) the 6-site order at h/S|K| = 0.2 and
(b) the polarized state at h/S|K| = 0.22, with the interaction param-
eters (K, �, �′) = (−1, 0.5, −0.02). The magnetic field is applied
along the a (−a) direction for the blue (purple) curves, and the field
strengths are chosen to border the critical field. The two-dimensional
thermal Hall conductance κ2D

xy /T ≡ κxyd/T is also indicated.

conductivities of both orders under magnetic fields along the a
and −a direction are equal in magnitude and opposite in sign,
as predicted by Theorem 1.

We remark that the thermal Hall conductivity is not always
zero when the external field is applied along the b direction,
as is for the polarized state. The lack of a signal for the
polarized state is a special case that arises from a C2 rotational
symmetry about the b axis in both the Hamiltonian and the
ground-state spin configuration. Such a C2 symmetry can be

FIG. 4. Thermal Hall conductivity κxy/T due to magnons as a
function of field strength h/S|K| at temperature T = 5 K, with the
interaction parameters (K, �, �′) = (−1, 0.5, −0.02). The magnetic
field is applied along the a (−a) direction for the blue (purple)
curves. There is a phase transition from the 6-site order (green
region) to the polarized state (red region) as the field increases. The
two-dimensional thermal Hall conductance κ2D

xy /T ≡ κxyd/T is also
indicated.

FIG. 5. Thermal Hall conductivity κxy/T as a function of tem-
perature T due to magnons in the 6-site order under a magnetic field
along the b direction, with the interaction parameters (K, �, �′) =
(−1, 0.5, −0.02) and the field strength h/S|K| = 0.1. The two-
dimensional thermal Hall conductance κ2D

xy /T ≡ κxyd/T is also
indicated.

broken by other magnetic orders, for example the 6-site order,
which shows a finite thermal Hall conductivity when the field
is applied along the b direction (see Fig. 5).

IV. THERMAL HALL CONDUCTIVITY IN THE
PRESENCE OF TILTED FIELDS

As explored in Sec. II, there is a well-established rela-
tion between the reversal of the field direction and the sign
change of the magnon κxy. However, for a tilted field, the
effect of reversing only the in-plane component h‖, while
fixing the out-of-plane component h⊥, on the magnon κxy is
unclear. This is because the ground-state spin configurations
of (h‖, h⊥) and (−h‖, h⊥) have no direct relation in general,
unlike those of h and −h, which are related by flipping of the
spins.

In the experiment [39], the tilted field was applied in the
ac plane. The tilting angle θ is defined to be the angle be-
tween the field and the c axis. A sign change in κxy was
experimentally observed in the proposed spin liquid regime
when θ was changed from 60◦ and −60◦. In this section, we
propose a scenario where such a sign change can happen in
the magnon κxy. The underlying magnetically ordered ground
state is the partially polarized ferromagnet (PPF), which will
be described below.

For a tilted field, assuming classical spins, the system en-
ters the ferromagnetic state at sufficiently high fields, but is
never completely polarized at finite fields. This effect origi-
nates from the competition between the � interaction and the
external field [49]. We refer to such a ferromagnetic state as
the PPF. As in the experiment, we applied fields in the ac plane
with tilting angles 60◦ and −60◦ measured from the c axis.
Using the parametrization (K, �, �′) = (−1, 0.2,−0.02), we
find that right after the system enters the PPF, the magnetiza-
tion is largely in-plane, as shown in Tables I and II. As the field
strength increases, the in-plane (out-of-plane) component of
the magnetization gradually decreases (increases).

We plot the thermal Hall conductivities as a function of
temperature for isotropic [Figs. 6(a) and 6(b)] and anisotropic
[Figs. 6(c) and 6(d)] g tensors. The g tensor effectively
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FIG. 6. Thermal Hall conductivity κxy/T as a function of temperature T due to magnons in various ferromagnetic states, with the interaction
parameters (K, �, �′) = (−1, 0.2, −0.02). The magnetic field is applied in the ac plane, h = hg⊥ cos θ [111] + hg‖ sin θ [112̄]. An isotropic g
tensor (g‖, g⊥) = (1, 1) is used in (a) and (b), while an anisotropic g tensor (g‖, g⊥) = (2.3, 1.3) is used in (c) and (d). In each plot, the green
(red) curve represents the data of the partially polarized ferromagnet with an almost in-plane magnetization, under a magnetic field with the
tilting angle θ = 60◦ (−60◦). On the other hand, the blue (purple) curve represents the data of the ferromagnet with a completely in-plane
magnetization (which is not the ground state, but plotted for comparison), under a magnetic field with the tilting angle θ = 60◦ (−60◦). The
two-dimensional thermal Hall conductance κ2D

xy /T ≡ κxyd/T is also indicated.

modifies the field as h = hg⊥ cos θ [111] + hg‖ sin θ [112̄],
where we chose (g‖, g⊥) = (1, 1) and (g‖, g⊥) = (2.3, 1.3)
for the isotropic and anisotropic cases, respectively [64–66].
The fields in Figs. 6(a) and 6(c) were chosen to be near the
respective critical fields, such that the magnetizations of the
PPFs were almost in-plane, i.e., Sa/S ≈ ±1, Sc/S ≈ 0. We
then expect the thermal Hall signals of these PPFs [e.g., curves
with dots in Fig. 6(c)] to be similar to those of the ferro-
magnetic states with completely in-plane magnetizations, i.e.,

TABLE I. Magnetization of the partially polarized phase as
a function of magnetic field. The spin S = (Sa, Sb, Sc ) is given
in the crystallographic basis. We use the interaction parameters
(K, �, �′) = (−1, 0.2, −0.02) and the isotropic g tensor (g‖, g⊥) =
(1, 1). The field is tilted by θ = 60◦ from the c axis towards the
a axis. The field range is chosen to be near the critical field of
ferromagnetic transition.

h/S|K| Sa/S Sb/S Sc/S

0.10 0.996103 0 0.088193
0.12 0.994717 0 0.102656
0.14 0.993218 0 0.116265
0.16 0.991633 0 0.129088
0.18 0.989983 0 0.141185

Sa/S = ±1, Sc/S = 0 [e.g., curves without dots in Fig. 6(c)].
As we increase the field, the out-of-plane magnetization of the
PPF becomes more significant, resulting in a larger deviation
in κxy from the case of a completely in-plane magnetization.
Such a deviation is more prevalent in the case of isotropic g
tensor. This result is expected, since a heavier weight is placed
on the in-plane component h‖ of the field in the anisotropic
case, which would result in a slower polarization as seen

TABLE II. Magnetization of the partially polarized phase as
a function of magnetic field. The spin S = (Sa, Sb, Sc ) is given
in the crystallographic basis. We use the interaction parame-
ters (K, �, �′) = (−1, 0.2, −0.02) and the anisotropic g tensor
(g‖, g⊥) = (2.3, 1.3). The field is tilted by θ = 60◦ from the c axis
towards the a axis. The field range is chosen to be near the critical
field of ferromagnetic transition.

h/S|K| Sa/S Sb/S Sc/S

0.05 0.998427 0 0.056059
0.07 0.997302 0 0.073410
0.09 0.996064 0 0.088640
0.11 0.994774 0 0.102106
0.13 0.993470 0 0.114090
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FIG. 7. Thermal Hall conductivity κxy/T due to magnons as a
function of field strength h/S|K| at temperature T = 15 K, with the
interaction parameters (K, �, �′) = (−1, 0.2, −0.02). The magnetic
field is applied along the a (–a) direction for the blue (purple) curve.
We use an anisotropic g tensor (g‖ = 2.3, g⊥ = 1.3). There is a phase
transition from the zig-zag order (green region) to the partially po-
larized state (red region) as the field increases. The two-dimensional
thermal Hall conductance κ2D

xy /T ≡ κxyd/T is also indicated.

in Table II. Therefore, it is not guaranteed that the magnon
thermal Hall conductivity will have exactly the same mag-
nitude and opposite sign by changing θ from 60◦ to −60◦.
However, Fig. 6(c) shows a regime in which we can obtain an
approximate version of this behavior.

In Fig. 7, we plot the thermal Hall conductivities for a zig-
zag ordered state and a PPF state near the critical field. Some
of these results are consistent with the thermal Hall signals
that have been experimentally measured [39]. We observe that
the maximum PPF signal is larger than that of the zig-zag. It
can be shown that this behavior can be further optimized by
tuning the system parameters such that the zig-zag signal is
oppressed, while the PPF signal is preserved. Additionally, the
PPF signal decays more rapidly as the field strength increases
for the +60◦ field than the −60◦ field, which is also observed.
Notably, the +60◦ signal as well as the −60◦ field also ex-
hibits a plateau-like behavior in the PPF region (the proposed
spin liquid region in Ref. [39]). However, there are also a
few aspects of our result that still require further investigation.
In particular, we observe a sign change in the zig-zag region
near the critical field, which is expected due to the same argu-
ment applied for the PPF state, whereas no sign change was
observed in the experiment. A possible explanation for this
discrepancy is that we did not consider any three-dimensional
inter-layer ordering in our model. A recent neutron scattering
experiment [55] revealed that there is a stacking of the layers
in the zig-zag order, therefore if magnons are the predominant
heat carrier, then the lack of a sign change most likely arises
from this 3D order, which remains to be explored in a future
work.

V. OVERALL SIGN OF κxy

We have proven in Sec. II that the sign change of κxy

upon reversing the field direction is universal (Theorem 1).
However, the overall sign of κxy for a given field direction
depends on the choice of model parameters. For example,
if we choose (K, �, �′) = (−1, 0.5,−0.1)—a different yet
realistic parametrization of α-RuCl3—the overall sign of κxy

in the polarized state is opposite to those obtained from our

FIG. 8. Thermal Hall conductivity κxy/T due to magnons in
the polarized state as a function of temperature T at field
strength h/S|K| = 0.34, with the interaction parameters (K, �, �′) =
(−1, 0.5, −0.1). The magnetic field is applied along the a (–a) direc-
tion for the blue (purple) curve. The two-dimensional thermal Hall
conductance κ2D

xy /T ≡ κxyd/T is also indicated.

earlier calculations. As shown in Fig. 8, κxy is negative (pos-
itive) when the field is applied along the a (−a) direction,
which is consistent with the overall sign observed in Ref. [39].
This is unlike the sign of κxy due to Majorana fermions in
the non-Abelian KSL, which is solely determined by the field
direction [17]. As we tune the interaction parameters, apart
from a possible change of the overall sign of κxy, all other
phenomenology remains the same. We have demonstrated that
while the relative sign of κxy is universal, its overall sign is
parameter-dependent, and our analyses thus far are applicable
to the experiments.

VI. DISCUSSION

In the present paper, we investigated the influence of
topological magnons on thermal Hall transport in quantum
magnets. We first presented an analytical proof showing that
for an arbitrary 2D commensurate magnetic order as well as
the field-polarized state, κxy due to magnons changes sign
whenever the magnetic field is reversed, irrespective of the
initial orientation of the field. Partly motivated by a recent
experiment on α-RuCl3 [39], we investigated this effect nu-
merically in a microscopic model for Kitaev magnets. For
example, we demonstrated that the magnon κxy of the 6-site
magnetic order and field-polarized state changes the sign
when the field orientation is changed from a to −a directions.
We emphasize that even though this theorem guarantees the
sign change, it does not necessarily lead to a finite magnitude.
In the microscopic model for Kitaev magnets, we showed that
the finite magnitude of κxy arises due to the topological nature
of the magnons, or the Berry curvature of the magnon bands.
When the field is applied along b direction, κxy is generally
nonzero for commensurate ordered states, in contrast to the
vanishing κxy in the case of the field-polarized state reported
earlier [43] (as also observed in the experiment [39]).

In the experiment on α-RuCl3, κxy was also measured
under tilted magnetic fields and it was found that the sign
change of κxy occurs upon reversing only the in-plane field
component, while preserving the out-of-plane field compo-
nent [39]. In this case, our theorem in Sec. II does not directly
apply. On the other hand, we demonstrated that, as long as the
in-plane field contribution to the Zeeman energy dominates,
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the sign change of κxy still occurs. In addition, the plateau-like
behavior (or very slow change) of κxy in the partially polarized
state as a function of magnetic field strength also arises in
this situation. We note, however, that the value of κxy is not
quantized, and it varies as a function of temperature.

One notable difference between our results and the pub-
lished data on α-RuCl3 lies in the ZZ ordered region of the
tilted magnetic field experiments. The sign reversal of κxy

upon flipping of the magnetic field (our theorem in Sec. II)
applies for any commensurate order. Then, for a 2D ZZ order,
there must also be a sign change in κxy, assuming that the
in-plane contribution to the Zeeman energy dominates. In the
experimental data, however, this sign change was absent in
the ZZ region. A possible explanation of this difference lies
in the 3D nature of the ZZ order. A neutron scattering (NS)
experiment [55] confirmed that below the critical field, the ZZ
ordering was 3D, while the polarized regime was 2D with a
small interlayer correlation length. These NS measurements
imply that our results are applicable for the polarized region,
whereas our calculations for κxy in the 2D ZZ ordered state
may not directly apply. In order to resolve this issue, one
may have to take into account possibly complex interlayer
couplings to model the 3D ZZ order. The importance of the
3D nature of the ZZ order thus remains to be investigated in
future studies.

While there is always a relative sign between the magnon
thermal Hall conductivities under opposite field directions

according to Theorem 1, the overall sign of κxy in each of
these field directions really depends on the choice of model
parameters. We have shown in Sec. V an example parameter
set that yields overall signs of κxy consistent with those ob-
served in Yokoi et al. [39,67]. Moreover, under in-plane fields
along the ±a directions, our calculated κxy due to magnons in
the polarized state shows a monotonic increase in magnitude
as a function of temperature in the low temperature regime,
and vanishes in the zero-temperature limit. These features
agree with the recent experimental data in Ref. [40]. Thus,
the presence of a half-quantized thermal Hall conductivity
at very low temperatures remains as the ultimate test for the
non-Abelian KSL.
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